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Introduction

Introduction

Motivation:

Measurement of ability in presence of a penalty factor for missing

responses

Aim:

We aim to measure the ability by modeling in a suitable way the

nonignorable missingness due to the penalty factor

Method:

We propose a semi-parametric approach based on the class of

Multidimensional Latent Class (LC) Item Response Theory (IRT) models
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Introduction Motivation

Motivation

In educational tests in order to avoid guessing, a wrong item response

may often be penalized by a greater extent with respect to a missing

response

In this context missing responses are not missing at random (NMAR -

Little and Rubin, 1987)

We may model the nonignorable missingness by assuming that the

observed item responses depend both on latent ability (or abilities)

measured by the test and on another latent variable which is identified as

the propensity to answer.

Problem: Is it possible to use standard IRT models?
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Introduction Motivation

Limits of standard IRT models

Main assumptions of standard IRT models

Unidimensionality of latent traits: all the set of items contribute to

measure the same latent trait

Therefore, nonignorable missingness cannot be treated as a specific

latent trait

Often, normality of latent trait is assumed

However, . . .

A same questionnaire is usually used to measure several latent traits

We are interested in assessing and testing the correlation between latent

traits

Often, normality of latent trait is not a realistic assumption

In some contexts (e.g., educational setting) can be useful to assume that

population is composed by homogeneous classes of individuals with very

similar latent characteristics (Lazarsfeld and Henry, 1968), so that

individuals in the same class will receive the same kind of decision (e.g.,

admitted/not admitted)
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Multidimensional LC IRT models Preliminaries

Multidimensional LC IRT models

The class of multidimensional LC IRT models (Bartolucci, 2007; Von Davier,

2008) is characterized by these main features:

More latent traits are simultaneously considered (multidimensionality)

These latent traits are represented by a random vector with a discrete

distribution common to all subjects (each support point of such a

distribution identifies a different latent class of individuals)

Different item parameterisations may be adopted for the probability of a

given response to each item (e.g., Rasch and 2-PL for binary items;

global logit or local logit for ordinal items with free or constrained item

discrimination and difficulty parameters)

Bacci, Bartolucci, Bertaccini (unipg, unifi) SIS 2012 6 / 21



Multidimensional LC IRT models The general formulation

More in detail . . .

Basic notation:

s: number of latent variables corresponding to the different traits

measured by the items

Θ = (Θ1, . . . ,Θs): vector of latent variables

θ = (θ1, . . . , θs): one of the possible realizations of Θ

δid: dummy variable equal to 1 if item i measures latent trait of type d,

d = 1, . . . , s

k: number of latent classes of individuals
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Multidimensional LC IRT models The general formulation

Assumptions

Items are binary or ordinal polytomously-scored

The set of items measures s different latent traits

Each item measures only one latent trait

The random vector Θ has a discrete distribution with support points

{ξ1, . . . , ξk} and weights {π1, . . . , πk}

The number k of latent classes is the same for each latent trait

Manifest distribution of the full response vector Y = (Y1, . . . , Yk)
′:

p(Y = y) =

C
∑

c=1

p(Y = y|Θ = ξc)πc

where πc = p(Θ = ξc) and (assumption of local independence)

p(Y = y|Θ = ξc) =

I
∏

i=1

p(Yi = yi|Θ = ξc)
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Multidimensional LC IRT models The general formulation

Some examples

Multidimensional LC 2PL model:

log
p(Yi = 1|θ)

p(Yi = 0|θ)
= λi(

s
∑

d=1

δidθd − βi)

Multidimensional LC GRM model:

log
p(Yi ≥ h|θ)

p(Yi < h|θ)
= λi(

s
∑

d=1

δidθd − βih), h = 1, . . . ,Hi − 1

Multidimensional LC GPCM model:

log
p(Yi = h|θ)

p(Yi = h − 1|θ)
= λi(

s
∑

d=1

δidθd − βih), h = 1, . . . ,Hi − 1

Multidimensional LC RSM model:

log
p(Yi = h|θ)

p(Yi = h − 1|θ)
=

s
∑

d=1

δidθd − (βi + τh), h = 1, . . . ,H − 1

Bacci, Bartolucci, Bertaccini (unipg, unifi) SIS 2012 9 / 21



Multidimensional LC IRT models Maximum log-likelihood estimation

Maximum log-likelihood estimation

Let j denote a generic subject and let η the vector containing all the free

parameters. The log-likelihood may be expressed as

ℓ(η) =
∑

j

log(p(Yj = yj))

