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In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their
interconversion, and describing the rates of these reactions by using the Michaelis–Menten rate law is perfectly valid.
This rate law assumes that the concentration of enzyme–substrate complex (C) is much less than the free substrate
concentration (S0). However, in protein interaction networks, the enzymes and substrates are all proteins in
comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an
alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which
Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we
analyze an isolated Goldbeter–Koshland switch when enzymes and substrates are present in comparable
concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we
couple two and three Goldbeter–Koshland switches together to study the effects of feedback in networks of protein
kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent
kinetic formalism for protein interaction networks, because (1) it unveils the modular structure of the enzymatic
reactions, (2) it suggests a simple algorithm to formulate correct kinetic equations, and (3) contrary to classical
Michaelis–Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and
quantitatively.
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Introduction

A major goal of molecular systems biology is to build,
simulate, and analyze mathematical models of complex
molecular regulatory systems comprising genes, proteins,
and metabolites [1–3]. The bottom-up approach to this
problem is to propose a hypothetical network of biochemical
reactions among the component species, to formulate a set of
dynamical equations (e.g., differential equations) that de-
scribe the temporal and spatial evolution of the network, to
solve the equations numerically, and then to compare the
model’s behavior to that of living cells. The systems biologist
should also analyze the generic properties of the model, as far
as possible, to better understand the underlying molecular
basis of cell physiology.

In principle, the governing equations for any chemical
reaction network can be formulated by the law of mass action
[4]; i.e., the rate of an elementary reaction A þ B ! . . . is
proportional to the product of the concentrations of
reactants, rate¼ k [A] [B]. (In our notation, A and B (roman)
are the names of chemical species. A and B (italic) are
numbers referring to the concentrations of the particular
chemical species. [A] and [B] are alternative ways to express
the concentrations of chemical species.) This formulation
leads to many differential equations (one for every chemical
species in the network, including all intermediary complexes
formed, however transiently) with many separate terms on
the right-hand sides (one for every reaction in which the
species participates). Some of these reactions are very fast,

some are very slow, and some are in between. The large
differences of timescales in the network (typically many
orders of magnitude) create huge difficulties for simulating
the temporal evolution of the network and for understanding
the basic principles of its operation.
To sidestep these problems, theoreticians often use the

quasi-steady state approximation (QSSA) to eliminate the
fastest (and the slowest) variables in the system of differential
equations

d[A]/dt ¼ e�1 f([A],[B],[C],. . .) fast
d[B]/dt ¼ g([A],[B],[C],. . .) intermediate
d[C]/dt ¼ e h([A],[B],[C],. . .) slow
0 , e � 1.

For slow variables, the process is easy: d[C]/dt ’ 0, [C] ’ CT

¼ constant. For fast variables, it is more subtle: d[A]/dt ¼
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e�1f([A],[B],[C],. . .); i.e., [A] changes very rapidly until
f([A],[B],[C],. . .) ’ 0. The QSSA involves solving the algebraic
equation f([A],[B],[C],. . .)¼0 for [A]¼A([B],CT,. . .). We are left
with differential equations for the medium timescale varia-
bles only,

d½B�=dt ¼ gðAð½B�;CT; . . . Þ; ½B�;CT; . . . Þ:

The classic example of such timescale analysis is the
Michaelis–Menten (MM) theory of an enzyme-catalyzed
reaction, E þ S $ C ! E þ P [5]. (In our notation, rate
constants are denoted k1 for binding of enzyme and substrate,
k–1 for dissociation of the complex, and k2 for the catalytic
reaction. We often use a letter other than k for these rate
constants; the letter being chosen to represent the relevant
enzyme in a reaction network, e.g., d1, d–1, and d2 for enzyme
D; see below.) The total enzyme concentration is a slow
variable (EþC¼ET¼constant), the substrate concentration is
the intermediate variable (S(t) changes on the timescale of
interest), and the concentration of the enzyme–substrate
complex, C, is the fast variable:

[E] þ [C] ¼ ET ¼ constant,

k1½E�½S� � k�1½C� � k2½C� ¼ 0;

d½S�
dt
¼ �k2½C� ¼ �

k2ET ½S�
Km þ ½S�

;where Km ¼
k�1 þ k2

k1

The condition for this QSSA to be valid is ET � S0 þ Km,
where S0 ¼ [S](0) ¼ initial substrate concentration.

The same sort of analysis can be carried out for networks of
enzyme-catalyzed reactions, but modelers sometimes avoid
the hard work of separating timescales and simply use the
MM rate law to describe enzyme-catalyzed reactions in their
differential equations. For protein interaction networks
(PINs), such use of MM kinetics is unjustified because the
enzymes have multiple substrates, the substrates are acted
upon by multiple enzymes, and (worst of all) enzymes and

substrates often swap roles (for example, see [6]). For
instance, two kinases may phosphorylate each other, in which
case it cannot possibly be true that ET � S0 þ Km for both
reactions simultaneously. In this report, we show how to
formulate the QSSA properly for PINs, and we address some
problems in previously published models.

