Modeling non-stationarities in high-frequency financial time series

Article (Accepted Version)

Ponta, Linda, Trinh, Mailan, Raberto, Marco, Scalas, Enrico and Cincotti, Silvano (2019) Modeling non-stationarities in high-frequency financial time series. Physica A: Statistical Mechanics and its Applications, 521. pp. 173-196. ISSN 0378-4371

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/81410/
This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:

Sussex Research Online is a digital repository of the research output of the University.
Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Accepted Manuscript

Modeling non-stationarities in high-frequency financial time series

Linda Ponta, Mailan Trinh, Marco Raberto, Enrico Scalas, Silvano Cincotti

PII:
S0378-4371(19)30067-6
DOI: https://doi.org/10.1016/j.physa.2019.01.069
Reference: PHYSA 20500

To appear in: Physica A

Please cite this article as: L. Ponta, M. Trinh, M. Raberto et al., Modeling non-stationarities in high-frequency financial time series, Physica A (2019), https://doi.org/10.1016/j.physa.2019.01.069

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights

- Scaling properties for financial returns are still approximately satisfied.
- A simple stochastic process can approximate intra-day retur s.
- Model selection is possible using information criteria.

Modeling non-stationarities in high-frequency .nancial time series

Linda Ponta ${ }^{\text {a,b }}$, Mailan Trinh ${ }^{\mathrm{c}}$, Marco Raberto ${ }^{\text {b }}$, E rico $\mathrm{S}^{\text {ralas }}{ }^{\mathrm{c}, \mathrm{d}, *}$, Silvano Cincotti ${ }^{\text {b }}$
${ }^{a}$ LIUC - Cattaneo University, Corso G. Matteotti 22, 2105 ~ 1 stellanza (VA), Italia
${ }^{b}$ DIME - CINEF, Università degli studi di Genova, Vi. -́ pera ’ia 15, 16145 Genova, Italia
${ }^{c}$ Department of Mathematics, School of Mathematical ana Dhysical Sciences, University of Sussex, Brightor, IJK

Abstract

We study tick-by-tick financial retı ${ }^{1}$. for the FTSE MIB index of the Italian Stock Exchange (Borsa It ": na). We confirm previously detected nonstationarities. Scaling properties *oported before for other high-frequency financial data are only apprnximately valid. As a consequence of our empirical analyses, we proposf a sim, le model for non-stationary returns, based on a non-homogeneous in "mal compound Poisson process. It turns out that our model can a , preximately reproduce several stylized facts of highfrequency financial t. ne erie ,. Moreover, using Monte Carlo simulations, we analyze order seler ion tu. nis class of models using three information criteria: Akaike's infe mu 'ion criterion (AIC), the Bayesian information criterion (BIC) and the ${ }^{\top}$ nnan-Quinn information criterion (HQ). For comparison, we perform a sim ar Monte Carlo experiment for the ACD (autoregressive conditional dur ion) model. Our results show that the information criteria work 1 est 'or small parameter numbers for the compound Poisson type models, win eas 'or the ACD model the model selection procedure does not work v uil in ct. cain cases. Keyw rds: § ochastic processes, information criteria, high-frequency fin $=\cdots$ es

^[${ }^{*} r_{n}$ rresponding author Email addresses: linda.ponta@unige.it (Linda Ponta), m.trinh@sussex.ac.uk (i , ilan Trinh), marco.raberto@unige.it (Marco Raberto), e.scalas@sussex.ac.uk (Enrico Scalas), silvano.cincotti@unige.it (Silvano Cincotti)]

Introduction

The rise in the availability of high-frequency finar ial data has led to an increase in the number of studies focusing on the area of classification and modeling of financial markets at the ultra-hig 1 freq ency level. The development of models able to reflect the various ${ }_{1}$ henor ena observed in real data is an important step towards a full v uerstanding of the fundamental stochastic processes driving the market. Tr, stc tistical properties of high-frequency financial data and market mi n-stro ural properties were studied by means of different tools, including phe omenological models of price dynamics and agent-based market simı' ${ }^{\text {'atior ; }}$ (see [1-31]).

Various studies on high-frequency ecorn netrics appeared in the literature using the autoregressive conditio \therefore. 35]). Alternative stochastic models were à $}$ n proposed, e.g., diffusive models, ARCH-GARCH models, stocha. 'ic '-tility models, models based on fractional processes, models based on : bordinate processes (see [36-42]) as well as models based on self-excit. n_{5}. $\mathrm{rrcesses}^{2}$ of Hawkes type [43-45]. An important variable is the ord ${ }^{\circ}$ imb. lance. Many existing studies analyze order imbalances around speciti ovents or over short periods of time. For example, in [46] order imbalances are analyzed around the October 1987 crash. Reference [47] ana' yzes . ow order imbalances change the relation between stock volatility alı' volun a using data for about six months. A large body of research exar ines \imath_{1}. effect of the bid-ask spread and the order impact on the short run beh evior of prices (see [48-61]). Trading activity was measured by t^{\prime} e ar, a^{\prime}, e number of trades in unit time intervals in [62] and [63]. Howeve , orgregating trades into time intervals of the same length may have influences on he analysis. For instance, if intervals are too short with respect +tl ə average waiting time between consecutive trades, then every intervaı i_{1} contain either no point or a small number of points. On the contra y, i^{f} incuvals are too long, aggregation of too many points may
 in both \sim ases $r \geq$ distorts the kurtosis of the return process (see [33]).
$\mathrm{Fc}:$ the 1 asons mentioned above, the waiting-time (duration) between two co. secut ve transactions is an important empirical variable (see [10, 21-$25,04-66])$. In the market, during a trading day, the activity is not constant (5 e $[32,33]$) leading to fractal-time behavior (see [67, 68]). Indeed, as a cons,nce of the double auction mechanism, waiting times between two suı лぃuent trades are themselves random variables (see [64, 69, 70]). They h. ty also be correlated to returns (see [71]) as well as to traded volumes.

In the Physics literature, in order to investigate tick-by-tick financial
time series, the continuous-time random walk (CTRW) was sed (see [4, 64, 72-75]). It turned out that interorder and intertrad w iting-times are not exponentially distributed. Therefore, the jump pies sof tick-by-tick prices is non-Markovian (see $[4,64]$). Bianco and C-olinı applied a new method to verify whether the intertrade waiting ti ne pro ess is a genuine renewal process (see [76-78]). This was assumed by he C rRW hypothesis in [4]. They found that intertrade waiting-times do fr ${ }^{11}$ w w renewal process. Indeed, trading via the order book is asynchrone - and a transaction occurs only if a trader issues a market order. For liqu't stucks, waiting times can vary in a range between fractions of a secnnd to a few minutes, depending on the specific stock and on the market ronsı'~re . . In [71], the reader can find a study on General Electric stocks trau 1 in October 1999. Waiting times between consecutive prices exhibı، '-day periodicity, typical of variable intraday market activity. Moreover. as merı oned above, the unconditional survival probability (the complemer ar cumulative distribution function) of waiting times is not exponent ${ }^{-1 l y}$ c a stributed (see [64, 79]), but is well fitted by a Weibull function (see [1^{\top}, , n $\left.^{n} 33,71,80,81\right]$).

The non-stationary chara .of inancial time series has also been the object of recent studies in the Ph_{y} - ics literature [69, 82-85].

Here, inspired by [86], and building on the results presented in [69], we propose a model based canon- omogeneous Poisson processes. The paper is organized as follows. St tion describes the data set. Section 2 describes the statistical analys's of the single assets and of the FTSE MIB index, respectively as well a t'e sr aling analysis; Section 3 contains the bivariate analysis whereas ${ }^{〔}$ ection ' is devoted to the compound Poisson model, its order selection a $\cdot d u_{2} \sim$ numerical results. A comparison with order selection performance fr 4CD models is presented in the same section. Section 5 relates our met nodology and results to the literature in Mathematics. Finally, Section nresents the conclusions of this work. A visual map of the structure ft t is paper is presented in Figure 1.

1. Dr scrip 'ion of the data set

The $\begin{aligned} & \text { dot set includes high-frequency trades registered at Italian Stock }\end{aligned}$ E chans` (BIt or Borsa Italiana), from the $03^{\text {rd }}$ of February 2011 to the $09^{\text {th }}$ or March 2011. The data of February $14^{\text {th }} 2011$ are not used because, on that uay, there were technical problems at BIt. Moreover, we have removed ${ }^{\text {th }} \mathrm{h}$ data of the $21^{\text {st }}$ of February, as well. In fact, on that day, there was a cı sh in the Italian market related to the events in Lybia (on the $15^{\text {th }}$ of February, a rebellion against the Lybian government begun). We consider

Figure 1: (~' \neg r online) Structure of the paper.
the 40 shares in the Γ TSE N^{\top} Index as well as the index itself. Further information on the ata et \mathfrak{j} acluding the meaning of symbols and the cal-
 (see https://gi, h.com/enricoscalas/HFFnonstationary). In particular, it is important to remark that the FTSE MIB Index value is updated every time th re ; a change of price of one of its components. The forty stocks compos. . the FTSE MIB vary in their average market capitalization and e^{-}nibit duerent levels of trading activity with different numbers of trades ov, " t ' 1 s F riod as summarized in Table I in the Supplemental material whr the - ial number of observations in the chosen month is given (see
 data p ints r ar share varies between 10^{4} and 10^{5} and there are $4 \cdot 10^{5}$ values of ine irdex. Choosing one month of high-frequency data was a trade-off b tween he necessity of using enough data for significant statistical analysis and, ... the other hand, the goal of minimizing the effect of external econo no fluctuations leading to non-stationarities of the kind discussed in [87]. f r every stock, the data set consists of prices $p\left(t_{i}\right)$, volumes $v\left(t_{i}\right)$ and times of execution t_{i} sampled every second, where i is the trade index, varying
from 1 to the total number of daily trades N. These data w_{c} - filtered in order to remove misprints in prices and times of execu on I_{n} particular, concerning prices, when there are multiple prices for $t_{\llcorner } \leqslant$me time of execution, we consider only one transaction at that tim and a price equal to the average of the multiple prices. As far as waitin ; times τ, between two executions are concerned, we remove observations la cer nan 200 s : This means more than 3 minutes without recorded t adin-

1.1. FTSE MIB Index

The FTSE MIB Index (see [88]) is the $_$rimary , enchmark index for the Italian equity markets. Capturing approx: man'v 00% of the domestic market capitalisation, the Index is made up of his ${ }_{5}{ }^{n}$ ly liquid, leading companies across Industry Classification Benchman '- (ICB) sectors in Italy. The FTSE MIB Index measures the performan mo of 40 hares listed on Borsa Italiana and seeks to replicate the broad sect r, elghts of the Italian stock market. The Index is derived from the ur -rse f stocks trading on BIt. The Index replaces the previous S\&P/MIB In' ${ }^{\prime}$ ex, as a benchmark Index for Exchange Traded Funds (ETFs), and f. ...n. ng large capitalisation stocks in the Italian market. FTSE MIB Index a. calculated on a real-time basis in EUR. The official opening and cl-ving hours of the FTSE MIB Index series coincide with those of BIt r arkets and are 09:01 and 17:31 respectively. The FTSE MIB Index is calcun ${ }^{+}$ed and published on all days when BIt is open for trading.

FTSE is respons. ${ }^{10}$ c for he operation of the FTSE MIB Index. FTSE maintains records of the i. arket capitalisation of all constituents and other shares and make, cha ${ }^{\circ}$ oes to the constituents and their weightings in accordance with the \sim - ound Rules. FTSE carries out reviews and implement the resulting con citu nt changes as required by the Ground Rules. The FTSE MIB Index consu ' ${ }^{\text {'nent }}$ shares are selected after analysis of the Italian equity universe, o er sure the Index best represents the Italian equity markets.

The F^{\top} E J.IB Index is calculated using a base-weighted aggregate methe ology. I'his means the level of an Index reflects the total floatadjus ed mar et value of all of the constituent stocks relative to a particular base pe. \sim The total market value of a company is determined by multip' ying ti. price of its stock by the number of shares in issue (net of treasury sh res) e ter float adjustment. An indexed number is used to represent the wocult of this calculation in order to make the value easier to work with and reck over time. As mentioned above, the Index is computed in real time. I_{1} ? details on how to compute it can be found in [88].

2. Descriptive univariate unconditional statistics

In this section, we separately consider the descript; e u ivaıiate unconditional statistics for both the forty assets and for the FTs ${ }_{\perp}$ MIB Index. By univariate, we mean that, here, we do not consider orrela ions between the variables under study. By unconditional, we mean th t, her, we do not consider the non-stationary and seasonal behavior r. ine varlables under study and the possible memory effects. Correlation nd nor stationarity will be discussed in the next section.

2.1. Single Assets

In order to characterize market dynamı on a trade-by-trade level, we consider two variables: the series of me muervals between consecutive trades, τ and the trade-by-trade logarithı.~ returns, r. If $p\left(t_{i}\right)$ represents the price of a stock at time t_{i} wher t_{i}, \ldots e epoch of the i-th trade, then we define the tick-by-tick log-retırn as

$$
\begin{equation*}
-\ln \preceq \frac{\left.p_{(} t_{i+1}\right)}{p\left(t_{i}\right)} . \tag{1}
\end{equation*}
$$

Note that $\tau_{i}=t_{i+1}-t_{i}$ j_random intertrade duration (and not a fixed time interval).

Among the empirical su. H_{i}, on τ, we mention [71, 89], concerning contemporary shares tra ed sver a period of a few months, a study on rarelytraded nineteenth ce.' ry sares in [90], and results on foreign exchange transactions in [9^{-}, and [$\left.b_{-}\right]$.

