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Abstract

We study tick-by-tick financial ret. v for the FTSE MIB index of the Ital-
ian Stock Exchange (Borsa It :-»a). We confirm previously detected non-
stationarities. Scaling properties -eported before for other high-frequency
financial data are only approximately valid. As a consequence of our empir-
ical analyses, we propose a sim le model for non-stationary returns, based
on a non-homogeneous 1.. *mal compound Poisson process. It turns out
that our model can a spreximacely reproduce several stylized facts of high-
frequency financial t..~e serie,. Moreover, using Monte Carlo simulations, we
analyze order selec ,ion to. “ ais class of models using three information crite-
ria: Akaike’s infc .m. “ion criterion (AIC), the Bayesian information criterion
(BIC) and the "~nnan-Quinn information criterion (HQ). For comparison,
we perform a sim .ar Monte Carlo experiment for the ACD (autoregressive
conditional dui. ion) model. Our results show that the information crite-
ria work Fast “or small parameter numbers for the compound Poisson type
models, w. ~ 2as ‘or the ACD model the model selection procedure does not
work v _.. in ce.cain cases.
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Introduction

The rise in the availability of high-frequency finar ‘ial Jata has led to
an increase in the number of studies focusing on the area. ~f classification
and modeling of financial markets at the ultra-higa freq. ency level. The
development of models able to reflect the various , henor ena observed in
real data is an important step towards a full v.uerstauding of the funda-
mental stochastic processes driving the market. T}t _ st tistical properties of
high-frequency financial data and market mi.~o-str- ural properties were
studied by means of different tools, including phc romenological models of
price dynamics and agent-based market sini'atior s (see [1-31]).

Various studies on high-frequency econ. metrics appeared in the litera-
ture using the autoregressive conditior .. lu.wwon (ACD) models (see [32-
35]). Alternative stochastic models were .~ proposed, e.g., diffusive mod-
els, ARCH-GARCH models, stocha. mic _'~tility models, models based on
fractional processes, models based on : pordinate processes (see [36-42]) as
well as models based on self-excit.ng nrocesses of Hawkes type [43—45]. An
important variable is the ord~r imb. lance. Many existing studies analyze
order imbalances around specitic @=vents or over short periods of time. For
example, in [46] order imbalances are analyzed around the October 1987
crash. Reference [47] ana’yzes . ow order imbalances change the relation be-
tween stock volatility an.' volun e using data for about six months. A large
body of research exar iines v.. effect of the bid-ask spread and the order
impact on the short rur beb wior of prices (see [48-61]). Trading activity
was measured by t'.e av. "ar e number of trades in unit time intervals in [62]
and [63]. Howeve , ~ogregating trades into time intervals of the same length
may have influences on "he analysis. For instance, if intervals are too short
with respect *0 tt 2 average waiting time between consecutive trades, then
every intervair -1 contain either no point or a small number of points. On
the contra y, if intervals are too long, aggregation of too many points may
lead to lc "< ¢. inf rmation on the time structure of the process. Moreover,
in both ~ases .~ ¢ distorts the kurtosis of the return process (see [33]).

Fcc the 1 asons mentioned above, the waiting-time (duration) between
two co. secut ve transactions is an important empirical variable (see [10, 21—
25, 04-64|). In the market, during a trading day, the activity is not constant
(c2e [32, 33]) leading to fractal-time behavior (see [67, 68]). Indeed, as a
cons. ~.cnce of the double auction mechanism, waiting times between two
sui se,uent trades are themselves random variables (see [64, 69, 70]). They
1. 1y also be correlated to returns (see [71]) as well as to traded volumes.

In the Physics literature, in order to investigate tick-by-tick financial




time series, the continuous-time random walk (CTRW) was sed (see [4,
64, 72-75]). It turned out that interorder and intertrac : w. **ing-times are
not exponentially distributed. Therefore, the jump pi.~e s of tick-by-tick
prices is non-Markovian (see [4, 64]). Bianco and ('.lzolin. xpplied a new
method to verify whether the intertrade waiting ti ne pro ess is a genuine
renewal process (see [76-78]). This was assumed by he €' LfRW hypothesis
in [4]. They found that intertrade waiting-times Jdo fr'"~w a renewal process.
Indeed, trading via the order book is asynchronc - and a transaction occurs
only if a trader issues a market order. For liqu 1 svucks, waiting times can
vary in a range between fractions of a secorud to a few minutes, depending
on the specific stock and on the market ~onsi’~re .. In [71], the reader can
find a study on General Electric stocks trau. 1 in October 1999. Waiting
times between consecutive prices exhibi. '-day periodicity, typical of variable
intraday market activity. Moreover. as men. oned above, the unconditional
survival probability (the complemen arr cumulative distribution function)
of waiting times is not exponent ~lly « stributed (see [64, 79]), but is well
fitted by a Weibull function (see [+?, 22 33, 71, 80, 81]).

The non-stationary chara: .. ~f 'mancial time series has also been the
object of recent studies in the Ph, “ics literature [69, 82-85].

Here, inspired by [86], =~ building on the results presented in [69], we
propose a model based ¢.a non- omogeneous Poisson processes. The paper
is organized as follows. Se.ion . describes the data set. Section 2 describes
the statistical analys's of the single assets and of the FTSE MIB index,
respectively as well «.' t'.e scaling analysis; Section 3 contains the bivariate
analysis whereas ¢ ection ' 1s devoted to the compound Poisson model, its
order selection a'.d v. ~ numerical results. A comparison with order selection
performance fc ACD models is presented in the same section. Section
5 relates our me’nodology and results to the literature in Mathematics.
Finally, Section . nresents the conclusions of this work. A visual map of the
structure Jf t}.s paper is presented in Figure 1.

1. Dr scription of the data set

The 7=+ set includes high-frequency trades registered at Italian Stock
E .chang~ (BIt or Borsa Italiana), from the 03" of February 2011 to the 09"
ot Marct 2011. The data of February 14" 2011 are not used because, on
that uay, there were technical problems at BIt. Moreover, we have removed
‘h- data of the 215 of February, as well. In fact, on that day, there was a
c1 sh in the Italian market related to the events in Lybia (on the 15" of
February, a rebellion against the Lybian government begun). We consider
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Figure 1: /Z_"~r online) Structure of the paper.

the 40 shares in the ¥ I'SE n."3 Index as well as the index itself. Further
information on the - ata et i «cluding the meaning of symbols and the cal-
culation of the FT E v,"R index is available in the Supplemental material
(see https://gi .. h.com/enricoscalas/HFFnonstationary). In partic-
ular, it is important to .emark that the FTSE MIB Index value is updated
every time tb :re s a change of price of one of its components. The forty
stocks compos.~ . the FTSE MIB vary in their average market capitaliza-
tion and e hib‘t du.erent levels of trading activity with different numbers of
trades ov. = t'.as p .riod as summarized in Table I in the Supplemental mate-
rial who > the - ¢al number of observations in the chosen month is given (see
https ://gitwub. com/enricoscalas/HFFnonstationary). The number of
data p.ints r er share varies between 10* and 10° and there are 4-10° values
of che irdex. Choosing one month of high-frequency data was a trade-off
b. tween - he necessity of using enough data for significant statistical analysis
ana, ... the other hand, the goal of minimizing the effect of external eco-
no’ ue fluctuations leading to non-stationarities of the kind discussed in [87].
b v every stock, the data set consists of prices p(t;), volumes v(¢;) and times
of execution t; sampled every second, where i is the trade index, varying




from 1 to the total number of daily trades N. These data we = filtered in
order to remove misprints in prices and times of execv 1on ™ particular,
concerning prices, when there are multiple prices for ti.- ¢ .me time of exe-
cution, we consider only one transaction at that tin-. and « price equal to
the average of the multiple prices. As far as waitin ; times 7, between two
executions are concerned, we remove observations l.-oer .nan 200 s: This
means more than 3 minutes without recorded t adir

1.1. FTSE MIB Index

The FTSE MIB Index (see [88]) is the primary »enchmark index for the
Italian equity markets. Capturing approx mauv.'~ 50% of the domestic mar-
ket capitalisation, the Index is made up of hix~ly liquid, leading companies
across Industry Classification Benchma. - (ICB) sectors in Italy. The FTSE
MIB Index measures the performar-e of 4u hares listed on Borsa Italiana
and seeks to replicate the broad sect. r - eights of the Italian stock market.
The Index is derived from the ur -rse ‘f stocks trading on BIt. The Index
replaces the previous S&P/MIB Indlex, as a benchmark Index for Exchange
Traded Funds (ETFs), and f.- ..-~x'ng large capitalisation stocks in the
Italian market. FTSE MIB Index .. calculated on a real-time basis in EUR.
The official opening and ¢'-~ng hours of the FTSE MIB Index series coin-
cide with those of Blt r arkets and are 09:01 and 17:31 respectively. The
FTSE MIB Index is celcuw *ed ind published on all days when BIt is open
for trading.