The Total QSSA for Enzyme-Catalyzed Reactions
Our approach to PINs relies on a modified QSSA intro-

duced by Borghans, DeBoer, and Segel in 1996 [7]. They
proposed that, for conditions when ET and S0 are comparable
numbers, the proper intermediate timescale variable is Ŝ(t)¼
S(t)þC(t). In terms of this variable, the governing equations are

E þ C ¼ ET ¼ constant; ð0Þ

ETŜ� ðET þ Ŝþ KmÞC þ C2 ¼ 0 ð1Þ

dŜ
dt
¼ �k2C: ð2Þ

Borghans, DeBoer, and Segel called this the total QSSA
(tQSSA). A sufficient condition for the uniform validity of the
tQSSA was derived by Tzafriri [8]:

eðET ; STÞ � 1 ð3Þ

where ST¼ S(0)þC(0), e(ET,ST)¼ (k2/2k1ST) � f(r(ET,ST)), f(r)¼ (1
– r)�1/2 � 1, and r(ET,ST) ¼ 4ETST(Km þ ET þ ST)

�2. Tzafriri
showed that

eðET ; STÞ � eðKm; 0Þ ¼ 0:25 1þ k�1
k2

� ��1
ð4Þ

Hence, Equation 3 is satisfied if k�1� k2; i.e., the dissociation
rate of the enzyme–substrate complex is much faster than the
catalytic conversion of substrate into product. Notice that
Equation 3 is not badly violated even if k–1¼ 0; so the tQSSA
is likely to be an excellent approximation for any ratio of
enzyme to substrate and for any ratio of timescales.
It is of course possible, using the quadratic formula, to

solve Equation 1 exactly for C as a function of Ŝ and ET and to
substitute this formula into Equation 2 for dŜ/dt. One may
instead use the expression

C ’
ETŜ

Km þ ET þ Ŝ
; ð5Þ

which is a good approximation so long as C2� ETŜ. Defining
q ¼ (Ŝ þ Km)/ET, we can write the condition C2 � ETŜ as

qþ 2þ Km þ ET

ETq
� 1; ð6Þ

which is certainly satisfied for q � 1 and q � 1. At its
minimum, the left-hand side of Inequality 6 is 4, so the
approximate Equation 5 would seem to be quite good for any
values of ET and ST. Per Borghans, DeBoer, and Segel, we call
Equation 5 the Padé approximant, and we use it whenever
possible. Tzafriri [8] provides a careful discussion of the
conditions for validity of the tQSSA and the more restrictive
Padé approximant (which he calls the first-order tQSSA).
Recently, Pedersen et al. applied the tQSSA to the case of

an enzyme converting two different substrates into products
[9]. Continuing along this line, we apply the tQSSA to an
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Author Summary

The physiological responses of a cell to its environment are
controlled by gene–protein interaction networks of great complex-
ity. To understand how information is processed in these networks
requires accurate mathematical models of the dynamical behavior of
large sets of coupled chemical reactions. To avoid producing large
and hardly manageable models, such reaction networks are often
simplified using phenomenological reaction rate laws, such as the
Michaelis–Menten rate law for an enzyme-catalyzed reaction. We
show that, in regulatory networks where proteins swap places as
enzymes and substrates, such simplifications must be carried out
with care, keeping track of enzyme–substrate complexes. The risk is
to provide a simplified description of the molecular networks that at
best is correct for the long-term behavior but fails to represent the
short-term dynamics of the real network. To avoid such a possibility,
we suggest using an alternative approach called the total quasi-
steady state approximation. We apply this alternative formalism to a
model of the network controlling the entry into mitosis in the
eukaryotic cell cycle, composed of three coupled protein modifica-
tion cycles. Whereas the classical Michaelis–Menten formalism fails
to represent the dynamics of this network correctly, the one we
propose captures the behavior with economy and accuracy.
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isolated Goldbeter–Koshland (GK) switch [10] and then to
PINs of increasing complexity.

Results

Analysis of the GK Module
In 1981, Goldbeter and Koshland [10] introduced the notion

of an ultrasensitive switch, composed of a substrate–product
pair (say, S and Sp) that are interconverted by two enzymes
(say, E and D); see Figure 1A. (Think of Sp as a phosphorylated
form of S and of E and D as a kinase and a phosphatase,
respectively.) Assuming the MM conditions, ET � S(0) þ Kme

and DT� Sp(0)þKmd, Goldbeter and Koshland wrote a single
dynamical equation for the time evolution of the switch:

dx
dt
¼ Veð1� xÞ

Je þ 1� x
� Vdx
Jd þ x

: ð7Þ

In Equation 7, x¼Sp(t)/ST, ST¼S(0)þSp(0), Je¼Kme/ST, Jd¼Kmd/
ST, Ve¼k2eET/ST, Vd¼ k2dDT/ST, and the subscripts ‘‘e’’ and ‘‘d’’
refer to the kinase and phosphatase reactions, respectively.
Goldbeter and Koshland showed that the steady state solution
of Equation 7 is given by the GK function,

x ¼ GðVe;Vd; Je; JdÞ
¼ ð2VeJdÞ=fVd � Ve þ Vd Je þ Ve Jd

þ½ðVd � Ve þ Vd Je þ Ve JdÞ2

�4ðVd � VeÞVe Jd�1=2g

The steady state response (Sp
*) as a function of stimulus

strength (kinase level, ET) is simply

S�p ¼ ST � G
k2eET

ST
;
k2dDT

ST
;
Kme

ST
;
Kmd

ST

� �

¼ ST � G
k2eET

k2dDT
; 1;

Kme

ST
;
Kmd

ST

� �
:

If Je and Jd� 1, then Sp
* is a steeply sigmoidal function of ET.