Tables 1 and 2 co.. ${ }^{\text {' }}$-in the descriptive statistics, evaluated for the entire sample, for th \because ne series $\tau_{i}^{h}=t_{i+1}^{h}-t_{i}^{h}\left(\right.$ with $\left.t_{0}^{h}=0\right)$ and r_{i}^{h}, where the superscript l der stes the specific share and takes the label $h=I$ for the FTSE MIP Inde.

In Ta^{1} le ${ }^{1}$ the third and fourth columns give the two parameters of a Weibull dis. 'bu' on fit. The Weibull distribution has the following survival functi n :

$$
\begin{equation*}
\mathbb{P}(\tau>t)=P(t \mid \alpha, \beta)=\exp \left(-\alpha t^{\beta}\right) \tag{2}
\end{equation*}
$$

w^{\prime} ere β is the shape parameter and α is the scale parameter. The values g_{1} ren in Cable 1 were fitted using the moment method described in [70]. The yuality of these fits is pictorially shown in Figure 2 for A2A, EXO, M: and TIT, respectively. The solid line represents our Weibull fit and t_{1} ? circles are the empirical data. Since different companies have different average intertrade duration $\left\langle\tau^{h}\right\rangle$ (see the second column in Table 1), they

Figure 2: \imath° if $\mathrm{ll}^{\prime} \mathrm{fi}^{+}$for A2A (A), EXO (B), MS (C), TIT (D). The fit is represented by the thin ${ }^{-1}$ id lı.. he open circles are the empirical values for the survival function.

Figure 3: (Color online) f pproxı a a scaling of the survival function for the forty time series. The solid line is t^{\prime}.e W ibull fit given by Eq.(3).
are also characte . $\cdot \mathrm{d}$ by a different scale parameter α whereas the shape parameter β is almost \checkmark, same for all the forty time series. Following [73], a scaling func ${ }^{\prime}$ on $P\left(t \mid \beta^{*}\right)$ can be defined:

$$
\begin{equation*}
P\left(t \mid \beta^{*}\right)=\exp \left(-(t /\langle\tau\rangle)^{\beta^{*}}\right) \tag{3}
\end{equation*}
$$

where $\beta^{*}-\quad|3\rangle=0.78$.
To ust the nypothesis that there is a universal structure in the intertrade time d namics of different companies, we rescale the survival functions $\mathrm{b}_{\text {, }}$ nl-.ting them against $t /\left\langle\tau^{h}\right\rangle$. We find that, for all companies, d ta ap roximately conform to a single scaled plot given by (3) as shown in Figur 3 (see also [70, 73, 93]). Such a behavior is a hallmark of scaling, and is typical of a wide class of physical systems with universal scalinc, properties [94]. Even if [95] showed that the scaling (3) is far from be ng universal, at least for the New York Stock Exchange, it is remarkable to find it again for a different index in a different market and seven

Figure 4: (C lor or $^{\text {' }}$ ne) Weibull paper for A2A (A), EXO (B), MS (C), TIT (D). On the horizon' al ar is, the values of $\log (t)$ are plotted, where t represents the inter-trade duration. (t^{1} ᄅ ver ical axes, a double logarithmic transform of the empirical cumulative distribution fuı. ${ }^{\text {Lir }} 1$ of the inter-trade durations is plotted: $\log (-\log (1-P(\tau>t)))$. The linear f_{ν} is rep esented by the thin red solid line, the open circles are the empirical values.
years later with respect to the findings of [73]. However, 1 go beyond qualitative estimates, we perform several goodness-of-fi, te tr Kesults for the Anderson-Darling and Lilliefors statistics are prest ${ }^{{ }^{2}}{ }^{\circ}{ }^{\prime}$ ' in Table 1. Results for the Kolmogorov-Smirnov test are in the Sup ${ }^{\text {. - menu ! ! material (see }}$ https://github.com/enricoscalas/HFFnonstati onary) All these tests reject the null hypothesis of Weibull distributed daı Fi. ally, we present results based on the Weibull paper to graphica'. y ve- ${ }^{-f} \mathrm{y}$ the Weibull distribution hypothesis. As an illustration, Figure $4 _$ws t ie Weibull paper for the following assets: A2A, EXO, MS and Tı. We can see that the deviation of the empirical data from the straicht line , xpected for the Weibull distribution is mainly due to the tails of the \imath^{n} :ctv.bution as expected from visual inspection of Figure 3.

The descriptive statistics for trade- v-trade returns r^{h} can be found in Table 2. Notice that there is excess kurtosis.

2.2. FTSE MIB index

 the descriptive statistics of th $\ldots \ldots$ ries τ_{i}^{I} and r_{i}^{I} respectively evaluated for the FTSE MIB index.

In Figure 5 we show th \cdots rvival function for the intertrade waiting time of the FTSE MIB index The s lid line represents the Weibull fit, whereas the circle represents the elı. irir il data. The shape of the two curves is very different. Therefore, se ran immediately see that intertrade times are not Weibull distributed, , …, in chis case, the fit does not work even as a first approximation. I deed, it : the FTSE MIB index, the standard deviation of intertrade du atio is smaller than the average intertrade duration and the AD test a 2 the Lilliefors test reject the null hypothesis of Weibull distribution.

Contrary to . ${ }^{\text {.e }}$ ease of single asset returns, the excess kurtosis for the FTSE MI's in ex is quite large. Figure 6 shows the histogram of the returns for a bin s.l. of $\times 10^{-5}$.

Fo'owin $[\llcorner 3]$, we test the scaling of the empirical returns. The dataset consis s of $40 ; 560$ records for the FTSE MIB index (Table I in the Supplemental rn rial https://github.com/enricoscalas/HFFnonstationary) d ring i e period studied (from the $03^{\text {rd }}$ of February 2011 to the $09^{\text {th }}$ of M rch $2^{\prime} 11$). From this database, we compute the new random variable ${ }_{n} I(t: \Delta t)$ defined as:

$$
\begin{equation*}
r^{I}(t ; \Delta t)=\log \frac{p^{I}(t+\Delta t)}{p^{I}(t)}, \tag{4}
\end{equation*}
$$

Figure 5: (Color online) C. -les: e' ィpirical survival function; solid line: Weibull fit.
where $p^{I}(t)$ is the valu of tr \lesssim index at time t. In this way we sample returns on equally spacer and noı-overlapping intervals of width Δt. We further assume that the cime . r ries is stationary so that it only depends on Δt and not on t (incid .1t. lly, we shall later see that this is not the case). To characterize the exf rir entally observed process quantitatively, we first determine the empiric al pro a bility density function $P\left(r^{I}(\Delta t)\right)$ of index variations for different alu s of Δt. We select Δt equal to $3 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}, 30 \mathrm{~s}$ and 300 s . In Figure i) w present a semi-logarithmic plot of $P\left(r^{I}(\Delta t)\right)$ for the five differe it val es of Δt indicated above. These empirical distributions are rough v symr etric and are expected to converge to the normal distribution wh Δ_{ι} i.ccreases. The null hypothesis of normal distribution has been ts sted w th the Kolmogorov-Smirnov, the Jarque-Bera and the Lilliefors tes and is always rejected.
Δ_{s} already mentioned, we also note that the distributions are leptokurtic, $h^{\prime} t$ is, they have tails heavier than expected for a normal distribution. A de. ərmination of the parameters characterizing the distributions is difficult

Figure 6: (Colc. \boldsymbol{n}^{\prime} ' ne) ` istogram of returns for the FTSE MIB index.
especially because larg - values of Δt imply a smaller number of data. Again following [18], we tudy the probability density at zero return $P\left(r^{I}(\Delta t)=0\right)$ as function o. Δt This is done in Figure $7(\mathrm{~b})$, where $P\left(r^{I}(\Delta t)=0\right)$ versus Δt is show in a $\quad \mathrm{g}-\log$ plot. If these data were distributed according to a symme cic ℓ-st sle distribution, one would expect the following form for $P\left(r^{I}(\Delta t)=气\right.$! (ee Equation (2) in [18]):

$$
\begin{equation*}
P\left(r^{I}(\Delta t)=0\right)=\frac{\Gamma\left(1 / \alpha_{L}\right)}{\pi \alpha_{L}(c \Delta t)^{1 / \alpha_{L}}}, \tag{5}
\end{equation*}
$$

w. ere $\Gamma()$ is Euler Gamma function, $\alpha_{L} \in(0,2]$ is the index of the symmetric α-stable distribution and c is a time-scale parameter. The data are we 1 futed (in the OLS sense) by a straight line of slope $1 / \hat{\alpha}_{L}=0.58$ leading tc an estimated exponent $\hat{\alpha}_{L}=1.72$. The best method to get the values of $P\left(r^{I}(\Delta t)=0\right)$ is to determine the slope of the cumulative distribution

Figure 7: (C lor onlinı) (A) Histogram of the returns for the FTSE MIB index observed at different tim inte vals, namely, $\Delta t=3 \mathrm{~s}$ (blue), 5 s (red), 10 s (black), 30 s (green) and 300 s (p - nle) (B) Probability of zero returns as a function of the time sampling interval $\Delta \iota$, the sıupe of the straight line is 0.58 ± 0.01; (C) scaled empirical probability distrib tion an comparison with the theoretical prediction given by Eq.(7) (black solid line).
function in $r^{I}(\Delta t)=0$. In Figure 7(c), we plot the rescalte' probability density function according to the following transformat; n :

$$
\begin{equation*}
r_{s}^{I}=\frac{r^{I}(\Delta t)}{(\Delta t)^{1 / \alpha_{L}}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(r_{s}^{I}\right)=\frac{P\left(r^{I}(\Delta t)\right)}{(\Delta t)^{-1 / \alpha_{L}}}, \tag{7}
\end{equation*}
$$

for $\alpha_{L}=\hat{\alpha}_{L}=1.72$. Remarkably all the five dis ributions approximately collapse into a single one. We use the Kolu norr v-Smirnov test to study the null hypothesis of identically distribute.' rescaled data; the results are shown in Table 3. The null hypothesis ryucud only in the following cases: $\Delta t=3 s$ and $\Delta t=5 s, \Delta t=3 s$ and $\Delta t=\wedge^{\wedge} c, \Delta t=3 s$ and $\Delta t=30 s$.

It is worth noting that this resu, that the scaling, found in the S\&P 500 data by Mantegna and Stan. y more than twenty years ago [18], still approximately holds in a diffe $\cdot t_{.}{ }^{+}$market and in a completely different period. We do not run hyp ${ }^{+ \text {thesis }}$ tests on the Lévy stable distribution because an eye inspection of H_{10} re r(c) is sufficient to conclude that the Lévy stable fit is not matching the rescaled data.

3. Descriptive conditic al : ad bivariate statistics

Inspired by $[86, r \mathfrak{r}], \mathrm{h}$ or der to study the time variations of the returns during a typical \dagger adin ${ }^{\gamma} \mathrm{d} y$, we use a simple technique. We divide the trading day into i_{1} 'ally spaced and non-overlapping intervals of length δt for $\delta t=3,5,1030,30 \mathrm{v}, 300,900,1200,1500$ and 1800 s . Let K be number of intervals ard Λ_{c} the number of transaction in each interval k. For each interval we ev ${ }^{\prime}$, ate the $\gamma(k)$ indicator as a measure of volatility. $\gamma(k)$ is defined as

$$
\begin{equation*}
\gamma(k)=\frac{1}{N_{k}-1} \sum_{i=1}^{N_{k}-1}\left|r_{k, i}^{I}-\left\langle r_{k}^{I}\right\rangle\right| ; \tag{8}
\end{equation*}
$$

where $\left.{ }^{\prime} r_{L_{l}}^{I}\right\rangle$ is the average value of returns in the time interval k. In Figure $8(. J$, as an example, we plot the average value of $\gamma(k)$ over the investigated p riod as a function of the interval index k for $\delta t=300 \mathrm{~s}$. We can see that the ${ }^{1}$ slity is higher in the morning, at the opening of continuous trading, all ' \because en it decreases up to midday. There is a local increase after midday a d then the volatility returns to lower values to finally grow towards the enc of continuous trading. In Figure 8(b), we plot the number of trades on

Figure 8: (Color online) , A) ${ }^{\top}$ olat ${ }^{\prime}$ lity γ as a function of k for $\delta t=300 \mathrm{~s}$. (B) Activity N as a function of k for $\delta t=? 10 \mathrm{~s}$. (C) Scatter plot of volatility γ as a function of number of trades N. The poi ts are av aged over the investigated period.
the FTSE MIF in ex as a function of the interval index k for $\delta t=300 \mathrm{~s}$. The behavior of $t_{\iota}+$ ade activity closely follows the behavior of volatility. This is even cler er fron the analysis of Figure 8(c) where the volatility is plotted as a func ior of the activity. The scatter plot shows a strong correlation between the,r variables. This result does not depend on the length of the interv il w, L t the corresponding plots are not presented here for the sake of con. vactnf ss. This feature was already present in the Australian market st med for a much longer period (10 years ≈ 2500 days) by [86, 96]. Again, it is remi rkable to see a statistical pattern still valid in a different market afte m ie than 10 years.

F zure 8 shows a seasonal pattern in intraday trades. In order to take i. is behavior into account, we proposed to use a non-stationary normal compound Poisson process with volatility of jumps proportional to the activity
of the Poisson process in [69]. Here, we take even a more prac natic stand and we do not assume any a priori relationship betwee $1 \mathrm{v}(1 \sim+i l i t y ~ a n d ~ a c-~$ tivity as it emerges spontaneously, if present, with the . of rod described in the next section.