FTSE is responsi. 'e for he operation of the FTSE MIB Index. FTSE
maintains records of the 1..arket capitalisation of all constituents and other
shares and make , che ~oes to the constituents and their weightings in accor-
dance with the Z -ound Rules. FTSE carries out reviews and implement the
resulting con citv nt changes as required by the Ground Rules. The FTSE
MIB Index -ons..‘ment shares are selected after analysis of the Italian equity
universe, ‘0 e’ sure the Index best represents the Italian equity markets.

The k7€ M.IB Index is calculated using a base-weighted aggregate
methe ,o10gv.  [his means the level of an Index reflects the total float-
adjus: 2d mar et value of all of the constituent stocks relative to a particular
base ne. > The total market value of a company is determined by multi-
p ying ti = price of its stock by the number of shares in issue (net of treasury
sh res) ¢ ter float adjustment. An indexed number is used to represent the
~aanlt of this calculation in order to make the value easier to work with and
‘s ck over time. As mentioned above, the Index is computed in real time.
T. » details on how to compute it can be found in [88].




2. Descriptive univariate unconditional statistics

In this section, we separately consider the descripti e v .ivaiiate uncon-
ditional statistics for both the forty assets and for the F'T'5.” MIB Index. By
univariate, we mean that, here, we do not consider « orrela. ‘ons between the
variables under study. By unconditional, we mean tl.~t, her ., we do not con-
sider the non-stationary and seasonal behavior ¢ vhe variables under study
and the possible memory effects. Correlation . nd nor stationarity will be
discussed in the next section.

2.1. Single Assets
In order to characterize market dynamic- on a trade-by-trade level, we
consider two variables: the series of ..o wivervals between consecutive
trades, 7 and the trade-by-trade logarithi. = returns, r. If p(¢;) represents
the price of a stock at time ¢; wherc t; . ..e epoch of the i-th trade, then
we define the tick-by-tick log-retrrn as
A p\ti+1) (1)

cC —=

p(ti)

Note that 7, = t;41 — t; i~ . random intertrade duration (and not a fixed
time interval).

Among the empirical sv. die, on 7, we mention [71, 89], concerning con-
temporary shares tre ted sver a period of a few months, a study on rarely-
traded nineteenth ce..” ry saares in [90], and results on foreign exchange
transactions in [971 and |Y.|.

Tables 1 and 2 co. “ain the descriptive statistics, evaluated for the entire
sample, for th .. me series 7/* = t!',; — ¢! (with ¢} = 0) and 7, where the
superscript F der otes the specific share and takes the label h = I for the
FTSE MIR Inde..

In Ta'.le 7 the third and fourth columns give the two parameters of a
Weibull dis. 'bu’.on fit. The Weibull distribution has the following survival
functi- a:

P(r > t) = P(t|a, B) = exp (—atﬁ) , (2)

w.ere [ is the shape parameter and « is the scale parameter. The values
gien in lable 1 were fitted using the moment method described in [70].
The uality of these fits is pictorially shown in Figure 2 for A2A, EXO,
My aud TIT, respectively. The solid line represents our Weibull fit and
to = circles are the empirical data. Since different companies have different
average intertrade duration (") (see the second column in Table 1), they
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Figure 2: v, it 4l fi* for A2A (A), EXO (B), MS (C), TIT (D). The fit is represented by
the thin ~~'id li..  .he open circles are the empirical values for the survival function.
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Figure 3: (Color online) £ pprox.. = ¢ scaling of the survival function for the forty time
series. The solid line is t".e W .ibull fit given by Eq.(3).

are also characte . =d by a different scale parameter o whereas the shape
parameter [ is almost e same for all the forty time series. Following [73],
a scaling func’ion P(t|8*) can be defined:

P(t]) = exp (—(t/r)) (3)

where g* - '3) = 0.78.

To .est the nypothesis that there is a universal structure in the inter-
trade time d mamics of different companies, we rescale the survival func-
tions b, »l-.ting them against ¢/(r"). We find that, for all companies,
d ta ap, roximately conform to a single scaled plot given by (3) as shown
in Figure 3 (see also [70, 73, 93]). Such a behavior is a hallmark of scal-
ing, aud is typical of a wide class of physical systems with universal scal-
‘nr, properties [94]. Even if [95] showed that the scaling (3) is far from
bu'ng universal, at least for the New York Stock Exchange, it is remark-
able to find it again for a different index in a different market and seven
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Figure 4: (C lor o.'"ne) Weibull paper for A2A (A), EXO (B), MS (C), TIT (D). On
the horizon’al a is, the values of log(t) are plotted, where ¢ represents the inter-trade
duration. « ~ t! 2 ver .ical axes, a double logarithmic transform of the empirical cumulative
distribution fui. “ic 1 of the inter-trade durations is plotted: log(—log(1— P(7 > t))). The
linear f . is rep esented by the thin red solid line, the open circles are the empirical values.




years later with respect to the findings of [73]. However, . ¢o beyond
qualitative estimates, we perform several goodness-of-fi, te = Results for
the Anderson-Darling and Lilliefors statistics are prese.“ec in Table 1. Re-
sults for the Kolmogorov-Smirnov test are in the Sup” . menu. ' material (see
https://github.com/enricoscalas/HFFnonstationary) All these tests
reject the null hypothesis of Weibull distributed da.> F?.ally, we present
results based on the Weibull paper to graphica'.y ve- “y the Weibull distri-
bution hypothesis. As an illustration, Figure 4 . ws t 1e Weibull paper for
the following assets: A2A, EXO, MS and Tl1. We can see that the devi-
ation of the empirical data from the straight line « xpected for the Weibull
distribution is mainly due to the tails of *he (*<t>.pution as expected from
visual inspection of Figure 3.

The descriptive statistics for trade-. v-trade returns r
Table 2. Notice that there is excess kurtosis.

h can be found in

2.2. FTSE MIB index

We now investigate the FTSE M'b 1~dex. Tables 1 and 2 summarize also
the descriptive statistics of th. .i...~ < ries TiI and 7"1-1 respectively evaluated
for the FTSE MIB index.

In Figure 5 we show th~ ~rvival function for the intertrade waiting time
of the FTSE MIB index The s lid line represents the Weibull fit, whereas
the circle represents the en. ~irical data. The shape of the two curves is very
different. Therefore, ~e ran immediately see that intertrade times are not
Weibull distributed, .~/ in chis case, the fit does not work even as a first
approximation. I' deed, 1 . the FTSE MIB index, the standard deviation
of intertrade du atio. - is smaller than the average intertrade duration and
the AD test o .0 the Lilliefors test reject the null hypothesis of Weibull
distribution.

Contrary to e case of single asset returns, the excess kurtosis for the
FTSE MI'5 in .ex is quite large. Figure 6 shows the histogram of the returns
for a bin s..© of 7 x 107,

Fo.owine [13], we test the scaling of the empirical returns. The dataset
consis ‘s of 4C 3560 records for the FTSE MIB index (Table I in the Supple-
mertal .."~* _rial https://github.com/enricoscalas/HFFnonstationary)
d ring i.e period studied (from the 03™ of February 2011 to the 09" of
M. rch 2/11). From this database, we compute the new random variable
~1(t: At) defined as:
pl(t+ At)

I
r(t; At) =lo ,
( ) & pi(t)

(4)

10
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Figure 5: (Color online) C. -les: e ipirical survival function; solid line: Weibull fit.

where p!(t) is the valuc of th - index at time . In this way we sample returns
on equally spacec and nouw-overlapping intervals of width At. We further
assume that the cime . ~ries is stationary so that it only depends on At and
not on ¢ (incid wu. lly, we shall later see that this is not the case). To charac-
terize the exy ~rir entally observed process quantitatively, we first determine
the empiric 1l pro. ~bility density function P(r!(At)) of index variations for
different alu s of At. We select At equal to 3s, 5s, 10s, 30s and 300s.
In Figure 1 ) w: present a semi-logarithmic plot of P(r!(At)) for the five
differe 1t vales of At indicated above. These empirical distributions are
rough v symr .etric and are expected to converge to the normal distribution
wb-_ A. lL.creases. The null hypothesis of normal distribution has been
tcsted w th the Kolmogorov-Smirnov, the Jarque-Bera and the Lilliefors
tes” and .s always rejected.

