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bDIME – CINEF, Università degli studi di Genova, Via Opera Pia 15, 16145 Genova,

Italia
cDepartment of Mathematics, School of Mathematical and Physical Sciences, University

of Sussex, Brighton, UK
dBCAM - Basque Center for Applied Mathematics, Bilbao, Basque Country - Spain

Abstract

We study tick-by-tick financial returns for the FTSE MIB index of the Ital-
ian Stock Exchange (Borsa Italiana). We confirm previously detected non-
stationarities. Scaling properties reported before for other high-frequency
financial data are only approximately valid. As a consequence of our empir-
ical analyses, we propose a simple model for non-stationary returns, based
on a non-homogeneous normal compound Poisson process. It turns out
that our model can approximately reproduce several stylized facts of high-
frequency financial time series. Moreover, using Monte Carlo simulations, we
analyze order selection for this class of models using three information crite-
ria: Akaike’s information criterion (AIC), the Bayesian information criterion
(BIC) and the Hannan-Quinn information criterion (HQ). For comparison,
we perform a similar Monte Carlo experiment for the ACD (autoregressive
conditional duration) model. Our results show that the information crite-
ria work best for small parameter numbers for the compound Poisson type
models, whereas for the ACD model the model selection procedure does not
work well in certain cases.
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Introduction

The rise in the availability of high-frequency financial data has led to
an increase in the number of studies focusing on the areas of classification
and modeling of financial markets at the ultra-high frequency level. The
development of models able to reflect the various phenomena observed in
real data is an important step towards a full understanding of the funda-
mental stochastic processes driving the market. The statistical properties of
high-frequency financial data and market micro-structural properties were
studied by means of different tools, including phenomenological models of
price dynamics and agent-based market simulations (see [1–31]).

Various studies on high-frequency econometrics appeared in the litera-
ture using the autoregressive conditional duration (ACD) models (see [32–
35]). Alternative stochastic models were also proposed, e.g., diffusive mod-
els, ARCH-GARCH models, stochastic volatility models, models based on
fractional processes, models based on subordinate processes (see [36–42]) as
well as models based on self-exciting processes of Hawkes type [43–45]. An
important variable is the order imbalance. Many existing studies analyze
order imbalances around specific events or over short periods of time. For
example, in [46] order imbalances are analyzed around the October 1987
crash. Reference [47] analyzes how order imbalances change the relation be-
tween stock volatility and volume using data for about six months. A large
body of research examines the effect of the bid-ask spread and the order
impact on the short-run behavior of prices (see [48–61]). Trading activity
was measured by the average number of trades in unit time intervals in [62]
and [63]. However, aggregating trades into time intervals of the same length
may have influences on the analysis. For instance, if intervals are too short
with respect to the average waiting time between consecutive trades, then
every interval will contain either no point or a small number of points. On
the contrary, if intervals are too long, aggregation of too many points may
lead to loss of information on the time structure of the process. Moreover,
in both cases one distorts the kurtosis of the return process (see [33]).

For the reasons mentioned above, the waiting-time (duration) between
two consecutive transactions is an important empirical variable (see [10, 21–
25, 64–66]). In the market, during a trading day, the activity is not constant
(see [32, 33]) leading to fractal-time behavior (see [67, 68]). Indeed, as a
consequence of the double auction mechanism, waiting times between two
subsequent trades are themselves random variables (see [64, 69, 70]). They
may also be correlated to returns (see [71]) as well as to traded volumes.

In the Physics literature, in order to investigate tick-by-tick financial
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time series, the continuous-time random walk (CTRW) was used (see [4,
64, 72–75]). It turned out that interorder and intertrade waiting-times are
not exponentially distributed. Therefore, the jump process of tick-by-tick
prices is non-Markovian (see [4, 64]). Bianco and Grigolini applied a new
method to verify whether the intertrade waiting time process is a genuine
renewal process (see [76–78]). This was assumed by the CTRW hypothesis
in [4]. They found that intertrade waiting-times do follow a renewal process.
Indeed, trading via the order book is asynchronous and a transaction occurs
only if a trader issues a market order. For liquid stocks, waiting times can
vary in a range between fractions of a second to a few minutes, depending
on the specific stock and on the market considered. In [71], the reader can
find a study on General Electric stocks traded in October 1999. Waiting
times between consecutive prices exhibit 1-day periodicity, typical of variable
intraday market activity. Moreover, as mentioned above, the unconditional
survival probability (the complementary cumulative distribution function)
of waiting times is not exponentially distributed (see [64, 79]), but is well
fitted by a Weibull function (see [12, 32, 33, 71, 80, 81]).

The non-stationary character of financial time series has also been the
object of recent studies in the Physics literature [69, 82–85].

Here, inspired by [86], and building on the results presented in [69], we
propose a model based on non-homogeneous Poisson processes. The paper
is organized as follows. Section 1 describes the data set. Section 2 describes
the statistical analysis of the single assets and of the FTSE MIB index,
respectively as well as the scaling analysis; Section 3 contains the bivariate
analysis whereas Section 4 is devoted to the compound Poisson model, its
order selection and the numerical results. A comparison with order selection
performance for ACD models is presented in the same section. Section
5 relates our methodology and results to the literature in Mathematics.
Finally, Section 6 presents the conclusions of this work. A visual map of the
structure of this paper is presented in Figure 1.

1. Description of the data set

The data set includes high-frequency trades registered at Italian Stock
Exchange (BIt or Borsa Italiana), from the 03rd of February 2011 to the 09th

of March 2011. The data of February 14th 2011 are not used because, on
that day, there were technical problems at BIt. Moreover, we have removed
the data of the 21st of February, as well. In fact, on that day, there was a
crash in the Italian market related to the events in Lybia (on the 15th of
February, a rebellion against the Lybian government begun). We consider
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Figure 1: (Color online) Structure of the paper.

the 40 shares in the FTSE MIB Index as well as the index itself. Further
information on the dataset including the meaning of symbols and the cal-
culation of the FTSE MIB Index is available in the Supplemental material
(see https://github.com/enricoscalas/HFFnonstationary). In partic-
ular, it is important to remark that the FTSE MIB Index value is updated
every time there is a change of price of one of its components. The forty
stocks composing the FTSE MIB vary in their average market capitaliza-
tion and exhibit different levels of trading activity with different numbers of
trades over this period as summarized in Table I in the Supplemental mate-
rial where the total number of observations in the chosen month is given (see
https://github.com/enricoscalas/HFFnonstationary). The number of
data points per share varies between 104 and 105 and there are 4 ·105 values
of the index. Choosing one month of high-frequency data was a trade-off
between the necessity of using enough data for significant statistical analysis
and, on the other hand, the goal of minimizing the effect of external eco-
nomic fluctuations leading to non-stationarities of the kind discussed in [87].
For every stock, the data set consists of prices p(ti), volumes v(ti) and times
of execution ti sampled every second, where i is the trade index, varying
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from 1 to the total number of daily trades N . These data were filtered in
order to remove misprints in prices and times of execution. In particular,
concerning prices, when there are multiple prices for the same time of exe-
cution, we consider only one transaction at that time and a price equal to
the average of the multiple prices. As far as waiting times, τ , between two
executions are concerned, we remove observations larger than 200 s: This
means more than 3 minutes without recorded trading.

1.1. FTSE MIB Index

The FTSE MIB Index (see [88]) is the primary benchmark index for the
Italian equity markets. Capturing approximately 80% of the domestic mar-
ket capitalisation, the Index is made up of highly liquid, leading companies
across Industry Classification Benchmark (ICB) sectors in Italy. The FTSE
MIB Index measures the performance of 40 shares listed on Borsa Italiana
and seeks to replicate the broad sector weights of the Italian stock market.
The Index is derived from the universe of stocks trading on BIt. The Index
replaces the previous S&P/MIB Index, as a benchmark Index for Exchange
Traded Funds (ETFs), and for tracking large capitalisation stocks in the
Italian market. FTSE MIB Index is calculated on a real-time basis in EUR.
The official opening and closing hours of the FTSE MIB Index series coin-
cide with those of BIt markets and are 09:01 and 17:31 respectively. The
FTSE MIB Index is calculated and published on all days when BIt is open
for trading.

