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Abstract 

Large-scale educational surveys are low-stakes assessments of educational outcomes conducted 

using nationally representative samples. In these surveys, students do not receive individual 

scores, and the outcome of the assessment is inconsequential for respondents. The low-stakes 

nature of these surveys, as well as variations in average performance across countries and other 

factors such as different testing traditions, are contributing factors to the amount of omitted 

responses in these assessments. While underlying reasons for omissions are not completely 

understood, common practice in international assessments is to employ a deterministic treatment 

of omissions, either as missing observations or as responses that are considered wrong. Both 

approaches appear problematic. In this project, we analyzed the effects of treating omitted 

responses either as missing or as wrong, as is done in the majority of international studies, and 

compared these data-treatment solutions to model-based approaches to treating omitted 

responses. The two types of model-based approaches used in this study are: (a) extensions of 

multidimensional item response theory (IRT) with an additional dimension based on response 

indicator variables defined and calibrated together with the set of items containing the observed 

responses and (b) multidimensional, multiple-group IRT models with a grouping variable 

representing the within-country stratification of respondents by the amount of omitted responses. 

These two model-based approaches were compared on the basis of simulated data and data from 

about 250,000 students from 30 Organisation for Economic Co-operation and Development 

(OECD) Member countries participating in an international large-scale assessment. 

Key words: multidimensional item response theory, missing data, large-scale assessments, latent 

regression model, IRT
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Background 

Large-scale educational surveys are low-stakes assessments of academic achievement 

conducted using nationally representative samples. In international surveys such as Programme 

for International Student Assessment (PISA), Trends in International Mathematics and Science 

Studies (TIMSS), and Progress in International Reading Literacy Study (PIRLS),  more than 50 

countries participate in a coordinated administration of translated surveys. The low-stakes nature 

of these surveys, as well as variations in average performance across countries and other factors 

such as different testing traditions, have been discussed as contributing factors to the amount of 

omitted responses observed in these assessments. While it is reasonable to assume that the 

underlying reasons for omissions are not completely understood, common practice in 

international assessments is to employ a deterministic treatment of omissions either as missing 

observations or as responses that are considered wrong. Both approaches appear problematic, 

since the treatment of omissions as missing data assumes that missingness due to nonresponse is 

ignorable, and the treatment of omissions as (always) wrong responses assumes that the an 

omission indicates with certainty that the correct response is unknown, independent of 

respondent ability.  

In the National Assessment of Educational Progress (NAEP), omitted responses to 

multiple choice items are consistently treated as partially correct responses, while omissions on 

constructed response items are consistently considered to be wrong in psychometric scaling and 

ability estimation.  In some international assessments such as PISA and TIMSS, the missing 

responses are treated differently in different phases of the analyses. In this project, we analyze 

the effects of treating omitted responses either as missing or as wrong as is done in the majority 

of international studies, and compare these data-treatment solutions to the following two model-

based approaches in which missingness is treated as nonignorable: 

1. Extensions of multidimensional IRT, in our study specified as special cases of a 

general latent variable framework, the general diagnostic model (GDM; von Davier, 

2005). In this approach, an additional dimension based on response indicator variables 

(Glas & Pimentel, 2008; Holman & Glas, 2005; Moustaki & Knott, 1999) was 

defined and calibrated together with the set of items containing the observed 

responses.  
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2. An extension of the GDM that allows estimation of multidimensional, multiple-group 

IRT models (Xu & von Davier, 2006, 2008). In this context, a grouping variable was 

specified that represents the within-country stratification of respondents by the 

amount of omitted responses. This, in effect, emulates a latent regression model 

(Mislevy & Sheehan, 1992; von Davier, Sinharay, Oranje, & Beaton, 2007) with 

omission rate by country as a predictor of average performance 

Missing data due to examinees’ nonresponse threatens statistical inferences if the target of 

inference, for example the proficiency variable of interest, and the tendency to omit responses are 

not independent. Rubin’s framework (Rubin, 1976; Rubin & Little, 2002) differentiates among 

three kinds of missing data according to the underlying missing data mechanism: missing 

completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).  

In order to define the three kinds of missing data, Rubin distinguishes between the observed data 

Yobs and the missing data Ymiss. Together, these constitute the complete data matrix Y = (Yobs,Ymiss). 

Here, we adapted this notation to the latent variable framework. Y here is the complete data matrix 

that consists of the observed item responses Yobs and the omitted responses Ymiss of the k items Y1 

to Yk, indexed by i. The values of a latent variable ξ can also be considered to be missing data. In 

large-scale assessments, it is a common practice to include covariates such as gender and social 

economic status in the analyses. All covariates constitute the matrix Z. MCAR denotes the case 

where the distribution of missing data is independent of Yobs, Ymiss and a given multivariate 

covariate Z. That is, P(D | Yobs, Ymiss , Z, ξ) = P(D). The matrix D is an indicator matrix consisting 

of the indicator variables di that marks the occurrence of the values of Yi,    

1,if  is observed

0, if  is not observed. 

i

i

i

Y
d

Y


 
   (1) 

MAR holds if the distribution of the missing data is only dependent on the observed variables 

Yobs and Z but not dependent on the unobserved values of missing data Ymiss and ξ. This is 

equivalent to the expression P(D | Yobs, Ymiss , Z, ξ) = P(D | Yobs, Z). The third type, called 

MNAR, can be written as P(D | Yobs, Ymiss , Z, ξ) ≠ P(D | Yobs, Z). It is the opposite of MAR. That 

means the conditional distribution of the missing data given Yobs and Z depends on the 

unobserved data Ymiss and possibly ξ. MCAR and MAR do not jeopardize likelihood-based or 
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Bayesian inference. The missing data mechanism can be considered to be ignorable and does not 

need to be taken into account. However, MNAR implies a violation of the ignorability principle 

and requires appropriate measures to account for the effects of data MNAR. Different methods 

have been proposed to account for MNAR. Such methods include regression-based methods, 

multiple imputation (Rubin, 1987; Schafer, 1997), methods based on the EM algorithm 

(Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1996), as well as weighting 

procedures (Rubin & Little 2002).  

In this paper, the effects of different treatments for nonignorable missing data in the area 

of educational large-scale survey assessments are considered. In this field, accurate estimates of 

the item parameters and the proficiencies of reporting subgroups are of major interest. How item 

and person parameter estimates are affected by missing data is shown by studying measures 

based on classical test theory (CTT) and those derived from models from item response theory 

(IRT). Additionally, it is demonstrated that the occurrence of missing data and its treatment is 

also a matter of test fairness. For that reason, a case-based simulation was conducted to 

demonstrate the effects of treating missing data in different ways. Finally, different IRT models 

are utilized in order to analyze data from PISA, using the database from the 2006 assessment 

cycle.  

Many large-scale assessments are low-stakes surveys, which typically suffer from a 

substantial amount of missing data. With large-scale surveys, a subset of items, organized into a 

number of test booklets, is administered to the students, so that a large proportion of all item 

responses are missing by design. The test booklets are spiraled through the sample so that the 

assignment of booklets to students is random, and thus, the data missing due to booklet 

assignment can be viewed as data that is MCAR. In addition to the items that were not 

administered, additional items may not be responded to by the students, either due to a lack of 

motivation, a lack of sufficient testing time, or for other reasons. This portion of the missing data 

is the target of the current study, since these omissions are often related to student characteristics. 

It has to be assumed that the proportion of missing data may be related to the latent variable of 

interest, even after conditioning on the observed data and covariates. Using the introduced 

terminology, that means that the omitted responses are MNAR. To tackle this problem, common 

practice in operational data analyses tends to replace the omissions in a somewhat ad hoc manner 

and treats these afterwards as if the data were observed by design in the way chosen by the 
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analyst. For example, in many large-scale assessments, the missing data are treated as incorrect 

responses, that is, as if an answer was attempted but the question was answered not correctly. 

That procedure ignores the stochastic relation between the latent proficiency variable and the 

manifest item response. A deterministic replacement of omitted response by wrong response 

implicitly assumes that the omitted item can never be solved, regardless of the ability of a person. 

In some surveys, the treatment of missing data differs between the preliminary stage of item 

calibration and the later stages of group-level estimation of ability distributions. In the initial item 

calibration, the missing responses are ignored, that is, treated as MCAR, but in the subsequent 

operational analyses, the missing data are treated as incorrect responses. The item parameters, 

however, are taken as fixed, known constants, from the item calibration in the first stage. This, in 

effect, changes the dataset between item calibration using IRT (where omissions = missing), and 

ability estimation using latent regression-based population models (where omissions = wrong), 

and thus changes basic item statistics, such as the percent correct and item total correlations 

between different stages of the analysis.  

Some theoretically derived model-based approaches to dealing with data MNAR have 

been proposed in the literature. With the symmetric pattern model, O’Muircheartaigh and 

Moustaki (1999) introduced a latent variable approach to tackle the problem of data MNAR. 