Estimation of η may be obtained by the discrete (or LC) MML approach

(Bartolucci, 2007)

ℓ(η) may be efficiently maximize by the EM algorithm (Dempster et al.,

1977)

The software for the model estimation has been implemented in R

Number of free parameters is given by:

#par = (k − 1) + sk +
[

I
∑

i=1

(Hi − 1)− s
]

+ a(r − s), a = 0, 1,

where a = 0 when λi = 1, ∀i = 1, . . . , I, and a = 1 otherwise
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Modeling nonignorable missingness

Approaches to model nonignorable missingness

The class of Multidimensional LC IRT models may be used as a

semi-parametric approach to treat with nonignorable missingness, as an

alternative to:

Parametric approach (Holman and Glas, 2005): multidimensional IRT
models based on the multivariate Normality for the latent variables

Cons: intractability of multidimensional integral which characterizes the

marginal log-likelihood function of a multidimensional IRT model based on

Normality assumption

Non-parametric approach (Bertoli-Barsotti and Punzo, 2012):
multidimensional Rasch-type models (based on conditional maximum
likelihood)

Cons: the use of this approach is limited to Rasch-type models and it does

not allow the correlation between latent variables
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Modeling nonignorable missingness

The model

Let Θ = (Θ1, . . . ,Θs) be the vector of latent variables, where Θ1 denotes

the propensity to answer and Θ2, . . . ,Θs are the latent abilities measured

by the test

Let Ri be the binary variable equal to 1 if individual j provides a response

to item i and to 0 otherwise, with i = 1, . . . , I

Let Y∗

i denote the “true” binary response to item i that is observable only

if Ri = 1, and in this case equal to the manifest binary variable Yi, and

unobservable if Ri = 1

We require that the pairs of variables (Ri, Y∗

i ), i = 1, . . . , I, are

conditionally independent given the latent variables in Θ
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Modeling nonignorable missingness

In the following we assume that p(Ri) depends only on Θ1, whereas p(Y∗

i )
depends only on the corresponding Θdi+1 (di + 1 = 2, . . . , s)

We also assume that Θ1 and Θdi+1 are correlated, so that Θdi+1 has an

indirect effect on p(Ri)

The magnitude of correlation between Θ1 and Θdi+1 may be interpreted

as an indication of the extent to which ignorability of missingness is

violated: a correlation equal to 0 implicates that the missing data are

Missing At Random

We outline that other assumptions are theoretically possible (Holman and
Glas, 2005), as follows:

p(Ri) depends on both Θ1 and Θdi+1, whereas p(Y∗

i ) depends only on Θdi+1

p(Ri) depends only on Θ1, whereas p(Y∗

i ) depends on both Θ1 and Θdi+1

both p(Ri) and p(Y∗

i ) depend on Θ1 and Θdi+1
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Modeling nonignorable missingness

The response process is described by two 2-PL models:

log
p(Ri = 1|Θ1 = θ1)

p(Ri = 0|Θ1 = θ1)
= λi(θ1 − βi) (1)

log
p(Y∗

i = 1|Θdi+1 = θdi+1,Rj = 1)

p(Y∗

i = 0|Θdi+1 = θdi+1,Ri = 1)
= λ∗

i (θdi+1 − β∗

i ) (2)

Equations (1) and (2) define an s-dimensional LC IRT model having the

following manifest distribution

p(rj, yj) =
∑

c

πc

∏

i

pi(ξc1)
rji [1 − pi(ξc1)]

1−rji ×

×
∏

i:rji=1

p∗i (ξc,di+1)
yji [1 − p∗

i (ξc,di+1)]
1−yji

where rj = (rj1, . . . , rjI), where rji is the generic value of Ri, and

yj = (yj1, . . . , yjI), where yji = 0, 1 is the realization of Y∗

j when rji = 1 (the

response is provided) and it is let equal to an arbitrary value otherwise.