FTSE is responsible for the operation of the FTSE MIB Index. FTSE
maintains records of the market capitalisation of all constituents and other
shares and makes changes to the constituents and their weightings in accor-
dance with the Ground Rules. FTSE carries out reviews and implement the
resulting constituent changes as required by the Ground Rules. The FTSE
MIB Index constituent shares are selected after analysis of the Italian equity
universe, to ensure the Index best represents the Italian equity markets.

The FTSE MIB Index is calculated using a base-weighted aggregate
methodology. This means the level of an Index reflects the total float-
adjusted market value of all of the constituent stocks relative to a particular
base period. The total market value of a company is determined by multi-
plying the price of its stock by the number of shares in issue (net of treasury
shares) after float adjustment. An indexed number is used to represent the
result of this calculation in order to make the value easier to work with and
track over time. As mentioned above, the Index is computed in real time.
The details on how to compute it can be found in [88].
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2. Descriptive univariate unconditional statistics

In this section, we separately consider the descriptive univariate uncon-
ditional statistics for both the forty assets and for the FTSE MIB Index. By
univariate, we mean that, here, we do not consider correlations between the
variables under study. By unconditional, we mean that, here, we do not con-
sider the non-stationary and seasonal behavior of the variables under study
and the possible memory effects. Correlation and non-stationarity will be
discussed in the next section.

2.1. Single Assets

In order to characterize market dynamics on a trade-by-trade level, we
consider two variables: the series of time intervals between consecutive
trades, τ and the trade-by-trade logarithmic returns, r. If p(ti) represents
the price of a stock at time ti where ti is the epoch of the i-th trade, then
we define the tick-by-tick log-return as:

ri = log
p(ti+1)

p(ti)
. (1)

Note that τi = ti+1 − ti is a random intertrade duration (and not a fixed
time interval).

Among the empirical studies on τ , we mention [71, 89], concerning con-
temporary shares traded over a period of a few months, a study on rarely-
traded nineteenth century shares in [90], and results on foreign exchange
transactions in [91] and [92].

Tables 1 and 2 contain the descriptive statistics, evaluated for the entire
sample, for the time series τhi = thi+1 − thi (with th0 = 0) and rhi , where the
superscript h denotes the specific share and takes the label h = I for the
FTSE MIB Index.

In Table 1 the third and fourth columns give the two parameters of a
Weibull distribution fit. The Weibull distribution has the following survival
function:

P(τ > t) = P (t|α, β) = exp
(

−αtβ
)

, (2)

where β is the shape parameter and α is the scale parameter. The values
given in Table 1 were fitted using the moment method described in [70].
The quality of these fits is pictorially shown in Figure 2 for A2A, EXO,
MS and TIT, respectively. The solid line represents our Weibull fit and
the circles are the empirical data. Since different companies have different
average intertrade duration 〈τh〉 (see the second column in Table 1), they
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Figure 2: Weibull fit for A2A (A), EXO (B), MS (C), TIT (D). The fit is represented by
the thin solid line, the open circles are the empirical values for the survival function.
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Figure 3: (Color online) Approximate scaling of the survival function for the forty time
series. The solid line is the Weibull fit given by Eq.(3).

are also characterized by a different scale parameter α whereas the shape
parameter β is almost the same for all the forty time series. Following [73],
a scaling function P (t|β∗) can be defined:

P (t|β∗) = exp
(

−(t/〈τ〉)β∗

)

(3)

where β∗ = 〈β〉 = 0.78.
To test the hypothesis that there is a universal structure in the inter-

trade time dynamics of different companies, we rescale the survival func-
tions by plotting them against t/〈τh〉. We find that, for all companies,
data approximately conform to a single scaled plot given by (3) as shown
in Figure 3 (see also [70, 73, 93]). Such a behavior is a hallmark of scal-
ing, and is typical of a wide class of physical systems with universal scal-
ing properties [94]. Even if [95] showed that the scaling (3) is far from
being universal, at least for the New York Stock Exchange, it is remark-
able to find it again for a different index in a different market and seven
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Figure 4: (Color online) Weibull paper for A2A (A), EXO (B), MS (C), TIT (D). On
the horizontal axis, the values of log(t) are plotted, where t represents the inter-trade
duration. On the vertical axes, a double logarithmic transform of the empirical cumulative
distribution function of the inter-trade durations is plotted: log(− log(1−P (τ > t))). The
linear fit is represented by the thin red solid line, the open circles are the empirical values.
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years later with respect to the findings of [73]. However, to go beyond
qualitative estimates, we perform several goodness-of-fit tests. Results for
the Anderson-Darling and Lilliefors statistics are presented in Table 1. Re-
sults for the Kolmogorov-Smirnov test are in the Supplemental material (see
https://github.com/enricoscalas/HFFnonstationary). All these tests
reject the null hypothesis of Weibull distributed data. Finally, we present
results based on the Weibull paper to graphically verify the Weibull distri-
bution hypothesis. As an illustration, Figure 4 shows the Weibull paper for
the following assets: A2A, EXO, MS and TIT. We can see that the devi-
ation of the empirical data from the straight line expected for the Weibull
distribution is mainly due to the tails of the distribution as expected from
visual inspection of Figure 3.

The descriptive statistics for trade-by-trade returns rh can be found in
Table 2. Notice that there is excess kurtosis.

2.2. FTSE MIB index

We now investigate the FTSE MIB index. Tables 1 and 2 summarize also
the descriptive statistics of the time series τ Ii and rIi respectively evaluated
for the FTSE MIB index.

In Figure 5 we show the survival function for the intertrade waiting time
of the FTSE MIB index. The solid line represents the Weibull fit, whereas
the circle represents the empirical data. The shape of the two curves is very
different. Therefore, we can immediately see that intertrade times are not
Weibull distributed, and, in this case, the fit does not work even as a first
approximation. Indeed, for the FTSE MIB index, the standard deviation
of intertrade durations is smaller than the average intertrade duration and
the AD test and the Lilliefors test reject the null hypothesis of Weibull
distribution.

Contrary to the case of single asset returns, the excess kurtosis for the
FTSE MIB index is quite large. Figure 6 shows the histogram of the returns
for a bin size of 1× 10−5.

Following [18], we test the scaling of the empirical returns. The dataset
consists of 405560 records for the FTSE MIB index (Table I in the Supple-
mental Material https://github.com/enricoscalas/HFFnonstationary)
during the period studied (from the 03rd of February 2011 to the 09th of
March 2011). From this database, we compute the new random variable
rI(t; ∆t) defined as:

rI(t; ∆t) = log
pI(t+∆t)

pI(t)
, (4)
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Figure 5: (Color online) Circles: empirical survival function; solid line: Weibull fit.

where pI(t) is the value of the index at time t. In this way we sample returns
on equally spaced and non-overlapping intervals of width ∆t. We further
assume that the time series is stationary so that it only depends on ∆t and
not on t (incidentally, we shall later see that this is not the case). To charac-
terize the experimentally observed process quantitatively, we first determine
the empirical probability density function P (rI(∆t)) of index variations for
different values of ∆t. We select ∆t equal to 3s, 5s, 10s, 30s and 300s.
In Figure 7(a) we present a semi-logarithmic plot of P (rI(∆t)) for the five
different values of ∆t indicated above. These empirical distributions are
roughly symmetric and are expected to converge to the normal distribution
when ∆t increases. The null hypothesis of normal distribution has been
tested with the Kolmogorov-Smirnov, the Jarque-Bera and the Lilliefors
test and is always rejected.