4. A compound Poisson type model

As one can see, during a trading day, the * satil ty and the activity are higher at the opening of the market, the thoy decrease at midday and they increase again towards market closure 76] (see also Figure 8). In other words, the (log-)price process i now its ionary. As suggested in [69], such a non-stationary process for log-p. nes can be approximated by a mixture of normal compound Poissor. nrocesses (NCPP) in the following way. A normal compound Poisson nrocess : a compound Poisson process with normal jumps. In formula:

$$
\begin{equation*}
X(t)=\sum_{i=1}^{N(.)} R_{i}, \tag{9}
\end{equation*}
$$

where R_{i} are normally dist-huted independent trade-by-trade log-returns, $N(t)$ is a Poisson process with pe "ameter λ and $X(t)$ is the logarithmic price, $X(t)=\log (P(t))$. By prow hilis ic arguments one can derive the cumulative distribution function of $Y(t)$, it is given by:

$$
\begin{equation*}
F_{X} \jmath^{\prime} u()=\mathbb{P}(X(t) \leq u)=\mathrm{e}^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{n!} F_{R}^{\star n}(u) \tag{10}
\end{equation*}
$$

where $F_{R}^{\star n}\left(u^{\prime}\right.$ is \dagger^{\prime} e n-fold convolution of the normal distribution, namely

$$
\begin{equation*}
F_{R}^{\star n}(u)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{u-n \mu}{\sqrt{2 n \sigma^{2}}}\right)\right] \tag{11}
\end{equation*}
$$

and μ and σ are the parameters of the normal distribution.
Wt now 8 sume that the trading day can be divided into n equal intervals of constant activity $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and of length w, then the unconditional waiting ti ne dist ibution becomes a mixture of exponential distributions and its cunn l-ıve distribution function can be written as

$$
\begin{equation*}
F_{\tau}(u)=\mathbb{P}(\tau \leq u)=\sum_{i=1}^{n} a_{i}\left(1-\mathrm{e}^{-\lambda_{i} \tau}\right), \tag{12}
\end{equation*}
$$

where $\left\{a_{i}\right\}_{i=1}^{n}$ is a set of suitable weights. The activity seasu olity can be mimicked by values of λ_{i} that decrease towards middar an ${ }^{1}$ then increase again towards market closure. In order to reproduce the elation between volatility and activity, one could assume that

$$
\begin{equation*}
\sigma_{\xi, i}=c \lambda_{i} \tag{13}
\end{equation*}
$$

where c is a suitable constant. As already mel tior d, however, for practical purposes, one can also estimate three pa"mmeters or each interval, the parameter λ_{i} of the Poisson process and the paran ${ }^{\text {ters }} \mu_{i}$ and σ_{i} for the logreturns without any correlation assumption. This leads us to two possible examples of such compound Poisson type in dels which will be introduced in Section 4.1 alongside the popular ACD m~スの' 'or later comparisons. After a brief error analysis of the maximum lik ${ }^{\text {' }}$ 'hood estimation (MLE) method in Section 4.2, we will move on to t^{1} _._ in Monte Carlo experiment to test model selection using information criı r.a (IC) in Section 4.3. The different nature of the compound Poisson i.c ' l els nd the ACD model makes a direct comparison in terms of model selec ion questionable. Therefore, our main focus will be a comparison of $\mathrm{I}^{\text {' witiun each model class separately. }}$

4.1. Model definitions anr io. \quad lihood functions

4.1.1. The compound P isson n odel with discrete intensity ($D \lambda$)-model

We extend the not tion U. $^{\top}$. quation (9) by an additional index denoting the corresponding ir erval: 'Ve suppose that high-frequency data is given over a time interv $l\left[l_{0}, T\right]$ First, set a time grid $\left\{t_{i}\right\}_{i \in\{1, \ldots, n\}}$ such that $t_{0}<t_{1}<t_{2}<.<t_{n}=T$. On each time interval $\left[t_{i-1}, t_{i}\right)$ we have a compound Poisson prou \backsim ss

$$
\begin{equation*}
X_{i}(t):=\sum_{k=1}^{N_{i}(t)} R_{k}^{(i)}, \tag{14}
\end{equation*}
$$

where $\left\{_{\sim}^{(i)}\right\}_{k \in _}$is an i.i.d. sequence of $\mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ distributed random variables and $(\Lambda(t))_{t \geq 0}$ is a homogeneous Poisson process with parameter λ_{i}. Further, $\left\{D_{\kappa}^{(\prime)}\right\}_{k \in \mathbb{N}}$ are all independent of $\left(N_{i}(t)\right)_{t \geq 0}$.
Fr a fiis d time interval $\left[t_{i-1}, t_{i}\right)$ the log-likelihood function is given by

$$
\begin{align*}
\mathcal{L}_{i}^{D}\left(\lambda_{i}, \mu_{i}, \sigma_{i}\right)= & -\lambda_{i}\left(t_{i}-t_{i-1}\right)+\ln \left(\lambda_{i}\right) N_{i}\left(t_{i}\right) \\
& +\sum_{k=1}^{N_{i}\left(t_{i}\right)} \ln \left(p_{\mu_{i}, \sigma_{i}}\left(R_{k}^{(i)}\right)\right), \tag{15}
\end{align*}
$$

where $p_{\mu_{i}, \sigma_{i}}$ denotes the probability density function of the $\left.\mathcal{N}_{(r} \cdot \sigma_{i}^{2}\right)$ distribution. Due to the independence assumptions the over all - - likelihood is given by the sum of all \mathcal{L}_{i}. Equation (15) can be deriv 1 rom the general expression for the sample density function given on $r_{\text {roe }} 20 \sim$ in [97] by substituting a constant λ.
The maximum likelihood estimators are therefore:

$$
\begin{gather*}
\hat{\lambda}_{i}=N_{i} / w_{i}, \quad \hat{\mu}_{i}=\frac{1}{N_{i}} \zeta_{k=.}^{i} r_{i} \\
\hat{\sigma}_{i}^{2}=\frac{1}{N_{i}} \sum_{k=1}^{N_{i}}\left(r_{i}-\hat{\mu}_{i}\right)^{\prime} \tag{16}
\end{gather*}
$$

where N_{i} is the number of trades in the \imath_{1} interval and $w_{i}=t_{i}-t_{i-1}$.
Note that the maximum likelihood stu ...r for σ^{2} is biased and the bias can be corrected by using

$$
\begin{equation*}
\tilde{\sigma}_{i}^{2}=\frac{1}{N_{i}} \sum_{k=1}^{N_{i}}\left(r_{i}-\hat{\mu}_{i}\right)^{2} \tag{17}
\end{equation*}
$$

instead. We shall use eitr ir the 'iased or unbiased estimator in the following sections when appropriau

4.1.2. Approximatir , st lize' facts using the ($D \lambda$)-model

A Monte Carle simu. + ${ }^{\circ} \mathrm{n}$ of the ($\mathrm{D} \lambda$)-model was performed by considering a trading ${ }_{c}{ }_{l y}$ divided into a number of intervals of length $w=\Delta t=$ $3,5,10,30,300$ s The parameters $\hat{\lambda}_{i}, \hat{\mu}_{i}$ and $\tilde{\sigma}_{i}^{2}$ were estimated as explained above. Note ${ }^{t}$ lat re use the unbiased estimator $\tilde{\sigma}_{i}$ from (17). In the following, we shall tu -s on estimates based on the FTSE MIB index. In Figure 9, we empirir ally show that the simulation gives a better fit for the empirical returns $\mathrm{or}^{4}{ }^{4}{ }^{\prime}$, ind x as w becomes smaller. This figure corroborates the conjecture ${ }^{1}$ at the approximations converge to the empirical data. This is an encou aging asult meaning that it will be useful to study the convergence of the ap_{t} "oxir ation by means of measure-theoretical probabilistic methods. F; sure 10 displays the histogram of simulated returns for $w=3$ and can be c mpares to Figure 6. The corresponding value of the Kolmogorov-Smirnov staticios is given by the blue dot in Figure 9.

Figure 9: (Color on ${ }^{1}$ „. Approximation of the empirical cumulative distribution function with Monte Carlo simulat ns for FTSE MIB returns r^{I}. The black line represents the empirical cumul sh distribution functions for real data. The colored lines represent the simulations desc abed in the text and based on sampling at equal intervals of 3,5 . 10. 30 and 300 s ands as described by the legend. The inset contains a plot of the Kolmogorov imi"nov wistance between the approximations and the empirical curve. This plot corrol rat s th conjecture that there is convergence of the approximation to the black curve.

In \checkmark rder t , show that this approximation is able to reproduce the approxim .ou stynzed facts described above, Figure 11 shows the scaling relations d icussea in section 2.2 for the simulation with $w=10 \mathrm{~s}$. The null hypothesis of r srmal distribution has been tested with the Kolmogorov-Smirnov, un. ${ }^{\top} \cap{ }^{\wedge}$ que-Bera and the Lilliefors test. Also in this case the null hypothesis 1 always rejected.

One can see from Figure 11(b) that an OLS index estimate $\hat{\alpha}_{L}=1.59$ is

Figure 10: (Color online` Hist gram of returns for the approximating process with $w=3 \mathrm{~s}$.
recovered from t^{1}.e s: nulation instead of 1.72 for the real index. The scaling given in Eqs. ${ }^{(R)}$, (7) is presented in Figure 11(c), one can see that the approximate cali g still holds for the simulated data. The null hypothesis of identical disı. nution has been tested with the Kolmogorov-Smirnov test, and the r sul' s are shown in Table 4. It is worth noting that the null hypothesin ${ }^{\prime}$ ide tical distribution is always rejected but the statistic value is near ω the c. itical value.

4.1.3. The r mpound Poisson model with parametrized intensity $(P \lambda)$-model

This model will be used for simulation later on as well as serve as a b nchma k model when testing model selection criteria. As empirical results abouv une trading intensity suggest a daily seasonality, this model assumes the o the step function in the ($\mathrm{D} \lambda$) model is parametrized by a quadratic

Figure 11: (Color online) (A) iistogram of the returns for the simulation described in the text observed at differen. ${ }^{\text {+ }}$, , e in arvals, namely, $\Delta t=3 \mathrm{~s}$ (blue), 5 s (red), 10 s (black), 30 s (green) and 300 (purpı. (B) Probability of zero returns as a function of the time sampling interval Δ, he slope of the straight line is 0.63 ± 0.01; (C) scaled empirical probability distribution an. ${ }^{\text {. comparison with the theoretical prediction given by Eq.(7) }}$ (black solid line)
function:

$$
\begin{equation*}
\lambda_{a, b, c}(t)=a t^{2}+b t+c, \quad t \in[0,1] . \tag{18}
\end{equation*}
$$

Of coirse, th s parametrization can be easily replaced by more complicated fur uions. since λ needs to be positive and convex, we also have the conditi ms

$$
\begin{equation*}
a>0 \text { and } c>\frac{b^{2}}{4 a} \tag{19}
\end{equation*}
$$

Similar to the ($\mathrm{D} \lambda$)-model, the log-likelihood for the ($\mathrm{P} \lambda$)-mou ${ }^{1}$ is given by

$$
\begin{align*}
& \mathcal{L}_{i}^{P}\left(a, b, c, \mu_{i}, \sigma_{i}\right)=-\lambda_{a, b, c}\left(t_{i-1}\right)\left(t_{i}-t_{i-1}\right) \\
& +\ln \left(\lambda_{a, b, c}\left(t_{i-1}\right)\right) N_{i}\left(t_{i}\right)+\sum_{k=1}^{N_{i}\left(t_{i}\right)} \ln \left(p_{\mu_{i} \tau_{i}}\left(R_{k}^{(i)}\right) .\right. \tag{20}
\end{align*}
$$

While the maximum likelihood estimators for $\ell: \operatorname{ar}_{\perp} 0$ are the same as for the ($\mathrm{D} \lambda$) case, the maximum likelihood estir ators $\mathrm{f}_{\mathrm{r}} . a, b, c$, which determine the form of λ, cannot be obtained in closeu form. As a consequence, a numerical optimization method needs to $\stackrel{\sim}{ }$ appl ed to estimate those parameters.

4.1.4. The ACD model

The autoregressive conditional (... tinn model was first proposed by Engle and Russell [33]. We will consic a model for the durations between events only without marks: Let $\mathrm{I}_{i \in 1}$ be a sequence of i.i.d. random variables. The autoregressive condiı :onal duration (ACD) model is defined as

$$
\begin{align*}
x_{i} & =\psi_{i} \varepsilon_{i} \tag{21}\\
\psi_{i} & \equiv \psi_{i}\left(2 \quad 1, \ldots x_{1} ; \theta\right):=\mathbb{E}\left[x_{i} \mid x_{i-1}, \ldots, x_{1}\right] . \tag{22}
\end{align*}
$$

The innovations $\left(\varepsilon_{i}\right)$ are ssumed to follow an exponential distribution, i.e. $\varepsilon_{i} \sim \operatorname{Exp}(1)$, and $\psi \cdot$ the the following representation

$$
\begin{equation*}
\psi_{i} .=\omega+\sum_{j=0}^{m} \alpha_{j} x_{i-j}+\sum_{j=0}^{q} \beta_{j} \psi_{i-j} \tag{23}
\end{equation*}
$$

where $\omega>\rho, \alpha_{i}={ }^{\imath}$ and $\beta_{i} \geq 0$ for all i. We will call this model $\operatorname{ACD}(m, q)$. For giver dur tio data $\left\{x_{1}, \ldots, x_{n}\right\}$ the log-likelihood function is given by

$$
\begin{align*}
& \mathcal{L}^{\mathrm{ACD}}\left(\omega, \alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{q}\right)= \\
& \quad-\sum_{i=1}^{n}\left[\ln \psi_{i}+\frac{x_{i}}{\psi_{i}}\right] \tag{24}
\end{align*}
$$

(se , r. 104 in [20]).