Holman and Glas (2005) as well as Korobko et al. (2008) chose the same idea to account for 

nonignorable missing data. These authors used the matrix D of the indicator variables di (see 

Equation 1) to establish a measurement model for a so-called latent response propensity θ. The 

person estimators of θ can be used to compute weights for each observation (Moustaki & Knott, 

2000). Alternatively, the measurement model for the response propensity θ has been added to the 

measurement model for the ability variable of interest, ξ. This results in a multi-dimensional IRT 

(MIRT) model and the information on the missing data with respect to ξ is directly taken into 

account in the maximum likelihood estimation. The MIRT model can be specified in different 

ways to account for the relationship between ability and response propensity. MIRT models with 

either a between-item-multidimensional structure or a within-item-multidimensional structure 

have been introduced to account for nonignorable missing data. Another possibility is to avoid 

modeling a second latent variable by regarding the missing value code as an additional response 

category in a nominal response model (Moustaki & Knott, 2000). The basic idea of these models 

involves the specification of a selection model (Heckman, 1979) that accounts for the stochastic 
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dependency between the latent proficiency ξ and the occurrence of missing data. In addition to 

the above approaches, we propose taking the missing data mechanism into account by specifying 

a predictor variable of the latent proficiency ξ to be introduced in a latent regression model. The 

proposed approach has, in our view, at least three advantages:  

1. The latent regression approach does not increase the dimensionality of the IRT 

scaling model by an additional response propensity dimension based on the indicator 

variables di,  

2. A covariate based on the amount of missingness can be defined even in cases where 

there are too few omissions to support IRT-based scaling of response propensity 

indicator variables (when di are all very easy, i.e., the amount of omissions is low),  

3. The latent regression approach comes at virtually no cost for large-scale survey 

analyses such as the ones conducted in PISA, TIMSS, and NAEP, since these involve 

estimation of latent regression models with a large number of predictors based on 

student background data. A response propensity indicator would simply act as an 

additional predictor in these models. 

In subsequent sections of this paper, we will compare these model-based approaches to 

the operationally used approaches that treat the omitted responses in deterministic ways. For 

these latter deterministic approaches, the observed item response data matrix is replaced by a 

new matrix, in which omitted responses are either replaced by wrong responses or by codes that 

indicate responses are missing at random. Little attention has been given to the effects of 

different missing data replacements of this type of item and person statistics commonly used in 

CTT. The sum score of a person over all items or functions of that score are often used as a 

simple estimate of ability, and are obviously affected by the way one treats omitted responses. In 

the presence of missing data, the mean overall completed items of a person can be used. A 

measure of the difficulty of the item Yi in CTT is the expectation E(Yi) estimated by the sample 

mean of that item. In a case-based simulation study described in this paper, the effects of 

nonignorable missing data and its treatment will be demonstrated with respect to these measures 

and to the IRT parameters of different models. These IRT models will be introduced next. 
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Item Response Theory Models 

In the case-based simulation study as well as in the analysis of the real data from PISA 

2006 described in this paper, we compared IRT models that ignore the missing data, as well as 

IRT models that take the information about nonignorable missing data into account in model-

based, nondeterministic ways. This was done in order to compare the performance of the 

common practices of handling missing data in large-scale assessments with model-based 

approaches to dealing with nonignorable missing data.  

Altogether, seven different models were considered. Some models were multidimensional 

generalizations of the Rasch model; some were generalizations of the two-parameter logistic IRT 

(2PL IRT; Lord & Novick, 1968) model. The generalizations of the Rasch model used in this 

study are special cases of the mixed-coefficients multinomial logit model (MCMLM; Adams & 

Wu, 2007) and can be specified in the Conquest software (Wu, Adams, Wilson, & Haldane, 

2007). Both the generalizations of the Rasch models used in this study and the generalizations of 

the 2PL model used in this study are special cases of the general diagnostic model (GDM; von 

Davier, 2005), and can be estimated with the mdltm software (von Davier, 2005). We will 

indicate below which software was used in each case. Not all the models were used in both the 

simulation study and the PISA real-data analysis. The differences between the models used in 

this study are described in the following: 

 Model 1 is the unidimensional IRT model using the complete data Y. The IRT model 

for the complete data was only used in the simulation study, since complete data is 

unavailable with real datasets. Therefore, Model 1 was estimated only in the 

simulation case-study in order to provide a gold standard for comparison.  

 Model 2 is the unidimensional IRT model where the missing data were ignored. This 

model assumes implicitly that the missing data are missing completely at random. The 

model specification is equivalent to Model 1.  

 Model 3 is the unidimensional IRT model using data where omitted responses were 

treated as incorrect. The model specification is equivalent to Model 1 and 2 but 

estimation is based on recoded data.   

 Model 4 has also the same model specification as Models 1 to 3, but the item 

parameters were taken as fixed from Model 2. This model emulates the procedures in 
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many large-scale assessments. That is, in the item calibration stage the missing data 

are ignored. In the subsequent analysis, where the person parameter and its 

distribution are estimated given the fixed item parameters from the item calibration, 

the missing data are treated as wrong.  

The Models 2 to 4 were also applied to the real PISA 2006 data. Because of the 

complexity of these data, some extensions had to be introduced. First, the latent ability variable 

needed to be multidimensional. Therefore, four latent variables for mathematics, reading, science 

and the latent response propensity were incorporated. Second, the country variable was included 

in the model as a covariate, by specifying a multiple-group model. The item parameters were 

constrained to be equal across the 30 Organisation for Economic Co-operation and Development 

(OECD) countries used in this study. In order to compare the countries with respect to the 

distributions of the latent variables, their means, variances, and covariance terms were freely 

estimated within each country.  

Model 5 is the latent regression model, where ξ is regressed on the observed response rate 

 d U  of a person U.  We assume a general tendency of examinees to complete items. This response 

propensity is also a latent variable, denoted by θ.  The observed response rate of a person is a fallible 

measure of θ. Figure 1 shows the conceptual path diagram of the latent regression model. 

 

Figure 1. Conceptual path diagram of the latent regression model. 

Considering the likelihood of Model 5, it can be seen that the missing data information is 

taken into account in the estimation of the density g(ξu) of the latent variable  (Equations 1 and 2), 

   
1 1

| , , , .
N k

i u Yi Yi i u
u i

L P Y d g   
 


 (2) 

Model 5 was applied to the PISA 2006 data in a slightly altered fashion. Instead of 

using a linear regression,  |E d U   , the observed response rate was stratified into a number 
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of groups. Three strata were used (low, medium and high response rates). The distributions of 

the response rates in the three strata averaged across the countries are given in Table 1, in terms 

of the mean and the standard deviation. The categorization criterion used was able to obtain 

nearly equal-sized groups.  

Table 1  

Sample Size nstrata, of the Established Strata With Respect to the Estimated  

Response Propensity, and Mean and Standard Deviation of the Response Rates Within the 

Three Strata 

Strata nstrata Mean resp. rate SD 

Mean response rate < 0.90  84,473  0.765  0.129  

0.90 ≤  Mean response rate ≤ 0.98 76,797  0.944  0.022  

Mean response rate > 0.98 89,872  0.995  0.009  

The formed groups for the analysis were all the combinations of the stratified observed 

response rate and the country variable. Actually, 90 groups resulted. However, due to very low 

rates of omissions, the data from the Netherlands were classified into only two strata. Therefore, 

Strata 1 and Strata 2 were combined for the Netherlands and an 89-group model was analyzed as 

the final model. This model is equivalent to a multiple group latent regression IRT model, with 

the dummy-coded response strata variable as a predictor (Mislevy & Sheehan, 1992; von Davier, 

Sinharay, Oranje, & Beaton, 2007). 

 Model 6 is the between-item-multidimensional model with two latent variables ξ and 

θ. The measurement model for θ consists of the response indicator variables di. 

Consequently, this model is more complex because it needs two latent variables and 

double the number of items when compared to the unidimensional models and the 

latent regression model. The left panel of Figure 2 shows a path diagram illustrating 

the model structure.  
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Figure 2. Conceptual path diagram of the between-item-multidimensional model (left) and 

the between-item-multidimensional model that was estimated for the PISA 2006 data 

(right).  

A closer look at the likelihood of Model 6 (Equation 3), reveals that the probability P(Yi = 

1| ξ, αYi, βYi) is weighted by the P(di = 1| θB, αdi, βdi), the response propensity to item Yi, during the 

estimation. That corrects the parameter estimates for nonignorable missing data 

     
1 1

| , , , | , , ,
N k

i u Yi Yi i i Bu di di u Bu
u i

L P Y d P d g       
 

 . (3) 

We denote θ as θB to distinguish this variable from θW in Model 7. The variable g(ξu, θBu) 

is the joint distribution of the latent ability variable ξ and the latent response propensity θB. The 

model allows for the estimation of the covariance σ(ξu, θBu) of the two latent variables, which is a 

measure that in some sense quantifies the amount of nonignorability of the missing data.  

In order to apply Model 6 to the data of PISA 2006, some extensions had to be introduced 

to account for the complexity of the data. First, the latent ability variable needed to be 

multidimensional. Therefore, four latent variables for mathematics, reading, science, and the 

latent response propensity were incorporated. Second, the country variable was included in the 

model, by specifying a multiple group model. The item parameters were constrained to be equal 

across the countries. The variances, covariances and means of the latent variables were freely 
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estimated for each country. Figure 2 (right) shows the path diagram of the model for each 

country. 

Model 7, the last model considered in this study, is the within-item-multidimensional IRT 

model, with θW as a latent variable that contains the missing data information. As Figure 3 

reveals, the measurement model contains additional item discriminations αdi;ξ, which relates the 

response indicators di with the latent ability ξ.  

 

Figure 3. Conceptual path diagram of the within-item-multidimensional model. 