As already mentioned, we also note that the distributions are leptokurtic,
that is, they have tails heavier than expected for a normal distribution. A
determination of the parameters characterizing the distributions is difficult
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Figure 6: (Color online) Histogram of returns for the FTSE MIB index.

especially because larger values of ∆t imply a smaller number of data. Again
following [18], we study the probability density at zero return P (rI(∆t) = 0)
as function of ∆t. This is done in Figure 7(b), where P (rI(∆t) = 0) versus
∆t is shown in a log-log plot. If these data were distributed according to
a symmetric α-stable distribution, one would expect the following form for
P (rI(∆t) = 0) (see Equation (2) in [18]):

P (rI(∆t) = 0) =
Γ(1/αL)

παL(c∆t)1/αL

, (5)

where Γ(·) is Euler Gamma function, αL ∈ (0, 2] is the index of the sym-
metric α-stable distribution and c is a time-scale parameter. The data are
well fitted (in the OLS sense) by a straight line of slope 1/α̂L = 0.58 leading
to an estimated exponent α̂L = 1.72. The best method to get the values
of P (rI(∆t) = 0) is to determine the slope of the cumulative distribution
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Figure 7: (Color online) (A) Histogram of the returns for the FTSE MIB index observed
at different time intervals, namely, ∆t = 3 s (blue), 5 s (red), 10 s (black), 30 s (green)
and 300 s (purple); (B) Probability of zero returns as a function of the time sampling
interval ∆t, the slope of the straight line is 0.58 ± 0.01; (C) scaled empirical probability
distribution and comparison with the theoretical prediction given by Eq.(7) (black solid
line).
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function in rI(∆t) = 0. In Figure 7(c), we plot the rescaled probability
density function according to the following transformation:

rIs =
rI(∆t)

(∆t)1/αL

(6)

and

P (rIs) =
P (rI(∆t))

(∆t)−1/αL

, (7)

for αL = α̂L = 1.72. Remarkably all the five distributions approximately
collapse into a single one. We use the Kolmogorov-Smirnov test to study
the null hypothesis of identically distributed rescaled data; the results are
shown in Table 3. The null hypothesis is rejected only in the following cases:
∆t = 3s and ∆t = 5s, ∆t = 3s and ∆t = 10s, ∆t = 3s and ∆t = 30s.

It is worth noting that this result shows that the scaling, found in the
S&P 500 data by Mantegna and Stanley more than twenty years ago [18],
still approximately holds in a different market and in a completely different
period. We do not run hypothesis tests on the Lévy stable distribution
because an eye inspection of Figure 7(c) is sufficient to conclude that the
Lévy stable fit is not matching the rescaled data.

3. Descriptive conditional and bivariate statistics

Inspired by [86, 96], in order to study the time variations of the returns
during a typical trading day, we use a simple technique. We divide the
trading day into equally spaced and non-overlapping intervals of length δt
for δt = 3, 5, 10, 30, 300, 600, 900, 1200, 1500 and 1800 s. Let K be number
of intervals and Nk the number of transaction in each interval k. For each
interval we evaluate the γ(k) indicator as a measure of volatility. γ(k) is
defined as

γ(k) =
1

Nk − 1

Nk−1
∑

i=1

|rIk,i − 〈rIk〉|; (8)

where 〈rIk〉 is the average value of returns in the time interval k. In Figure
8(a), as an example, we plot the average value of γ(k) over the investigated
period as a function of the interval index k for δt = 300 s. We can see that
the volatility is higher in the morning, at the opening of continuous trading,
and then it decreases up to midday. There is a local increase after midday
and then the volatility returns to lower values to finally grow towards the
end of continuous trading. In Figure 8(b), we plot the number of trades on
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Figure 8: (Color online) (A) Volatility γ as a function of k for δt = 300 s. (B) Activity N

as a function of k for δt = 300 s. (C) Scatter plot of volatility γ as a function of number
of trades N . The points are averaged over the investigated period.

the FTSE MIB index as a function of the interval index k for δt = 300 s. The
behavior of the trade activity closely follows the behavior of volatility. This
is even clearer from the analysis of Figure 8(c) where the volatility is plotted
as a function of the activity. The scatter plot shows a strong correlation
between the two variables. This result does not depend on the length of the
interval w, but the corresponding plots are not presented here for the sake
of compactness. This feature was already present in the Australian market
studied for a much longer period (10 years ≈ 2500 days) by [86, 96]. Again,
it is remarkable to see a statistical pattern still valid in a different market
after more than 10 years.

Figure 8 shows a seasonal pattern in intraday trades. In order to take
this behavior into account, we proposed to use a non-stationary normal com-
pound Poisson process with volatility of jumps proportional to the activity
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of the Poisson process in [69]. Here, we take even a more pragmatic stand
and we do not assume any a priori relationship between volatility and ac-
tivity as it emerges spontaneously, if present, with the method described in
the next section.

4. A compound Poisson type model

As one can see, during a trading day, the volatility and the activity
are higher at the opening of the market, then they decrease at midday
and they increase again towards market closure [96] (see also Figure 8).
In other words, the (log-)price process is non-stationary. As suggested in
[69], such a non-stationary process for log-prices can be approximated by
a mixture of normal compound Poisson processes (NCPP) in the following
way. A normal compound Poisson process is a compound Poisson process
with normal jumps. In formula:

X(t) =

N(t)
∑

i=1

Ri, (9)

where Ri are normally distributed independent trade-by-trade log-returns,
N(t) is a Poisson process with parameter λ andX(t) is the logarithmic price,
X(t) = log(P (t)). By probabilistic arguments one can derive the cumulative
distribution function of X(t), it is given by:

FX(t)(u) = P(X(t) ≤ u) = e−λt
∞
∑

n=0

(λt)n

n!
F ⋆n
R (u), (10)

where F ⋆n
R (u) is the n-fold convolution of the normal distribution, namely

F ⋆n
R (u) =

1

2

[

1 + erf

(

u− nµ√
2nσ2

)]

, (11)

and µ and σ2 are the parameters of the normal distribution.
We now assume that the trading day can be divided into n equal intervals

of constant activity {λi}ni=1 and of length w, then the unconditional waiting
time distribution becomes a mixture of exponential distributions and its
cumulative distribution function can be written as

Fτ (u) = P(τ ≤ u) =
n
∑

i=1

ai(1− e−λiτ ), (12)
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where {ai}ni=1 is a set of suitable weights. The activity seasonality can be
mimicked by values of λi that decrease towards midday and then increase
again towards market closure. In order to reproduce the correlation between
volatility and activity, one could assume that

σξ,i = cλi (13)

where c is a suitable constant. As already mentioned, however, for practi-
cal purposes, one can also estimate three parameters for each interval, the
parameter λi of the Poisson process and the parameters µi and σi for the log-
returns without any correlation assumptions. This leads us to two possible
examples of such compound Poisson type models which will be introduced in
Section 4.1 alongside the popular ACD model for later comparisons. After
a brief error analysis of the maximum likelihood estimation (MLE) method
in Section 4.2, we will move on to the main Monte Carlo experiment to test
model selection using information criteria (IC) in Section 4.3. The different
nature of the compound Poisson models and the ACD model makes a direct
comparison in terms of model selection questionable. Therefore, our main
focus will be a comparison of IC within each model class separately.

4.1. Model definitions and likelihood functions

4.1.1. The compound Poisson model with discrete intensity (Dλ)-model

We extend the notation of Equation (9) by an additional index denoting
the corresponding interval: We suppose that high-frequency data is given
over a time interval [t0, T ]. First, set a time grid {ti}i∈{1,...,n} such that
t0 < t1 < t2 < . . . < tn = T . On each time interval [ti−1, ti) we have a
compound Poisson process

Xi(t) :=

Ni(t)
∑

k=1

R
(i)
k , (14)

where {R(i)
k }k∈N is an i.i.d. sequence of N (µi, σ

2
i ) distributed random vari-

ables and (Ni(t))t≥0 is a homogeneous Poisson process with parameter λi.

Further, {R(i)
k }k∈N are all independent of (Ni(t))t≥0.

For a fixed time interval [ti−1, ti) the log-likelihood function is given by

LD
i (λi, µi, σi) =− λi(ti − ti−1) + ln(λi)Ni(ti)

+

Ni(ti)
∑

k=1

ln(pµi,σi
(R

(i)
k )), (15)
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where pµi,σi
denotes the probability density function of the N (µi, σ

2
i ) distri-

bution. Due to the independence assumptions the overall log-likelihood is
given by the sum of all Li. Equation (15) can be derived from the general
expression for the sample density function given on page 200 in [97] by sub-
stituting a constant λ.
The maximum likelihood estimators are therefore:

λ̂i = Ni/wi, µ̂i =
1

Ni

Ni
∑

k=1

ri,

σ̂2i =
1

Ni

Ni
∑

k=1

(ri − µ̂i)
2, (16)

where Ni is the number of trades in the ith interval and wi = ti − ti−1.
Note that the maximum likelihood estimator for σ2 is biased and the bias
can be corrected by using

σ̃2i =
1

Ni − 1

Ni
∑

k=1

(ri − µ̂i)
2 (17)

instead. We shall use either the biased or unbiased estimator in the following
sections when appropriate.