A< already mentioned, we also note that the distributions are leptokurtic,
Pt is, they have tails heavier than expected for a normal distribution. A
de. >rmination of the parameters characterizing the distributions is difficult

11
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Figure 6: (Colo. ~u’.ne) "iistogram of returns for the FTSE MIB index.

especially because larg. - values of At imply a smaller number of data. Again
following [18]. we . tudy the probability density at zero return P(r!(At) = 0)
as function c. A7 This is done in Figure 7(b), where P(r!(At) = 0) versus
At is show . in a 1~g-log plot. If these data were distributed according to
a symme’ ric ¢sts ble distribution, one would expect the following form for
P(rl(AH = ) (ee Equation (2) in [18]):

I'(1/ar)

P(TI(At) =0) = W,

(5)
w. ere I'() is Euler Gamma function, ay, € (0,2] is the index of the sym-
metric a-stable distribution and c¢ is a time-scale parameter. The data are
we ( ivted (in the OLS sense) by a straight line of slope 1/&7, = 0.58 leading
tc an estimated exponent &y = 1.72. The best method to get the values
of P(rf(At) = 0) is to determine the slope of the cumulative distribution

12




Figure 7: (Clor onlin ) (A) Histogram of the returns for the FT'SE MIB index observed
at different tim’ inte vals, namely, At = 3 s (blue), 5 s (red), 10 s (black), 30 s (green)
and 300 s (p. nle): (B) Probability of zero returns as a function of the time sampling
interval s, the siupe of the straight line is 0.58 4= 0.01; (C) scaled empirical probability
distrib ition an. comparison with the theoretical prediction given by Eq.(7) (black solid
line).
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function in r/(At) = 0. In Figure 7(c), we plot the rescale.” nrobability
density function according to the following transformat’ on:

rl(At)

T£ = (At)l/o‘L (6)
. P(ri (A1)
P(Tg) = W> (7)

for a = &y = 1.72. Remarkably all the five dis ributions approximately
collapse into a single one. We use the Kol. ~gorr v-Smirnov test to study
the null hypothesis of identically distribute.' rescaled data; the results are
shown in Table 3. The null hypothesis * .., ved only in the following cases:
At = 3s and At = 5s, At = 3s and At = ."<, At = 3s and At = 30s.

It is worth noting that this resu 't s. . 5 that the scaling, found in the
S&P 500 data by Mantegna and Stan. y more than twenty years ago [18],
still approximately holds in a diffe ..* market and in a completely different
period. We do not run hypethesis *tests on the Lévy stable distribution
because an eye inspection of Fig 're 7(c) is sufficient to conclude that the
Lévy stable fit is not matching the rescaled data.

3. Descriptive conditic."al 7 ad bivariate statistics

Inspired by [86, “4], “a or ler to study the time variations of the returns
during a typical t ading d ., we use a simple technique. We divide the
trading day into 2 "ally spaced and non-overlapping intervals of length t
for ot = 3,5,10 30, 300, 500,900, 1200, 1500 and 1800 s. Let K be number
of intervals ar d N . the number of transaction in each interval k. For each
interval we ev.' ate the (k) indicator as a measure of volatility. (k) is

defined as
1 Np—1

1) = g 2 Ik = (Dl 5)
=1

where 'r!) is the average value of returns in the time interval k. In Figure

8( ., as an example, we plot the average value of v(k) over the investigated
p riod as a function of the interval index k for 6t = 300 s. We can see that
the ~'-.lity is higher in the morning, at the opening of continuous trading,
am . en it decreases up to midday. There is a local increase after midday
o d then the volatility returns to lower values to finally grow towards the
ena of continuous trading. In Figure 8(b), we plot the number of trades on

14
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Figure 8: (Color online) A) ¥ olatlity v as a function of k for 6t = 300 s. (B) Activity N
as a function of k for & = 710 s. (C) Scatter plot of volatility v as a function of number
of trades N. The poi .ts are av -aged over the investigated period.

the FTSE MIT. in« ex as a function of the interval index k for §t = 300 s. The
behavior of ti. t ade activity closely follows the behavior of volatility. This
is even cler rer frou. the analysis of Figure 8(c) where the volatility is plotted
as a func ior of *ae activity. The scatter plot shows a strong correlation
betweer the . 7« variables. This result does not depend on the length of the
interv J w, L 1t the corresponding plots are not presented here for the sake
of con. ~actnr 3s. This feature was already present in the Australian market
st> .wied for a much longer period (10 years ~ 2500 days) by [86, 96]. Again,
it is rem: rkable to see a statistical pattern still valid in a different market
afte. > re than 10 years.

T sure 8 shows a seasonal pattern in intraday trades. In order to take
1. s behavior into account, we proposed to use a non-stationary normal com-
pound Poisson process with volatility of jumps proportional to the activity

15




of the Poisson process in [69]. Here, we take even a more pra, matic stand
and we do not assume any a priori relationship betwee 1 v(1-+ility and ac-
tivity as it emerges spontaneously, if present, with the .. ot 10d described in
the next section.

4. A compound Poisson type model

As one can see, during a trading day, the - _iatil ty and the activity
are higher at the opening of the market, the~ they decrease at midday
and they increase again towards market <losure 96] (see also Figure 8).
In other words, the (log-)price process i~ no.. ~t=.ionary. As suggested in
[69], such a non-stationary process for log-p. ~es can be approximated by
a mixture of normal compound Poisso.. nrocesses (NCPP) in the following
way. A normal compound Poisson nrocess - a compound Poisson process
with normal jumps. In formula:

NG
X () - )_: Ri, 9)

=1

where R; are normally dis*~*huted independent trade-by-trade log-returns,
N(t) is a Poisson process with p: "ameter A and X (¢) is the logarithmic price,
X (t) =log(P(t)). By prou hilis Jic arguments one can derive the cumulative
distribution function of ¥ (¢), 1t is given by:

Fy o0 =Bx() <u)= e O o) (10)
n=0 )

where F7"(u' is t 1e n-fold convolution of the normal distribution, namely

M (u) = % [1 +erf <1\L/%>] : (11)

and p and o are the parameters of the normal distribution.

We now £ ssume that the trading day can be divided into n equal intervals
of constant activity {\;}7_; and of length w, then the unconditional waiting
ti ne dist ibution becomes a mixture of exponential distributions and its
cun..'~ .ve distribution function can be written as

n

Fr(u) =P(r <u) =) ai(l—e ™), (12)
=1
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where {a;}" | is a set of suitable weights. The activity seaso. ~lity can be
mimicked by values of \; that decrease towards midda~ an? +hen increase
again towards market closure. In order to reproduce the ~or -elation between
volatility and activity, one could assume that

0’5,@' = C)\z‘ (13)

where c is a suitable constant. As already mei tior cd, however, for practi-
cal purposes, one can also estimate three parameters .or each interval, the
parameter \; of the Poisson process and the paraw.-ters u; and o; for the log-
returns without any correlation assumptiow.~ This leads us to two possible
examples of such compound Poisson type 1. ~dels which will be introduced in
Section 4.1 alongside the popular ACDd =~-~* r later comparisons. After
a brief error analysis of the maximum lik.'*hood estimation (MLE) method
in Section 4.2, we will move on to tl - . ~*» Monte Carlo experiment to test
model selection using information criv v.a (IC) in Section 4.3. The different
nature of the compound Poisson i.°c lels 'nd the ACD model makes a direct
comparison in terms of model selec.ion questionable. Therefore, our main
focus will be a comparison of 1" wiv.n each model class separately.

4.1. Model definitions ans ... ~lihood functions

4.1.1. The compound P isson n odel with discrete intensity (DA)-model
We extend the not .tion o T.quation (9) by an additional index denoting

the corresponding ir cerv.l: *Ve suppose that high-frequency data is given

over a time interv. [z, Tl First, set a time grid {t;};c(i, ..} such that

to <tg <ty < . <t,=T. On each time interval [t;_1,t;) we have a

compound Poisson pro. -ss

xit):=> RY, (14)

where [R,(j)}k&“ is an i.i.d. sequence of N (j;,0?) distributed random vari-

ables and (N (f))s>0 is a homogeneous Poisson process with parameter A;.
Further, fp,:/}keN are all independent of (N;(t))¢>o.
F r a fix~d time interval [t;—1,t;) the log-likelihood function is given by

LP (N, iy 0i) = — Ni(ti — tim1) + In(\) Ni(t;)
Ni(t:) ‘
+ 3 M0, (R)), (15)
k=1
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where p,, -, denotes the probability density function of the N, - o;) distri-
bution. Due to the independence assumptions the overall  ~~-likelihood is
given by the sum of all £;. Equation (15) can be deriv 1 rom the general
expression for the sample density function given on r ._e 200 ‘n [97] by sub-
stituting a constant .

The maximum likelihood estimators are therefore:

f.

“ R 1 ¢~
Ai = Nijwi, = N Sdﬁa

U=

1

62 = EH(” i) (16)

where NV; is the number of trades in the .. interval and w; = ¢; — t;_1.
Note that the maximum likelihood stu ...r for o2 is biased and the bias
can be corrected by using

T
~2 A Y
0; = N, 1 ;(n fi;) (17)

instead. We shall use eith :r the Hiased or unbiased estimator in the following
sections when appropriav.