The likelihood of this model is equivalent to Equation 3, but the term P(di = 1| θB, αdi, βdi) 

is replaced by P(di = 1| ξ, θB, αdi, βdi). Model 7 is more complex in that it allows multiple loadings 

per item for the response propensity variables di. To identify Model 7, restrictions have to be set. 

Depending on the chosen restrictions the meaning of θW varies as well as the associated uni- and 

bivariate statistics (e. g., μ(θW),  σ(ξ, θW)). In the case of the Rasch model and under particular 

restrictions in the 2PL model, Model 7 can be transformed into Model 6, and vice-versa. Model 6 

is much easier to interpret. For that reason, Model 7 was not applied to the PISA 2006 data.  

With the 2PL model, which was used in the PISA 2006 analysis, the general model 

equations of the items Yi in the measurement model for ξ are equal in all seven models.  It is 

given with Equation 4. 

   
 

exp
| , , .

1 exp

Yi Yi

i Yi Yi

Yi Yi

P Y
  

  
  

  
   

 (4) 

The model equation for θ depends on the type of multidimensionality. For the between-

item-multidimensional model, Model 6, it is given by Equation 5, whereas Equation 6 is the 
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model equation for the response indicator variables in the within-item-multidimensional model, 

Model 7. 

   
 

exp
| , , .

1 exp

di B di

i B di di

di B di

P d
  

  
  

  
   

 (5)

 

   
 

; ;

; ;

exp
| , , .

1 exp

di di W di

i W di

di di W di

P d
 

 

    
 

    

 


  diα  (6) 

While Models 1 to 4 do not account for the stochastic nature of the missing data, by 

ignoring or by recoding the missing data, Models 5 to 7 are more complex and model the missing 

data mechanism alongside the measurement model of the latent ability ξ. We expect that the 

complexity is rewarded by more accurate, more reliable, and more valid results. 

Software 

For simplicity, in the simulation case studies only the one-parameter logistic (1PL) Rasch 

model was utilized. ConQuest (Wu et al., 2007) was used to analyze the simulated data sets. As 

just mentioned, for the PISA 2006 data we decided to apply the 2PL model. The mdltm software 

(von Davier, 2005) was used for calibration purposes with this model. This software allows for 

the estimation of one- and two-parameter logistic versions of general cognitive diagnostic models 

(von Davier, 2005; von Davier, DiBello, & Yamamoto, 2006; Xu & von Davier, 2006, 2008). 

The model equation of the GDM is given by 

  1

1 1

exp
| , , , .

1 exp

K

yi ik ik kk

i i i i C K

ci ik ik kc k

y q
P Y y

c q

  

  



 

   
   


 

β α q ξ  (7) 

The model equation describes the probability of a response in category y of item Yi given 

the model parameters. This is a multidimensional model with K latent skills ξk. The parameters qik 

are elements of the design matrix Q. The entries in this matrix are quantities that relate the latent 

skills ξk to items Yi. They are not estimated but are part of the model specification. A value qik = 1 

means that the latent variable ξk influences the category probabilities of item Yi, whereas qik = 0 

means the item response on Yi is conditionally stochastic independent of ξk given the remaining 

latent variables ξt with t ≠ k in the model. The parameters αik denotes the item discrimination 
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parameters and βyi are the category specific threshold parameters. The crucial difference between 

diagnostic models and the usual multidimensional IRT models is the discrete nature of the latent 

skill variables ξk. However, by specifying a sufficient number of latent skill levels, the model is 

equivalent to the 2PL multidimensional model for dichotomous items Yi, and the generalized 

partial credit model for ordered categorical items Yi (Haberman, von Davier, & Lee, 2008). 

Simulation Case Study 

To study the effects of missing data, a simulation with N = 1,000 cases and 26 

dichotomous items Yi was conducted. To keep the examples simple, the Rasch model was chosen. 

The R program was utilized to generate the data. The parameter estimation was carried out using 

ConQuest. 

The parameters for the simulation study were chosen in order to emulate some of the 

properties of the real PISA 2006 data. However, some of the properties of the real data were 

altered to be more extreme, to provide a better illustration of effects. For example, the overall 

proportion of missing data was increased to 30%. Given item Yi, the proportion of missing data 

depends on the item difficulty. The easier the item, the greater the expected number of simulated 

examinees who complete the item. The resulting dependency between the observed item means 

 iY obs of the items Yi and the mean  id Y of the respective response indicators di is depicted in 

Figure 4. The mean  id Y is simply the mean of the ith column of the D matrix and is the 

proportion of persons that completed the item Yi, regardless of whether they answered correctly or 

not. The means  iY obs  of dichotomous items is the proportion of correct answers on all 

observed item responses to item Yi. The correlation for the simulated data is 

   , 0.622i ir Y obs d Y    , while in the PISA 2006 data, this correlation was only about 0.33. 

Figure 4 shows the relationship graphically. That dependency was accomplished by establishing a 

systematic relationship between the threshold parameters of the measurement model for ξ and θ 

(Figure 4, left). 
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Figure 4. Item parameters of the both measurement models of ξ and θ (left). The right 

figure shows the resulting relationship between the item means of the observed item Yi that 

indicates ξ and the respective response indicators di.  

Under these chosen simulation conditions, the easy items contain fewer missing 

responses than the difficult items and are answered by almost all examinees. The more difficult 

an item, the fewer the expected number of persons who answer the item. This dropout is 

systematic, in the sense that people with lower ability levels tend not to provide a response. That 

means that with increasing item difficulty, the item mean is estimated on the basis of a less and 

less representative subsample, with respect to the latent proficiency variable. The observed data 

consists more and more of responses from more highly proficient people. Consequently, the item 

means  iY obs  will be biased estimators that systematically overestimate the true expectation 

E(Yi), due to the selection process. The resulting bias appears to increase with the difficulty of 

the item. Figure 5 (left) depicts the selection process for the simulated data. The conditional 

distributions of ξ given the Item Yi is completed are shown. The means 1|
id   of these 

distributions are correlated with the item difficulty by r = 0.704. In CTT, the item parameters are 

specific to the population employed. For that reason, each item difficulty is specific to a different 
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subpopulation characterized by its conditional distribution 1|
id  . In general, it holds that if the 

covariance between ρ(ξ, θ) is positive and the probability to respond to the item P(di = 1| θ) < 1, 

then    ; ;i obs i compE Y E Y . Therefore, the expectation of item Yi is higher for the observed data 

than for the complete data. The proof is given in Appendix B. This was also found in the 

simulated data (Figure 5, left). The extent of the bias is mainly driven by two factors: (a) the 

proportion of missing data and (b) the strength of the stochastic dependency between ξ and the 

occurrence of missing data. The latter corresponds to the strength of the nonignorability of the 

missing data mechanism.  

Likewise, recoding the missing data into answered incorrectly leads to a systematically 

biased estimator of the true item mean. Since it is implicitly assumed that the not observed values 

Yi;miss are zero for all cases, the more the missing data are present, the heavier the bias. Figure 5 

(right) shows the realized bias in the simulated data.   

 

Figure 5. Comparison of the item means between the complete data and the data with 

missing responses (left) and the missing data recoded as answered false. The solid line 

shows the linear relation between the parameters. The dashed line (right) represents the 

smoothing spline and the dotted line is the bisectric. 
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So far, only the item measures have been considered. What are the consequences of the 

selection process in terms of the person estimates? As mentioned above, the sum score or 

functions of the sum score are used as ability estimates in CTT. In the presence of missing data, 

the sum score is not useful, because it is implicitly assumed that Yi;miss = 0. A more adequate 

route is to use the mean of all completed items. In the cases of dichotomous items Yi, this is 

simply the proportion of correctly answered items on all completed items of person u, denoted as 

P+(u). But how is this measure influenced if the missing data mechanism is nonignorable? If the 

ability ξ and the latent response propensity are positively related and, simultaneously, the item 

difficulties are related to the proportion of missing of the items, then on average, respondents 

should choose to answer those items that are easy enough for their ability. That means 

respondents should tend to complete those items that have a higher probability to be solved, 

given their value on ξ. That leads to a systematic bias in the proportion correct measures. 

Respondents with a lot of missing data have P+(u) that are based on a very different, self-

selected, test form. In other words, the measures are not comparable any more if the number of 

completed items differs systematically. Figure 6 (left) shows the means  u of the item 

difficulties of the items that person u, with a certain value of ξ, has completed. From a point of 

view that assumes a rational response process, the missing data mechanism is plausible under the 

assumption that respondents have a heuristic to judge or develop a vague idea about the difficulty 

of an item. As a result, they should more likely omit items they judged as too difficult. Therefore, 

more benefit can be expected in terms of higher proportions of correctly answered items in the 

data with missing data in the middle and lower range of the ability distribution. Another 

explanation is that items are not reached, because the speed of processing the items is slower for 

respondents with lower ability ξ. In that case, the proportion of missing data would also be 

correlated with ability, but the selection process for the items would be quite different. 

Respondents would not choose items due to item difficulty but the later items are more often 

completed, on average, by the more proficient respondents. In this case, the benefit from having 

missing data depends on the difficulty of the last items compared to the first ones. 
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Figure 6. Left: Mean of the item difficulties averaged across the completed items for each 

person. The dashed line marks the unconditional mean of the item difficulties. Right: 

Means of the conditional distributions of ξ given the items were solved. The circles mark 

the means of the conditional distributions, the vertical black lines indicates +/- 1 SD. 