4.2. MLE and goodness of fit

Before we turn our attention to the actual model se' ctir a rrocedure, it $^{\prime}$ is useful to get a rough idea about how well the under_ ${ }^{〔}$ ig MLE method works for the three model classes. We would like t ensure hat the MLE method works reasonably well since a poor ML fil might compromise the quality of the order selection. Due to asymptotic re...1t, we expect that goodness of fit and correctness of the model sel ectir \AA_{1} rocedure should improve with increasing size of the underlying sampin. As these two effects are closely related, it is hard to quantify them sepan tely.
In the next sections, we give a detailed exp 'rnation of the simulation procedure and on how the parameter estimatic is . . emented. Based on that, we run a MLE on previously generated mocn tata. As we know the true parameter values, we can easily calculau the mean squared error (MSE) as measure for the goodness of fit.

4.2.1. Compound Poisson model

Simulation. The simulation algorit.m ssentially uses the ($\mathrm{P} \lambda$)-model. For simplicity we will choose the . .n erval $\left[t_{0}, T\right]$ to be $[0,1]$. For the simulation we set an equidistant gria ${ }^{\imath}=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=1$ on the time interval. Thus, the $\cdots \sim$ val $[0,1]$ is divided into n subintervals. For $i \in\{1, \ldots, n\}$ the parar sters μ, σ_{i} and λ_{i} on the subinterval $\left[t_{i-1}, t_{i}\right)$ are chosen to be

$$
\begin{gather*}
\mu_{i}=0, \tau_{i}=1 \text { and } \lambda_{i}=\lambda\left(t_{i-1}\right) \forall i \in\{1, \ldots, n\}, \\
\text { wh re } \lambda(t):-=4\left(\lambda_{\max }-\lambda_{\min }\right)(t-0.5)^{2}+\lambda_{\min }, \\
\forall t \in ?, 1] \text { and } \lambda_{\min }, \lambda_{\max }>0 \text { constant. } \tag{25}
\end{gather*}
$$

The function I fo m of λ is inspired by the empirical findings in the previous sections an i shon'd account for the observed seasonality in a simple way. We have nos $\mathrm{n} \lambda_{\text {nin }}=100$ and $\lambda_{\text {max }}=10000$. Note that the $\left\{\lambda_{i}\right\}$ form a step functic. 7 p roximation of the parabola in (25). For different grid sizes, we sir ulate vith sample size 1000 each.

Fitting. Th fitting is carried out using different grid sizes. Note that the g^{7}. d size to be used in fitting is bounded from above by the length of the er 'ire tir e interval (in our case 1). However, we would like to emulate the hehavior of the intensity which was observed in empirical data, i.e. high in${ }^{\text {' }}$ er sity at the beginning and at the end of the trading day and relatively low in ənsity in the middle of the day. Consequently, we need at least 3 subintervals to have a piecewise constant function that fulfils these conditions on
the time interval. Further, the smallest eligible grid size is L יnded from below by the maximal distance between neighbouring da a p ints within the data set. Otherwise, there are subintervals which do $1 .+$, ontain any data points. In such cases, the estimation formulas in (16) .roulu 'ail.
More precisely, for the maximal distance $\Delta_{\max }$ betw en two :onsecutive data points within a given sample, the finest valid equid. ${ }^{+}$ant srid has at most $\left\lfloor\frac{1}{\Delta_{\text {max }}}\right\rfloor$ subintervals. Therefore, we will considr i a $:$ of candidate models on grids which correspond to $n=3,4, \ldots,\left\lfloor\bar{\Delta}_{\mathrm{ma}_{\mathrm{a}}}^{1}-\mid \mathrm{s}^{n \mathrm{r}}\right.$. itervals on the interval $[0,1]$.

For the ($\mathrm{D} \lambda$) model, the estimators are y . en in closed form in (16) and the likelihood value is easily calculatec used for the calculation of the IC. We deciun to use the biased estimator $\hat{\sigma}_{i}^{2}$: Since we are mainly interested in me' decection, we would like to ensure that we work with the optimal v^{\wedge} lue c . the log-likelihood when calculating the IC (see also 4.3).
In order to fit the ($\mathrm{P} \lambda$) mode' ${ }^{\prime}$ as ume that the estimates for $\left\{\mu_{i}\right\},\left\{\sigma_{i}\right\}$ and $\left\{\lambda_{i}\right\}$ for the ($\mathrm{D} \lambda$)-algorithm . - e already calculated and can be used as an input for the estimation of the ($\mathrm{P} \lambda$)-model. As mentioned previously, the estimators for μ_{i} and σ_{i} c sncide in both models and no further calculation is needed for these paramelu ©. It emains to solve the following minimization problem:

$$
\begin{gather*}
(\hat{b}, \hat{c})=\underset{a, b, c \in \mathbb{R}}{\arg \min }\left[-\sum_{i=1}^{n} \mathcal{L}_{i}^{P}\left(a, b, c, \mu_{i}, \sigma_{i}\right)\right] \\
\text { s.t. } \quad a>0 \text { and } c>\frac{b^{2}}{4 a} \tag{26}
\end{gather*}
$$

A reasona', le c'ioice of the starting value for the minimization algorithm can be easily \imath^{\wedge}. .ne by the least-squares fit of the parabola to the $\left\{\lambda_{i}\right\}$ values of the ($\sum \lambda$) ca. . , which already gives a fairly good approximation of the parab la. In case the initial values obtained by this method do not lie in the adı. ©sir e set, a change of signs for a or a shift of the parabola may be ar plied.
N te tha the estimation of the ($\mathrm{P} \lambda$)-model requires a grid with at least 4 grid puints, i.e. 3 subintervals on which $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are estimated using the (D リ-model. This ensures that the parabola is well determined. However, ai mentioned before, this condition is not restrictive and covers all models on which we would like to run model selection.

4.2.2. $A C D$ model

For both simulation and MLE of ACD models we use che $\begin{array}{r}\text { n nackage ACDm }\end{array}$ written by Markus Belfrage [98]. The model selection $a_{2} \wedge 1$ sis for the ACD model follows the Monte Carlo experiment conduct i_{i} in $\left[y_{y_{j}}\right.$, We consider model orders $m, q \in\{1,2\}$ and Table 5 shows the hoice $c ₹$ parameters for the simulation.

4.2.3. Numerical results

We use the MSE as a measure for the gooa. 'as uı it: Let θ be a generic model parameter to be estimated and $\hat{\theta}$ the corresp inding estimator. Given N samples and $\hat{\theta}^{(k)}, k=1, \ldots, N$, the estimate. f_{n} each sample we calculate the mean squared error to be

$$
\begin{equation*}
\operatorname{MSE}(\theta)=\mathbb{E}\left[\left|\theta-\hat{l}^{\sim 7} \quad 1-\sum_{N}^{N}\right| \theta-\left.\hat{\theta}^{(k)}\right|^{2}\right. \tag{27}
\end{equation*}
$$

Compound Poisson models. We ha re \sim point out first that the distance in Equation (27) has to be und sund s a functional distance. To be more precise, we choose the L^{2}-distanct hetween the true step function intensity and the estimated one:

$$
\begin{equation*}
\left.\mathbb{E}_{L_{1}}^{\Gamma_{1}-\hat{\epsilon}_{1}^{2}}{ }^{2}\right]=\mathbb{E}\left[\|\theta-\hat{\theta}\|_{L^{2}}^{2}\right] \tag{28}
\end{equation*}
$$

The cases of μ and $\iota^{2} \&$ e t ${ }^{1}$. e easier ones, as we just need to calculate the distance between ι step \because nction and a constant: For the step functions with values $\left\{\mu_{i}\right\}$ on he fitting grid $t_{1}<t_{2}<\ldots<t_{n}$ Equation (28) can be further written

$$
\begin{align*}
\mathbb{E}\left[\left\|^{\prime}-\hat{\mu}\right\|_{L^{2}}^{2}\right] & =\frac{1}{N} \sum_{k=1}^{N}\left\|\mu-\hat{\mu}^{(k)}\right\|_{L^{2}}^{2} \\
& =\frac{1}{N} \sum_{k=1}^{N} \int_{0}^{T}\left(\mu(t)-\hat{\mu}^{(k)}(t)\right)^{2} \mathrm{~d} t \\
& =\frac{1}{N} \sum_{k=1}^{N} \sum_{i=2}^{n}\left(\mu-\hat{\mu}_{i}^{(k)}\right)^{2}\left(t_{i}-t_{i-1}\right) \tag{29}
\end{align*}
$$

ant ... the same way for σ^{2}.
\mathcal{C} incerning the intensity function, we have to merge the simulation grid $t_{1}^{s}<$ $t_{2}^{s}<\ldots<t_{m}^{s}$ with the fitting grid $t_{1}^{f}<t_{2}^{f}<\ldots<t_{r}^{f}$. After reordering and
relabeling, we can calculate the MSE on the merged grid $t_{1}<\cdots<\ldots<t_{n}$ via

$$
\begin{equation*}
\mathbb{E}\left[\|\lambda-\hat{\lambda}\|_{L^{2}}^{2}\right]=\frac{1}{N} \sum_{k=1}^{N} \sum_{i=2}^{n}\left(\lambda_{i}-\hat{\lambda}_{i}^{(k)}\right)^{2}\left(t_{i}-\imath_{\imath} \ldots\right) . \tag{30}
\end{equation*}
$$

The numerical results we present here are for $N=1000$ samples of data simulated from a grid containing 30 subintervals.

Table 6 shows summary statistics of μ and ${ }^{-2}$, who $\dot{\sim}$ the summary statistics were calculated over the set of fitting grids. $1 `$ e MSE for the μ and σ^{2} are comparably small.
For the intensity function λ we plot the M_{N} against the number of subintervals used for fitting in Figure 12. St tervals, the MSE decreases sharply before ${ }^{2}$ reaches its optimum at 30 , the true number of subintervals from t.es. - ${ }^{-1}$ ation. Number of subintervals above 30 give a larger MSE and, in the case of the ($\mathrm{D} \lambda$) model, instabilities of over parametrization even lead ${ }^{\iota} \checkmark \eta$ macreasing MSE.

Concerning goodness of fit we can see that the MSE of the ($\mathrm{P} \lambda$)-model is consistently smaller than the : TSE of the ($\mathrm{D} \lambda$)-model. This is to be expected as, by construction of the experiment, the ($\mathrm{P} \lambda$)-model is the true model and gives a better at to the data.
Moreover, we can obse ${ }_{\perp}$ - that apart from the optimum at 30 there are "preferred" numbers r / subir ivals at $10,20,45,60$. This is crucial for the explanation of the k hav or f model selection as the relationship between goodness of fit and nurı ar of subintervals in the region below the optimal number is not $\mathrm{m}^{\prime}{ }^{+}+$one.

The size o the MSE can be estimated from the expected fluctuations of the estimator $\hat{\imath}$ The MSE can be estimated from below by means of the ideal situa on wht. the simulation and fitting grid are identical. Without loss of gc ver , ity we assume an equidistant simulation grid with grid size $w=t_{i}-{ }^{+}{ }_{i-1}, ~-1$ rewrite Equation (30):

$$
\begin{align*}
\mathbb{E}\left[\|\lambda-\hat{\lambda}\|_{L^{2}}^{2}\right] & \geq w \sum_{i=2}^{n} \mathbb{E}\left[\left(\lambda_{i}-\hat{\lambda}_{i}\right)^{2}\right] \\
& =w \sum_{i=2}^{n} \operatorname{Var}\left[\hat{\lambda}_{i}\right]=\frac{1}{w} \sum_{i=2}^{n} \operatorname{Var}\left[N_{i}\right] \tag{31}
\end{align*}
$$

w. are we have used the definition of the estimator in (16) and the fact that the number of events in an interval of size w is Poisson distributed:

Figure 12: (Color online) lot ot \because mean squared error (MSE) of the estimation of the intensity function for th (D' , -model (orange lines) and for the (P λ)-model (blue lines) respectively. The graph , ws t e MSE together with dashed lines indicating the size of the first standard deviatio. rom the mean as a function of the underlying number of intervals of the tu. r grid. The true model for the simulation originally used 30 subintervals. The MSE is cu' culated as a squared L^{2} distance between the estimated and the true intensit tu tion (see also Eq. (30)).
$N_{i} \sim \operatorname{Poi}(`, w)$ We inally get that

$$
\begin{align*}
\mathbb{E}\left[\|\lambda-\hat{\lambda}\|_{L^{2}}^{2}\right] & \geq \frac{1}{w} \sum_{i=2}^{n} \operatorname{Var}\left[N_{i}\right] \\
& =\frac{1}{w} \sum_{i=2}^{n} \lambda_{i} w \approx \frac{1}{w} \int_{0}^{1} \lambda(t) \mathrm{d} t \tag{32}
\end{align*}
$$

w_{1} - we approximate the integral of the step function by the integral of i a smooth intensity parametrization in Equation (25). For our numerical example we have $\frac{1}{w}=30$ and $\lambda_{\min }=100$ and $\lambda_{\max }=10000$. An explicit
calculation of above integral gives the rough estimate

$$
\begin{equation*}
\mathbb{E}\left[\|\lambda-\hat{\lambda}\|_{L^{2}}^{2}\right] \gtrsim 30 \cdot 3400=\mathcal{O}\left(10^{5}\right. \tag{33}
\end{equation*}
$$

which is of about the same order of magnitude obs rvable n Figure 12.
ACD model. In the ACD case we have a simple p .ameter vector $\left(\omega, \alpha_{1}, \ldots,-\right.$ $\left.\alpha_{m}, \beta_{1}, \ldots, \beta_{q}\right) \in \mathbb{R}^{1+m+q}$, Therefore, we can us tr for nula given in Equation (27) for each scalar valued parameter. T. $\mathrm{T}_{\text {resılt }}$ can be seen in Table 7. The largest sample size ensures that the $M S_{\perp}$ are comparably low for each model. The largest contribution to the : TSE r omes from the ω parameter. An even closer look shows that the ${ }^{\circ} \mathrm{QE}$ of the β parameter(s) is of different order depending on the mode $\quad . .$. of the β parameter is of the same size as , he α parameter(s). However, in the case of $q=2$, the order of the $\mathrm{N}_{1} \mathrm{~L}^{\circ}{ }^{\circ}$ a β parameters are significantly larger than the MSE of the α paramete ; (by a factor of 10 in the $\operatorname{ACD}(1,2)$ case and by a factor of 100 in the $4, ~$ D $(\sim, 2)$ case).