4.1.2. Approximatir ' st tize:” facts using the (DX)-model

A Monte Carle simu.. *'on of the (DA)-model was performed by consid-
ering a trading 1y Jivided into a number of intervals of length w = At =
3,5,10,30,300 ¢ The porameters 5%, i; and &? were estimated as explained
above. Note t1at ve use the unbiased estimator &; from (17). In the follow-
ing, we shall to " s on estimates based on the FTSE MIB index. In Figure 9,
we empirir ally show that the simulation gives a better fit for the empirical
returns 0. “hr ind :x as w becomes smaller. This figure corroborates the con-
jecture 'l.at .. approximations converge to the empirical data. This is an
encou -aging . 2sult meaning that it will be useful to study the convergence of
the ap, »oxir.ation by means of measure-theoretical probabilistic methods.
F? zure 19 displays the histogram of simulated returns for w = 3 and can be
ccmparec to Figure 6. The corresponding value of the Kolmogorov-Smirnov
stati...s is given by the blue dot in Figure 9.
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Figure 9: (Color on! u.’ Approximation of the empirical cumulative distribution function
with Monte Carlo simulat.. ~s for FTSE MIB returns . The black line represents the
empirical cumulr .ive distribution functions for real data. The colored lines represent
the simulations desc ibed in the text and based on sampling at equal intervals of 3, 5.
10. 30 and 200 s. onds as described by the legend. The inset contains a plot of the
Kolmogorov smirmov wistance between the approximations and the empirical curve. This
plot corrot »rat s th. conjecture that there is convergence of the approximation to the
black curve.

In ~rder t ) show that this approximation is able to reproduce the approx-
im . styuzed facts described above, Figure 11 shows the scaling relations
d scussec in section 2.2 for the simulation with w = 10 s. The null hypoth-
est. ~f »srmal distribution has been tested with the Kolmogorov-Smirnov,
vie "orque-Bera and the Lilliefors test. Also in this case the null hypothesis
1 always rejected.

One can see from Figure 11(b) that an OLS index estimate &y = 1.59 is
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Figure 10: (Color online® Hist sgram of returns for the approximating process with w = 3s.

recovered from t'.e >.mulation instead of 1.72 for the real index. The scaling
given in Egs. ‘%), (7) 1s presented in Figure 11(c), one can see that the
approximate .cali .g still holds for the simulated data. The null hypothesis
of identical disv. nution has been tested with the Kolmogorov-Smirnov test,
and the r.sul’s are shown in Table 4. It is worth noting that the null
hypothesi. " ide .tical distribution is always rejected but the statistic value
is near .. the o stical value.

4.1.3. The ¢ mpound Poisson model with parametrized intensity (PA)-model

This model will be used for simulation later on as well as serve as a
bunchma k model when testing model selection criteria. As empirical results
abou. vne trading intensity suggest a daily seasonality, this model assumes
thr ¢ wne step function in the (DA) model is parametrized by a quadratic
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Figure 11: (Color online® (A) " tistogram of the returns for the simulation described in the
text observed at differen. *i» ie in’ ervals, namely, At = 3 s (blue), 5 s (red), 10 s (black),
30 s (green) and 300 - (purp.. ' (B) Probability of zero returns as a function of the time
sampling interval A | “e slope of the straight line is 0.63 & 0.01; (C) scaled empirical
probability distribution an. comparison with the theoretical prediction given by Eq.(7)
(black solid line)

function:
Aape(t) =at* +bt+c, telo,1]. (18)

Of cou rse, th s parametrization can be easily replaced by more complicated
fur _.ions. oince A needs to be positive and convex, we also have the condi-
tims

2

d —. 1
a>0an c> - (19)
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Similar to the (DA)-model, the log-likelihood for the (PA)-mou ! is given by

L (a,b,c, i, 00) = —Aape(tion)(ti — tizy)
+In(Aape(tio))Ni(t) + > In(py, - (RY). (20)
k=1

While the maximum likelihood estimators for t : ar u 0 are the same as for
the (D)) case, the maximum likelihood estir~ators fe. a,b, ¢, which deter-
mine the form of A\, cannot be obtained in closeu form. As a consequence,
a numerical optimization method needs to . ~ appl 2d to estimate those pa-
rameters.

4.1.4. The ACD model
The autoregressive conditional ... *“*~n model was first proposed by

Engle and Russell [33]. We will consic.~ a model for the durations between
events only without marks: Leu (.-);e, be a sequence of i.i.d. random
variables. The autoregressive condi.'onal duration (ACD) model is defined
as

T; = ig; (21)

ﬂjlziﬁl(; 1yeee xl;G) Z:E[.Tikbi,l,...,xl]. (22)
The innovations (g;) are .ssumed to follow an exponential distribution, i.e.
g; ~ Exp(1l), and ¢ o the rollowing representation

m q
Yi = w+ Z ;T + Z Bii—j, (23)
j=0 J=0

where w > J, a; ~ Y and ; > 0 for all 7. We will call this model ACD(m, q).
For giver dur «tio'. data {z1,...,x,} the log-likelihood function is given by

ACD
L (w7041>"'705m761a"'7/3q):

- g [In Wi+ ﬂ (24)

)

(se. . 104 in [20]).
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4.2. MLE and goodness of fit

Before we turn our attention to the actual model se’:ctir .. ~rocedure, it

is useful to get a rough idea about how well the under. * 1g MLE method
works for the three model classes. We would like t ecasvre Jhat the MLE
method works reasonably well since a poor ML fit might :ompromise the
quality of the order selection. Due to asymptotic re "+, we expect that
goodness of fit and correctness of the model sel :ctic . | rocedure should im-
prove with increasing size of the underlying samp.c. As these two effects are
closely related, it is hard to quantify them sepa. ~tely.
In the next sections, we give a detailed exp'anation of the simulation proce-
dure and on how the parameter estimatic ~ is 1.. _.emented. Based on that,
we run a MLE on previously generated mock data. As we know the true
parameter values, we can easily calculaiw. the mean squared error (MSE) as
measure for the goodness of fit.

4.2.1. Compound Poisson model

Simulation. The simulation algorit;m ssentially uses the (PA)-model. For
simplicity we will choose the .. = ~rval [tg,T] to be [0, 1]. For the sim-
ulation we set an equidistant gria ® =ty < t] < to < ... < t, = 1 on the
time interval. Thus, the = '~+val [0,1] is divided into n subintervals. For
i € {1,...,n} the parav cters p , o; and A; on the subinterval [t;_1,t;) are
chosen to be

i =0, = =1and \; = )\(ti_1> Vi € {1, .. .,’)”L},
wh re A(t) := 4(Amax — Amin) (£ — 0.5)% 4+ Ain,
Vit € 10, 1] and Amin, Amax > 0 constant. (25)

The function ! for m of A is inspired by the empirical findings in the previous
sections ar i shou'1 account for the observed seasonality in a simple way.
We have -hos m ) uin = 100 and Apax = 10000. Note that the {\;} form a
step functio. ap' roximation of the parabola in (25). For different grid sizes,
we sir alate with sample size 1000 each.

Fitting. Tr  fitting is carried out using different grid sizes. Note that the
g size to be used in fitting is bounded from above by the length of the
eL"ire tir.e interval (in our case 1). However, we would like to emulate the
hehavior of the intensity which was observed in empirical data, i.e. high in-
“er sity at the beginning and at the end of the trading day and relatively low
in =ensity in the middle of the day. Consequently, we need at least 3 subin-
tervals to have a piecewise constant function that fulfils these conditions on
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the time interval. Further, the smallest eligible grid size is . "mded from
below by the maximal distance between neighbouring da a p »*~ts within the
data set. Otherwise, there are subintervals which do 1. * - ontain any data
points. In such cases, the estimation formulas in (16" .soula il

More precisely, for the maximal distance A« betw: en two onsecutive data

points within a given sample, the finest valid equid. *ant grid has at most

[ﬁJ subintervals. Therefore, we will considec a V.. of candidate models

on grids which correspond to n = 3,4, ..., Lﬁ;f |

val [0, 1].

s+ ntervals on the inter-

For the (DA) model, the estimators are g.en in closed form in (16) and

the likelihood value is easily calculatec. 1a rquation (15) and subsequently
used for the calculation of the IC. We decia. *o use the biased estimator 62:
Since we are mainly interested in m de' sc.ection, we would like to ensure
that we work with the optimal v-lue ¢. the log-likelihood when calculating
the IC (see also 4.3).
In order to fit the (P\) mode’ —= as-ume that the estimates for {u;}, {o;}
and {\;} for the (DA)-algorithm . ~e already calculated and can be used as
an input for the estimation of the (PA)-model. As mentioned previously, the
estimators for p; and o; ¢ ancide in both models and no further calculation is
needed for these parameu. <. It emains to solve the following minimization
problem:

n
(" b, ¢) = argmin | — ZEZP(&, b, ¢, i, 0;)
a,b,ceR i—1

2
st. a>0andc> 1a (26)

a
A reasona’sle coice of the starting value for the minimization algorithm can
be easily "t udne . by the least-squares fit of the parabola to the {\;} values
of the () ca e, which already gives a fairly good approximation of the
parakla. In case the initial values obtained by this method do not lie in
the adi. *«sit.e set, a change of signs for a or a shift of the parabola may be
ar plied.