Goldbeter and Koshland called this signal-response curve
zero-order ultrasensitivity.
Goldbeter and Koshland’s analysis of phosphorylation–

dephosphorylation cycles is fine for metabolic control
systems, where metabolite concentrations ST are orders of
magnitude larger than enzyme concentrations, ET and DT.
But for PINs, the condition for the classical MM rate law is

Figure 1. Goldbeter–Koshland Module

(A) Substrate S is phosphorylated by kinase E and dephosphorylated by phosphatase D.
(B) Unpacked mechanism, including enzyme–substrate (E:S) complexes. The black dots at the tips of a T-shaped arrow indicate the two molecules that
come together to form a complex, pointed to by the arrowhead; the dots are meant to indicate that enzyme–substrate binding is a reversible reaction.
Formation of the product (E:S ! Eþ P) is indicated by a T with two arrowheads (pointing to E and P); absence of a dot at the foot indicates that the
catalytic step is presumed to be irreversible.
(C) Steady state value of Ŝp from Equation 8 is plotted against ET/DT for k2d/k2e¼1.7, Kme¼Kmd¼1 nM, ST¼50 nM, and for different values of DT: 0.5 nM
(solid line), 5 nM (dashed line), and 50 nM (dotted line).
(D) Same as (C), but using the exact steady state equations in Table 1 instead of using the Padé approximant. For DT¼ 5 nM, the exact steady state
dependence is ultrasensitive, whereas the approximated dependence (C) is not.
doi:10.1371/journal.pcbi.0030045.g001
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not valid, and we must keep track of the enzyme–substrate
complexes (Figure 1B). A similar argument has recently been
suggested for the mitogen-activated protein kinase pathway
[11]. Re-deriving Equation 7, using the tQSSA and the Padé
approximation to the algebraic equations, we find Equation 7
subject to some new definitions:

x ¼
Ŝp
ST
; Ŝp ¼ ½Sp� þ ½D : Sp�;

ST ¼ ½S�ð0Þ þ ½E : S�ð0Þ þ ½Sp�ð0Þ þ ½D : Sp�ð0Þ

Je ¼
Kme þ ET

ST
; Jd ¼

Kmd þ DT

ST

The signal–response curve,

Ŝ �p ¼ ST � G
k2eET

k2dDT
; 1;

Kme þ ET

ST
;
Kmd þ DT

ST

� �
; ð8Þ

is ultrasensitive if Je and Jd� 1, but this requires that the total
enzyme concentrations be small with respect to the total
substrate concentration: the standard MM requirement. For
PINs, we cannot expect this requirement to be satisfied, which
suggests that protein phosphorylation–dephosphorylation
cycles are unlikely to be ultrasensitive. In Figure 1C we plot
the signal–response curve, Ŝp/ST, as a function of ET/DT given
by Equation 8, for three different values of DT. As expected,
the response function is ultrasensitive for Je and Jd small, but
ultrasensitivity is lost as Je and Jd increase.

This conclusion about ultrasensitivity being lost in PINs,
based as it is on the Padé approximant, is not reliable when
enzymes and substrates are present in similar concentrations
[12]. In fact, numerical calculations (Figure 1D), based on the
full tQSSA equations (Table 1), show that a GK switch may still
be ultrasensitive for reasonable values of Je and Jd (see Figure
1D). Therefore, the issue of ultrasensitivity for covalent
modifications in PINs should be settled using exact steady
state calculations, without making the Padé approximation.

In the next section we show that the tQSSA, besides giving
insights into the steady state behavior of the network, provides
a good approximation of its temporal dynamics as well.

A Numerical Example
In Table 2 (columns D and E) we assign specific values to

the rate constants and total concentrations for the GK
module discussed in the previous section. Our choices are not
consistent with MM requirements and are only partly
consistent with favorable conditions for the tQSSA. In Figure
2 we compare a numerical solution of the full set of governing
differential equations with approximate solutions computed
from the usual QSSA and the tQSSA (the equations are
provided in Table 1 and in machine-readable form in File
Collection S1). In addition to a time course (Figure 2C), we
plot (Figure 2A and 2B) one of the fast variables ([E:S] or
[Dp:Sp]) as a function of the relevant slow variable (S or Sp for
QSSA and Ŝ or Ŝp for tQSSA), to highlight the presence of two
different timescales. If the timescales are clearly separated, a
sudden increase of the complex (displacement along the y-
axis) will precede the slower conversion of substrate into
product (displacement along the x-axis); see [7]. From the
exact solution (black curves in Figures 2A and 2B) we see that,
at the beginning of the reaction, Sp forms a complex with D,
and before D:Sp reaches a maximum, Sp starts to be converted
into S. As soon as S is produced, E:S is created and converted
back into Sp, with most of E forming a stable complex with S
([E:S]/ET ¼ 0.935 at steady state). Although the fast and slow
dynamics are not perfectly separated in either QSSA or
tQSSA, the timescale separation is clearly more pronounced
in tQSSA (red curve in Figure 2B) than in QSSA (blue curve
in Figure 2A). Time courses (Figure 2C) show that throughout
the simulation tQSSA does a better job in reproducing the
dynamics of the network than QSSA. Notice that at the
beginning of the simulation, QSSA gives negative values to S
and [E:S] to comply with both initial conditions and
conservation relations.