4.1.2. Approximating stylized facts using the (Dλ)-model

A Monte Carlo simulation of the (Dλ)-model was performed by consid-
ering a trading day divided into a number of intervals of length w = ∆t =
3, 5, 10, 30, 300 s. The parameters λ̂i, µ̂i and σ̃

2
i were estimated as explained

above. Note that we use the unbiased estimator σ̃i from (17). In the follow-
ing, we shall focus on estimates based on the FTSE MIB index. In Figure 9,
we empirically show that the simulation gives a better fit for the empirical
returns of the index as w becomes smaller. This figure corroborates the con-
jecture that the approximations converge to the empirical data. This is an
encouraging result meaning that it will be useful to study the convergence of
the approximation by means of measure-theoretical probabilistic methods.
Figure 10 displays the histogram of simulated returns for w = 3 and can be
compared to Figure 6. The corresponding value of the Kolmogorov-Smirnov
statistics is given by the blue dot in Figure 9.
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Figure 9: (Color online) Approximation of the empirical cumulative distribution function
with Monte Carlo simulations for FTSE MIB returns rI . The black line represents the
empirical cumulative distribution functions for real data. The colored lines represent
the simulations described in the text and based on sampling at equal intervals of 3, 5.
10. 30 and 300 seconds as described by the legend. The inset contains a plot of the
Kolmogorov-Smirnov distance between the approximations and the empirical curve. This
plot corroborates the conjecture that there is convergence of the approximation to the
black curve.

In order to show that this approximation is able to reproduce the approx-
imate stylized facts described above, Figure 11 shows the scaling relations
discussed in section 2.2 for the simulation with w = 10 s. The null hypoth-
esis of normal distribution has been tested with the Kolmogorov-Smirnov,
the Jarque-Bera and the Lilliefors test. Also in this case the null hypothesis
is always rejected.

One can see from Figure 11(b) that an OLS index estimate α̂L = 1.59 is
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Figure 10: (Color online) Histogram of returns for the approximating process with w = 3s.

recovered from the simulation instead of 1.72 for the real index. The scaling
given in Eqs. (6), (7) is presented in Figure 11(c), one can see that the
approximate scaling still holds for the simulated data. The null hypothesis
of identical distribution has been tested with the Kolmogorov-Smirnov test,
and the results are shown in Table 4. It is worth noting that the null
hypothesis of identical distribution is always rejected but the statistic value
is near to the critical value.

4.1.3. The compound Poisson model with parametrized intensity (Pλ)-model

This model will be used for simulation later on as well as serve as a
benchmark model when testing model selection criteria. As empirical results
about the trading intensity suggest a daily seasonality, this model assumes
that the step function in the (Dλ) model is parametrized by a quadratic
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Figure 11: (Color online) (A) Histogram of the returns for the simulation described in the
text observed at different time intervals, namely, ∆t = 3 s (blue), 5 s (red), 10 s (black),
30 s (green) and 300 s (purple); (B) Probability of zero returns as a function of the time
sampling interval ∆t, the slope of the straight line is 0.63 ± 0.01; (C) scaled empirical
probability distribution and comparison with the theoretical prediction given by Eq.(7)
(black solid line).

function:

λa,b,c(t) = at2 + bt+ c, t ∈ [0, 1]. (18)

Of course, this parametrization can be easily replaced by more complicated
functions. Since λ needs to be positive and convex, we also have the condi-
tions

a > 0 and c >
b2

4a
. (19)
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Similar to the (Dλ)-model, the log-likelihood for the (Pλ)-model is given by

LP
i (a, b, c, µi, σi) = −λa,b,c(ti−1)(ti − ti−1)

+ ln(λa,b,c(ti−1))Ni(ti) +

Ni(ti)
∑

k=1

ln(pµi,σi
(R

(i)
k )). (20)

While the maximum likelihood estimators for µi and σi are the same as for
the (Dλ) case, the maximum likelihood estimators for a, b, c, which deter-
mine the form of λ, cannot be obtained in closed form. As a consequence,
a numerical optimization method needs to be applied to estimate those pa-
rameters.

4.1.4. The ACD model

The autoregressive conditional duration model was first proposed by
Engle and Russell [33]. We will consider a model for the durations between
events only without marks: Let (εi)i∈N be a sequence of i.i.d. random
variables. The autoregressive conditional duration (ACD) model is defined
as

xi = ψiεi (21)

ψi ≡ ψi(xi−1, . . . , x1; θ) := E [xi|xi−1, . . . , x1] . (22)

The innovations (εi) are assumed to follow an exponential distribution, i.e.
εi ∼ Exp(1), and ψi has the following representation

ψi := ω +
m
∑

j=0

αjxi−j +

q
∑

j=0

βjψi−j , (23)

where ω > 0, αi ≥ 0 and βi ≥ 0 for all i. We will call this model ACD(m, q).
For given duration data {x1, . . . , xn} the log-likelihood function is given by

LACD(ω, α1, . . . , αm,β1, . . . , βq) =

−
n
∑

i=1

[

lnψi +
xi
ψi

]

(24)

(see p. 104 in [20]).
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4.2. MLE and goodness of fit

Before we turn our attention to the actual model selection procedure, it
is useful to get a rough idea about how well the underlying MLE method
works for the three model classes. We would like to ensure that the MLE
method works reasonably well since a poor ML fit might compromise the
quality of the order selection. Due to asymptotic results, we expect that
goodness of fit and correctness of the model selection procedure should im-
prove with increasing size of the underlying sample. As these two effects are
closely related, it is hard to quantify them separately.
In the next sections, we give a detailed explanation of the simulation proce-
dure and on how the parameter estimation is implemented. Based on that,
we run a MLE on previously generated mock data. As we know the true
parameter values, we can easily calculate the mean squared error (MSE) as
measure for the goodness of fit.

4.2.1. Compound Poisson models

Simulation. The simulation algorithm essentially uses the (Pλ)-model. For
simplicity we will choose the time interval [t0, T ] to be [0, 1]. For the sim-
ulation we set an equidistant grid 0 = t0 < t1 < t2 < . . . < tn = 1 on the
time interval. Thus, the interval [0, 1] is divided into n subintervals. For
i ∈ {1, . . . , n} the parameters µi, σi and λi on the subinterval [ti−1, ti) are
chosen to be

µi = 0, σi = 1 and λi = λ(ti−1) ∀i ∈ {1, . . . , n},
where λ(t) := 4(λmax − λmin)(t− 0.5)2 + λmin,

∀t ∈ [0, 1] and λmin, λmax > 0 constant. (25)

The functional form of λ is inspired by the empirical findings in the previous
sections and should account for the observed seasonality in a simple way.
We have chosen λmin = 100 and λmax = 10000. Note that the {λi} form a
step function approximation of the parabola in (25). For different grid sizes,
we simulate with sample size 1000 each.

Fitting. The fitting is carried out using different grid sizes. Note that the
grid size to be used in fitting is bounded from above by the length of the
entire time interval (in our case 1). However, we would like to emulate the
behavior of the intensity which was observed in empirical data, i.e. high in-
tensity at the beginning and at the end of the trading day and relatively low
intensity in the middle of the day. Consequently, we need at least 3 subin-
tervals to have a piecewise constant function that fulfils these conditions on
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the time interval. Further, the smallest eligible grid size is bounded from
below by the maximal distance between neighbouring data points within the
data set. Otherwise, there are subintervals which do not contain any data
points. In such cases, the estimation formulas in (16) would fail.
More precisely, for the maximal distance ∆max between two consecutive data
points within a given sample, the finest valid equidistant grid has at most
⌊

1
∆max

⌋

subintervals. Therefore, we will consider a list of candidate models

on grids which correspond to n = 3, 4, . . . ,
⌊

1
∆max

⌋

subintervals on the inter-

val [0, 1].