In our simulation case studies, we emulated the process of an individual judging items 

and choosing the easier items to complete. If we compare the proportion correct between the 

complete data (denoted as  compP u ) and the observed data (denoted as  obsP u ), respondents 

with missing data should benefit from the missing data mechanism. Figure 7 (left) confirms this 

supposition. Of course, the process is stochastic and for some respondents the missing 

mechanism will be disadvantageous.  

In the following section, the effects of recoding omitted responses to answered incorrectly 

will be presented. The proportion of correct answers after recoding  m falseP u
  can only be equal 

or smaller than the proportion correct  compP u  of the complete data. Therefore, handling of 

missing data in this way constitutes a penalization. Figure 7 (right) reveals that the penalization 

varies across the distribution of ξ.  It is, on average, the highest in the middle to higher range of 

the latent variable ξ, although the highest rate of omitted responses are observed in the lower 
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range of ξ. In the lower ability range, more missing data occurred but the skipped items were 

more likely not answered correctly.  

These findings indicate that the occurrence and the treatment of missing data is also a 

matter of test fairness. A comparison among respondents and among groups of respondents 

might be unfair if they differ in their amount of missing data and in the strength of the 

relationship between the latent variable ξ and the missing data. Recoding missing values into 

incorrect responses might seem plausible at first glance, but the results here indicate that this 

leads to unfair penalization and wrong inferences. Using this strategy leads to the treatment of 

missing data not as what they actually are, not observed responses. Quite the contrary, by 

recoding the missing data into incorrect responses, the dataset is treated as if no missing data had 

occurred. As mentioned above, within the IRT framework, several model-based approaches have 

been proposed to handle nonignorable missing data. In the next section, the simulated data were 

used to study the effect of missing data on the item and person parameter estimates if the missing 

data are ignored or recoded as wrong. Next, the models that account for the missing data are 

considered. 

 

Figure 7. The difference between the proportion correct of the observed and the complete 

data (left) and the difference between the proportion correct if the missing data are recoded 

to false and the complete data (right). 
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IRT Models Used in the Simulation Case Study 

The Rasch model was chosen for the simulation. Consequently, all item discriminations 

are restricted to be one. The parameter estimation for the seven IRT models introduced above was 

carried out by specifying a Rasch model with ConQuest. 

Figure 8 displays the results for the item parameters of the measurement model of ξ.  

 

Figure 8. Pair-wise comparisons of estimated item difficulties: The first row/column 

illustrates the accuracy of the estimates of the different models by the comparison with the 

true items difficulties. The dotted line is the bisectric. The solid lines represent smoothing 

splines.
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Compared with the true item parameters, the estimates of all models fit pretty well, with the 

exception of Model 2 where the missing data are recoded to false. Even Model 3 without 

modeling the missing data mechanism alongside the measurement model for ξ gives reasonable 

accurate results with respect to the recovery of item parameters.  

Table 2 

Bias, Standard Error,s and Mean Squared Error of the Item Difficulties of the Measurement 

Model of the Latent Proficiency Variable ξ 

Model  

Item parameter estimates 

Bias SE MSE 

Model 1 - complete data 0.0457 0.006 0.00212 

Model 2 - ignoring missing data 0.007 0.00961 0.00014 

Model 3 - missing = false  0.7362 0.07561 0.54766 

Model 5 - latent regression  0.05713 0.00998 0.00336 

Model 6 - between-item-
multidimensionality  

0.0492 0.00913 0.00251 

Model 7 - within-item-
multidimensionality 

0.0649 0.009 0.00429 

It is important to note that a single simulation trial is far from sufficient to make a 

decision about which model to use. The simulation in this paper serves only to illustrate the 

influence of missing data treatments on parameter estimates. Therefore, a general superiority 

of Model 2 cannot be concluded, even if in this case, it seems to provide the smallest bias.  

Note that in this particular case, Model 1 that uses the actual complete data does not fit as well 

as Model 2 does.  

Models 6 and 7 produce virtually identical estimates of item parameters for the 

measurement model of the latent ability ξ. This result can be explained by the fact that in the 

special case of the Rasch model (and a few constrained versions of the 2PL), these two 
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models are identical, up to parameterization. More specifically, this means that the parameters 

of one model variant can be converted into the other model’s parameterization by means of a 

simple transformation. Appendix A explains this equivalency in more detail.  Yung, Thissen, 

and McLeod (1999), as well as Rijmen (2009) provided similar results for related models such 

as the bifactor IRT models (Gibbons & Hedeker, 1992). 

To summarize this section, the recovery of item parameters is adequate across 6 of the 7 

models, with the exception being Model 3. The treatment of missing data as answered not 

correctly leads to heavily biased item parameter estimates. As expected, they are consistently 

overestimated. Using the simple unidimensional Rasch model and ignoring the missing data 

mechanism is quite robust when compared to CTT-based item measures. Three models that 

account for nonignorable missing data were used, the between- and the within-item 

multidimensional IRT (MIRT) models, as well as a latent regression model with stratified 

response propensity groups. The choice between the two MIRT models does not depend on the 

assumption about the missing data mechanism. Both models are equally suited to account for 

nonignorable missing data. The crucial difference between the models is the meaning of the two 

latent variables θW and θB. The advantage of Model 6 is the clear interpretability of θB as a latent 

propensity score. Accordingly, the correlation ρ(θB,ξ) is a direct measure of the relationship 

between the latent ability of the observational units and their general tendency to respond to the 

items. Apart from that, there are no differences with respect to the item parameters in the 

measurement model of ξ between Model 6 and 7. The remaining question is, how accurate can 

the variable ξ be estimated, using the different models? That question will be considered in the 

next section. 

To compare the models according to the person parameter estimates, expected a posteriori 

estimates were used. In the estimation procedure for these parameters, the joint distribution f(ξ,θ | 

Σ) of the latent variables is taken into account. That corrects the estimate of ξ for the missing 

data.  
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The variable ˆEAP
u is the EAP estimate for person u and Σ denotes the variance-covariance matrix 

of ξ and θ. The accuracy of the EAPs of the seven IRT models are summarized in Table 3 and 

Figure 9. 

Table 3  

Bias, Standard Errors, and Mean Squared Error of the EAP Estimators of the Latent 

Proficiency Variable ξ 

Model Person parameter estimates (EAP) 

Bias SE MSE  2
ˆ ,EAPr     ˆRel EAP

Model 1—Complete data 0.03623 0.43499 0.19053 0.814 0.822 

Model 2—Missing = 9  0.03535 0.50994 0.26129 0.744 0.757 

Model 3—Missing = false 0.03338 0.53353 0.28577 0.723 0.830 

Model 4—Missing = false (2) 

-0.62029 0.55965 0.69797 0.720 0.756 

Model 5—Latent regression 0.03530 0.48290 0.23444 0.770 0.782 

Model 6—Between-item-
multidimensionality 

0.03562 0.48211 0.2337 0.771 0.781 

Model 7—Within-item- 
multidimensionality 

0.04108 0.48236 0.23436 0.771 0.791 

Note.  ˆRel EAP denotes the EAP-reliability, defined as the ratio of the variance of the EAPs and the 

variance of the plausible values.  

With the exception of Model 4, the bias does not differ substantially across models. 

Even Model 2 and 3 have small biases. Treating the missing data as answered not correctly, 

while using the item parameter estimates from Model 1, leads to heavily biased person 

parameters for Model 4. As expected, the EAPs from Model 4 underestimate the true ability. A 

comparison of the estimates obtained with Models 3 and 4 shows that these models are indeed 

only different parameterizations of the same underlying structural assumptions. For the other 

models, only small differences can be seen with respect to the standard errors and the MSE of 

the estimates. According to the considered measures, Models 5 to 7 seems to be slightly better 
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than Models 2 to 4.  The results suggest that accounting for nonignorable missing data by 

modeling the missing data mechanism as is done in Models 5 to 7 improves the accuracy of the 

EAP estimates. 

 

Figure 9. EAP parameter estimates of ξ. The true person parameters of ξ used to simulate 

the data is indicated by true. The correlations are depicted in the upper triangle. The dotted 

line is the bisectric and the solid line is a smoothing spline regression.  

In addition, Figure 9 provides the correlation between the true values of ξ and the different 

estimates. It can be seen that EAPs based on the complete data exhibit the highest correlation, and 

Models 3 and 4 that treats missing data as incorrect show the lowest correlation. The squared 

correlation between the true person parameters and the person parameter estimates is a measure of 

reliability. A simulation study allows for comparisons of this true determination coefficient with 
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the model-based estimators of the reliability that are available in real applications. Using 

ConQuest, the EAP reliability as an overall estimator of the reliability, averaged over the 

distribution of the latent variable ξ, is available. This estimate of reliability is given by the ratio of 

the variance of the EAPs and the variances of the plausible values (Adams, 2005). The last 

column of Table 3 gives these reliability estimates based on the EAPs. Comparing the estimated 

reliability with the squared correlation of the true values of ξ and its estimators (column 4 of 

Table 3) reveals that Model 3 and to a lesser degree Model 4 overestimate the model-based 

reliability. For applications to real data this means treating missing data as answered wrong leads 

to biased and less accurate estimates and the estimated reliability will be spuriously high. All 

other models show only a slight overestimation with respect to the marginal reliability. Ignoring 

the missing data (Model 2) lowers the reliability, which is properly flagged by the lower 

estimated marginal reliability. Model-based approaches (see Models 5 to 7) show a slight 

improvement over Model 2 in terms of true and estimated reliability. Furthermore, the figure 

confirms the analytical derivations made above; the latent variable ξ is the same in Model 6 and 7. 