Coupled GK Modules: The Antagonism between MPF and
Wee1
In this section we study the steady state behavior of a

system of two coupled GK switches (Figure 3A). Building
upon the previous network, we consider the possibility that E
exists in phosphorylated (Ep) and unphosphorylated (E)
forms. Suppose that Ep is a less active form, and E ! Ep is
catalyzed by S. S and E are antagonists since they phosphor-
ylate and inactivate each other. F is a phosphatase that

Table 1. Equations for the GK Module (Figure 1)

Model Equations

Full

model

D ¼ DT � [D:Sp]

E ¼ ET � [E:S]

S ¼ ST � Sp � [D:Sp] � [E:S]

dSp/dt ¼ e2 [E:S] � d1 � D � Sp þ d�1 � [D:Sp]

d[D:Sp]/dt ¼ d1 � D � Sp � (d�1 þ d2 ) � [D:Sp]

d[E:S]/dt ¼ e1 � E � S � (e�1 þ e2 ) � [E:S]

QSSA 0 ¼ DT � Sp – (Kmd þ Sp) � [D:Sp] ) [D:Sp] ¼ DT Sp/(Kmd þ Sp)

0 ¼ ET(ST � Sp � [D:Sp]) � [E:S] � (ET þ Kme þ ST � Sp � [D:Sp]) þ [E:S]2

dSp /dt ¼ e2 � [E:S] þ d�1 � [D:Sp] � d1 � D � Sp

tQSSA Ŝp ¼ Sp þ [D:Sp]

0 ¼ DT � Ŝp � [D:Sp] � (DT þ Kmd þ Ŝp) þ [D:Sp]2

0 ¼ ET(ST � Ŝp) � [E:S] � (ET þ Kme þ ST � Ŝp) þ [E:S]2

dŜp /dt ¼ e2 � [E:S] � d2 � [D:Sp]

doi:10.1371/journal.pcbi.0030045.t001

Table 2. Parameter Values, ‘i, for the Models: ‘¼ letter (a,. . . , f)
and i ¼ 1, �1, 2

Enzyme S S C Dp E F

Substrate D E Dp Sp S Ep

Letter, ‘ a b c d e f

‘1 0.2 5 0.1 0.0009 0.1 0.1

‘�1 0.02 10.6 0.1 0.005 0.05 0.01

‘2 0.4 0.4 20 0.085 0.05 2

Kml 2.1 2.2 201 100 1 20.1

+T 50 50 10 200 20 0.5

The letters c,...,f refer to the rate constants characterizing enzymes C,...,F in Figures 1, 3,
and 4. The letters a and b refer to S, as an enzyme, phosphorylating substrates D and E,
respectively, in Figures 3 and 4. The association rate constants (‘1) have units nM�1 min�1,
whereas dissociation (‘�1) and catalytic (‘2) rate constants are in min�1. Total
concentrations (+T) and Michaelis constants (Kml) are in nM.
doi:10.1371/journal.pcbi.0030045.t002
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converts Ep back to E. (In our notation for complexes, A:B,
the enzyme comes first and substrate follows; for example, for
the reaction whereby S phosphorylates E, the enzyme–
substrate complex is denoted S:E.)

This is no arbitrary example; it describes exactly the
interactions between two regulators of the G2-to-mitosis (G2/
M) transition in the eukaryotic cell cycle [13]. In that case, S¼
MPF (M-phase promoting factor, a dimer of Cdc2 and cyclin B)
and E ¼ Wee1 (a kinase that phosphorylates and inactivates
Cdc2). The parameter values that we choose for these coupled
enzymatic reactions (Table 2) are taken, for themost part, from
a careful study of the biochemical kinetics of these reactions in
Xenopus egg extracts, donebyMarlovits et al. [14].Novak, Tyson,
and collaborators implemented these values into a mathemat-
ical model for the G2/M transition during early embryonic cell
cycles. The equations of the model were derived from an
implicit application of the QSSA, but to our knowledge an
explicit derivation has never been done: this observation
prompted us to investigate thematters addressed in this paper.

The antagonism between E and S (Figure 3A) constitutes a
positive feedback loop (sometimes called a double-negative
feedback loop). Novak and Tyson proposed that this loop
contributes to the bistability that characterizes the G2/M
transition in the eukaryotic cell cycle [15–17]. In fact,

according to their original model, the antagonism between
Wee1 and MPF alone could sustain bistability. However, this
conclusion was drawn from an improper application of the
QSSA; hysteresis is lost once the network is unpacked to its
elementary steps (Figure 3B). Even more, according to
Advanced Deficiency Theory (performed with the software
package CRNT [Chemical Reaction Network Toolbox] devel-
oped by Feinberg [18]), this network (Figure 3B) cannot have
bistable behavior for any positive values of the kinetic rate
constants. Is it possible to recover hysteresis from the
antagonism between S and E?
In Novak and Tyson’s original model, both Sp and Ep had

some residual activity, a feature that in their model was not
essential to generate hysteresis and that we have not taken
into account so far. This residual activity becomes essential
when the network is reduced to elementary steps: we find that
bistability is recovered when we add the reactions E þ Sp $
Sp:E ! Ep þ Sp, i.e., when Sp retains some limited kinase
activity. (In Figure 3B the additional reactions are drawn in
grey, and in Figure 3C, top panel, the signal–response curve is
drawn with and without the additional reactions.) Bifurcation
analysis suggests that the new reactions create a steady state
where S is inhibited and E is active, which is paradoxical
because the additional reactions provide an alternative path