4.3. Information criteria and "r del selection

Starting off from the estimation results in the previous section, we would like to analyse how effec ${ }^{\prime}$, ve $n_{\iota} \cdot$ del selection based on information criteria (IC) performs for both tir roum ounds Poisson models and the ACD model.
 w, i.e. increasing t' o r $\mu \mathrm{mb}$ ir of model parameters, gives better fits and the model is able ${ }^{+} 3$ cap $\left.{ }^{2}\right\lrcorner$ all distributional properties of the quantity of interest. Howeve, a model containing a large number of parameters is likely to be over-fitter A quantitative method to resolve this trade-off situation is to apply IC. In he following, we will consider three of the most common information Cl . ia:
For a giver model tıuted to data via MLE let \mathcal{L} be the maximal log-likelihood value, $k \ell^{\circ} \cdot r^{\prime} \mathrm{um}^{\ell}$ er of parameters and T be the sample size of the data set. Then w defin.

1. Ikaikf s information criterion (AIC) (see [100])

$$
\begin{equation*}
\mathrm{AIC}=-2 \mathcal{L}+2 k \tag{34}
\end{equation*}
$$

2. Layesian information criterion (BIC) (see [101])

$$
\begin{equation*}
\mathrm{BIC}=-2 \mathcal{L}+k \ln (T) \tag{35}
\end{equation*}
$$

3. Hannan and Quinn information criterion (HO) we [102] and [103])

$$
\begin{equation*}
\mathrm{HQ}=-2 \mathcal{L}+2 k \ln (\ln (T)) \tag{36}
\end{equation*}
$$

Note that the information criteria under consider tion enalize the loglikelihood value for increasing number of parame ers k. Among several candidate models, one chooses the model with ine stumest IC value. A time grid $t_{0}<t_{1}<\ldots<t_{n}$ is given and divi es ne verall time interval in n subintervals. From Section 4.2.1, we r call tha we do not consider $n \in\{1,2\}$. Then the ($\mathrm{D} \lambda$)-model has in totaı ${ }^{\prime} \cdot=3 n$ parameters with $n \in\{3,4, \ldots\}$. This will also be the true in mber f parameters we expect the IC to choose. In the same way we hav for une (P λ)-model $k=2 n+3$ parameters with $n \in\{3,4, \ldots\}$.

4.3.1. Numerical results

Compound Poisson models. Figures - ? , 14 and 15 show box plots of the model selection results of the AI, PIC and HQ respectively. In each box plot, the orange and blue box plot cc respond to the results of the ($\mathrm{D} \lambda$)- and (P λ)-model respectively. The in "IZonval axis shows the number of subintervals used in the simulation grid. On che vertical axis are the selected number of parameters after the pr am ter estimation of the ($\mathrm{D} \lambda$)- and ($\mathrm{P} \lambda$)-models using different discretize ions of 0,1$]$. A single box in the box plots extends from the 25 th percen + le to ${ }^{\circ}$. 75 th percentile and the dot indicates the median. The whiske s h ve ₹ maximum length of 1.5 times the box length and extend to the ute nor point which is not considered as outlier. The crosses indicate C. ${ }^{\text {liers. }}$

Below the ',ox olots, bars indicate the ratio of samples which allow model selection und - c rrect specification (blue) and under misspecification (red): In our sett ig, we . . eak of model selection under misspecification if the correct mod I is not contained in the set of selectable models and cannot be chosen bv thı ${ }^{\top}$ C. If this is not the case, i.e. the correct model can potentially be ch sen b_{j} the IC, we call it model selection under correct specification.

The results for the ($\mathrm{D} \lambda$) and ($\mathrm{P} \lambda$) model are very similar. Common for a three IC is that for small parameter numbers below 15 the model selec. $\cdot n$ vorks well: the distributions of the selected orders are concentrated ani. ${ }^{-1}$ Osely follow the $3 n$ or $2 n+3$ reference line respectively, where n is $i=$ number of subintervals. For very large parameter numbers one can obser e that the selected model orders remain distributed around a maximum
model order and stop to follow the linear trend of the referenci 'ine. This is rather due to the limitations of our MC setup than the ine mont, property of the IC: As described in Section 4.2.1, we only work w.h quidistant grids when applying the model selection procedure. The fi...st grı. which can be used for fitting is determined by the maximal dist nce Δ_{1} ax between two consecutive points within a sample. On the other 'and $\Delta_{\max }$ is related to the minimal value of λ in the middle of the nter $^{-1}$., depending on how small we choose the simulation grid size $\Delta_{\text {sim }}$. This r eans that whenever $\Delta_{\text {max }}>\Delta_{\text {sim }}$, the true model is not containeu in the pool of models from which the IC may choose from. In other words, e have a case of model selection under misspecification. The ba plu c^{l} ow that first cases occur at around $n=20$ and go up to a ratio of au 50% for the finest grid in the analysis.
Another look at Figure 12 hints that the + le "the more parameters, the better the fit" is not entirely true: w. ca a unserve that the relation between grid size and MSE is not entirely -ono nne. This is due to the fact that the fit of the specific model does not oı ${ }^{1} y$! ${ }^{\prime}$ pend on the number of parameters, but also to some extent on the witi, ${ }^{i}$ of the grid. As a consequence, under misspecification, the selected orav does not necessarily correspond to the finest available grid size ahnve $\Delta_{\text {sim }}$. This might explain the "plateaus" on the model selection resul ${ }^{1}$ for 1 rge parameters.

Between the regic 1 of very small and very large parameters the ICs exhibit quite different \& h vior, according to their intrinsic tendency of underand overfitting, w^{\top}. ch whi. se described in the following:
The AIC tends t, ov westimate the number of parameters. It allows outliers (in the region $r^{\prime} \eta \leq 2 亡$) as well as a larger number of cases of the model selection to li abr ve the reference line (in the region of $n \geq 23$). In contrast, the selected mo. 1 orders of the BIC and HQ are either on the reference line or strictly bel, w the reference line. In other words BIC and HQ tend to underestin.' e. f dditionally, we can see that for the AIC the boxplot starts to dev ate fron the reference line starting around $n=25$ to $n=27$ and the B C and HQ deviate earlier around $n=15$ and $n=20$ respectively. Especia. ${ }^{\text {y }}$, $\mathrm{f}_{\text {or }} n<27$ the underestimation in the BIC and HQ case is not a^{4} uribut. ble to the behaviour of model selection under misspecification, as th , ratio of model selection under misspecification is rather low. Based on nur results, if the ICs were to be ordered by their parsimonious character, ${ }^{\text {th}} h$ ' BIC would be the more parsimonious whereas the AIC the least.
7. a above observations show that the model selection using any of the three ICs works quite well as long as the true model is actually retrievable. The

AIC tends to overestimate, but the model selection results are , 'rsest to the reference line of true parameters compared to the other iwo ${ }^{\mathrm{I}} \mathrm{s}_{\mathrm{s}}$.

ACD model. The results of the model selection experimen ' an be found in Tables 8 to 11 . The numbers are success rates in I ercent of the respective IC to select the correct model from which the simula: ion de a was generated from. The qualitative behaviour of the ICs is nc surnrisingly similar to the findings for the GARCH model in [99].

A closer look at Table 8 shows that the succ is rate of the ICs is exceptionally good in the case of $\operatorname{ACD}(1,1) u+a$. jven for a small sample size all information criteria are able to detec. the correct model order in the majority of cases. The tendency to u. iu-iu works in favour for the BIC and to some extent also for the HQ. For t. $_$same reason, the success rates for the AIC are relatively low due te lus ...citting property.
A similar behaviour can be observed \& r $\mathrm{ACD}(2,1)$ in Table 10: Although the IC underestimate the model 's. cmaller sample sizes as a $\operatorname{ACD}(1,1)$ model, they improve for large ampl sizes.
In both the $\mathrm{ACD}(1,1)$ and the ${ }^{\wedge} \mathrm{CD}(2,1)$ case, i.e. the cases for $q=1$, the behaviour of the model selection is acceptable: a reasonably large sample size, which is of the srder of a typical intra day trading data sample, ensures a sufficiently lar succf is rate in detecting the correct model. Unfortunately, this cann' c be sar. about the case $q=2$:
In the first example of \int CD 1,2) data in Table 9, we see that the correct model order is ner ar den an in the majority of cases even for large sample sizes. The b or uccess rates are the ones of the AIC again due to its overfitting tendency. I_{l} is may be concerning, as this shows that despite the fact that $\operatorname{AC\Gamma }(1,:)$ and $\operatorname{ACD}(2,1)$ have the same number of parameters the model selectio. ' , ehaviour is far from comparable.
In compar son the results for the $\operatorname{ACD}(2,2)$, the most complex model in our expe. mf it, \& e even more critical: Not only are the IC unable to detect the corv $t^{4}{ }^{3} 1$ in most of the cases even with large samples, but the best succe s rates again from the AIC, are below 20%.

As mentioned in Section 4.2.3, the cases where model selection fails align w th rela ively high MSE of the β parameters for $q=2$: The contribution of $t_{\ldots \ldots}{ }^{2} \mathrm{SE}$ of the ω parameter is not as important, as this parameter is inc uued in all models. However, the increase in MSE when moving from $q=1$ to $q=2$ might be one of the factors explaining the discrepancy in model selection between $q=1$ and $q=2$. This part of our MC experiment
suggests that parameters which are harder to estimate compe ad to other model parameters (in our case α vs. β parameters or in the *ords moving average vs. autoregressive parameters in Equation (23, ', r^{\prime} ght also be less likely to be detected by model selection.

5. Discussion

The models analysed in Section 4 are basec. -1 th preliminary results presented in [69]. The main idea of that papt. was wo locally approximate a non-stationary process with a simple normal cor pound Poisson process. However, many mathematical aspects st ${ }^{11}$ ne $1+\jmath$ be clarified. In particular, the choice of the normal compound $\mathrm{Fv}^{\text {isson }}$ process is suggested by the fact that many distributions of $\mathrm{p} u^{+}+\mathrm{lve}$ random variables (the waiting times) can be written as a mixture of exporn atial distributions. To be more precise, suppose that $\bar{F}_{J}(u)=\mathbb{P}(J, u$ is the complementary cumulative distribution function of the posit ${ }^{-}$e rat tom variable J. We want to write

$$
\begin{equation*}
\bar{F}_{J}(u)=\int_{j_{U}}^{\infty} \sim(-\lambda u) g(\lambda) d \lambda . \tag{37}
\end{equation*}
$$

For instance, from the cor rim. v on page 440, Chapter XIII. 4 of Feller [104], we know that the neces ary anc sufficient condition for a function $\varphi(u)$ to be of the form

$$
\varphi^{\prime}(u)=\int_{0}^{\infty} \exp (-\lambda u) g(\lambda) d \lambda
$$

when $0 \leq g \leq C$; that

$$
\begin{equation*}
0 \leq \frac{(-x)^{n} \varphi^{(n)}(x)}{n!} \leq \frac{C}{x} \tag{38}
\end{equation*}
$$

for all $x>\mathrm{J}$. ${ }^{\top}$ otice that if $g(\lambda)$ is a continuous probability density function with $g\left(0,{ }^{\circ}{ }^{\circ}\right.$ al al ' o some finite non-negative constant, then the condition $0 \leq g<\gamma$ is a omatically satisfied. Incidentally, this does not exclude that the re resent tion (37) can be written also when the boundedness hypothesis for g c. Felle 's corollary are not satisfied.

Simi ${ }^{1}$ arly, distributions of random variables with support in \mathbb{R} (the logrt urns) an be written as a mixture of normal distributions. In particular, the $i_{\text {. . - ory }}$ of scale mixtures is well-developed [105-108]. Scale mixtures are mr .u.es of normal distribution with random variance. It turns out that t_{t}. Laplace [109], the stable family, the Student t family, among others, are scare mixtures. The theory of scale mixtures in [105] is essentially based
on the results reported by Feller outlined above and on Bernsun n's theorem [110]. Generalizations of the theory to normal variance me \cdots mixtures do exist [111].

Finally, the local approximation of a non-station? , prow s with a compound Poisson process naturally follows the evoluti in of the non-stationary process while activity and volatilty change during the radi g day, leading to a satisfactory characterization of the non-statior ary ${ }^{\text {b }}$ haviour as illustrated in Figure 16 to be compared to Figure 8.