For the (Dλ) model, the estimators are given in closed form in (16) and
the likelihood value is easily calculated via Equation (15) and subsequently
used for the calculation of the IC. We decide to use the biased estimator σ̂2i :
Since we are mainly interested in model selection, we would like to ensure
that we work with the optimal value of the log-likelihood when calculating
the IC (see also 4.3).
In order to fit the (Pλ) model, we assume that the estimates for {µi}, {σi}
and {λi} for the (Dλ)-algorithm are already calculated and can be used as
an input for the estimation of the (Pλ)-model. As mentioned previously, the
estimators for µi and σi coincide in both models and no further calculation is
needed for these parameters. It remains to solve the following minimization
problem:

(â, b̂, ĉ) = argmin
a,b,c∈R

[

−
n
∑

i=1

LP
i (a, b, c, µi, σi)

]

s.t. a > 0 and c >
b2

4a
(26)

A reasonable choice of the starting value for the minimization algorithm can
be easily obtained by the least-squares fit of the parabola to the {λi} values
of the (Dλ) case, which already gives a fairly good approximation of the
parabola. In case the initial values obtained by this method do not lie in
the admissible set, a change of signs for a or a shift of the parabola may be
applied.
Note that the estimation of the (Pλ)-model requires a grid with at least 4
grid points, i.e. 3 subintervals on which λ1, λ2, λ3 are estimated using the
(Dλ)-model. This ensures that the parabola is well determined. However,
as mentioned before, this condition is not restrictive and covers all models
on which we would like to run model selection.
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4.2.2. ACD model

For both simulation and MLE of ACD models we use the R package ACDm
written by Markus Belfrage [98]. The model selection analysis for the ACD
model follows the Monte Carlo experiment conducted in [99]. We consider
model orders m, q ∈ {1, 2} and Table 5 shows the choice of parameters for
the simulation.

4.2.3. Numerical results

We use the MSE as a measure for the goodness of fit: Let θ be a generic
model parameter to be estimated and θ̂ the corresponding estimator. Given
N samples and θ̂(k), k = 1, . . . , N , the estimates for each sample we calculate
the mean squared error to be

MSE(θ) = E

[

|θ − θ̂|2
]

=
1

N

N
∑

k=1

|θ − θ̂(k)|2. (27)

Compound Poisson models. We have to point out first that the distance in
Equation (27) has to be understood as a functional distance. To be more
precise, we choose the L2-distance between the true step function intensity
and the estimated one:

E

[

|θ − θ̂|2
]

= E

[

‖θ − θ̂‖2L2

]

(28)

The cases of µ and σ2 are the easier ones, as we just need to calculate the
distance between a step function and a constant: For the step functions
with values {µi} on the fitting grid t1 < t2 < . . . < tn Equation (28) can be
further written as

E
[

‖µ− µ̂‖2L2

]

=
1

N

N
∑

k=1

‖µ− µ̂(k)‖2L2

=
1

N

N
∑

k=1

∫ T

0
(µ(t)− µ̂(k)(t))2dt

=
1

N

N
∑

k=1

n
∑

i=2

(µ− µ̂
(k)
i )2(ti − ti−1). (29)

and in the same way for σ2.
Concerning the intensity function, we have to merge the simulation grid ts1 <

ts2 < . . . < tsm with the fitting grid tf1 < tf2 < . . . < tfr . After reordering and
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relabeling, we can calculate the MSE on the merged grid t1 < t2 < . . . < tn
via

E

[

‖λ− λ̂‖2L2

]

=
1

N

N
∑

k=1

n
∑

i=2

(λi − λ̂
(k)
i )2(ti − ti−1). (30)

The numerical results we present here are for N = 1000 samples of data
simulated from a grid containing 30 subintervals.

Table 6 shows summary statistics of µ and σ2, where the summary statis-
tics were calculated over the set of fitting grids. The MSE for the µ and σ2

are comparably small.
For the intensity function λ we plot the MSE against the number of subin-
tervals used for fitting in Figure 12. Starting from a small number of subin-
tervals, the MSE decreases sharply before it reaches its optimum at 30, the
true number of subintervals from the simulation. Number of subintervals
above 30 give a larger MSE and, in the case of the (Dλ) model, instabilities
of over parametrization even lead to an increasing MSE.

Concerning goodness of fit, we can see that the MSE of the (Pλ)-model
is consistently smaller than the MSE of the (Dλ)-model. This is to be ex-
pected as, by construction of the experiment, the (Pλ)-model is the true
model and gives a better fit to the data.
Moreover, we can observe that apart from the optimum at 30 there are
“preferred” numbers of subintervals at 10, 20, 45, 60. This is crucial for the
explanation of the behavior of model selection as the relationship between
goodness of fit and number of subintervals in the region below the optimal
number is not monotone.

The size of the MSE can be estimated from the expected fluctuations of
the estimator λ̂. The MSE can be estimated from below by means of the
ideal situation when the simulation and fitting grid are identical. Without
loss of generality, we assume an equidistant simulation grid with grid size
w = ti − ti−1 and rewrite Equation (30):

E

[

‖λ− λ̂‖2L2

]

≥ w
n
∑

i=2

E

[

(λi − λ̂i)
2
]

= w
n
∑

i=2

Var
[

λ̂i

]

=
1

w

n
∑

i=2

Var [Ni] , (31)

where we have used the definition of the estimator in (16) and the fact
that the number of events in an interval of size w is Poisson distributed:
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Figure 12: (Color online) Plot of the mean squared error (MSE) of the estimation of the
intensity function for the (Dλ)-model (orange lines) and for the (Pλ)-model (blue lines)
respectively. The graph shows the MSE together with dashed lines indicating the size
of the first standard deviation from the mean as a function of the underlying number
of intervals of the fitting grid. The true model for the simulation originally used 30
subintervals. The MSE is calculated as a squared L2 distance between the estimated and
the true intensity function (see also Eq. (30)).

Ni ∼ Poi(λw). We finally get that

E

[

‖λ− λ̂‖2L2

]

≥ 1

w

n
∑

i=2

Var [Ni]

=
1

w

n
∑

i=2

λiw ≈ 1

w

∫ 1

0
λ(t) dt, (32)

where we approximate the integral of the step function by the integral of
the smooth intensity parametrization in Equation (25). For our numerical
example we have 1

w = 30 and λmin = 100 and λmax = 10000. An explicit
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calculation of above integral gives the rough estimate

E

[

‖λ− λ̂‖2L2

]

& 30 · 3400 = O(105), (33)

which is of about the same order of magnitude observable in Figure 12.

ACD model. In the ACD case we have a simple parameter vector (ω, α1, . . . ,-
αm, β1, . . . , βq) ∈ R

1+m+q, Therefore, we can use the formula given in Equa-
tion (27) for each scalar valued parameter. The results can be seen in Table
7. The largest sample size ensures that the MSE are comparably low for
each model. The largest contribution to the MSE comes from the ω param-
eter. An even closer look shows that the MSE of the β parameter(s) is of
different order depending on the model order q. In the case q = 1, the MSE
of the β parameter is of the same size as the α parameter(s). However, in
the case of q = 2, the order of the MSE of the β parameters are significantly
larger than the MSE of the α parameters (by a factor of 10 in the ACD(1, 2)
case and by a factor of 100 in the ACD(2, 2) case).