Figure 2. Comparison of QSSA and tQSSA for the GK Module

The simulation shows the rise of S(t), starting from S(0) ¼ 0, Sp(0) ¼ ST. Equations in Table 1, parameter values in Table 2. Both E and D are initially
uncomplexed, E(0)¼ ET and D(0)¼ DT.
(A) Exact solution (black line), QSSA solution (blue line). The arrows indicate the direction of time, whereas the distance between two consecutive dots
on the lines is 1 min.
(B) Exact solution (black), tQSSA solution (red).
(C) Time evolution of the same simulation, with the same color scheme. The enzyme–substrate complexes in this simulation are not negligible. In
particular, at steady state, E is almost completely bound to S, whereas at the beginning of the time course, D:Sp accounts for roughly half of all substrate
molecules.
doi:10.1371/journal.pcbi.0030045.g002
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for inactivating E. The paradox is resolved when we realize
that a large fraction of S is sequestered in Sp:E complexes,
thus helping E to inactivate S. Indeed, hysteresis is possible
(unpublished data) with the association–dissociation reac-
tions alone (Eþ Sp $ Sp:E) without the catalysis step (Sp:E!
EpþSp). Of course, bistability can also be restored by allowing
Ep to phosphorylate S.

To apply the tQSSA to such networks, we first define ‘‘hat’’
variables to include a single free molecular species plus all the
complexes in which this species appears. Defined thus, the
association–dissociation reactions and all the reactions where
a chemical species serve as a catalyst cancel out. Here we define

Ŝ ¼ Sþ ½E : S� þ ½S : E�
Ê ¼ E þ ½E : S� þ ½S : E� þ ½Sp: E�

whose rates of change are given by

dŜ
dt
¼ d2 � ½D : Sp� � e2 � ½E : S�

dÊ
dt
¼ f2 � ½F : Ep� � b2 � ½S : E� � b92 � ½Sp: E�

Our definition of hat variables extends what was originally
proposed for a single enzymatic reaction by Borghans,
DeBoer, and Segel. In terms of the hat variables, we can
describe each catalytic reaction in the network with equations
similar to Equations 1 and 2. For example, the rate of
phosphorylation of S in Figure 3B is described by Equation 2
with k2C ! e2 [E:S] and with the concentration of enzyme–
substrate complex given by Equation 1 with C ¼ [E:S],
ET ! Ê � ½S : E� � ½Sp: E�, and Ŝ! Ŝ� ½S : E� (see equations
in Table 3).
Concerning this network: we perform no numerical

Figure 3. Mutual Antagonism between Two Kinases

(A) A simplified diagram shows all the actors of the network: two kinases S and E, and two phosphatases D and F. In grey, the additional reaction
whereby Sp retains some catalytic activity.
(B) The unpacked diagram, keeping track of all enzyme–substrate complexes. Diagram conventions as in Figure 1.
(C) Upper panels: bifurcation diagrams for the exact model, equations in Table 3, parameter values in Table 2. Solid lines represent stable steady states;
dashed lines are unstable steady states. When Sp has no catalytic activity, the system does not show hysteresis. Hysteresis is recovered if Sp has some
residual activity—grey lines in (A) and (B). The background activity has the following parameter values: b91¼0.05 nM min�1, b9�1¼0.005 min�1, and b92¼
0.0001 min�1.
(C) Lower panels: phase plane diagrams for the tQSSA model with ST=12. Ê nullcline (black), Ŝ nullcline (red), stable steady states (black dots), unstable
steady state (white dot). Left: when Sp has some catalytic activity, the system is bistable. Right: when Sp has no catalytic activity, the system is monostable.
doi:10.1371/journal.pcbi.0030045.g003
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simulations to compare tQSSA and QSSA; we will do that in
the next section for a larger and biologically more significant
network. Rather, we use the model reduced with tQSSA to
perform phase plane analysis (Figure 3C, bottom panel),
which confirms that the additional reaction strengthens the
negative effect that E exerts on S, thereby bending the Ŝ
nullcline and creating three intersection points.

Coupled GK Modules: The G2/M Transition Network
In the G2/M network, the antagonism between Wee1 and

MPF is aided by a second positive feedback loop, involving
MPF and Cdc25, a phosphatase that removes the inactivating
phosphate group from Cdc2 [13]. (In our notation, Wee1 is E,
MPF is S, and Cdc25 is D.) Because S can phosphorylate D,
and Dp is a more active form, S and Dp activate each other.
Finally, we have C, an unregulated phosphatase that converts
Dp back to D.

Altogether, the network consists of three GK modules: the
first (C/D/S) controls D’s phosphorylation, the second (D/S/E)
affects the phosphorylation state of S, and the last (S/E/F)
controls the activity of E (Figure 4A and 4B). Again, we take
most of the parameter values for the additional reactions
from Marlovits et al. [14]. In Table 4 we provide the governing
equations for these coupled GK switches in three versions:
full (no approximations), QSSA, and tQSSA.