Consequently, the EAPs are nearly identical in both models. Model 5 incorporates the 

latent regression  |E d U   , with the regression coefficient    2
1 , /d U        . 

Given the measurement model of θ is true, with an increasing number of items, the covariance 

 , d U     approaches the latent covariance  ,   . Both Model 5 and Model 6 exploit 

the covariance of the response tendency and the latent ability. The only difference is that 

Model 5, the latent regression model, uses an observed statistic to quantify the response 

propensity. Therefore, it is expected that the EAPs are almost the same in both models, which 

can be verified by inspection of Figure 9.  

It should be noted that the simple unidimensional IRT model (Model 2) that ignores 

the missing data is surprisingly robust in the case of the 30% missing data used in the 

simulation and a moderate correlation between ability and response propensity. To challenge 

the simple IRT model and to demonstrate the impact of systematic missing data on IRT 

model-based estimates, a second simulation was conducted with a stronger correlation 

between ξ and θ and with more missing data. The chosen conditions were ρ(θ,ξ) = 0.8 and 

overall 50% missing responses in the data.  
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The presentation of results for this second simulation case study will be confined to the 

item parameter and person parameter estimates derived from IRT models. All CTT-based 

measures with respect to the items and persons exhibit the same shortcomings as already discussed 

above, but to a stronger degree.   

The realized data in the second simulation exhibit an overall amount of missing data of 

49.81%. It has to be noted that the omitted response rates differs across the items, depending on 

their difficulties. Table 4 gives the results on the accuracy of the estimated item parameters. The 

findings from the first simulation case are confirmed here with respect to Model 3. Treating 

missing data as incorrect responses leads to heavily biased item parameter estimates. Under both 

simulation conditions, Model 3 exhibits the largest expected bias. As can be seen in Figure 10, the 

item parameters are systematically underestimated.  

Table 4 

 Bias, Standard Errors, and Mean Squared Error of the Item Difficulties of the Measurement 

Model of the Latent Proficiency Variable ξ Obtained in the Second Simulation With ρ(θ,ξ) = 

0.8 and 49.81% Missing Data 

Model  Item parameter estimates 

Bias SE MSE 

Model 1—complete data -0.00519 0.00665 < 0.0001 

Model 2—ignoring missing data -0.13104 0.01672 0.01745 

Model 3—missing = false  1.2026 0.1702 1.47521 

Model 5—latent regression  0.01737 0.0159 0.00055 

Model 6—between-item-
multidimensionality  

-0.01407 0.01546 0.00044 

Model 7—within-item-
multidimensionality 

0.01081 0.01581 0.00037 
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The Models 5 to 7 take the missing data into account in an appropriate way and it appears 

that they are capable of reducing the bias considerably. 

 

Figure 10. Pair-wise comparisons of the estimated item difficulties of the second 

simulation with ρ(θ,ξ) = 0.8 and 49.81% missing data. The first row/column illustrates 

the accuracy of the estimates of the different models by the comparison with the true 

items difficulties. The dotted line is the bisectric. The solid lines represent smoothing 

splines. 

Table 5 and Figure 11 summarize the results with respect to the EAP estimates of 

the different models in the second simulation case study. When ignoring omitted responses, 
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some simulated persons seem to benefit by skipping items that are too difficult for them. 

Due to this self-selection based on item difficulty, simulated respondents in the lower to 

middle range of ξ may achieve, on average, higher but potentially invalid estimates. Again, 

it can be argued that missing data and their treatment are a matter of test fairness.  

Table 5 

Bias, Standard Error, and Mean Squared Error of the EAP Estimators of the Latent 

Proficiency Variable ξ, Obtained in the Second Simulation With ρ(θ,ξ) = 0.8 and 49.81% 

Missing Data 

Model  Person parameter estimates (EAP) 

Bias SE MSE  2
ˆ ,EAPr     ˆRel EAP

Model 1—complete data -0.00759 0.43781 0.19174 0.812 0.812 

Model 2—ignoring missings  -0.00938 0.62594 0.39189 0.615 0.636 

Model 3—missing = false  -0.00847 0.53811 0.28963 0.733 0.828 

Model 4—missing = false (2) -1.42860 0.54460 2.33749 0.733 0.817 

Model 5—latent regression -0.00944 0.50222 0.23444 0.752 0.768 

Model 6—between-item-
multidimensionality  

-0.04144 0.50395 0.25568 0.750 0.770 

Model 7—within-item-
multidimensionality 

-0.01625 0.50302 0.25329 0.751 0.772 

Note .  ˆRel EAP denotes the EAP-reliability defined as the ratio of the variance of the EAPs and the 

variance of the plausible values. 

In general, the missing data mechanism is a source of variance in the EAP 

estimates. This is reflected by the lower correlation between the EAPs of Model 2 that 

ignores missing data and the true value of ξ compared to other approaches that incorporate 

response propensities, or by comparison with the case that is based on complete data. 

However, the simple unidimensional IRT Model 2 at least flags the lower correspondence 

between the ability variable and the EAPs by having a correspondingly low estimated 

reliability. 
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Figure 11. EAP parameter estimates of ξ with ρ(θ,ξ) = 0.8 and 49.81% missing data. True 

indicates the true person parameters ξ used to simulate the data in the second simulation 

with ρ(θ,ξ) = 0.8 and 49.81% missing data. In the upper triangle the correlations are 

depicted. The dotted line is the bisectric and the solid line indicates a smoothing spline 

regression. 

Similar to the first simulation case, the reliability is noticeably overestimated when 

treating omitted responses as incorrect, as it is done in Models 3 and 4. The combination of 

handling missing data as “wrong” and using fixed item parameters from the model that 

ignores missing data leads to substantially underestimated person parameters. That can be 

contrasted with the overestimated marginal reliability. Compared with Model 2, it can be 

seen that Models 5 to 7 correct for the nonignorability of the missing data. On the one 

hand, that is reflected by the lower MSE of these models. On the other hand, it can directly 

be seen in the lower triangle of Figure 11. The arrows indicate the downward correction of 
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high person estimates in Model 3 by utilizing the missing data in Models 5 to 7. This leads 

to a reduction of error variance and increases the reliability of the EAPs.  

The goal of the models compared above is their application to real data. We 

demonstrated the consequences of applying different models with simulated case-studies 

based on correlations of response propensities and abilities found in real data, as well as based 

on response rates as they relate to item difficulties found in real data. If the missing data 

mechanism used for the simulated data sets meets the underlying missing data mechanism of 

the omitted responses of the real PISA 2006 data, the missing data IRT models should show 

results for the PISA data similar to those observed in the simulation. IRT models are widely 

used in large-scale survey assessments of educational outcomes.  

These low-stakes assessments typically suffer from a substantial amount of missing 

data, with the amount of omissions varying substantially from country to country, or between 

subpopulations within countries. Therefore the results presented here may be useful not only 

for the PISA assessment, but also for other large-scale surveys. However, we should also 

note that treatment of missing data differs across assessment programs, which limits the 

generalizability of the results. In PISA missing responses due to omissions are ignored in the 

item calibration but taken as answered not correctly in the following stages of operational 

analyses using the fixed item parameters from the previous calibration. In the next section, 

this handling of missing data and the more model-based treatments of missing data are 

compared using the PISA 2006 data.  

Real Data Analysis: PISA 2006 Data  

We used the PISA 2006 data of all OECD countries. The total sample size across these 

30 countries is N = 251,278 cases. The PISA 2006 test consists of a total of 179 items; there 

are 48 items for mathematics, 28 for reading and 103 for science arranged into several 

booklets. Each booklet contains only a subset of the total item count, so that each student is 

measured with a relatively short test in the three domains: reading, math, and science. The 

observations were weighted with senate weights (i.e., following the operational procedures 

used in PISA, the sum of student weights was rescaled to 500 for each country for the 

analyses presented here.) It has to be noted that that in the original PISA data, different kinds 

of missing data were distinguished (Organisation for Economic Cooperation and 
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Development, 2009). In the analyses presented here, we collapse the missing data categories 

not reached, omitted responses, and not codable into one missing data category. This implies 

the assumption that these three categories of missing data are related to the latent proficiency 

variables of interest in similar ways. The responses missing by design, here missing due to the 

sparse booklet design, can be regarded as MCAR and were treated in that way. In the 

following sections, the term missing data denotes the missing values that are not caused by 

design factors but by examinee (non-)response behavior. The overall response rate is 90.21% 

across all OECD countries. This means that the total PISA data suffers from nearly 10% 

missing data due to some form of nonresponse. As Figure 12 reveals, the proportion of 

missing data varies substantially across the countries. Therefore, the missing data mechanism 

is at least related to covariates Z, in this context sometimes called background variables. 

Using the introduced terminology, it would initially seem that the missing data are at least 

MAR.  