N ste tha the estimation of the (PA)-model requires a grid with at least 4
erid puints, i.e. 3 subintervals on which A1, A9, A3 are estimated using the
‘D \)-inodel. This ensures that the parabola is well determined. However,
a. mentioned before, this condition is not restrictive and covers all models
on which we would like to run model selection.
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4.2.2. ACD model

For both simulation and MLE of ACD models we use che ™ nackage ACDm
written by Markus Belfrage [98]. The model selection a. ~1 sis for the ACD
model follows the Monte Carlo experiment conductr . in [9y, We consider
model orders m,q € {1,2} and Table 5 shows the hoice ¢ parameters for
the simulation.

4.2.3. Numerical results

We use the MSE as a measure for the gooa.. ss u. 1it: Let 8 be a generic
model parameter to be estimated and 0 the corresp mding estimator. Given
N samples and é(k), k=1,...,N, the estimate. f~~ each sample we calculate
the mean squared error to be

N
MSE(6) :E[|0—C C ST amp, (27)

Compound Poisson models. We ha e .~ point out first that the distance in
Equation (27) has to be undc ~vc~7 s a functional distance. To be more
precise, we choose the L?-distance “etween the true step function intensity
and the estimated one:

B[00 =E[llo - 03] (28)

The cases of ;1 and « 2 7. t! e easier ones, as we just need to calculate the
distance between . step " .nction and a constant: For the step functions
with values {u;} on “he fitting grid ¢; < ta < ... < t,, Equation (28) can be
further written -~

E |, —All72] = ZHM il HL2
N=

N

1
~ ) (1)) 2dt
TN/ / — it

NZZu A2t — ). (29)

=1 =2

\ —
2

ale ... the same way for o2.
U mcerning the intensity function, we have to merge the simulation grid ¢] <
t5 < ... <ty with the fitting grid t{ < t%c < tl. After reordering and

25




relabeling, we can calculate the MSE on the merged grid t1 < '~ < ... <,
via

N n
~ 1 "
E (12 = AEa] = 5 2230 = AR ), (30)
k=1 i=2
The numerical results we present here are for N = 1000 samples of data
simulated from a grid containing 30 subintervals.

Table 6 shows summary statistics of  and -2, whe . the summary statis-
tics were calculated over the set of fitting grids. 17>e MSE for the x and o
are comparably small.

For the intensity function A\ we plot the M..™ against the number of subin-

tervals used for fitting in Figure 12. St ..l.. ium a small number of subin-
tervals, the MSE decreases sharply before '* reaches its optimum at 30, the
true number of subintervals from t. ¢ ». .. 'ation. Number of subintervals

above 30 give a larger MSE and, in the case of the (DA) model, instabilities
of over parametrization even lead ‘¢ ~n .acreasing MSE.

Concerning goodness of fit we cen see that the MSE of the (PA)-model

is consistently smaller than the >TSE of the (DA)-model. This is to be ex-
pected as, by construction of the experiment, the (P\)-model is the true
model and gives a better at to “he data.
Moreover, we can obser ~ that apart from the optimum at 30 there are
“preferred” numbers c. subin. .vals at 10, 20, 45, 60. This is crucial for the
explanation of the b -har or f model selection as the relationship between
goodness of fit and nuw.’ =r of subintervals in the region below the optimal
number is not m- 1. *one.

The size ¢’ the MSE can be estimated from the expected fluctuations of
the estimator ©  The MSE can be estimated from below by means of the
ideal situa 1on whe.a the simulation and fitting grid are identical. Without
loss of g¢ ~eriity we assume an equidistant simulation grid with grid size
w=t; - *_1 .~ d rewrite Equation (30):

E [||)\ - xHiQ] > wf:ﬂz [(Ai — j\i)g]

=2
=w i\/ar [5\@} = % i\/ar [Ni], (31)
=2 =2

w. ere we have used the definition of the estimator in (16) and the fact
that the number of events in an interval of size w is Poisson distributed:
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Figure 12: (Color online) ~lot ot ." - mean squared error (MSE) of the estimation of the
intensity function for th- (D.' )-mcdel (orange lines) and for the (PA)-model (blue lines)
respectively. The graph .~ ws t.e MSE together with dashed lines indicating the size
of the first standard leviatio. .rom the mean as a function of the underlying number
of intervals of the .tiv. o grid. The true model for the simulation originally used 30
subintervals. The MSE is c¢. culated as a squared L? distance between the estimated and
the true intensit- tw tion (see also Eq. (30)).

N; ~ Poi('w) We rdnally get that

° 1
E[IA—Afa| = =" var [N
1=2
1 1!
=S hw~— [ A@dt, 32
sy [0 (52)

wi _~ we approximate the integral of the step function by the integral of
v" e smooth intensity parametrization in Equation (25). For our numerical
example we have % = 30 and Apin = 100 and Apax = 10000. An explicit
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calculation of above integral gives the rough estimate
E [HA - XH%Q] > 30 - 3400 = O(10°), (33)
which is of about the same order of magnitude obs rvable u Figure 12.

ACD model. Inthe ACD case we have a simple p'.ameter vector (w, aq, . .. ,-
Qm, B, - -+, By) € RY™F4 Therefore, we can us - t+ for mula given in Equa-
tion (27) for each scalar valued parameter. T. -~ resi*. can be seen in Table
7. The largest sample size ensures that the MS. are comparably low for
each model. The largest contribution to the - TSE r omes from the w param-
eter. An even closer look shows that the 1”SE of the 8 parameter(s) is of
different order depending on the mode’ ... .. . In the case ¢ = 1, the MSE
of the § parameter is of the same size as .he a parameter(s). However, in
the case of ¢ = 2, the order of the M. r. . '"2 [ parameters are significantly
larger than the MSE of the a parametc s (by a factor of 10 in the ACD(1, 2)
case and by a factor of 100 in the aJT(.,2) case).

4.3. Information criteria and n. det selection

Starting off from the estimation results in the previous section, we would
like to analyse how effec’ ive n. del selection based on information criteria
(IC) performs for both thi. ~oum ounds Poisson models and the ACD model.
As seen in the previo'.s Monuw. Carlo simulation choosing smaller values of
w, i.e. increasing t' e rumkb :r of model parameters, gives better fits and
the model is able o cap. v 2 all distributional properties of the quantity of
interest. Howeve , . model containing a large number of parameters is likely
to be over-fitted A quaatitative method to resolve this trade-off situation
is to apply IC'. In  he following, we will consider three of the most common
information c1. - ia:

For a giver mc el nicted to data via MLE let £ be the maximal log-likelihood
value, k 1. » » am! er of parameters and 7" be the sample size of the data set.
Then v definc

1. Akaike s information criterion (AIC) (see [100])
AIC = —2£ + 2k (34)
2. wayesian information criterion (BIC) (see [101])

BIC = —2L + kIn(T) (35)
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3. Hannan and Quinn information criterion (HQ) (.~ [102] and
[103])
HQ = —2£ + 2k In(In(T)) (36)

Note that the information criteria under consider «tion ~enalize the log-
likelihood value for increasing number of parame.=rs k. Among several
candidate models, one chooses the model with .lLe su.alest IC value. A

time grid tg < t; < ... < t, is given and divi es “ae >verall time interval
in n subintervals. From Section 4.2.1, we r-call tha’ we do not consider
n € {1,2}. Then the (DA)-model has in totar ™ = 3n parameters with

n € {3,4,...}. This will also be the true 1.. mber f parameters we expect
the IC to choose. In the same way we hav. for wne (PA)-model k = 2n + 3
parameters with n € {3,4,...}.

4.3.1. Numerical results

Compound Poisson models. Figures -2, 14 and 15 show box plots of the
model selection results of the Al. . RIC and HQ respectively. In each box
plot, the orange and blue box plot cc respond to the results of the (DA)- and
(PA)-model respectively. The nm1zoual axis shows the number of subinter-
vals used in the simulation grid. On .he vertical axis are the selected number
of parameters after the ps.au. ter estimation of the (DA)- and (P\)-models
using different discretize ions of 0,1]. A single box in the box plots extends
from the 25th percentile to “v: 75th percentile and the dot indicates the
median. The whiske s hs ve ¢ maximum length of 1.5 times the box length
and extend to the >ute. mor¢ point which is not considered as outlier. The
crosses indicate ¢ ‘liers.

Below the "Jox »lots, bars indicate the ratio of samples which allow model
selection und. - ¢ rrect specification (blue) and under misspecification (red):
In our sett’ag, we . heak of model selection under misspecification if the cor-
rect mod ‘[ is not contained in the set of selectable models and cannot be
chosen bv tuc (' If this is not the case, i.e. the correct model can potentially
be chr sen by, the IC, we call it model selection under correct specification.