6. Conclusions

In this paper, we addressed two question. The first one concerns to so-called stylized facts for high-frequeı.v inancial data. In particular, do the statistical regularities detected in the purt still hold? We cannot give a negative answer to this question. Ins 'ee ', we find that some of the scaling properties for financial returns ar still pproximately satisfied. Most of the studies we refer to concerned a di» ${ }^{\text {"oll }}{ }^{\text {t }}$ market (the US NYSE) and were performed several years ago. one of the first econophysics papers (if not the first one) concerned $1{ }^{\prime}$ urns in the Italian stock exchange (see [112]) and, for this reason. we decided to focus on this market.

The second question s: Is ir vossible to approximate the non-stationary behavior of intra-day tick- v-tir \& returns by means of a simple phenomenological stochastic pro ess? We cannot give a negative answer to this question, so far. In Secinr 4, ve present a simple non-homogeneous normal compound Poissor proces. and we argue that it can approximate empirical data. The cost frr st. nlicity is potential over-fitting as we have to estimate many paramet - but the outcome is a rather accurate representation of the real proc ss. Nhether it is possible to rigorously prove convergence of the method oul. $e \mathrm{ed}$ in Section 4 is subject to further research and it is outside the s ope of the present paper. It is well-known that Lévy processes, namely su ${ }^{\prime}$ asti processes with stationary and independent increments, can br approx..nated by compound Poisson processes. The method describe 1 in Se tion 4 can provide a clue for a generalization of such a result to proci-as with non-stationary and non-independent increments.

Con \checkmark rning the issue of overfitting, the second part of Section 4 shows th $\downarrow \mathrm{t}$ IC a e able to detect model orders correctly to some extent when applied to simulated data. It remains to check how well the model selection method ne rorms on empirical data. As a consequence from the numerical results, $d_{\mathrm{L}} \supset$ to the high variability of model selection in the region of larger numbers of parameters it is not advisable to rely only on the IC based model selection.

It is recommended to combine these with further cross-validatic. techniques. A similar conclusion holds for the ACD model, as mode. se ~otion using IC is adversely affected by differing MLE quality for diffeı $n t$, nodel orders.

Acknowledgments

This work was partially supported by MJ JR RQIN 2009 grant The growth of firms and countries: distributional p ", ,erti s and economic determinants - Finitary and non-finitary proba ilisio models in economics 2009H8WPX5_002 and by an SDF fund provided , y the University of Sussex.

References

1. C. Goodhart, M. O'Hara, $\mathrm{Hl}_{\varepsilon}$ h- \dagger equency data in financial markets: Issues and applications, J of Eぇ \urcorner pir. Financ. 4 (1997) 73-114.
2. M. O'Hara, Making market l i icrostructure matter, Financ. Manage. 28 (1999) 83-90.
3. A. Madhavan, Marn nicrostructure: A survey, Journal of Financial Markets 3 (2000` 205-2 3.
4. E. Scalas, B Gorenıo, F. Mainardi, Fractional calculus and continuous-tı יe .na` ce, Physica A 284 (2000) 376-384.
5. F. Maina' • M. Raberto, R. Gorenflo, E. Scalas, Fractional calculus and contınuous- . me finance II: the waiting-time distribution, Physica A .87 3-4) (2000) 468-481.
6. M. Jacoı rna, R. Gençay, U. Müller, R. B. Olsen, O. Pictet, An Ir sod actinn to High Frequency Finance, Academic Press, 2001.
7. rı. Raı rto, S. Cincotti, S. M. Focardi, M. Marchesi, Agent-based simul. tion of a financial market, Physica A 219 (2001) 319-327.

ठ. S. Cincotti, S. M. Focardi, M. Marchesi, M. Raberto, Who wins? S udy of long-run trader survival in an artificial stock market, Phys\therefore A A 324 (1-2) (2003) 227-233.
9. H. Luckock, A steady-state model of the continuous double auction, Quant. Finance 3 (2003) 385-404.
10. E. Scalas, R. Gorenflo, H. Luckock, F. Mainardi, : 1 Mantelli, M. Raberto, Anomalous waiting times in high reo *ncy financial data, Quant. Finance 4 (2004) 1-8.
11. S. Pastore, L. Ponta, S. Cincotti, Heteroger eous i. formation-based artificial stock market, New J. Phys. $12(20$ ^) 05335.
12. L. Ponta, E. Scalas, M. Raberto, S. (incr ut Statistical analysis and agent-based microstructure modoliny of ${ }^{1}$ gh-frequency financial trading, IEEE Journal of Selected ' $\iota_{\perp}{ }^{\text {ic }}$ cs in Signal Processing 6 (2012) 381-387.
13. L. Ponta, S. Cincotti, Traders' netw ${ }^{\text {kss }}$ of interactions and structural properties of financial i.^rkets: An agent-based approach, Complexity 2018.
14. L. Ponta, S. Pastore, S. Cinco '1, Static and dynamic factors in an information-based multi-as te. art.ficial stock market, Physica A: Statistical Mechanics and its Ay H_{l} lications 492 (2018) 814-823.
15. B. Mandelbrot, The variatı 1 of certain speculative prices, J. Business 36 (1963) 394 m
16. B. Mandelbrot, H_{1} tals and Scaling in Finance, Berlin: Springer, 1997.
17. U. Müller, M. ц or ogna, R. B. Olsen, O. V. Pictet, M. Schwarz, C. Morge $\varkappa^{\circ}{ }^{\circ}$, Statistical study of foreign exchange rates, J. Bank. Financ. 14 (19ヶc) 1189-1208.
18. R. N. Ma tegna, H. E. Stanley, Scaling behavior in the dynamics of an conou. "n index, Nature 376 (6535) (1995) 46-49.
19. F. pik shnan, V. Plerou, X. Gabaix, H. E. Stanley, Statistical propert. ss of share volume traded in financial markets, Phys. Rev. E 62 2000) 4493-4496.

цu. N. Hautsch (Ed.), Econometrics of Financial High-Frequency Data, S ringer, Berlin, 2012.
n1. V. Gontis, B. Kaulakys, Long-range memory model of trading activity and volatility, Journal of Statistical Mechanics P10016 (2006) 1-11.
22. V. Gontis, B. Kaulakys, Modeling long-range memory © ading activity by stochastic differential equations, Physica A $i^{\circ n}(2007) 114-$ 120.
23. V. Gontis, J. Ruseckas, A. Kononovicius, A loi r-range memory stochastic model of the return in financial i arkets, Physica A 389 (2010) 100-106.
24. V. Gontis, A. Kononovicius, Nonlinear swoche stic model of return matching to the data of new york and $\begin{array}{r}\text { nin } \\ \text { stock exchanges, Dy- }\end{array}$ namics of Socio-Economic Systems ? (2011 101-109.
25. B. Kaulakys, M. Alaburda, V. Gontı, Point processes modeling of time series exhibiting power-law ttatistics, AIP Conference Proceedings 922 (2007) 535-538.
26. B. Kaulakys, M. Alaburda, V. 'iontis, T. Meskauskas, J. Ruseckas, Modeling of flows with pc ve lav spectral densities and power-law distributions of flow intensiti s, in: A. Schadschneider (Ed.), Traffic and granular flow, Vol. u, Sprınger, 2007, pp. 587-594.
27. B. Kaulakys, M. A.rda, V. Gontis, Long-range stochastic point processes with $\mathrm{t} \geqslant$ powei law statistics, in: M. H. M. Janzura (Ed.), Proceeding of Dragu Conference, Matfyzpress, Charles University in Prague, $\mathrm{Pr}_{\mathrm{r}} \mathrm{gqu}^{\prime}$, 2006, pp. 364-373.
28. B. Kaulak s, M. .' $\begin{aligned} & \text { bburda, V. Gontis, T. Meskauskas, Multifractal- }\end{aligned}$ ity of the mu ${ }^{\text {'tiplicative autogressive point processes, in: M. M. No- }}$ vak (Er), Complexus Mundi: Emergent Patterns in Nature, World Scien ${ }^{\dagger}$ fic, ${ }^{2006, ~ p p . ~ 277-286 . ~}$
29. D. / . Keneiv, E. Ben-Jacob, H. E. Stanley, G. Gur-Gershgoren, How h. ${ }^{\text {h }}$ equ ency trading affects a market index, Scientific Reports 3

30 Z. Zh ng, Z. Qiao, T. Takaishi, H. E. Stanley, B. Li, Realized volatil1ty and absolute return volatility: A comparison indicating market r. k , PLOS ONE 9 (7) (2014) e102940.

3ı. F'. Botta, H. S. Moat, H. E. Stanley, T. Preis, Quantifying stock return distributions in financial markets, PLOS ONE 10 (9) (2015) e0135600.
32. R. F. Engle, J. R. Russell, Forecasting the frequency , ${ }^{\text {a }}$ changes in quoted foreign exchange prices with the autore, res conditional duration model, J. Empir. Financ. 4 (1997) 18; 11.
33. R. F. Engle, J. R. Russell, Autoregressive onditi nal duration: A new model for irregularly spaced transaction data, Jconometrica 66 (1998) 1127-1162.
34. L. Bauwens, P. Giot, The logarithmic acu mod $1:$ An application to the bid-ask quote process of three nyse s 'cks, Ann. Econ. Stat. 60 (2000) 117-149.
35. A. W. Lo, A. C. MacKinlay, J. Zhang, Fconometric models of limitorder executions, J. Financ. É ${ }^{n}$. 65 (2002) 31-71.
36. R. Cont, J.-P. Bouchaud, H_{4} " u_{4} ' ' vior and aggregate fluctuations in financial markets, Macroecc Dyn. 4 (2) (2000) 170-196.
37. D. Chowdhury, D. Stauffer, A seneralized spin model of financial markets, Eur. Phys. J. : o ($1: 99$) 477.
38. W. Hardle, A. Kirman, Neoclassical demand - a model-free examination of price-c aantit, relations in the marseilles fish market, J. Econometrics 67 (- 95) $227-257$.
39. M. Levy, H. eev S. Solomon, Microscopic simulation of the stock market: Tr 〕 efte. ${ }^{+} \mathrm{c}$. microscopic diversity, J. Phys. I France 5 (1995) 1087-110
40. T. Luy, Marchesi, Scaling and criticality in a stochastic multiagent nor el of a financial market, Nature 397 (6718) (1999) 498-500.
41. D sta Affer, D. Sornette, Self-organized percolation model for stock ma ${ }^{\text {lr }}$.t fly ctuations, Physica A 271 (1999) 496-506.