4.3. Information criteria and model selection

Starting off from the estimation results in the previous section, we would
like to analyse how effective model selection based on information criteria
(IC) performs for both the coumpounds Poisson models and the ACD model.
As seen in the previous Monte Carlo simulation choosing smaller values of
w, i.e. increasing the number of model parameters, gives better fits and
the model is able to capture all distributional properties of the quantity of
interest. However, a model containing a large number of parameters is likely
to be over-fitted. A quantitative method to resolve this trade-off situation
is to apply IC. In the following, we will consider three of the most common
information criteria:
For a given model fitted to data via MLE let L be the maximal log-likelihood
value, k the number of parameters and T be the sample size of the data set.
Then we define:

1. Akaike’s information criterion (AIC) (see [100])

AIC = −2L+ 2k (34)

2. Bayesian information criterion (BIC) (see [101])

BIC = −2L+ k ln(T ) (35)
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3. Hannan and Quinn information criterion (HQ) (see [102] and
[103])

HQ = −2L+ 2k ln(ln(T )) (36)

Note that the information criteria under consideration penalize the log-
likelihood value for increasing number of parameters k. Among several
candidate models, one chooses the model with the smallest IC value. A
time grid t0 < t1 < . . . < tn is given and divides the overall time interval
in n subintervals. From Section 4.2.1, we recall that we do not consider
n ∈ {1, 2}. Then the (Dλ)-model has in total k = 3n parameters with
n ∈ {3, 4, . . .}. This will also be the true number of parameters we expect
the IC to choose. In the same way we have for the (Pλ)-model k = 2n + 3
parameters with n ∈ {3, 4, . . .}.

4.3.1. Numerical results

Compound Poisson models. Figures 13, 14 and 15 show box plots of the
model selection results of the AIC, BIC and HQ respectively. In each box
plot, the orange and blue box plot correspond to the results of the (Dλ)- and
(Pλ)-model respectively. The horizontal axis shows the number of subinter-
vals used in the simulation grid. On the vertical axis are the selected number
of parameters after the parameter estimation of the (Dλ)- and (Pλ)-models
using different discretizations of [0, 1]. A single box in the box plots extends
from the 25th percentile to the 75th percentile and the dot indicates the
median. The whiskers have a maximum length of 1.5 times the box length
and extend to the outermost point which is not considered as outlier. The
crosses indicate outliers.

Below the box plots, bars indicate the ratio of samples which allow model
selection under correct specification (blue) and under misspecification (red):
In our setting, we speak of model selection under misspecification if the cor-
rect model is not contained in the set of selectable models and cannot be
chosen by the IC. If this is not the case, i.e. the correct model can potentially
be chosen by the IC, we call it model selection under correct specification.

The results for the (Dλ) and (Pλ) model are very similar. Common for
all three IC is that for small parameter numbers below 15 the model se-
lection works well: the distributions of the selected orders are concentrated
and closely follow the 3n or 2n + 3 reference line respectively, where n is
the number of subintervals. For very large parameter numbers one can ob-
serve that the selected model orders remain distributed around a maximum
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model order and stop to follow the linear trend of the reference line. This is
rather due to the limitations of our MC setup than the inherent property of
the IC: As described in Section 4.2.1, we only work with equidistant grids
when applying the model selection procedure. The finest grid which can be
used for fitting is determined by the maximal distance ∆max between two
consecutive points within a sample. On the other hand, ∆max is related
to the minimal value of λ in the middle of the interval., depending on how
small we choose the simulation grid size ∆sim. This means that whenever
∆max > ∆sim, the true model is not contained in the pool of models from
which the IC may choose from. In other words, we have a case of model
selection under misspecification. The bar plots show that first cases occur
at around n = 20 and go up to a ratio of about 50% for the finest grid in
the analysis.
Another look at Figure 12 hints that the rule “the more parameters, the
better the fit” is not entirely true: we can observe that the relation between
grid size and MSE is not entirely monotone. This is due to the fact that the
fit of the specific model does not only depend on the number of parameters,
but also to some extent on the position of the grid. As a consequence, under
misspecification, the selected order does not necessarily correspond to the
finest available grid size above ∆sim. This might explain the “plateaus” on
the model selection results for large parameters.

Between the region of very small and very large parameters the ICs ex-
hibit quite different behaviors according to their intrinsic tendency of under-
and overfitting, which will be described in the following:
The AIC tends to overestimate the number of parameters. It allows outliers
(in the region of n ≤ 22) as well as a larger number of cases of the model
selection to lie above the reference line (in the region of n ≥ 23). In contrast,
the selected model orders of the BIC and HQ are either on the reference line
or strictly below the reference line. In other words BIC and HQ tend to
underestimate. Additionally, we can see that for the AIC the boxplot starts
to deviate from the reference line starting around n = 25 to n = 27 and
the BIC and HQ deviate earlier around n = 15 and n = 20 respectively.
Especially, for n < 27 the underestimation in the BIC and HQ case is not
attributable to the behaviour of model selection under misspecification, as
the ratio of model selection under misspecification is rather low. Based on
our results, if the ICs were to be ordered by their parsimonious character,
the BIC would be the more parsimonious whereas the AIC the least.
The above observations show that the model selection using any of the three
ICs works quite well as long as the true model is actually retrievable. The
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AIC tends to overestimate, but the model selection results are closest to the
reference line of true parameters compared to the other two ICs.

ACD model. The results of the model selection experiment can be found in
Tables 8 to 11. The numbers are success rates in percent of the respective
IC to select the correct model from which the simulation data was generated
from. The qualitative behaviour of the ICs is not surprisingly similar to the
findings for the GARCH model in [99].

A closer look at Table 8 shows that the success rate of the ICs is ex-
ceptionally good in the case of ACD(1, 1) data. Even for a small sample
size all information criteria are able to detect the correct model order in the
majority of cases. The tendency to under-fit works in favour for the BIC
and to some extent also for the HQ. For the same reason, the success rates
for the AIC are relatively low due to its overfitting property.
A similar behaviour can be observed for ACD(2, 1) in Table 10: Although
the IC underestimate the model for smaller sample sizes as a ACD(1, 1)
model, they improve for large sample sizes.
In both the ACD(1, 1) and the ACD(2, 1) case, i.e. the cases for q = 1,
the behaviour of the model selection is acceptable: a reasonably large sam-
ple size, which is of the order of a typical intra day trading data sample,
ensures a sufficiently large success rate in detecting the correct model. Un-
fortunately, this cannot be said about the case q = 2:
In the first example of ACD(1, 2) data in Table 9, we see that the correct
model order is never detected in the majority of cases even for large sam-
ple sizes. The best success rates are the ones of the AIC again due to its
overfitting tendency. This may be concerning, as this shows that despite the
fact that ACD(1, 2) and ACD(2, 1) have the same number of parameters the
model selection behaviour is far from comparable.
In comparison, the results for the ACD(2, 2), the most complex model in
our experiment, are even more critical: Not only are the IC unable to detect
the correct model in most of the cases even with large samples, but the best
success rates, again from the AIC, are below 20%.

As mentioned in Section 4.2.3, the cases where model selection fails align
with relatively high MSE of the β parameters for q = 2: The contribution
of the MSE of the ω parameter is not as important, as this parameter is
included in all models. However, the increase in MSE when moving from
q = 1 to q = 2 might be one of the factors explaining the discrepancy in
model selection between q = 1 and q = 2. This part of our MC experiment

31



suggests that parameters which are harder to estimate compared to other
model parameters (in our case α vs. β parameters or in other words moving
average vs. autoregressive parameters in Equation (23)) might also be less
likely to be detected by model selection.

5. Discussion

The models analysed in Section 4 are based on the preliminary results
presented in [69]. The main idea of that paper was to locally approximate
a non-stationary process with a simple normal compound Poisson process.
However, many mathematical aspects still need to be clarified. In partic-
ular, the choice of the normal compound Poisson process is suggested by
the fact that many distributions of positive random variables (the waiting
times) can be written as a mixture of exponential distributions. To be more
precise, suppose that F̄J(u) = P(J > u) is the complementary cumulative
distribution function of the positive random variable J . We want to write

F̄J(u) =

∫ ∞

0
exp(−λu) g(λ) dλ. (37)

For instance, from the corollary on page 440, Chapter XIII.4 of Feller [104],
we know that the necessary and sufficient condition for a function ϕ(u) to
be of the form

ϕ(u) =

∫ ∞

0
exp(−λu) g(λ) dλ

when 0 ≤ g ≤ C is that

0 ≤ (−x)nϕ(n)(x)

n!
≤ C

x
; (38)

for all x > 0. Notice that if g(λ) is a continuous probability density function
with g(0) equal to some finite non-negative constant, then the condition
0 ≤ g ≤ C is automatically satisfied. Incidentally, this does not exclude that
the representation (37) can be written also when the boundedness hypothesis
for g of Feller’s corollary are not satisfied.