Bifurcation analysis and CRNT show that the network is
bistable even with no residual activity for Sp or Ep

(unpublished data). Indeed, the positive feedback between
Dp and S suffices, by itself, to generate hysteresis, as
confirmed by CRNT. Interestingly, given the parameter
values in Table 2, the network is bistable (unpublished data)
in a region very similar to that determined experimentally by
Sha et al. [17].

Since the model performs satisfactorily concerning its
steady state behavior, we move on to compare the dynamics
of both QSSA and tQSSA to the exact solution (Figure 4C).

To apply tQSSA, we define the hat variables

D̂p ¼ Dp þ ½Dp: Sp� þ ½C : Dp�
Ŝ ¼ Sþ ½S : E� þ ½E : S� þ ½S : D�
Ê ¼ E þ ½S : E� þ ½E : S�

whose dynamics are described by the following equations:

dD̂p

dt
¼ a2 � ½S : D� � c2 � ½C : Dp�

dŜ
dt
¼ d2 � ½Dp: Sp� � e2 � ½E : S�

dÊ
dt
¼ f2 � ½F : Ep� � b2 � ½S : E�

The concentrations of the enzyme–substrate intermediates
are given by solving simultaneously a set of six coupled
quadratic algebraic equations (see Table 4). Notice how the
modularity of the network (composed of six identical MM
reactions) is mirrored by the modularity of the tQSSA
equations. Numerical simulations (Figure 4C) demonstrate
the superiority of tQSSA (red lines) over QSSA (blue lines) in
accurately capturing the exact dynamics (black lines) of this
regulatory network.
To compare further the QSSA and tQSSA with the exact

solution, we plot in Figure 5 the complexes ([Dp:Sp] and [E:S])
as functions of the slow variables (Sp and S for QSSA and Ŝp
and Ŝ for tQSSA). The initial hump of [Dp:Sp]—due to
phosphorylation of D by S followed by dephosphorylation of
Dp by C—(black curves in Figure 5A and 5B), is captured
qualitatively by the tQSSA (red curve) but completely missed
by the QSSA (blue curve). Similarly, the initial accumulation
of [E:S] is closely approximated by the tQSSA but badly
overshot by the QSSA. Both approximations capture the
latter part of the time course reasonably well. The QSSA
completely misses the initial stages of the simulation because
it assigns negative values to Ep, [F:Ep], and D.

Table 3. Equations for the S/E Module (Figure 3)

Model Equations

Full model D ¼ DT � [D:Sp]

Sp ¼ ST � S � [E:S] � [S:E] � [D:Sp] � [Sp:E]

Ep ¼ ET � E � [S:E] � [E:S] � [F:Ep] � [Sp:E]

F ¼ FT – [F:Ep]

d[D:Sp]/dt ¼ d1 � D � Sp � (d�1 þ d2 ) � [D:Sp]

d[E:S]/dt ¼ e1 � E � S � (e�1 þ e2 ) � [E:S]

d[S:E]/dt ¼ b1 � E � S � (b�1 þ b2 ) � [S:E]

d[F:Ep]/dt ¼ f1 � F � Ep � (f�1 þ f2 ) � [F:Ep]

d[Sp:E]/dt ¼ b91 � E � Sp � (b9�1 þ b92) � [Sp:E]

dS/dt ¼ e�1 � [E:S] � e1 � S � E þ d2 � [D:Sp] þ (b�1 þ b2 ) � [S:E] � b1 � S � E

dE/dt ¼ (e�1 þ e2) � [E:S] � e1 � E� S þ f2 � [F:Ep] � b1 � E � S þ b�1 � [S:E] � b91 � E � Sp þ b9�1 � [Sp:E]

tQSSA Ŝ ¼ S þ [E:S] þ [S:E]

Ê ¼ E þ [E:S] þ [S:E] þ [Sp:E]

0 ¼ DT � (ST � Ŝ � [Sp:E]) � [D:Sp] � (DT þ Kmd þ ST � Ŝ � [Sp:E]) þ [D:Sp]2

0 ¼ (Ê � [S:E] � [SpE]) � (Ŝ � [S:E]) � [E:S] � (Ê � [S:E] � [SpE] þ Kme þ Ŝ � [S:E]) þ [E:S]2

0 ¼ (Ê � [E:S] � [SpE]) � (Ŝ � [E:S]) � [S:E] � (Ê � [E:S] � [SpE] þ Kmb þ Ŝ � [E:S]) þ [S:E]2

0 ¼FT(ET � Ê ) � [F:Ep] � (FT þ Kmf þ ET � Ê ) þ [F:Ep]2

0 ¼ (ST � Ŝ � [D:Sp]) � (Ê � [E:S] � [S:E]) � [Sp:E] � (ST � Ŝ � [D:Sp] þ K9mb þ Ê � [E:S] � [S:E]) þ [Sp:E]2

dŜ/dt ¼ d2 � [D:Sp] �e2 � [E:S]

dÊ/dt ¼ f2 � [F:Ep] � b2 � [S:E] �b92 � [Sp:E]

doi:10.1371/journal.pcbi.0030045.t003
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Discussion