42 M. I ussefmir, B. A. Huberman, Clustered volatility in multiagent dynar tics, J. Econ. Behav. Organ. 32 (1) (1997) 101-118.
43. Hawkes, Spectra of some self-exciting and mutually exciting point r ocesses, Biometrika 58 (1971) 83-90.
44. I. Muni Toke, F. Pomponio, Modelling trades-through in a limit order book using Hawkes processes, Economics: The Open-Access, Open-Assessment E-Journal 6 (2012) 2012-22.
45. V. Filimonov, D. Sornette, Apparent criticality and caln -ation issues in the Hawkes self-excited point process model: ppintion to highfrequency financial data, Quant. Finance $15(2 \mathrm{u} \cdot 5)$ 1293-1314.
46. M. E. Blume, A. C. Mackinlay, B. Terker Orde. imbalances and stock price movements on october 19 and C , 198 , J. Finance 44 (1989) 827-848.
47. K. Chan, W.-M. Fong, Trade size under mbalance, and the volatility-volume relation, J. Financ. Ecu. 57 (2000) 247-273.
48. H. R. Stoll, R. E. Whaley, Stoc' ma. ${ }^{1 \times \rho+}$ structure and volatility, Rev. Financ. Stud. 3 (1990) 37-71.
49. S. Hauser, B. Lauterbach, The im ${ }^{\circ}$. of minimum trading units on stock value and price volati. ty, ©inanc. Quant. Anal. 38 (2003) 575-589.
50. T. Chordia, R. Roll, A. Sub. ahıanyam, Order imbalance, liquidity, and market returns, J. "uan Econ. 65 (2002) 111-130.
51. A. Ponzi, F. Lillo, R N. Mantegna, Market reaction to a bid-ask spread change: A powe law relaxation dynamics, Phys. Rev. E 80 (2009) 016112.
52. A. Svorencik F. ',lan'na, Interacting gaps model, dynamics of order book, and foock. .a ket fluctuations, Eur. Phys. J. B 57 (2007) 453462.
53. M. Wrat J.-P. Bouchaud, J. Kockelkoren, M. Potters, M. Vettoraz. ᄀ. F elation between bid-ask spread, impact and volatility in ord r-drıv n markets, Quant. Finance 8 (2008) 41-57.
54. E. Voro J. Vicente, L. G. Moyano, A. Gerig, J. D. Farmer, u. Vag.ca, F. Lillo, R. N. Mantegna, Market impact and trading profil of hidden orders in stock markets, Phys. Rev. E 80 (2009) -661,2.
55. J Perelló, J. Masoliver, A. Kasprzak, R. Kutner, Model for inerevent times with long tails and multifractality in human communications: An application to financial trading, Phys. Rev. E 78 (2008) 036108.
56. T. Preis, J. J. Schneider, H. E. Stanley, Switching proce ses in financial markets, Proc. Natl. Acad. Sci. U.S.A. 108 / 201) $7674-7678$.
57. M. Kumaresan, N. Krejic, A model for optimal exc י1tion of atomic orders, Comput. Optim. Appl. 46 (2010) 36 - 389.
58. A. Zaccaria, M. Cristelli, V. Alfi, F. Ciulla I....... onero, Asymmetric statistics of order books: The role (f di d teness and evidence for strategic order placement, Phys. Pev. £' 81 ,2010) 066101.
59. M. Lim, R. Coggins, The immediate price mpact of trades on the australian stock exchange, Quant Firı nor 5 (2005) 365-377.
60. P. Weber, B. Rosenow, Order b ... urpuach to price impact, Quant. Finance 5 (2005) 357-364.
61. J.-P. Bouchaud, The subtle na ve of financial random walks, Chaos 15 (2005) 026104.
62. G. Bonanno, F. Lillo, N M, ntegna, Dynamics of the number of trades of financial securitı Physica A 280 (2000) 136-141.
63. V. Plerou, P. Gor krıs. nan, L. A. Nunes Amaral, X. Gabaix, H. E. Stanley, Economı fluctv ations and anomalous diffusion, Phys. Rev. E 62 (2000) 3r $23-30 _$:
64. E. Scalas, Thu opl^{\prime} cation of continuous-time random walks in finance and oconomıs, Physica A 362 (2006) 225-239.
65. V. Gon+•- B. Kaulakys, J. Ruseckas, Trading activity as driven Poisson p' sces ,: Comparison with empirical data, Physica A 387 (2008) 3891-30: :
66. C T allis Inter-occurrence times and universal laws in finance, morthy : kes and genomes, Chaos, Solitons \& Fractals 88 (2016) 254266.
nt. 九. 2. Hudson, B. B. Mandelbrot, The (Mis)Behaviour of Markets, t ofile Business, 2010.
bo. s. Vrobel, Fractal time why a watched kettle never boils, in: B. J. West (Ed.), Studies Of Nonlinear Phenomena In Life Science, World Scientific, Imperial College Press, 2011.
69. E. Scalas, Mixtures of compound Poisson processes - models of tick-by-tick financial data, Chaos Soliton. Frac. 4 (${ }^{n} n 7$) 33-40.
70. M. Politi, E. Scalas, Fitting the empirical distribu 'on of intertrade durations, Physica A 387 (2008) 2025-2034
71. M. Raberto, E. Scalas, F. Mainardi, Waiting tim s and returns in high-frequency financial data: an empiri cal $\varsigma^{\prime}{ }^{\prime}$ 'y, Physica A 314 (14) (2002) 749-755.
72. J. Masoliver, M. Montero, G. H. Weiss, ('ontinuous-time randomwalk model for financial distributı ©, F nys. Rev. E 67 (2003) 021112.
73. P. C. Ivanov, A. Yuen, B. Podou-ik, Y. Lee, Common scaling patterns in intertrade times or ${ }^{\text {rt }}$ C stucks, Phys. Rev. E 69 (2004) 056107.
74. A. Kasprzak, R. Kutner, J. Ut. lló, J. Masoliver, Higher-order phase transitions on financia' $\sim r \mathrm{kkt}^{+} \mathrm{s}$, The European Physical Journal B 76 (4) (2010) 513-527.
75. R. Kutner, J. M solir r, The continuous time random walk, still trendy: fifty-yea histor, state of art and outlook, The European Physical Jourr il B s: (3) (2017) 50.
76. M. Goldstein, ${ }^{\top}$ Mor is, G. Yen, Problems with fitting to the powerlaw distrit ıtion, L r. Phys. J. B. 41 (2004) 255-258.
77. P. Embrechts, J. Klüppelberg, T. Mikosch, Modelling Extremal Event for Insurance and Finance, Springer, Berlin, 1997.
78. W. Press, P. Flannery, S. Teukolsky, Numerical Recipes in C: The A 6 of Scientific Computing, Cambridge University Press, 1992.
79. Maı . rdi, R. Gorenflo, E. Scalas, A fractional generalization of the F isson process, Vietnam J. Math. 32 (2004) 53-64.
K. r. Engle, J. R. Russell, Forecasting transaction rates: the autoreg assive conditional duration model, NBER Working paper series (994) 4966.
81. M. Denys, T. Gubiec, R. Kutner, M. Jagielski, H. E. Stanley, Universality of market superstatistics, Physical Review E 94 (4) (2016) 042305.
82. S. Camargo, S. M. Duarte Queirós, C. Anteneodo, M n parametric segmentation of nonstationary time series, Phy. R"~E 84 (2011) 046702.
83. S. Camargo, S. M. Duarte Queirós, C. Ante eodo, Bridging stylized facts in finance and data non-stationarities, L ur. Ph s. J. B 86 (2013) 159.
84. T. Gubiec, M. Wiliński, Intra-day variculity of the stock market activity versus stationarity of the finan al ume series, Physica A: Statistical Mechanics and its Appli nations 32 (2015) 216-221.
85. M. B. Graczyk, S. M. Duarte Queı ^́s, Intraday seasonalities and nonstationarity of trading vol: ne min mancial markets: Individual and cross-sectional features, PLOs רNE 11 (11) (2016) e0165057.
86. W. K. Bertram, A threshold n, del for Australian stock exchange equities, Physica A 346 ($2 ., ~$ 5) $\mathrm{L}^{\wedge} 1-576$.
87. G. Livan, J. Inoue, E N~olas On the non-stationarity of financial time series: Impact on $0_{F}{ }^{+}$imal portfolio selection, J. Stat. Mech. (2012) P07025.
88. FTSEMIB, Metl حdology for the management of the FTSE MIB index, Version 20, Bu Italiana, London Stock Exchange Group, London, U.K (2 ${ }^{〔} 11$).
89. S. Golia, Long i. emory effects in ultra- high frequency data, Quadern ${ }^{\text {di }}{ }^{2}$ 'atistica 3 (2001) 43-52.
90. L. Sar stel i, S. Keating, J. Dudley, P. Richmond, Waiting time distributı" in financial markets, Eur. Phys. J. B 27 (2002) 273-275.
91. H $\mathrm{Fa}{ }^{1}$ dyacu (Ed.), Empirical Science of Financial Fluctuations: The Adv. it c. Econophysics, Springer, Tokyo, 2002.

92 C. M rinelli, S. T. Rachev, R. Roll, Subordinated exchange rate nod s s: Evidence for heavy tailed distributions and long-range der endence, Math. Comput. Modell. 34 (2001) 955-1001.

ทฉ г. Stauffer, H. E. Stanley, From Newton to Mandelbrot: A Primer in Theoretical Physics, Springer, Berlin, 1995.
94. A. Bunde, S. Havlin (Eds.), Fractals in Science, Springer, Berlin, 1994.
95. Z. Eisler, J. Kertész, Size matters: some stylized facte of the stock market revisited, Eur. Phys. J. B.
96. W. K. Bertram, An empirical investigation of Aus "alian stock exchange data, Physica A 341 (2004) 533-546
97. D. L. Snyder, M. I. Miller, Random Point trases in Time and Space, Springer, 1991, Ch. 4.4.
98. M. Belfrage, ACDm: Tools for Autorey - 'ssiv Conditional Duration Models, r package version 1.0.4 (2016).
URL https://CRAN.R-project. \sim rg/r ${ }^{\sim 1}$ age=ACDm
99. F. Javed, P. Mantalos, GARCF formation criteria, Comm. Statist. ㄷ:mulation Comput. 42 (8) (2013) 1917-1933.
100. H. Akaike, Information th,$~ v$ arı ${ }^{1}$ an extension of the maximum likelihood principle, in: Seconc Invernational Symposium on Information Theory (Tsahkadsc" 1ū?), Akadémiai Kiadó, Budapest, 1973, pp. 267-281.
101. G. Schwarz, Estir ating he dimension of a model, Ann. Statist. 6 (2) (1978) 461-464.
102. E. J. Hanna . B G. Quinn, The determination of the order of an autoregress on, o R jy. Statist. Soc. Ser. B 41 (2) (1979) 190-195.
103. E. J. Hânnan, The estimation of the order of an ARMA process, Ann. Sal it. 8 (5) (1980) 1071-1081.
104. W. Felt. An Introduction to Probability Theory and its Applicatic ıs, John Wiley and Sons, 1971.
105. n Aıı ${ }^{\text {' }}$. ws, M. C.L., Scale mixtures of normal distributions, Journal of th. Royal Statistical Society. Series B 36 (1) (1974) 99-102.
${ }^{105}$. b. Liron, R. A. Olshen, How broad is the class of normal scale mixt. res?, The Annals of Statistics 6 (5) (1978) 1159-1164.
101. M. West, Outlier models and prior distributions in bayesian linear regression, Journal of the Royal Statistical Society. Series B 46 (3) (1984) 431-439.
108. M. West, On scale mixtures of normal distributions, Biometrika 74 (3) (1987) 646-648.
109. A. Manas, The Laplace illusion, Physica A 391 ($2 \cup^{\circ}$) $3963-3970$.
110. S. Bernstein, Acta Mathematica 52 (1928) I
111. O. Barndorff-Nielsen, J. Kent, M. Sø rer sen. ${ }^{\text {T}}$ ormal variance-mean mixtures and z distributions, Internatior ${ }^{1}$,tati, tical Review/Revue

112. R. N. Mantegna, Lévy walks and ent. nced diffusion in Milan stock exchange, Physica A 179 (1991) $23 \leftharpoonup 94 \%$.

Table 1: Descriptive statistics for the waiting ti. as

Asset	mean	std	α	β	AD	Lillie
A2A	32.49	39.04	0.053	0.865	106	0.068
STS	34.07	43.68	0.061	0.818	122	0.083
ATL	24.42	32.48	0.088	0.792	263	0.09
AGL	33.20	41.87	0.059	0.830	145	0.0)
AZM	34.67	42.35	0.052	0.853	116	$0{ }^{\text {9 }} 74$
BP	9.54	12.80	0.189	0.786	1158	0.134
BMPS	17.21	23.96	0.130	0.761	401	0.107
PMI	19.95	27.26	0.111	0.773	29?	บ. ${ }^{\text {9 }}$
BUL	24.87	37.02	0.116	0.717	326	- 123
BZU	22.62	33.71	0.125	0.716		~-_
CPR	33.77	42.42	0.058	0.833	11	0.092
DIA	30.21	39.91	0.073	0.797	1.55	ᄂ. 091
ENEL	9.19	11.60	0.173	0.829	98.	0.123
EGPW	21.16	29.31	0.110	0.764	39	0.094
ENI	8.71	12.21	0.221	0.7i'	154	0.148
EXO	22.72	31.16	0.101	0.771	428	0.094
F	7.94	11.29	0.243		936	0.158
FI	12.80	18.77	0.182	$0.7<i$	833	0.132
FNC	20.86	26.98	0.093	0.812	234	0.089
FSA	23.70	35.15	0.20	719	309	0.118
G	11.10	14.79	165	$0 \quad 92$	759	0.119
IPG	32.26	41.41	0.06	r. 818	157	0.085
ISP	7.96	11.30	$0 \% 42$	0.748	1930	0.158
LTO	33.22	42.5	'. 062	0.819	117	0.082
LUX	23.28	$3^{1} 52$	- no	0.780	231	0.096
MS	20.12	$\because 93$	0.114	0.763	350	0.107
MB	17.40	24.03	0.126	0.767	403	0.108
MED	31.66	$\bigcirc .57$	0.060	0.837	126	0.077
PLT	20.4,	2 . 01	0.119	0.749	322	0.104
PC	22.70	30.45	0.094	0.789	221	0.092
PRY	${ }^{1} 1.48$	2. 37	0.126	0.743	390	0.113
SPM	11.5,	17.88	0.219	0.691	1185	0.150
SRG	2. 7	s2.77	0.086	0.796	208	0.091
STM	12.24	17.26	0.174	0.751	750	0.124
TIT	13.47	20.52	0.198	0.692	972	0.146
TEN	17. 9	24.98	0.137	0.743	395	0.110
T ${ }^{\text {r }}$	<0.12	35.52	0.068	0.829	148	0.080
OD	31.31	40.71	0.068	0.808	114	0.081
- BI	20.58	27.30	0.100	0.794	272	0.096
UCu	3.85	4.94	0.364	0.817	8640	0.223
Ir and	1.66	1.26	-	-	Inf	0.365

Table 2: Descriptive statistics for the trade-by-trade log-returns r. *) On March $7^{\text {th }}$, 2011, the French firm LVMH launched a takeover offer (OPA - Off rta ubv. ca d'Acquisto in Italian) to buy Bulgari shares at 12.25 euros. On that day, tı. share price jumped from below 8 euros to more than 12 euros.

Assets	mean $\times 10^{-7}$	variance $\times 10^{-7}$	skewness $\times 10{ }^{2}$	kur osis
A2A	29.15	5.24	$\bigcirc . .36$	5.22
STS	-14.43	6.76	-7 -	11.50
ATL	1.59	2.09	${ }^{\text {. }} .62$	19.64
AGL	-36.50	6.09	114.0 -	43.47
AZM	-3.29	8.03	- \%. 90	14.14
BP	-4.53	4.55	-1 69	10.69
BMPS	24.93	4.79	-1.71	24.34
PMI	6.87	5.55	-23.73	41.72
BUL (*)	-3.75	4.37	-295.68	154.69
BZU	61.92	7.41	-99.04	35.92
CPR	2.35	3.73	11.04	8.13
DIA	-40.04	4.42	-49.99	29.17
ENEL	6.21	1.38	140.10	76.06
EGPW	38.81	3.64	3.43	7.31
ENI	7.86	1^{10}	59.89	21.01
EXO	11.98	4.8	-5.45	8.06
F	-3.55	2.81	-45.05	21.76
FI	14.33	- 68	-39.37	18.14
FNC	0.50	3.2	28.01	13.01
FSA	84.68	10.2	-163.51	180.64
G	5.03	- 9	-100.65	44.97
IPG	80.6,	ก. 04	-45.81	22.68
ISP	199	3.45	-62.87	43.12
LTO	f. 82	9.28	-171.44	62.62
LUX	25.c	2.67	30.48	24.43
MS	5.76	2.86	-22.98	19.38
MB	- 7.29	4.18	1.66	9.67
MED	. 0.25	7.64	-43.78	18.78
PLT	9.76	5.30	49.56	14.43
PC	47.93	5.41	3.44	10.75
PRY	. 1.54	4.02	257.09	92.76
SPM	5.72	1.50	-9.12	32.75
SRG	12.09	2.41	79.03	54.87
STM	15.69	2.56	-39.64	36.78
TIT	8.33	3.20	-22.22	8.92
7 EN	0.34	2.61	-112.99	135.05
${ }^{\prime} \mathrm{RN}$	26.67	2.42	3.54	6.03
T,	28.73	6.95	158.96	86.49
TRT	-1.76	4.99	-67.53	25.23
U JG	3.44	1.29	-12.56	57.51
- dex	1.10	0.03	2	8.54

Table 3: Kolmogorov-Smirnov test. The null hypothesis of empi cal $\mathfrak{\checkmark} \downarrow$ a coming from an identical distribution is rejected in the comparisons of $\Delta t=$ an $\Delta t=5 \mathrm{~s}, \Delta t=3 \mathrm{~s}$ and $\Delta t=10 s$ and $\Delta t=3 s$ and $\Delta t=30 s$.