 

Figure 12. Proportion of completed items in the PISA 2006 data for participating OECD 

countries. The circles indicate the means; the ends of the bars indicate the 25- and the 75-

quantile. 
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However, it is easy to find evidence that the missing data are also related to the proficiency 

of interest. There is a substantial correlation, r = 0.398, between the proportion correct P+(u) and the 

proportion of completed items  d u . Therefore, it is quite likely that the missing data mechanism is 

nonignorable. The proportion of completed items  d u  is the mean of the row vector in D that is 

associated with case u, and is the response rate of that person. It is a manifest estimator of the 

response propensity of a person. It was also found that the response rate id  to an item Yi depends on 

the standardized item mean z
iY . This correlation is 0.33. Here, id  is the column mean of the D-

matrix that corresponds to item Yi. 
z

iY  is computed by 
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and is the item mean computed with the sample size ndi=1 that responded to the item Yi divided by 

the number of categories C – 1. In the case of dichotomous items, this is the proportion of correct 

answers in the observed responses to the item Yi. As a result, the range of the standardized item 

means can only range between 0 and 1 even for partial credit items with C > 2 categories. Figure 

13 (left) depicts the dependency between the standardized item means as a measure of the items 

difficulties and id . Note that the proportion of completed items differs across the item types and is 

the highest for complex multiple-choice items and the lowest for open constructed-response 

(Figure 13, right).  

The actual operational analyses of the PISA 2006 data were conducted with the Rasch 

model using ConQuest. Missing data were not treated with the model-based approaches as 

introduced earlier in this paper. The missing data were treated as wrong responses in the 

population modeling stages of the operational analyses. We reanalyzed the data using five 

different models, a subset of the models studied in the simulations previously presented. In order 

to avoid confusion, we use the same numbers to indicate the models as are used in the simulation. 

Obviously, Model 1 utilizing the complete data is not suitable, since the real data are incomplete. 

Furthermore, the within-item-multidimensional Model 7 was left out since Model 6 presents a 

more straightforward interpretation of the relation between response propensity and proficiency. 

This leaves Models 2 to 6, all of which were estimated for the PISA 2006 data. As outlined 
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above, the models are equivalent to the respective models in the simulation with the exception 

that they were adapted to the complexity of the real data.  All real-data models include three 

latent ability variables: for mathematics, for reading, and for science. All models are multiple 

group models, with country as the grouping variable, or country by response propensity stratum 

in the case of Model 5. 

 

 Figure 13. Dependency between the standardized item means and the observed response 

rate of the items (left). The observed response rates depending on the item type (right). 

Since Models 5 and 6 both account properly for nonignorable missing data it is assumed 

that consistency between the estimated parameters of these models will be higher, compared to 

estimates obtained from Models 2 to 4. 

Results 

In this section, the item parameters will be considered first, followed by a comparison of 

the person parameter estimates.  Due to the indeterminacy of the scale of (M-)IRT model 

parameters, some restrictions have to be introduced. The models are identified by fixing the sum 

of the item parameters per latent variable to one. To ensure the comparability of the estimates 

across the models, some standardization is needed that links the item and person parameter 

estimates across models. The method used here is based on the item difficulties. For each of the 

estimated models and each of the three proficiency dimensions ξk, the item difficulties βki has 

been standardized in the following way 
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Where  z

ki  is the standardized item difficulty of item Yi. 
.

ˆ
k

 denotes the mean and 
.

ˆ
k

 the 

standard deviation of all the item difficulties ki of the items Yki that indicate the latent variable ξk. 

The transformation of the slopes can be derived from the linear transformation of the item 

difficulties and is given by 
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Since, the item difficulties βki and the latent variables ξk share the same metric; the transformation 

of both is the same. Therefore the estimators of the latent variables ξk were linear transformed in 

the same way as the item difficulties 
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In this paper, only the conditional distributions of the person parameters within the countries are 

considered. So, the transformation has been conducted for the estimated means of each country g 

and each latent proficiency variable ξk. These group estimators will be compared across the 

models 
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Since we applied model variants based on a 2PL model, item difficulties and item 

discriminations can be compared across the five models. The results for comparing the item 

difficulties βki are summarized graphically in Figure 14. It can be seen that the item difficulties of 

Models 2 and 5 are nearly identical. The estimates of Model 6 are also very close to both of these 

models. Model 4 has been left out, because no item parameters were estimated in this model. 

Only the parameters of Model 3 that treated missing data as answered not correctly exhibit some 

deviations. If the item difficulties of Model 3 (the model that ignores the missing data 

mechanism) are subtracted from the item difficulties of Model 6 (between item-multidimensional 

model with latent response propensity), the resulting differences correlate with the response rates 

of the items by r = -0.570. Hence, 32.49% of the variance of the item difficulties across the 
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models can be explained by the proportion of missing data in the items (F = 85.18, df1 = 1, df2 = 

177, p < 0.001). It is important to note that the simple Model 2 that ignores the missing data 

mechanism is very close to Models 5 and 6. This finding is consistent with the results from the 

simulation study discussed previously.  

 

Figure 14. Standardized item difficulties of the Models 2, 3, 5, and 6. Model 4 has been 

left out because the item parameters were fixed in that model. The solid line is the 

bisectric. 

Similar results can be found for the estimates of item discrimination parameters. The 

estimates are pretty much the same for Models 2 and 5, and the discriminations of Model 6 

are very close to the discriminations from these two. Again the model that treats missing data 
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as wrong differs most from the other three. Figure 16 depicts these results. Compared to the 

item difficulties the differences between the estimated discrimination parameters of Models 2 

and 5 seem to be less related to missing response rates. The determination coefficient is only 

0.062 (F = 11.7, df1 = 1, df2 = 177, p < 0.001). The correlation is r = - 0.249. In general, it 

can be stated that the variation of the estimated discrimination parameters across the models 

increases with the magnitude of the item discriminations. 

 

Figure 15. Standardized item discrimination parameter estimates of  Models 2, 3, 5, and 6: 

Model 4 has been left out because the item parameters were fixed in that model. The solid 

line is the bisectric. 
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The person parameter estimates are now considered. As outlined above, the illustration of 

the results is confined to the estimated expectations   ˆ |
z

kE g of the three latent variables: 

mathematics, reading and science given the country variable indexed by g. Before the 

correspondence between the estimators across the models will be considered, the dependency 

between the response propensity and the latent proficiency variables needs to be discussed. As 

described above, a substantial correlation of r = 0.389 between the proportion of completed items 

and the proportion of correctly answered items has been found in the PISA 2006 data. It is 

expected that the correlation between the latent proficiency variable and the latent response 

propensity variable will be higher, since the observed correlation is attenuated due to 

unreliability. Table 6 shows these conditional correlations given the countries. The mean 

correlation between the latent abilities and the latent response propensities averaged across the 

countries is  0.433mathr   for mathematics, 0.434readr   for reading and 0.453scir   for science. 

That means that 18.78%, 18.81%, and 20.49% of the variance of the latent response propensity 

variable can be explained by simple linear regression on the respective latent ability.  

A careful look shows that the variance between the correlation coefficients is higher 

between the countries than between the scales within the countries. Thus, the country variable 

seems to be a moderator of the stochastic dependency between the response propensity and the 

latent ability variables.  

Model 5 provides a different way of looking at the dependency between the latent 

proficiency variables and the latent response propensity variable. For each country there exists 

three groups. The first group is defined by a low average response rate and many missing 

responses, the second group has somewhat less missing data, and the third group has a very high 

response rate and therefore, very low proportion of not completed items. The positive correlation 

between the latent response propensity and the latent ability should be reflected in Model 4 by 

mean differences between the three groups within each country. Figure 16 shows the estimates of 

propensity group ability means by country and confirms this expectation.  
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Table 6 

Estimated Conditional Correlation Between the Three Latent Ability Dimensions: Mathematics, 

Reading, and Science Given the Country and the Estimated Conditional Correlation Between the 

Three Latent Scales and the Latent Response Propensity, Given the Country 

Country  
(g) 

Cor(ξk, ξt |g) Cor(ξk, θB |g) 

Mathematics 
Reading 

Mathematics 
Science 

Reading 
Science 

Mathematics  
Response  
propensity 

Reading  
Response 
propensity 

Science 
Response  
propensity 

AUS 0.800 0.874 0.840 0.468 0.476 0.509 

AUT 0.802 0.923 0.847 0.508 0.516 0.524 

BEL 0.763 0.830 0.859 0.498 0.506 0.495 

CAN 0.872 0.823 0.866 0.404 0.424 0.429 

CHE 0.830 0.834 0.891 0.483 0.497 0.496 

CZE 0.797 0.910 0.841 0.473 0.459 0.479 

DEU 0.841 0.865 0.918 0.534 0.555 0.535 

DNK 0.736 0.843 0.852 0.435 0.472 0.469 

ESP 0.864 0.863 0.922 0.413 0.448 0.433 

FIN 0.740 0.832 0.876 0.320 0.392 0.353 

FRA 0.678 0.881 0.878 0.470 0.456 0.492 

GBR 0.848 0.841 0.864 0.489 0.521 0.530 

GRC 0.729 0.767 0.918 0.356 0.374 0.386 

HUN 0.811 0.916 0.822 0.460 0.459 0.449 

IRL 0.774 0.876 0.833 0.485 0.498 0.532 

ISL 0.666 0.863 0.887 0.394 0.420 0.406 

ITA 0.625 0.853 0.865 0.372 0.364 0.398 

JPN 0.847 0.858 0.864 0.470 0.457 0.483 

KOR 0.856 0.813 0.803 0.423 0.424 0.445 

LUX 0.734 0.839 0.825 0.446 0.440 0.473 

MEX 0.706 0.805 0.784 0.289 0.267 0.281 

NLD 0.706 0.868 0.913 0.405 0.424 0.412 

NOR 0.884 0.834 0.857 0.431 0.437 0.461 

NZL 0.873 0.860 0.891 0.462 0.517 0.523 

POL 0.722 0.829 0.800 0.434 0.454 0.457 

PRT 0.818 0.925 0.824 0.388 0.393 0.390 

SVK 0.809 0.842 0.890 0.444 0.499 0.452 

SWE 0.736 0.893 0.807 0.429 0.390 0.454 

TUR 0.757 0.830 0.759 0.395 0.390 0.396 

USA 0.077 0.842 0.081 0.422 0.082 0.437 
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Figure 16. Estimated means of the three different strata within the 30 OECD countries: 

Each three points that are connected by lines indicates a country.  