1 he results for the (DA) and (PA) model are very similar. Common for
a three IC is that for small parameter numbers below 15 the model se-
lec.'~n ~ orks well: the distributions of the selected orders are concentrated
a. ~'osely follow the 3n or 2n + 3 reference line respectively, where n is
"2 number of subintervals. For very large parameter numbers one can ob-
ser e that the selected model orders remain distributed around a maximum
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model order and stop to follow the linear trend of the reference 'ine. This is
rather due to the limitations of our MC setup than the i the) ~~t property of
the IC: As described in Section 4.2.1, we only work w.. % quidistant grids
when applying the model selection procedure. The fi-. st gr.' which can be
used for fitting is determined by the maximal dist mce A, ,x between two
consecutive points within a sample. On the other “and Ap.. is related
to the minimal value of A in the middle of the ‘ater~ '., depending on how
small we choose the simulation grid size Agjm,. T.is r .eans that whenever
Amax > Agim, the true model is not containeu ‘n vue pool of models from
which the IC may choose from. In other words, - ¢ have a case of model
selection under misspecification. The ba~ plo.* <t ow that first cases occur
at around n = 20 and go up to a ratio of ar 1t 50% for the finest grid in
the analysis.

Another look at Figure 12 hints that the . "le “the more parameters, the
better the fit” is not entirely true: wu ca . ovserve that the relation between
grid size and MSE is not entirely ~ono.ne. This is due to the fact that the
fit of the specific model does not o1.'y '~pend on the number of parameters,
but also to some extent on the ..-i*ic~ of the grid. As a consequence, under
misspecification, the selected orac: does not necessarily correspond to the
finest available grid size ab~ve Agp. This might explain the “plateaus” on
the model selection resu! s for 1 rge parameters.

Between the regic 1 of very small and very large parameters the ICs ex-
hibit quite different  ~h- vior, according to their intrinsic tendency of under-
and overfitting, w’.ach wi. ve described in the following:

The AIC tends t , ov.~estimate the number of parameters. It allows outliers
(in the region ~“ = < 22) as well as a larger number of cases of the model
selection to li . abr ve the reference line (in the region of n > 23). In contrast,
the selected mod ! orders of the BIC and HQ are either on the reference line
or strictly bel sw the reference line. In other words BIC and HQ tend to
underestin.~>’e. 2 dditionally, we can see that for the AIC the boxplot starts
to dev'awe frou. the reference line starting around n = 25 to n = 27 and
the B C and HQ deviate earlier around n = 15 and n = 20 respectively.
Especia “or n < 27 the underestimation in the BIC and HQ case is not
a' ¢ribut. ble to the behaviour of model selection under misspecification, as
th~ ratio of model selection under misspecification is rather low. Based on
~nr results, if the ICs were to be ordered by their parsimonious character,
‘h- B1C would be the more parsimonious whereas the AIC the least.

1. = above observations show that the model selection using any of the three
1Cs works quite well as long as the true model is actually retrievable. The
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AIC tends to overestimate, but the model selection results are .'nsest to the
reference line of true parameters compared to the other cwo ™s.

ACD model. The results of the model selection experimen, ~an be found in
Tables 8 to 11. The numbers are success rates in | ercent f the respective
1C to select the correct model from which the simula.‘on de .a was generated
from. The qualitative behaviour of the ICs is nc’, surnrisingly similar to the
findings for the GARCH model in [99].

A closer look at Table 8 shows that the succe 3s rate of the ICs is ex-
ceptionally good in the case of ACD(1,1) « *a. ven for a small sample
size all information criteria are able to detec. the correct model order in the
majority of cases. The tendency to v -ic.-uv works in favour for the BIC
and to some extent also for the HQ. For v..~ same reason, the success rates
for the AIC are relatively low due t. 1> .. cfitting property.

A similar behaviour can be observed . r ACD(2,1) in Table 10: Although
the IC underestimate the model ‘o. smaller sample sizes as a ACD(1,1)
model, they improve for large ~=ampi. sizes.

In both the ACD(1,1) and the *CD(2,1) case, i.e. the cases for ¢ = 1,
the behaviour of the model selection is acceptable: a reasonably large sam-
ple size, which is of the urder ~f a typical intra day trading data sample,
ensures a sufficiently larg = succe ss rate in detecting the correct model. Un-
fortunately, this cann’ ¢ be sa. . about the case ¢ = 2:

In the first example »f 7.CD 1,2) data in Table 9, we see that the correct
model order is nev or de. >’ ed in the majority of cases even for large sam-
ple sizes. The b s. "1ccess rates are the ones of the AIC again due to its
overfitting tendency. 1 1..s may be concerning, as this shows that despite the
fact that ACI" (1,: ) and ACD(2, 1) have the same number of parameters the
model selectio.. ' .ehaviour is far from comparable.

In compar son the results for the ACD(2,2), the most complex model in
our expe. ™Me it, £ e even more critical: Not only are the IC unable to detect
the cor> st mc 'zl in most of the cases even with large samples, but the best
succe: s rates, again from the AIC, are below 20%.

As mrentioned in Section 4.2.3, the cases where model selection fails align
w th rela ively high MSE of the 8 parameters for ¢ = 2: The contribution
of tu. JiuSE of the w parameter is not as important, as this parameter is
inc uued in all models. However, the increase in MSE when moving from
g = 1 to ¢ = 2 might be one of the factors explaining the discrepancy in
model selection between ¢ = 1 and ¢ = 2. This part of our MC experiment
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suggests that parameters which are harder to estimate comp.-ed to other
model parameters (in our case «a vs. [3 parameters or in ,the - -~vords moving
average vs. autoregressive parameters in Equation (23, v ight also be less
likely to be detected by model selection.

5. Discussion

The models analysed in Section 4 are basec ~.1 the preliminary results
presented in [69]. The main idea of that pape. was o locally approximate
a non-stationary process with a simple normal cor \pound Poisson process.
However, many mathematical aspects st’ll nc 1 ) be clarified. In partic-
ular, the choice of the normal compound Fc’'sson process is suggested by
the fact that many distributions of po. five random variables (the waiting
times) can be written as a mixture of expon. 1tial distributions. To be more
precise, suppose that Fy(u) = P(J . u 15 the complementary cumulative
distribution function of the posit™ = ra. lom variable J. We want to write

o0
Fy(u) = ./‘
Jou

~(=Au) g(A) dA. (37)

For instance, from the cor ... 7 on page 440, Chapter XIII.4 of Feller [104],
we know that the neces’ ary anc sufficient condition for a function ¢(u) to
be of the form

p'u) = / exp(—Au) g(A\) dA
0
when 0 < g < C' ¢ that

()" (x)

0<
n!

¢
T

; (38)
for all z > J. Motice that if g(\) is a continuous probability density function
with ¢(0, =cial 0 some finite non-negative constant, then the condition
0 < g < 7'is .’ omatically satisfied. Incidentally, this does not exclude that
the re »resent tion (37) can be written also when the boundedness hypothesis
for g 0. Felle ’s corollary are not satisfied.

Simi'arly, distributions of random variables with support in R (the log-
re “urns) an be written as a mixture of normal distributions. In particular,
the «i._ory of scale mixtures is well-developed [105-108]. Scale mixtures are
m1 vu.es of normal distribution with random variance. It turns out that
t. = Laplace [109], the stable family, the Student ¢ family, among others, are
scaie mixtures. The theory of scale mixtures in [105] is essentially based

32




on the results reported by Feller outlined above and on Bernsu.'n’s theorem
[110]. Generalizations of the theory to normal variance -me >~ mixtures do
exist [111].

Finally, the local approximation of a non-stations , proc. s with a com-
pound Poisson process naturally follows the evoluti n of tL » non-stationary
process while activity and volatilty change during the “radi.g day, leading to
a satisfactory characterization of the non-statior ary ¥ haviour as illustrated
in Figure 16 to be compared to Figure 8.

6. Conclusions

In this paper, we addressed two questio.~ The first one concerns to
so-called stylized facts for high-freque..~v ninancial data. In particular, do
the statistical regularities detected in the p.-t still hold? We cannot give a
negative answer to this question. In 'ee'., we find that some of the scaling
properties for financial returns ar still oproximately satisfied. Most of the
studies we refer to concerned a du‘e1c~t market (the US NYSE) and were
performed several years ago. . ~ve: one of the first econophysics papers
(if not the first one) concerned 1< “nrns in the Italian stock exchange (see
[112]) and, for this reason. » decided to focus on this market.