Coupled enzymatic reactions (e.g., interacting kinases and
phosphatases) are common features of PINs. We analyze one
of these networks, composed of three phosphorylation and
three dephosphorylation reactions, altogether comprising 14
chemical species. The network was originally proposed by
Novak and Tyson [13] to model the activation of MPF in early
embryos of the frog Xenopus. In their original work, Novak
and Tyson neglected the contribution of enzyme–substrate
complexes. Using a combination of mass-action and MM
kinetics, they showed that the network may have multiple
steady state solutions. We have relaxed the assumptions,
writing down differential equations for each species, includ-
ing the enzyme–substrate complexes. Using parameters
obtained indirectly from published data, we confirmed that
the model exhibits bistability in the same parameter range as
predicted theoretically by Novak and Tyson [13] and
measured experimentally [16,17]. As for the dynamics, our
simulations show that the enzyme–substrate complexes,

neglected in the original model, are present in non-negligible
concentrations.
The complexes play an important role because of the

topology of the network. In the cell cycle model, some
molecular species are at the same time enzymes and substrates
of each other. If for one reaction enzyme concentration is
negligible compared with substrate concentration, then the
opposite must be true when the roles are exchanged, allowing
for a significant fraction of the substrate to be sequestered in
the complex. Similarly, when some molecules form complexes
with several enzymes, even if each complex is not present in a
large amount, their sum may not be negligible.
The role played by enzyme–substrate complexes in PINs

could be more important than currently appreciated. In the
cell cycle network, Wee1 and MPF are antagonists that
phosphorylate and inhibit each other. In our simulations, the
concentrations of Wee1:MPF and MPF:Wee1 are not negli-
gible. The presence of high concentrations of such complexes
can be interpreted as a second way forWee1 to inhibit MPF, by
sequestration. In this sense, Wee1 behaves as both an

Figure 4. The Novak–Tyson Model for the G2/M Transition

(A) A simplified diagram shows all the actors of the network: two kinases S and E, and three phosphatases C, D, and F.
(B) The unpacked diagram, keeping track of all enzyme–substrate complexes. Diagram conventions as in Figure 1.
(C) The time course of the network shown in (B); equations in Table 4, parameter values in Table 2. Initial conditions: Dp¼ 200 nM, S¼ 0, E¼ 20 nM, all
complexes¼0. Again, QSSA (blue) performs poorly in reproducing the dynamics of the full system (black), whereas tQSSA (red) is a good approximation.
Comparisons between D, S, and E and their counterparts D̂, Ŝ, and Ê show that while the complexes forming D are not present in significant amounts, S
contributes about one half of Ŝ, and E’s contribution to Ê is negligible.
doi:10.1371/journal.pcbi.0030045.g004
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inhibitory kinase and a stoichiometric cyclin dependent
kinase (CDK) inhibitor. In our simulation we notice that
MPF:Cdc25 is also present in high concentration (40% of total
MPF, 10% of total Cdc25). If confirmed, that would suggest an
intrinsic way to attenuate the positive feedback loop between
MPF and Cdc25. Finally, trimeric complexes might form as
well (e.g., Wee1:MPF:Wee1), and such molecular species may
have great effects on the qualitative behavior of PINs (Sabouri-
Ghomi, Ciliberto, Novak, and Tyson, unpublished data).

Of course, one can follow the exact dynamics of a control
system by solving the full system of ordinary differential
equations (ODEs). However, a full description of the system
comes with many equations, making any qualitative analysis
difficult. A typical way to reduce the number of equations is
the QSSA originally formulated for an isolated enzyme-
catalyzed reaction, when substrate is in great excess over
enzyme. When applying the QSSA to a network of coupled
catalytic reactions, with realistic values of rate constants and
total protein concentrations, we found that the reduced
system of ODEs obtained by the QSSA does not faithfully
reproduce the dynamics of the full system of ODEs.

The tQSSA works for a larger range of parameter values
than does the QSSA; in particular, it is valid even when the
enzyme is in excess compared with the substrate. Such an

approximation is particularly appealing in PINs where, as
mentioned above, enzymes and substrates often exchange
roles. Given its appeal, we applied tQSSA to a full model of
the PIN that regulates the G2/M transition in the cell cycle. We
found by numerical simulations that the tQSSA does a good
job describing coupled catalytic reactions. Moreover, apply-
ing tQSSA to PINs generates a set of differential–algebraic
equations of standard format, Equations 1 and 2, suggesting
that a computer algorithm may be devised whereby tQSSA is
used to reduce a full set of multi-timescale ODEs to a smaller
set of slow equations. The reduced set of equations may be
especially useful for stochastic simulations of PINs by
Gillespie’s algorithm.
Summarizing, we propose that large networks of coupled

enzymatic reactions should first be written in full and then
reduced by applying the tQSSA. This way it will be possible to
reduce the number of dynamic equations while maintaining
the complexity of the network (i.e., including enzyme–substrate
complexes) and simultaneously to achieve reliable approximate
solutions for the transient dynamics of the network.