In order to demonstrate the effect sizes of the dependency between latent ability and the 

response propensity, the differences between the three groups for each country have been 

standardized. First, the three estimated means for each country were centered with respect to the 

mean of the second response propensity strata of that particular country. Afterwards the means 

were divided by the standard deviation of the third strata. So, in Figure 16, the country-specific 

mean differences between the adjacent strata are depicted in terms of standard deviations of the 

latent proficiency of the third strata. It can be seen, that the effect sizes reach up to absolute 

values of about 1 and slightly higher, between adjacent strata. even higher effect sizes result from 

the comparison of the first and the third strata within countries. Just as is the case with the 

conditional correlations Cor(ξk, θB |g) in Model 6, this means that the response rate and the 

average ability are correlated substantially. In other words, it appears that the missing data are 

not at random. 
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Figure 17. Effect sizes of the difference of the estimated means. All means are centered around 

the second strata within each country and divided by the standard deviation of the third strata. 

Hence the units of the y-axis are standard deviations of the third strata within the countries. 

Finally, the estimated conditional expectations   ˆ |
z

kE g of the three latent ability 

variables were compared across countries. It was expected that treating the missing data by 

recoding it into answered not correctly will lead to an underestimation of the person parameter 

estimates. This effect should be visible in the group means   ˆ |
z

kE g . Figure 18 displays the 

results graphically. The different symbols indicate the three different latent variables. Circles 

indicate mathematics, squares mark reading, and triangles are indicative for science. Similar to the 

results of the item parameters, Models 2, 5, and 6 exhibit a high level of agreement. As 

hypothesized, Models 3 and 4 that regard missing data as answered not correctly show a 

systematic underestimation of the conditional means. The effect is even slightly higher for Model 

4. Again, there is evidence that in the presence of nonignorable missing data, the simpler IRT 

Model 1 that ignores the missing data seems robust. The difference between the conditional means 

of Models 3 and 5 correlates with the average response rates of the countries by r = 0.673. Hence, 

45.24% of the variance in the differences of the country means with respect to the latent 

proficiency variables can be explained by the proportion of missing data of the countries.  
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Figure 18. Conditional means of the three latent variables mathematics, reading, and 

science across the five different models and given the countries. The different symbols 

marks the three variables (circles = mathematics, squares = reading, triangles = science). 

The red line is the bisectric. 

The presented results of the real data analyses so far provide no evidence that the Models 5 

and 6 outperform the multidimensional multiple group Model 2. The results of the simulation 

studies showed that in cases of a substantial amount of missing data and a moderate correlation 

between the response propensity and the ability variable, the simple IRT model is quite robust. The 

bias is small even if missing responses are ignored. However, the case studies have shown that 

ignoring missing data lowers the reliability of the ability estimates. We expected to find improved 
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reliability estimates using the models that account for the missing data mechanism. Figure 20 (left) 

exhibits that the estimated reliabilities of Model 3 that treat the missing as answered wrong are 

reasonably higher than those of Model 2. Based on the simulation results, we consider the 

reliabilities of Model 2 to be overestimated and therefore to be biased. Also in accordance with the 

simulation results are the on-average higher reliability estimates from the between-item-

multidimensional model (Figure 19, right). The previous theoretical considerations as well as the 

simulations support the consideration of these improved reliabilities as real. The use of the 

information of the missing data with respect to the latent ability improves the psychometric 

properties of the test.  

 

Figure 19. Comparison of the estimated reliabilities across the models given the countries 

and the scales: Comparisons between the reliabilities of the simple IRT model (Model 1) 

that ignores missing data with Model 2 that treats missing data as answered not correctly 

(left) and Model 6, the between item-multidimensional model, that accounts for the missing 

data mechanism (right). The solid line is a linear regression line. The dotted line is the 

bisectric. 

Discussion 

In this paper, it has been shown that the presence of nonignorable missing data poses a 

threat to the reliability and the validity of test results reported using either CTT-based or IRT-
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based methods.  MNAR can lead to biased item and person parameter estimates. This has been 

demonstrated in a simulation case-study as well as with real data from PISA 2006. The effects of 

missing data that are not at random were demonstrated for the CTT-based measures such as the 

proportion correct (P+) of a person and the item means as a difficulty indicator of an item. The 

degree of bias depends on the strength of association between the latent proficiency and the 

response propensity and, obviously, the overall amount of missing data. The more missing-data 

that exists and the stronger its nonignorable nature is, the more biased the estimates will be. The 

results indicate that under a moderate proportion of missing data (30%), the person and item 

parameters estimates based on the IRT models are quite robust and give reasonably accurate 

estimates. But under high proportions of missing data (50%), person and item parameter 

estimates are seriously affected. The bias in CTT-based item and person parameters is already 

noticeable in the condition with 30% missing data. The item means  iY obs are systematically 

overestimated, if the proportion of missing data is negatively related to the latent proficiency. It 

could be demonstrated that this overestimation increases with the difficulty of the items and 

results from the systematic dropout of responses in persons in the lower ability range. In other 

words, the item means are estimated on the basis of different subpopulations with respect to the 

latent variable that is the intention of measurement. The person parameters in CTT are the 

weighted or unweighted sum scores or functions of it. In the presence of missing data, the sum 

score is not appropriate, since the missing data were implicitly treated as answered not correctly. 

The mean of the completed items seems more appropriate and is often used in application. 

Unfortunately, the selection process that causes nonignorable missing data can lead to unfair 

comparisons between persons. It could be shown that persons tend to choose items that are more 

likely to be answered correctly with respect to their ability and to skip items with higher 

difficulties. That elevates the proportion of correct answers compared to a person with the same 

ability level but without omitted responses. In other words: Respondents administer a self-

selected test that is closer to their proficiency and this item selection mechanism is, on average, 

beneficial. That the missing data are related to the latent ability is well known and might be the 

justification for tackling the problem by recoding the missing data into answered not correctly. 

However, considering the item mean and the proportion of correctly answered items in the case 

of dichotomous items, it was demonstrated that this procedure is also unfair. Treating missing 

data as wrong has an effect opposite to that from ignoring missing data, that is, it tends to 
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penalize respondents who actually might have solved the items. On average, those are the more 

proficient persons, who are less likely to gain from having missing data. Hence, this handling of 

the missing data does not correct satisfactorily for data MNAR. These findings underline that the 

occurrence of missing data as well as their treatment are a matter of test fairness. 

Obviously, it would be best to find a procedure for test administration that avoids 

nonresponse completely. For large-scale survey assessments, this mainly means reducing the 

response burden, and increasing the motivation to respond in a manner such that respondents do 

their best in answering each item they are confronted with. In the absence of a method to achieve 

a perfect response rate, model-based approaches appear to provide ways to utilize the relationship 

between response propensity and proficiency in order to improve parameter and ability 

estimation. Using the latent variable models such as the ones specified in the IRT framework, the 

bias due to the nonignorable missing data can be reduced using models that take the missing data 

mechanism into account. Different models have been proposed in the literature. In the simulation 

case study, three model-based approaches were compared to the simple IRT model that ignores 

the missing data and the IRT model that treats the omissions always as wrong. In the between 

and the within MIRT models, a second latent variable is incorporated that captures the missing 

information, while the latent regression based missing data model uses a predictor based on the 

observed count of omitted responses to improve estimation of the proficiency variable. Using an 

IRT model that treats missing data as wrong confirmed that this treatment of missing data leads 

to heavily distorted item parameters and ungrounded overestimation of reliability. The results of 

the simulation case studies showed that these model-based approaches are equally suited to 

account for the nonignorable missing data. Note however, that the simple IRT models that 

ignores missing data shows relatively good performance under conditions of moderate amounts 

of missing data. The model-based approaches that incorporate a nonresponse variable of some 

kind outperform the simple IRT model clearly only under high rates of missingness. These 

models, however, have a secondary gain, in that they show the level of correlation between 

nonresponse and proficiency, and in that they improve the estimation of the reliability of ability 

estimates, and thus reduce uncertainty associated with estimators of proficiency distributions. It 

might be misleading to look only at correlations, overall biases, and means that summarize 

quantities. Statistical analysis strives for improvement of individual estimates as well as 

estimates of group-level distributions. For that reason, all relevant sources of information in the 
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data should be exploited in order to improve the diagnostic value of the estimates. As 

demonstrated, the model-based approaches of treating missing data adjusted the EAP ability 

estimates selectively, due to the pattern of missing data, and corrected for the unfair benefit of 

the systematically skipped items. So, even in the presence of only a few missing responses, there 

might be some test-takers with a high percentage of systematic missing data. For these particular 

cases, the EAP estimates based on models that adjust for the missing data mechanism are more 

trustworthy when compared to those based on models that ignore the missing data.  