The second question “s: Is 11 vossible to approximate the non-stationary
behavior of intra-day tick- v-tic < returns by means of a simple phenomeno-
logical stochastic pro ess” We cannot give a negative answer to this ques-
tion, so far. In Sec.'~r 4, "ve present a simple non-homogeneous normal
compound Poissor proces. and we argue that it can approximate empirical
data. The cost ' r s.. ~nlicity is potential over-fitting as we have to estimate
many paramet~ ~ but the outcome is a rather accurate representation of
the real proc ss. Nhether it is possible to rigorously prove convergence of
the method out.. ~ed in Section 4 is subject to further research and it is out-
side the s ope of the present paper. It is well-known that Lévy processes,
namely su. ~'.asti . processes with stationary and independent increments,
can br approx..nated by compound Poisson processes. The method de-
scribe 1 in Se tion 4 can provide a clue for a generalization of such a result
to proce ec with non-stationary and non-independent increments.

Con. ~rning the issue of overfitting, the second part of Section 4 shows
tht IC a e able to detect model orders correctly to some extent when applied
to simulated data. It remains to check how well the model selection method
ne forms on empirical data. As a consequence from the numerical results,
du » to the high variability of model selection in the region of larger numbers
of parameters it is not advisable to rely only on the IC based model selection.
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It is recommended to combine these with further cross-validatio. techniques.
A similar conclusion holds for the ACD model, as mode. se; >~*ion using IC
is adversely affected by differing MLE quality for diffeir. ~t model orders.
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Table 1: Descriptive statistics for the waiting ti. “os

Asset mean std Q@ B AD | Lillie
A2A 32.49 | 39.04 | 0.053 | 0.865 | 106 | 0.068
STS 34.07 | 43.68 | 0.061 | 0.818 | 122 | 0.083
ATL 24.42 | 32.48 | 0.088 | 0.792 | 263 | 0.09’ ‘
AGL 33.20 | 41.87 | 0.059 | 0.830 | 145 | 0.0>
AZM | 3467 | 4235 | 0.052 | 0.853 | 116 | 074 |
BP 9.54 | 12.80 | 0.189 | 0.786 | 1158 | 0.134
BMPS | 17.21 | 23.96 | 0.130 | 0.761 | 401 ' 0.107 ‘
PMI 19.95 | 27.26 | 0.111 | 0.773 | 292 | 0.~
BUL 24.87 | 37.02 | 0.116 | 0.717 | 326 | 2123
BZU 22.62 | 33.71 | 0125 | 0.716 | o7 ' oL,
CPR 33.77 | 42.42 | 0.058 | 0.833 | 1/. | 0.092
DIA 30.21 | 39.91 | 0.073 | 0.797 ' 155 | 0.091
ENEL | 919 | 11.60 | 0.173 | 0.8290 | 95, | 0.123
EGPW | 21.16 | 29.31 | 0.110 | 0.744 39 | 0.094
ENI 871 | 1221 | 0.221 | 0.7.5 154 | 0.148
EXO 922.72 | 31.16 | 0.101 | 0.771 ' 228 | 0.094
F 7.94 | 1129 | 0.243 | e ' 936 | 0.158
FI 12.80 | 18.77 | 0.182 | 0.7.0 | 833 | 0.132
FNC 20.86 | 26.98 | 0.093 | 0.812 | 234 | 0.089
FSA 23.70 | 35.15 | 0 20 | 2719 | 309 | 0.118
G 11.10 | 1479 | 165 | 0 792 | 759 | 0.119
PG 32.26 | 41.41 ' 0.0v. | r.818 | 157 | 0.085
ISP 7.96 | 11.30 | 0742 | 0.748 | 1930 | 0.158
LTO 33.22 | 42.5 | 7062 | 0.819 | 117 | 0.082
LUX 23.28 | 3152 | w20, | 0.780 | 231 | 0.096
MS 20.12 | .03 | 0.114 | 0.763 | 350 | 0.107
MB 17.40 | 24.05  0.126 | 0.767 | 403 | 0.108
MED | 31.66 , "9.57 | 0.060 | 0.837 | 126 | 0.077
PLT 20.45 | 2501 | 0.119 | 0.749 | 322 | 0.104
PC 22.75 ' 30.45 | 0.094 | 0.789 | 221 | 0.092
PRY 1948 | 2,37 | 0126 | 0.743 | 390 | 0.113
SPM (1.5, | 17.88 | 0.219 | 0.691 | 1185 | 0.150
SRG 2. 7| 5277 0.086 | 0.796 | 208 | 0.091
STM 12,22 17.26 | 0.174 | 0.751 | 750 | 0.124
TIT 13..7 | 20.52 | 0.198 | 0.692 | 972 | 0.146
TEN 17.9 | 24.98 | 0.137 | 0.743 | 395 | 0.110
Tl | 2012 | 35.52 | 0.068 | 0.829 | 148 | 0.080
'OD |, 31.31 | 40.71 | 0.068 | 0.808 | 114 | 0.081
sl | 2058 | 27.30 | 0.100 | 0.794 | 272 | 0.096
UG 3.85 | 4.94 | 0.364 | 0.817 | 8640 | 0.223
| 11 o 1.66 | 1.26 - — [ Inf] 0.365
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Table 2: Descriptive statistics for the trade-by-trade log-returns » . *) On March 7",
2011, the French firm LVMH launched a takeover offer (OPA - Of' .rta ~ ubv. ca d’Acquisto
in Italian) to buy Bulgari shares at 12.25 euros. On that day, tu. share price jumped
from below 8 euros to more than 12 euros.

Assets mean x10~" | variance x10~7 | skewness x10 2 { kur osis
A2A 29.15 5.24 236 522
STS —14.43 6.76 —7 7. 11.50
ATL 1.59 2.09 " 4.62 | 19.64
AGL —36.50 6.09 114.., 43.47
AZM -3.29 8.03 —2. 90 14.14
BP —4.53 4.55 —169 10.69
BMPS 24.93 4.79 2171 24.34
PMI 6.87 5.55 —23.73 41.72
BUL (*) -3.75 4.37 —295.68 154.69
BZU 61.92 7.41 ‘ —99.04 35.92
CPR 2.35 3.73 | 11.04 8.13
DIA —40.04 4.42 —49.99 29.17
ENEL 6.21 1.38 \ 140.10 76.06
EGPW 38.81 3.64 3.43 7.31
ENI 7.86 140 \ 59.89 21.01
EXO 11.98 4.8 —5.45 8.06
F —3.55 2.81 —45.05 21.76
FI 14.33 " 68 —39.37 18.14
FNC 0.50 3.2, 28.01 13.01
FSA 84.68 10.2, —163.51 180.64
G 5.03 29 —100.65 44.97
IPG 80.€, n.04 —45.81 22.68
ISP 19y 3.45 —62.87 43.12
LTO £..82 9.28 —171.44 62.62
LUX 25.0° 2.67 30.48 24.43
MS 5.76 2.86 —22.98 19.38
MB 17,29 4.18 1.66 9.67
MED .0.25 7.64 —43.78 18.78
PLT a.76 5.30 49.56 14.43
PC 47.93 5.41 3.44 10.75
PRY .1.54 4.02 257.09 92.76
SPM | 5.72 1.50 -9.12 32.75
SRG 12.09 2.41 79.03 54.87
STM 15.69 2.56 —39.64 36.78
TIT 8.33 3.20 —22.22 8.92
7 EN 0.34 2.61 —112.99 135.05
RN 26.67 2.42 3.54 6.03
on 28.73 6.95 158.96 86.49
TR —1.76 4.99 —67.53 25.23
UG 3.44 1.29 —12.56 57.51
[ dex 1.10 0.03 2 854
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Table 3: Kolmogorov-Smirnov test. The null hypothesis of empi-.cal ?-*a coming from
an identical distribution is rejected in the comparisons of At = - an . At = 5s, At = 3s

and At = 10s and At = 3s and At = 30s.

At 3s 5s 10s 30s 300s
3s 0.000 | 0.010 | 0.014 | 0.014 | 0.023
5s 0.010 | 0.000 | 0.008 | 0.010 | 0.022
10s 0.014 | 0.008 | 0.000 | 0.008 | 0.017
30s 0.014 | 0.010 | 0.008 | 0.000 | 0.018
300s | 0.023 | 0.022 | 0.017 | 0.018 | 0.000

Table 4: Kolmogorov-Smirnov test. The null . mothesis of simulated data coming from

an identical distribution is always rejected.

At 3s 5s 10s 30s | 30« #
3s 0.000 | 0.019 | 0.031 | 0.036 "~ 035
5s 0.019 | 0.000 | 0.012 | 0.018 | M 0uC
10s 0.031 | 0.012 | 0.000 | O =7 ' 0.6
30s 0.036 | 0.018 | 0.007 | 0.00v ' 0.019
300s | 0.035 | 0.018 | 0.016 | 0.019 ‘ 0.000
Table 5: Farar cter settings for the simulation of ACD data
W | 1 2 61 /32
ACD(1,1) [ 1007 [~ 085 ] -
ACD(1,2) [ 7| 0.1~ 0.45 | 0.4
ACD(2,1) | L] 0.15]0.15 | 0.65 | -
ACD(Q,Q) 1 ‘ 0.1 0.1 1042 |0.35
Table : Table of summary statistics of the MSE of the parameters p and o2 of the

compour. ' Po? son type model. The analysis is based on 1000 samples generated from a
sir .ulatior grid containing 30 subintervals.