Methods

All calculations have been made using XPPAUT, software
developed by Ermentrout [19] and freely available online at http://

Table 4. Equations for the Network of Figure 4B

Model Equations

Full model C ¼ CT � [C:Dp]

D ¼ DT � DP � [Dp:Sp] � [C:Dp] � [S:D]

Sp ¼ ST � S � [E:S] � [S:E] � [S:D] � [Dp:Sp]

Ep ¼ET – E � [S:E] � [E:S] � [F:Ep]

F ¼ FT – [F:Ep]

d[C:Dp]/dt ¼ c1 � C � Dp � (c�1 þ c2 ) � [C:Dp]

d[S:D]/dt ¼ a1 � S � D � (a�1 þ a2) � [S:D]

d[Dp:Sp]/dt ¼ d1 � Dp � Sp � (d�1 þ d2 ) � [Dp:Sp]

d[E:S] ¼ e1 � E � S � (e�1 þ e2 ) � [E:S]

d[S:E]/dt ¼ b1 � E � S � ( b�1 þ b2 ) � [S:E]

d[F:Ep]/dt ¼ f1 � F � Ep � (f�1 þ f2) � [F:Ep]

dDp/dt ¼ a2 � [S:D] � c1 � Dp � C þ c�1 � [C:Dp] � d1 � Dp � Sp þ (d�1 þ d2) � [Dp:Sp]

dS/dt ¼ e�1 � [E:S] � e1 � S � E þ d2 � [Dp:Sp] þ (b�1 þ b2 ) � [S:E] � b1 � S � E � a1 � S � D þ (a�1 þ a2) � [S:D]

dE/dt ¼ (e�1 þ e2) � [E:S] � e1 � E� S þ f2 � [F:Ep] � b1 � E � S þ b�1 � [S:E]

QSSA 0 ¼ (CT – [C:Dp]) � Dp – Kmc � [C:Dp]

0 ¼ S (DT � Dp � [Dp:Sp] � [S:D] � [C:Dp]) – Kma � [S:D]

0 ¼ Dp � (ST � S � [S:D]� [E:S]� [S:E] � [Dp:Sp]) – Kmd � [Dp:Sp]

0 ¼ E � S – Kme � [E:S]

0 ¼ E � S – Kmb � [S:E]

0 ¼ (FT – [F:Ep]) � (ET � E � [E:S] � [S:E] � [F:Ep]) – Kmf � [F:Ep]

dDp/dt ¼ a2 � [S:D] � c1 � Dp � C þ c�1 � [C:Dp] � d1 � Dp � Sp þ (d�1 þ d2 ) � [Dp:Sp]

dS/dt ¼ e�1 [E:S] � e1 � S � E þ d2 � [Dp:Sp] þ (b�1 þ b2) � [S:E] � b1 � S � E � a1 � S � D þ (a�1 þ a2) � [S:D]

dE/dt ¼ (e�1 þ e2) � [E:S] � e1 � E � S þ f2 � [F:Ep] � b1 � E � S þ b�1 � [S:E]

tQSSA D̂p ¼ Dp þ [Dp:Sp] þ [C:Dp]

Ŝ ¼ S þ [S:D] þ [E:S] þ [S:E]

Ê ¼ E þ [E:S] þ [S:E]

0 ¼ (CT)(D̂p � [Dp:Sp]) � [C:Dp] � (CT þ Kmc þ D̂p � [Dp:Sp]) þ [C:Dp]2

0 ¼ (Ŝ � [E:S] � [S:E])(DT � D̂p) � [S:D] � (Ŝ � [E:S] � [S:E] þ Kma þ DT � D̂p) þ [S:D]2

0 ¼ (D̂p � [C:Dp])(ST � Ŝ) � [Dp:Sp](D̂p � [C:Dp] þ Kmd þ ST � Ŝ) þ [Dp:Sp]2

0 ¼ (Ê � [S:E])(Ŝ � [S:E] � [S:D]) � [E:S] � (Ê � [S:E] þ Kme þ Ŝ � [S:E] � [S:D]) þ [E:S]2

0 ¼ (Ŝ � [E:S] � [S:D])(Ê � [E:S]) � [S:E] � (Ŝ � [E:S] � [S:D] þ Kmb þ Ê � [E:S]) þ [S:E]2

0 ¼ FT(ET � Ê) � [F:Ep] � (FT þ Kmf þ ET � Ê ) þ [F:Ep]2

dD̂p/dt ¼ a2 � [S:D] � c2 � [C:Dp]

dŜ/dt ¼ d2 � [Dp:Sp] � e2 � [E:S]

dÊ/dt ¼ f2 � [F:Ep] � b2 � [S:E]

doi:10.1371/journal.pcbi.0030045.t004
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www.math.pitt.edu/;bard/xpp/xpp.html. XPPAUT solves the alge-
braic part of differential–algebraic equations by Newton’s method,
given an initial guess for the unknowns. In File Collection S1 we
provide .ode files, readable by XPPAUT, for reproducing the results
in this paper.

Supporting Information

File Collection S1. .ode Files

We provide .ode files, readable by XPPAUT, for reproducing the
results in this paper.

Found at doi:10.1371/journal.pcbi.0030045.sd001 (6 KB ZIP).
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Figure 5. Timescale Separation in the Model of the G2/M Network

The exact solution (black lines) is compared with the QSSA, blue lines in (A), and to the tQSSA, red lines in B. Arrows indicate the direction of time,
whereas the distance between consecutive dots on the lines is 1 min. Equations in Table 4, parameter values in Table 2.
doi:10.1371/journal.pcbi.0030045.g005
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