In the second part of our study we analyzed the data of PISA 2006. A total of 179 items 

measuring three latent variables were used in the assessment. The results of five models were 

compared for 30 OECD countries participating in PISA. Three of these models did not account 

for the stochastic but nonignorable nature of the missing data. As shown in the simulation study, 

it was confirmed that treating omitted responses as wrong produces item and person parameters 

that deviate from the other models. In the simulation study, we were able to confirm that treating 

missing data as wrong led to biases, while in the real-data analysis, we were only able to confirm 

that treating missing data as wrong leads to differences from the other approaches. First and 

foremost, the means of the person parameters and the item difficulties were affected. The bias 

was even larger when missing data were treated as wrong and additionally the item parameters 

were taken as fixed from an item calibration where the nonresponses were ignored.  

As was found in the simulated case study, the simple model that ignores missing data 

produces results that are very close to the parameter estimates from the IRT models that 

incorporate the information on the missing data. Two such models were applied to the PISA 

2006 data: The between-item multiple group MIRT model and a multiple group model where the 

stratified response rates crossed with the country variable were used as a grouping variable. The 

latter model emulates a latent regression model with the omission rate as a predictor for the latent 

ability variables. This approach is equally suited to account for systematic omitted responses as 

the between-item MIRT model that adds another dimension to the 3-dimensional model needed 

for PISA. Note that this yields a 4-dimensional IRT model with increased computational costs, 

while the latent regression missing-data model comes at virtually no cost. Operational analyses 

of large-scale surveys already involve high-dimensional latent regression models anyway, which 

would simply be augmented by the response propensity stratum as an additional predictor. The 
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effect sizes in Figures 16 and 17 show that the response propensity stratum is highly predictive of 

average ability in all 30 OECD countries in the PISA 2006 assessment.  

We conclude that treating missing data as wrong appears to be the least desirable way to 

account for responses MNAR in large-scale surveys. Model-based approaches seem to provide a 

more appropriate way to account for nonignorable missing data. The estimation of model-based 

approaches allows the user to take the dependencies between response propensity and ability into 

account. The approaches that allow this to take place can be categorized as either additional trait 

variable- or latent regression-based approaches that promise to improve validity and 

comparability of large-scale assessments across participating countries in the presence of varying 

amounts of nonresponse. 
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Appendix A 

A Note on Equivalent Models for Nonignorable Missing Data 

The accuracy of the item parameters in the measurement model for θ will  not be 

considered in this paper, since in real application the precise measure of the proficiency variable 

ξ and the item parameters of the associated measurement model are of primary interest. Some 

notes are provided here about the meaning of θ and the item parameter in the measurement model 

for θ. Figure A1 shows the relation between the item difficulties of Model 6 and 7 separately for 

the items Yi and di.  

 

Figure A1. Relationship between the item parameters of the between-item-dimensional and 

the within-item-dimensional model. 

It can be seen that the item parameters are nearly identical for the items Yi and the item 

parameters of di are linear functions of each other. That is quite different for the latent variable θB 

and θW in both models. It is important to note, that θB and θW have completely different meanings. 
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To demonstrate this difference, the logits of the manifest items in the model are used. In Model 

6, the logits of the items Yi and the latent response indicators di are 

 
 

i Yi

i B di

l Y

l d

 

 

 

 
. 

For Model 7 it follows that the logit of the items Yi are the same but for the response 

indicators used in Model 7 are given by 

 i W dil d      . 

It is easy to see that ξ  = l(Yi) + βYi. So, in both models, the latent proficiency variable is a 

translation of the item logits l(Yi) . The latent variable θB is also a translation but of the logits l(di) 

of the response indicator variables, and can be written as θB = l(di) + βdi. Using these definitions, 

it can be shown that the latent variable θW can be rewritten as a translation of the difference of the 

logits of Yi and the response indicator variables di 

 
    
     .

W i di

i i Yi di

i i di Yi

l d

l d l Y

l d l Y

  

 

 

  

   

     

The covariances and the correlations will differ across the models. The covariance σ (θB , ξ) in 

Model 6 is simply the covariance σ [l(Yi), l(di)] between the logits of  Yi and di. For Model 7 the 

covariance can be written as 

         
     

   
   

2

2

2

, ,

,

,

, .

W i i Yi di i Yi

i i i

B di Yi Yi

B

l d l Y l Y

l d l Y l Y

      

 

       

    

      
       
    

 

 
So, this is a covariance between a difference variable and the minuend of that difference. 

This covariance is typically negative. In our simulation, the estimated correlation r (θB , ξ) in 

Model 6 is 0.551, whereas in Model 7 the correlation is r (θW , ξ) = –0.507. Of course that does 

not mean that the tendency to omit responses is negatively associated with the latent ability 
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variable ξ. Furthermore, the variable θW has a different meaning and should not be called a latent 

response propensity.  

Finally, the relation between the two variables θB and θW can be considered. Given, the 

regressions E(θB | ξ) and E(θW | ξ) are linear, it can easily be shown that θW is not simply a 

function of θB but it is linear regressive dependent on θB 

 
 

( ) ( )
0 1

( ) ( ) ( ) ( )
0 1 0 1

( ) ( ) ( ) ( ) ( )
0 0 1 1 1

intercept residual

.

W W
W W

W W B B
B W

W B W B W
B W

    

      

       

  

    

    
 

In the simulated data the estimated correlation r(θW, θB) based on the expected a posteriori 

estimates is 0.386.  

However, when using other models, other model specifications and identification rules 

are possible. In the Rasch model, all the discriminations are 1. Using the 2PL logistic model, the 

item discriminations between the measurement models for θ and ξ can differ. Insofar as no 

restrictions on the discrimination parameters are introduced, Model 7 is only identified if the 

covariance σ (θW , ξ) is fixed to be zero. In this case, θW is a residual of the regression E(di | ξ). A 

detailed discussion of the consequences of different model specifications with respect to the 

meaning of the model variables and their relationships to other variables is far beyond the scope 

of this paper, but it is important to note that some authors denote the latent variable θ in different 

models equally as latent response propensity. This is misleading. Here we take the view that only 

the variable θB should be called a latent response propensity. Furthermore, in some papers it is 

not clearly pointed out that the model specification, as within or between item multidimensional 

models, does not depend on assumptions about the ignorability of the missing data. Therefore, in 

terms of model fit and the item and person parameters, the models are equivalent.  
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Appendix B 

Proof 

In this proof it is shown that E(Y | d = 1) > E(Y) holds in general, given σ(θ,ξ) > 0 and P(d 

= 1) < 1. That means the expectation of the variable Y under the occurrence of nonignorable 

missing data is always higher than under the absence of missing data, d is the associated 

dichotomous response indicator of Y;  ξ is the latent ability variable measured by Y and θ the 

latent response propensity measured by d. The assumptions we make here are that the regressions 

E(Y = 1 | ξ) and P(d = 1 | θ) are monotonically increasing functions of the respective predictor.  

At first, it is shown that it is always true, that    , 0 , 0d       , under the 

assumptions made above, because P(d = 1 | θ) is a monotone function f(θ) of θ, 

   
 

, 1| ,

1| ,        .

d P d

P d

     

  

    
     

It follows directly, that    , 0 1| , 0P d            and    , 0 , 0d       .  

The positive covariance implies that E(ξ | d = 1) > E(ξ | d = 0). This is true because the 

difference can be expressed as a regression coefficient of the simple linear regression E(ξ | d), 

with 

     
 2

,
| 1 | 0 .

d
E d E d

d

 
 


   

 

This expression will be always positive if σ(d, ξ) > 0. So, the conditional distributions ξ | d = 1 

and ξ | d = 0 differ with respect to their central tendency. Given the derivations above, it follows 

that 

     , 0 | 1 | 0 0.E d E d         
 

The conditional distribution ξ | d = 1 of the latent ability given the item is answered is, on 

average, higher. The regression E(Y |ξ) is a monotone function f(ξ) of ξ. The expectation of the 

item E(Y) is the expectation of the regression E[E(Y |ξ)]. For all monotone functions of ξ hold 
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       | 1 | 0 | 1 | 0 .E d E d E f d E f d                 

It follows that 
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                                                   | 1 | 0 .
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                       
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Now it is easy to show that E(Y | d = 1) ≥ E(Y). First, it holds that 

   | .E Y E E Y d     

Because d is dichotomous, that means that 

         | | 0 1 1 | 1 1  .E E Y d E Y d P d E Y d P d              

The limits are given with 

         

   

         

   

( 1) 0

( 1) 0

( 1) 1

( 1) 1
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 
 

So, E(Y | d = 1) = E(Y) if the probability of the response indicator P(d = 1) = 1. The probability 

P(d = 1) approaches zero the more E(Y) approaches the conditional expectation E(Y | d = 1).  

It follows that 

       | 1 | 0 | 1  .E Y d E Y d E Y d E Y     
 

The proof underlines that the strength of the dependency between the ability and the 

response indicator expressed by the covariance σ(d,ξ) and the overall response rate P(d = 1) 

determines the difference between E(Y) and E(Y | d = 1). In application, this means that the mean 
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of the observed responses to an item Y is a systematically biased estimator in the presence of 

nonignorable missing data. 
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