Similarly, distributions of random variables with support in R (the log-
returns) can be written as a mixture of normal distributions. In particular,
the theory of scale mixtures is well-developed [105–108]. Scale mixtures are
mixtures of normal distribution with random variance. It turns out that
the Laplace [109], the stable family, the Student t family, among others, are
scale mixtures. The theory of scale mixtures in [105] is essentially based
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on the results reported by Feller outlined above and on Bernstein’s theorem
[110]. Generalizations of the theory to normal variance-mean mixtures do
exist [111].

Finally, the local approximation of a non-stationary process with a com-
pound Poisson process naturally follows the evolution of the non-stationary
process while activity and volatilty change during the trading day, leading to
a satisfactory characterization of the non-stationary behaviour as illustrated
in Figure 16 to be compared to Figure 8.

6. Conclusions

In this paper, we addressed two questions. The first one concerns to
so-called stylized facts for high-frequency financial data. In particular, do
the statistical regularities detected in the past still hold? We cannot give a
negative answer to this question. Indeed, we find that some of the scaling
properties for financial returns are still approximately satisfied. Most of the
studies we refer to concerned a different market (the US NYSE) and were
performed several years ago. However, one of the first econophysics papers
(if not the first one) concerned returns in the Italian stock exchange (see
[112]) and, for this reason, we decided to focus on this market.

The second question is: Is it possible to approximate the non-stationary
behavior of intra-day tick-by-tick returns by means of a simple phenomeno-
logical stochastic process? We cannot give a negative answer to this ques-
tion, so far. In Section 4, we present a simple non-homogeneous normal
compound Poisson process and we argue that it can approximate empirical
data. The cost for simplicity is potential over-fitting as we have to estimate
many parameters, but the outcome is a rather accurate representation of
the real process. Whether it is possible to rigorously prove convergence of
the method outlined in Section 4 is subject to further research and it is out-
side the scope of the present paper. It is well-known that Lévy processes,
namely stochastic processes with stationary and independent increments,
can be approximated by compound Poisson processes. The method de-
scribed in Section 4 can provide a clue for a generalization of such a result
to processes with non-stationary and non-independent increments.

Concerning the issue of overfitting, the second part of Section 4 shows
that IC are able to detect model orders correctly to some extent when applied
to simulated data. It remains to check how well the model selection method
performs on empirical data. As a consequence from the numerical results,
due to the high variability of model selection in the region of larger numbers
of parameters it is not advisable to rely only on the IC based model selection.
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It is recommended to combine these with further cross-validation techniques.
A similar conclusion holds for the ACD model, as model selection using IC
is adversely affected by differing MLE quality for different model orders.
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Table 1: Descriptive statistics for the waiting times τh

Asset mean std α β AD Lillie

A2A 32.49 39.04 0.053 0.865 106 0.068
STS 34.07 43.68 0.061 0.818 122 0.083
ATL 24.42 32.48 0.088 0.792 263 0.099
AGL 33.20 41.87 0.059 0.830 145 0.082
AZM 34.67 42.35 0.052 0.853 116 0.074
BP 9.54 12.80 0.189 0.786 1158 0.134
BMPS 17.21 23.96 0.130 0.761 401 0.107
PMI 19.95 27.26 0.111 0.773 293 0.099
BUL 24.87 37.02 0.116 0.717 326 0.123
BZU 22.62 33.71 0.125 0.716 435 0.125
CPR 33.77 42.42 0.058 0.833 174 0.092
DIA 30.21 39.91 0.073 0.797 155 0.091
ENEL 9.19 11.60 0.173 0.829 987 0.123
EGPW 21.16 29.31 0.110 0.764 239 0.094
ENI 8.71 12.21 0.221 0.756 1541 0.148
EXO 22.72 31.16 0.101 0.771 228 0.094
F 7.94 11.29 0.243 0.747 1936 0.158
FI 12.80 18.77 0.182 0.726 833 0.132
FNC 20.86 26.98 0.093 0.812 234 0.089
FSA 23.70 35.15 0.120 0.719 309 0.118
G 11.10 14.79 0.165 0.792 759 0.119
IPG 32.26 41.41 0.064 0.818 157 0.085
ISP 7.96 11.30 0.242 0.748 1930 0.158
LTO 33.22 42.54 0.062 0.819 117 0.082
LUX 23.28 31.52 0.096 0.780 231 0.096
MS 20.12 27.93 0.114 0.763 350 0.107
MB 17.40 24.03 0.126 0.767 403 0.108
MED 31.66 39.57 0.060 0.837 126 0.077
PLT 20.49 29.01 0.119 0.749 322 0.104
PC 22.78 30.45 0.094 0.789 221 0.092
PRY 19.48 27.87 0.126 0.743 390 0.113
SPM 11.53 17.88 0.219 0.691 1185 0.150
SRG 24.77 32.77 0.086 0.796 208 0.091
STM 12.22 17.26 0.174 0.751 750 0.124
TIT 13.27 20.52 0.198 0.692 972 0.146
TEN 17.49 24.98 0.137 0.743 395 0.110
TRN 28.12 35.52 0.068 0.829 148 0.080
TOD 31.31 40.71 0.068 0.808 114 0.081
UBI 20.58 27.30 0.100 0.794 272 0.096
UCG 3.85 4.94 0.364 0.817 8640 0.223

Index 1.66 1.26 – – Inf 0.365
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Table 2: Descriptive statistics for the trade-by-trade log-returns rh. (*) On March 7th,
2011, the French firm LVMH launched a takeover offer (OPA - Offerta Pubblica d’Acquisto
in Italian) to buy Bulgari shares at 12.25 euros. On that day, this share price jumped
from below 8 euros to more than 12 euros.

Assets mean ×10−7 variance ×10−7 skewness ×10−2 kurtosis

A2A 29.15 5.24 9.36 5.22
STS −14.43 6.76 −7.11 11.50
ATL 1.59 2.09 24.62 19.64
AGL −36.50 6.09 114.90 43.47
AZM −3.29 8.03 −21.90 14.14
BP −4.53 4.55 −1.69 10.69
BMPS 24.93 4.79 −21.71 24.34
PMI 6.87 5.55 −23.73 41.72
BUL (*) −3.75 4.37 −295.68 154.69
BZU 61.92 7.41 −99.04 35.92
CPR 2.35 3.73 11.04 8.13
DIA −40.04 4.42 −49.99 29.17
ENEL 6.21 1.38 140.10 76.06
EGPW 38.81 3.64 3.43 7.31
ENI 7.86 1.40 59.89 21.01
EXO 11.98 4.82 −5.45 8.06
F −3.55 2.81 −45.05 21.76
FI 14.33 3.68 −39.37 18.14
FNC 0.50 3.29 28.01 13.01
FSA 84.68 10.35 −163.51 180.64
G 5.03 2.09 −100.65 44.97
IPG 80.66 9.04 −45.81 22.68
ISP 1.99 3.45 −62.87 43.12
LTO 67.82 9.28 −171.44 62.62
LUX 25.88 2.67 30.48 24.43
MS 5.76 2.86 −22.98 19.38
MB 17.29 4.18 1.66 9.67
MED 20.25 7.64 −43.78 18.78
PLT 9.76 5.30 49.56 14.43
PC 47.93 5.41 3.44 10.75
PRY 21.54 4.02 257.09 92.76
SPM 5.72 1.50 −9.12 32.75
SRG 12.09 2.41 79.03 54.87
STM 15.69 2.56 −39.64 36.78
TIT 8.33 3.20 −22.22 8.92
TEN 0.34 2.61 −112.99 135.05
TRN 26.67 2.42 3.54 6.03
TOD 28.73 6.95 158.96 86.49
UBI −1.76 4.99 −67.53 25.23
UCG 3.44 1.29 −12.56 57.51

Index 1.10 0.03 2 8.54
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Table 3: Kolmogorov-Smirnov test. The null hypothesis of empirical data coming from
an identical distribution is rejected in the comparisons of ∆t = 3s and ∆t = 5s, ∆t = 3s
and ∆t = 10s and ∆t = 3s and ∆t = 30s.