Δt	3 s	5 s	10 s	30 s	300 s
3 s	0.000	0.010	0.014	0.014	0.023
5 s	0.010	0.000	0.008	0.010	0.022
10 s	0.014	0.008	0.000	0.008	0.017
30 s	0.014	0.010	0.008	0.000	0.018
300 s	0.023	0.022	0.017	0.018	0.000

Table 4: Kolmogorov-Smirnov test. The nulı . mothesis of simulated data coming from an identical distribution is always rejected.

Δt	3 s	5 s	10s	30s	36
3s	0.000	0.019	0.031	0.036	035
5 s	0.019	0.000	0.012	0.018	0
10s	0.031	0.012	0.000	0	0.. ${ }^{16}$
30s	0.036	0.018	0.007	0.000	0.019
300s	0.035	0.018	0.016	0.019	U. 000

Table 5: F srar ster settings for the simulation of ACD data

	ω	' 1	6.	β_{1}	β_{2}
$\operatorname{ACD}(1,1)$	1	$0.6 i^{\prime}$	-	0.85	-
$\operatorname{ACD}(1,2)$	1	0.1	-	0.45	0.4
$\operatorname{ACD}(2,1)$	1	0.15	0.15	0.65	-
$\operatorname{ACD}(2,2)$		- 0.1	0.1	0.42	0.35

Table : Table of summary statistics of the MSE of the parameters μ and σ^{2} of the compouı. ' Pn: son type model. The analysis is based on 1000 samples generated from a sir culation grid containing 30 subintervals.

	m an	\min	\max	std
μ	0.0545	0.0026	0.1049	0.0212
2	0.1038	0.0049	0.1757	0.0439

ACCEPTED MANUSCRIPT

Table 7: Results of the MSE calculations for the AC厂 .. odel

		MSE(ω)	$\operatorname{MSE}\left(\alpha_{1}\right)$	$\operatorname{MSE}\left(\alpha_{2}\right)$	ISE $\left(\beta_{1}\right)$	$\operatorname{MSE}\left(\beta_{2}\right)$
$\operatorname{ACD}(1,1)$	$\mathrm{T}=250$	3.7508	0.0023		J.0231	-
	$\mathrm{T}=500$	1.8887	0.0010	-	0.0108	-
	$\mathrm{T}=1000$	0.3591	0.0005		0.0025	-
	$\mathrm{T}=2000$	0.1245	0.0002		0.0010	-
$\operatorname{ACD}(1,2)$	$\mathrm{T}=250$	14.5255	0.0036		0.4748	0.4282
	$\mathrm{T}=500$	3.7468	0.0019	-	0.3039	0.2681
	$\mathrm{T}=1000$	0.6259	$0.00 \pm$	-	0.1869	0.1606
	$\mathrm{T}=2000$	0.1905	$0.00 c^{5}$	-	0.0809	0.0681
$\operatorname{ACD}(2,1)$	$\mathrm{T}=250$	0.8491	O nпka	0.0108	0.0130	-
	$\mathrm{T}=500$	0.2664	$0.6{ }^{2} 2$	0.0050	0.0053	-
	$\mathrm{T}=1000$	0.0916	\because nn14	0.0026	0.0023	-
	$\mathrm{T}=2000$	0.0418	า J 007	0.0012	0.0011	-
$\operatorname{ACD}(2,2)$	$\mathrm{T}=250$	6.4135	$0 . \overline{367}$	0.0102	0.3165	0.2445
	$\mathrm{T}=500$	1.1077	0.0032	0.0061	0.2722	0.2031
	$\mathrm{T}=1000$	0.370	J. 0014	0.0041	0.2086	0.1526
	$\mathrm{T}=2000$	0.1512	0.0006	0.0026	0.1612	0.1181

Table 8: Model selection r sults bc 1 on $\operatorname{ACD}(1,1)$ data samples: Given 1000 samples of size $T \in\left\{250,500,1000,{ }^{\circ} J 00^{\top}\right.$ each column gives the percentage of cases in which the different IC selected the mo ${ }^{1} \mathrm{AC}^{\top}(1,1), \mathrm{ACD}(1,2), \mathrm{ACD}(2,1)$ and $\mathrm{ACD}(2,2)$ respectively. The bold numbers giv 2 the la $a_{\iota_{c}}$ st percentage per row.

		$\mathrm{AC}_{1}(1,1)$	ACD (1,2)	$\operatorname{ACD}(2,1)$	$\operatorname{ACD}(2,2)$
$\mathrm{T}=250$	A C	58.7	23.6	9.9	7.8
	Bic	90.2	7	2.1	0.7
	H	77.9	14.6	4.8	2.7
$\mathrm{T}=500$	$f \cdot \bar{C}$	62.9	20.4	10.9	5.8
	Bı'	93.6	4.7	1.6	0.1
	L 2	82.6	11.5	4.9	1
$\mathrm{T}=16{ }^{\text {a }}$, IC	67.5	16.4	11	5.1
	BIC	97.4	1.8	0.8	0
	HQ	87.2	7.5	4.8	0.5
T $=\angle \sim 000$	AIC	71.3	13.1	9.7	5.9
	BIC	97.7	1.6	0.6	0.1
	HQ	91.5	4.4	3	1.1

Figure 13: (Colo on ne) The lower plot shows the ratio of samples which allow the true model to be ar $\mathrm{ng}+$ ie set of models from which the IC may choose from, in other words there is no misspec ication (blue areas). This ratio decreases and for finer discretization there are m re cises or model selection under misspecification (red areas). The sum of blue and $r+$ ar as is 100%.
The upper plu .he is that the model selection using the AIC for the (D λ)-model (orange box ple, closely follows the reference line indicating $3 n$ ($n=$ number of subintervals) for small, before 'eviating for larger n. The same holds for the ($\mathrm{P} \lambda$)-model (blue box plot) and its . \checkmark reses , nding reference line $2 n+1$. The number of subintervals for which both bc pıots deviate from their respective reference lines is around $n=25$ to $n=27$. In the $r t$;ion $n<15$, there are several outliers which are almost all overestimates.

Figure 14: ($\mathrm{Col}^{\prime} \mathrm{s}$ on ne) The lower plot shows the ratio of samples which allow the true model to be amu ~ he set of models from which the IC may choose from, in other words there is no r ssspecitı tion (blue areas). This ratio decreases and for finer discretization there are r ore ases of model selection under misspecification (red areas). The sum of blue and rea eas ; 100%.
The upr a plot sı. ws that the model selection using the BIC for the (D λ)-model (orange box pl t) close. \cdot follows the reference line indicating $3 n$ ($n=$ number of subintervals) for small r hefore r eviating for larger n. The same holds for the ($\mathrm{P} \lambda$)-model (blue box plots) and ${ }^{3}$, cortwonding reference line $2 n+1$. The number of subintervals for which both br x plots 'eviate from their respective reference lines is around $n=15$ to $n=17$.

Figure 15: (Col $\stackrel{\mathrm{r}}{\mathrm{i}}$ on ne) The lower plot shows the ratio of samples which allow the true model to be amu r, he set of models from which the IC may choose from, in other words there is no r sspecilı tion (blue areas). This ratio decreases and for finer discretization there are r ore ases of model selection under misspecification (red areas). The sum of blue and reu eas; 100%.
The upr . plot s. ws that the model selection using the HQ for the (D λ)-model (orange box pl t) close. follows the reference line indicating $3 n$ ($n=$ number of subintervals) for small r before eviating for larger n. The same holds for the ($\mathrm{P} \lambda$)-model (blue box plots) and ${ }^{3}$ componding reference line $2 n+1$. The number of subintervals for which both $\mathrm{b} \times \mathrm{x}$ plots 'eviate from their respective reference lines is around $n=18$ to $n=20$.

Table 9: Model selection results based on $\operatorname{ACD}(1,2)$ data samples: Giv $r 1000$ samples of size $T \in\{250,500,1000,2000\}$ each column gives the percentage \ddagger cas ss in which the different IC selected the models $\operatorname{ACD}(1,1), \mathrm{ACD}(1,2), \mathrm{ACD}(2,1)$ and $\mathrm{A}{ }^{\mathrm{n}}(2,2)$ respectively. The bold numbers give the largest percentage per row.

		$\operatorname{ACD}(1,1)$	$\operatorname{ACD}(1,2)$	$\mathrm{ACD}(2,1$,	2,2)
$\mathrm{T}=250$	AIC	58.6	24.7	9	7.1
	BIC	91.5	6.5	1.3	0.7
	HQ	78.6	14.8	3.1	2.9
$\mathrm{T}=500$	AIC	60.6	25.1	11.3	4
	BIC	94.7	4.3	0.7	0.3
	HQ	81.2	13.5	4.5	0.8
$\mathrm{T}=1000$	AIC	52.7	27.	15.2	4.3
	BIC	92.6	51	2.3	0
	HQ	76	- 4	8.8	0.5
$\mathrm{T}=2000$	AIC	41.5	35.	18	4.9
	BIC	88.4	6.7	4.9	0
	HQ	67.6	: 3.4	11.6	0.4

Table 10: Model selection resulu hasf 1 on $\operatorname{ACD}(2,1)$ data samples: Given 1000 samples of size $T \in\{250,500,1000,2,00\}$ each column gives the percentage of cases in which the different IC selected the m dels $\mathrm{AC} \mathrm{\Gamma}(1,1), \mathrm{ACD}(1,2), \mathrm{ACD}(2,1)$ and $\mathrm{ACD}(2,2)$ respectively. The bold numbers giv the . rge t percentage per row.

		Ac ${ }^{\text {n (1,1) }}$	$\mathrm{ACD}(1,2)$	$\mathrm{ACD}(2,1)$	$\mathrm{ACD}(2,2)$
$\mathrm{T}=250$	A^{\top}	36.2	20.9	31.8	11.1
	L' ${ }^{\prime}$	73.7	8.9	16.8	0.6
	HQ	52.4	16.3	28.1	3.2
$\mathrm{T}=500$	$\mathrm{A}^{\text {C }}$	19.1	20.7	50	10.2
	$L^{\top} \mathrm{C}$	59.9	10.5	29	0.6
	${ }^{\prime}{ }^{\text {T}}$ Q	36.5	16.4	43.8	3.3
$\mathrm{T}=1,70$	$\stackrel{\prime}{\text { A }}$	7.4	16.7	64.8	11.1
	BIC	35.6	11.9	52.1	0.4
	HQ	17.1	15.7	63.7	3.5
7. $\mathrm{m}^{\text {a }}$	AIC	1.2	12.7	74.2	11.9
	BIC	6.8	12.9	80.1	0.2
	HQ	2.2	14.2	81.6	2

Table 11: Model selection results based on $\operatorname{ACD}(2,2) u^{+}$a samples: Given 1000 samples of size $T \in\{250,500,1000,2000\}$ each column g, \rightarrow tne percentage of cases in which the different IC selected the models $\mathrm{ACD}(1,1), \mathrm{ACD}(1, \dot{\iota}, \mathrm{ACD}(2,1)$ and $\mathrm{ACD}(2,2)$ respectively. The bold numbers give the largest percen . " . .n row.

		$\operatorname{ACD}(1,1)$	$\mathrm{A} \times \mathrm{D}(1, \sim)$	$\operatorname{ACD}(2,1)$	$\operatorname{ACD}(2,2)$
$\mathrm{T}=250$	AIC	56.7	15.3	18.8	8.7
	BIC	89.7	- 5.3	4.5	0.5
	HQ	74	11.5	11.7	2.8
$\mathrm{T}=500$	AIC	57.4	13.6	19.1	10.1
	BIC	2.1	2.9	4.6	0.4
	HQ	78.:	8	11.4	2.2
$\mathrm{T}=1000$	AIC	43.4	13.1	23.4	15.1
	BIC	41.	2.7	5.7	0.1
	HQ	14	6.9	16.1	3
$\mathrm{T}=2000$	AIC	34.2	9.7	37.2	18.9
	BI	86.1	1.8	11.5	0.6
	I.	59.7	6.8	26.5	7

Figure 16: Col κ on ${ }^{\prime}$ ne) (A) Volatility γ as a function of k for $\delta t=300 \mathrm{~s}$. (B) Activity N as a function , $k \mathrm{f} \mathrm{r} \delta t=300 \mathrm{~s}$. (C) Scatter plot of volatility γ as a function of number of tradr, \mathcal{V}. The points are averaged over the investigated period. All the plots are for simula ed data rith $w=10 \mathrm{~s}$.