F l'm an | min max std
| | 0.0545 | 0.0026 | 0.1049 | 0.0212
| 2]0.1038 | 0.0049 | 0.1757 | 0.0439
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Table 7: Results of the MSE calculations for the ACT .. hdel

y \ [ MSE(w) | MSE(o1) | MSE(a2) | VISE(B1) [ MSE(Bs) |

ACD(1,1) | T=250 3.7508 | 0.0023 0.0231 -
T=500 1.8887 | 0.0010 ~ | 0.0108 -
T=1000 || 0.3591 |  0.0005 0.0025 -
T=2000 || 0.1245 |  0.0002 | 0.0010 -
ACD(1,2) | T=250 | 14.5255 | 0.0036 [ 04748 04282
T=500 3.7468 | 0.0019 ~ | 0.3039| 0.2681
T=1000 || 0.6259 |  0.00.° ~| 01869 | 0.1606

T=2000 | 0.1905 |  0.0u0% 0.0809 |  0.0681
ACD(2,1) | T=250 0.8491 | nnones 0.0130 -
T=500 0.2664 |  0.,022 | 0.0050 |  0.0053 -
T=1000 | 0.0916 | 22014 | 0.0026 |  0.0023 -
T=2000 | 0.0418 | 1007 | 0.0012 | 0.0011 -
ACD(2,2) | T=250 6.4135  0..067 | 0.0102 | 0.3165 | 0.2445
T=500 1.1077 | 0.0032 | 00061 | 02722 | 0.2031
T=1000 || 0.37,21 0.0014 | 0.0041 | 0.2086 | 0.1526
T=2000 | 0.1512| 0.0006 | 0.0026 | 0.1612| 0.1181

o
]
—_
o
o

Table 8: Model selection r sults be - 1 on ACD(1,1) data samples: Given 1000 samples of
size T' € {250, 500, 1000, J00? each column gives the percentage of cases in which the dif-
ferent IC selected the mo. ' AC”,(1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers gi- ¢ the la._ st percentage per row.

] \ [ ACL1,1) [ ACD(1,2) [ ACD(2,1) [ ACD(2,2) |

T=250 | A C| 58.7 23.6 9.9 7.8
Bil | 90.2 7 2.1 0.7
H(‘JJ 77.9 14.6 4.8 2.7
T=500 | ~iC 62.9 20.4 10.9 5.8
Bl 93.6 4.7 1.6 0.1
J558) 82.6 11.5 4.9 1
T=10>0 [ “IC 67.5 16.4 11 5.1
BIC 97.4 1.8 0.8 0
HQ 87.2 7.5 4.8 0.5
| T=_uu00 | AIC 71.3 13.1 9.7 5.9
‘ BIC 97.7 1.6 0.6 0.1
| HQ 91.5 4.4 3 1.1
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Figure 13: (Colo oun ‘ne) The lower plot shows the ratio of samples which allow the true
model to be an g t 1e set of models from which the IC may choose from, in other words
there is no misspec “cation (blue areas). This ratio decreases and for finer discretization
there are m re ¢ ses 0. model selection under misspecification (red areas). The sum of
blue and r 1 ar as is 100%.

The upper plo. “he vs that the model selection using the AIC for the (DX)-model (orange
box plc ) close'y tollows the reference line indicating 3n (n = number of subintervals) for
small 1 before 'eviating for larger n. The same holds for the (PA)-model (blue box plot)
and its « ~rresr unding reference line 2n 4+ 1. The number of subintervals for which both
be . piots deviate from their respective reference lines is around n = 25 to n = 27. In the
re sion n < 15, there are several outliers which are almost all overestimates.
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Figure 14: (Col' r on ne) The lower plot shows the ratio of samples which allow the true
model to be amc. ~ he set of models from which the IC may choose from, in other words
there is no v .sspecitic tion (blue areas). This ratio decreases and for finer discretization
there are r ore ases of model selection under misspecification (red areas). The sum of
blue and rea  eas ¥, 100%.

The upr . plot si. ws that the model selection using the BIC for the (DA)-model (orange
box pl t) close. - follows the reference line indicating 3n (n = number of subintervals) for
small n hefore ¢ eviating for larger n. The same holds for the (P\)-model (blue box plots)
and ' 5 coi.woponding reference line 2n + 1. The number of subintervals for which both
b x plots 'eviate from their respective reference lines is around n = 15 to n = 17.
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Figure 15: (Col' r on ne) The lower plot shows the ratio of samples which allow the true
model to be amc. ~ he set of models from which the IC may choose from, in other words
there is no 1 .sspeciu. “tion (blue areas). This ratio decreases and for finer discretization
there are r ore < ases of model selection under misspecification (red areas). The sum of
blue and reu - cas i 100%.

The upr . plot s, ws that the model selection using the HQ for the (DA)-model (orange
box pl t) close. - follows the reference line indicating 3n (n = number of subintervals) for
small n hefore ¢ aviating for larger n. The same holds for the (PA)-model (blue box plots)
and '3 cow..oponding reference line 2n 4+ 1. The number of subintervals for which both
be x plots ‘eviate from their respective reference lines is around n = 18 to n = 20.

50




Table 9: Model selection results based on ACD(1,2) data samples: Givi » 1000 samples of
size T' € {250, 500, 1000, 2000} each column gives the percentage * cas :s in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and A« " (2,2) respectively.
The bold numbers give the largest percentage per row.

|

|

| ACD(1,1) | ACD(1,2) | ACD(2,1, | ACD(2,2) |

T=250 | AIC 58.6 24.7 9, 7.1
BIC 91.5 6.5 13 0.7
HQ 78.6 14.8 3.1 2.9
T=500 | AIC 60.6 25.1 | 10.3 4
BIC 94.7 4.3 0.7 0.3
HQ 81.2 13.5 4.5 0.8
T=1000 | AIC 52.7 27.0 | 15.2 4.3
BIC 92.6 =1 2.3 0
HQ 76 A 8.8 0.5
T=2000 | AIC 41.5 35." 18 4.9
BIC 88.4 0.7 4.9 0
HQ 67.6 | )4 11.6 0.4

Table 10: Model selection resulu. hase L on ACD(2,1) data samples: Given 1000 samples of
size T' € {250, 500, 1000, 2 ,00} 2ach column gives the percentage of cases in which the dif-
ferent IC selected the m dels ACT (1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers giv the . rge .t percentage per row.

|

\ | ACN(1,1) [ ACD(1,2) [ ACD(2,1) | ACD(2,2) |

T=250 | AT | 36.2 20.9 31.8 11.1
LT 73.7 8.9 16.8 0.6
HQ 52.4 16.3 28.1 3.2
T=500 | AC 19.1 20.7 50 10.2
LT 59.9 10.5 29 0.6
Q 36.5 16.4 43.8 3.3
T=1.00 | A.C 7.4 16.7 64.8 11.1
BIC 35.6 11.9 52.1 0.4
HQ 17.1 15.7 63.7 3.5
- 200, [ AIC 1.2 12.7 74.2 11.9
‘ BIC 6.8 12.9 80.1 0.2
B HQ 2.2 14.2 81.6 2
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Table 11: Model selection results based on ACD(2,2) «. *a samples: Given 1000 samples of
size T € {250, 500, 1000, 2000} each column g. -5 vne percentage of cases in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,z,, ACD(2,1) and ACD(2,2) respectively.
The bold numbers give the largest percent .o_ -~ row.

| |

| ACD(1,1) [ A ™(1,.) | ACD(2,1) | ACD(2,2) |

T=250 | AIC 56.7 ] 153 18.8 8.7
BIC 89.7 5.3 4.5 0.5
HQ 74 115 11.7 2.8
T=500 | AIC 5”2 13.6 19.1 10.1
BIC 2.1 2.9 4.6 0.4
HQ 78. 8 11.4 2.2
T=1000 | AIC 34 13.1 23.4 15.1
BIC a1.", 2.7 5.7 0.1
HQ 4 6.9 16.1 3
T=2000 | AIC ||~ 34.2 9.7 37.2 18.9
BIU | 86.1 1.8 115 0.6
LY 59.7 6.8 26.5 7
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Figure 16: Col' r on’ ae) (A) Volatility -y as a function of k for §¢ = 300 s. (B) Activity N
as a function « "k f r 6t = 300 s. (C) Scatter plot of volatility v as a function of number
of tradr, V. The points are averaged over the investigated period. All the plots are for
simula ed data vith w = 10 s.
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