∆t 3s 5s 10s 30s 300s

3s 0.000 0.010 0.014 0.014 0.023
5s 0.010 0.000 0.008 0.010 0.022
10s 0.014 0.008 0.000 0.008 0.017
30s 0.014 0.010 0.008 0.000 0.018
300s 0.023 0.022 0.017 0.018 0.000

Table 4: Kolmogorov-Smirnov test. The null hypothesis of simulated data coming from
an identical distribution is always rejected.

∆t 3s 5s 10s 30s 300s

3s 0.000 0.019 0.031 0.036 0.035
5s 0.019 0.000 0.012 0.018 0.018
10s 0.031 0.012 0.000 0.007 0.016
30s 0.036 0.018 0.007 0.000 0.019
300s 0.035 0.018 0.016 0.019 0.000

Table 5: Parameter settings for the simulation of ACD data

ω α1 α2 β1 β2
ACD(1,1) 1 0.089 – 0.85 –

ACD(1,2) 1 0.1 – 0.45 0.4

ACD(2,1) 1 0.15 0.15 0.65 –

ACD(2,2) 1 0.1 0.1 0.42 0.35

Table 6: Table of summary statistics of the MSE of the parameters µ and σ2 of the
compound Poisson type model. The analysis is based on 1000 samples generated from a
simulation grid containing 30 subintervals.

mean min max std

µ 0.0545 0.0026 0.1049 0.0212

σ2 0.1038 0.0049 0.1757 0.0439
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Table 7: Results of the MSE calculations for the ACD model

MSE(ω) MSE(α1) MSE(α2) MSE(β1) MSE(β2)

ACD(1,1) T=250 3.7508 0.0023 – 0.0231 –
T=500 1.8887 0.0010 – 0.0108 –
T=1000 0.3591 0.0005 – 0.0025 –
T=2000 0.1245 0.0002 – 0.0010 –

ACD(1,2) T=250 14.5255 0.0036 – 0.4748 0.4282
T=500 3.7468 0.0019 – 0.3039 0.2681
T=1000 0.6259 0.0010 – 0.1869 0.1606
T=2000 0.1905 0.0005 – 0.0809 0.0681

ACD(2,1) T=250 0.8491 0.0063 0.0108 0.0130 –
T=500 0.2664 0.0032 0.0050 0.0053 –
T=1000 0.0916 0.0014 0.0026 0.0023 –
T=2000 0.0418 0.0007 0.0012 0.0011 –

ACD(2,2) T=250 6.4135 0.0067 0.0102 0.3165 0.2445
T=500 1.1077 0.0032 0.0061 0.2722 0.2031
T=1000 0.3730 0.0014 0.0041 0.2086 0.1526
T=2000 0.1512 0.0006 0.0026 0.1612 0.1181

Table 8: Model selection results based on ACD(1,1) data samples: Given 1000 samples of
size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 58.7 23.6 9.9 7.8
BIC 90.2 7 2.1 0.7
HQ 77.9 14.6 4.8 2.7

T=500 AIC 62.9 20.4 10.9 5.8
BIC 93.6 4.7 1.6 0.1
HQ 82.6 11.5 4.9 1

T=1000 AIC 67.5 16.4 11 5.1
BIC 97.4 1.8 0.8 0
HQ 87.2 7.5 4.8 0.5

T=2000 AIC 71.3 13.1 9.7 5.9
BIC 97.7 1.6 0.6 0.1
HQ 91.5 4.4 3 1.1
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Figure 13: (Color online) The lower plot shows the ratio of samples which allow the true
model to be among the set of models from which the IC may choose from, in other words
there is no misspecification (blue areas). This ratio decreases and for finer discretization
there are more cases of model selection under misspecification (red areas). The sum of
blue and red areas is 100%.
The upper plot shows that the model selection using the AIC for the (Dλ)-model (orange
box plot) closely follows the reference line indicating 3n (n = number of subintervals) for
small n, before deviating for larger n. The same holds for the (Pλ)-model (blue box plot)
and its corresponding reference line 2n + 1. The number of subintervals for which both
box plots deviate from their respective reference lines is around n = 25 to n = 27. In the
region n < 15, there are several outliers which are almost all overestimates.
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Figure 14: (Color online) The lower plot shows the ratio of samples which allow the true
model to be among the set of models from which the IC may choose from, in other words
there is no misspecification (blue areas). This ratio decreases and for finer discretization
there are more cases of model selection under misspecification (red areas). The sum of
blue and red areas is 100%.
The upper plot shows that the model selection using the BIC for the (Dλ)-model (orange
box plot) closely follows the reference line indicating 3n (n = number of subintervals) for
small n before deviating for larger n. The same holds for the (Pλ)-model (blue box plots)
and its corresponding reference line 2n + 1. The number of subintervals for which both
box plots deviate from their respective reference lines is around n = 15 to n = 17.
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Figure 15: (Color online) The lower plot shows the ratio of samples which allow the true
model to be among the set of models from which the IC may choose from, in other words
there is no misspecification (blue areas). This ratio decreases and for finer discretization
there are more cases of model selection under misspecification (red areas). The sum of
blue and red areas is 100%.
The upper plot shows that the model selection using the HQ for the (Dλ)-model (orange
box plot) closely follows the reference line indicating 3n (n = number of subintervals) for
small n before deviating for larger n. The same holds for the (Pλ)-model (blue box plots)
and its corresponding reference line 2n + 1. The number of subintervals for which both
box plots deviate from their respective reference lines is around n = 18 to n = 20.
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Table 9: Model selection results based on ACD(1,2) data samples: Given 1000 samples of
size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 58.6 24.7 9.6 7.1
BIC 91.5 6.5 1.3 0.7
HQ 78.6 14.8 3.7 2.9

T=500 AIC 60.6 25.1 10.3 4
BIC 94.7 4.3 0.7 0.3
HQ 81.2 13.5 4.5 0.8

T=1000 AIC 52.7 27.8 15.2 4.3
BIC 92.6 5.1 2.3 0
HQ 76 14.7 8.8 0.5

T=2000 AIC 41.5 35.6 18 4.9
BIC 88.4 6.7 4.9 0
HQ 67.6 20.4 11.6 0.4

Table 10: Model selection results based on ACD(2,1) data samples: Given 1000 samples of
size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 36.2 20.9 31.8 11.1
BIC 73.7 8.9 16.8 0.6
HQ 52.4 16.3 28.1 3.2

T=500 AIC 19.1 20.7 50 10.2
BIC 59.9 10.5 29 0.6
HQ 36.5 16.4 43.8 3.3

T=1000 AIC 7.4 16.7 64.8 11.1
BIC 35.6 11.9 52.1 0.4
HQ 17.1 15.7 63.7 3.5

T=2000 AIC 1.2 12.7 74.2 11.9
BIC 6.8 12.9 80.1 0.2
HQ 2.2 14.2 81.6 2
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Table 11: Model selection results based on ACD(2,2) data samples: Given 1000 samples of
size T ∈ {250, 500, 1000, 2000} each column gives the percentage of cases in which the dif-
ferent IC selected the models ACD(1,1), ACD(1,2), ACD(2,1) and ACD(2,2) respectively.
The bold numbers give the largest percentage per row.

ACD(1,1) ACD(1,2) ACD(2,1) ACD(2,2)

T=250 AIC 56.7 15.8 18.8 8.7
BIC 89.7 5.3 4.5 0.5
HQ 74 11.5 11.7 2.8

T=500 AIC 57.2 13.6 19.1 10.1
BIC 92.1 2.9 4.6 0.4
HQ 78.4 8 11.4 2.2

T=1000 AIC 48.4 13.1 23.4 15.1
BIC 91.5 2.7 5.7 0.1
HQ 74 6.9 16.1 3

T=2000 AIC 34.2 9.7 37.2 18.9
BIC 86.1 1.8 11.5 0.6
HQ 59.7 6.8 26.5 7
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Figure 16: (Color online) (A) Volatility γ as a function of k for δt = 300 s. (B) Activity N

as a function of k for δt = 300 s. (C) Scatter plot of volatility γ as a function of number
of trades N . The points are averaged over the investigated period. All the plots are for
simulated data with w = 10 s.
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