Bacci, Bartolucci, Bertaccini (unipg, unifi) SIS 2012 14 / 21



Application to Students’ Entry Test

Data

Student’s Entry Test for the admission to the Economics courses of the

University of Florence (Italy)

1264 students

three latent abilities: Logic (Θ2, 13 items), Mathemathics (Θ3, 13 items),

and Verbal Comprehension (Θ4, 10 items)

all items are of multiple choice type, with one correct answer and four

distractors, and they are polytomously scored, being 1 for correct

response, -0.25 for wrong response and 0 for missing response

the scoring system is communicated to the candidates before the test

starting

we estimate a constrained version of the proposed model, having

λi = λ∗

i = 1
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Application to Students’ Entry Test

Choice of the number of latent classes

A crucial point with latent class models concerns the choice of the number k

of components

coherently with the main literature we suggest to use an information

criterion, such as AIC or BIC indeces

the selected number of classes is the one corresponding to the minimum

value of AIC or BIC

The model is fitted for increasing values of k until AIC or BIC does not

start to increase; then, the previous value of k is taken as the optimal one

We outline that, in some practical situations, the number of latent classes

is known or it is suggested by considerations of convenience

In the context of the Students’ Entry Test, we need to classify students in

at least k = 3 latent classes, so as to discern among students that are:

admitted, not admitted, and one or more groups of admitted with reserve
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Application to Students’ Entry Test

Main results

Estimated support points (ξ̂c), weights (π̂c), and average probabilities to

answer given the class (p̄(ξ̂c)) for k = 3 and k = 4

k = 3 k = 4

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 4

ξ̂c1 0.2845 0.3335 -0.8004 0.1564 0.1162 -0.8585 0.4495

ξ̂c2 1.1107 -1.1095 0.1743 1.6900 -1.9835 0.0707 -0.1881

ξ̂c3 1.0611 -0.7073 -0.3159 1.5907 -1.0928 -0.3217 -0.2498

ξ̂c4 0.6158 -1.3336 1.0796 1.3921 -1.9542 1.0163 -0.6772

π̂c 0.3381 0.3824 0.2795 0.2196 0.1614 0.2533 0.3657

p̄(ξ̂c) 0.8298 0.8360 0.6484 0.8131 0.8074 0.6377 0.8507
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Application to Students’ Entry Test

Correlations

Correlations between item difficulties of Θ1 and Θs, s = 2, 3, 4 (ρ(β
.1, β.l)) for

k = 3 and k = 4

ρ(β
.1, β.2) ρ(β

.1, β.3) ρ(β
.1, β.4)

k = 3 0.7270 0.4700 0.6092

k = 4 0.7384 0.4659 0.6169

Correlations between latent variables, for k = 3 (in red) and k = 4 (in blue)

Θ1 Θ2 Θ3 Θ4

Θ1 1.0000 -0.1559 0.2136 -0.6631

Θ2 -0.0435 1.0000 0.9317 0.8427

Θ3 0.1364 0.9432 1.0000 0.5896

Θ4 -0.5113 0.8808 0.7478 1.0000
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Conclusions

Conclusions

We described a class of IRT models based on (i) the multidimensionality

and (ii) the discreteness of latent traits, which allows to overcome the

main drawbacks of standard IRT models

We illustrated how the Multidimensional LC IRT models may be used to

treat with nonignorable missingness

The proposed approach was illustrated through an application to the

educational setting in presence of penalty
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Conclusions

What’s next?

Allowing for free discrimination parameters

Extension to latent regression, by introducing covariates that explain the

latent traits

log
p(Ri = 1|Θ1 = θ1)

p(Ri = 0|Θ1 = θ1)
= λi(

p
∑

h=1

φh1Zhj + αc1 − βi)

log
p(Y∗

i = 1|Θdi+1 = θdi+1,Ri = 1)

p(Y∗

i = 0|Θdi+1 = θdi+1,Ri = 1)
= λ∗

i (

p
∑

h=1

φh,di+1Zhj + αc,di+1 − β∗

i )

Z1, . . . , Zp are the observed covariates (e.g., type of high school)

φ′

h = (φh1, . . . , φhs) is the vector of regression coefficients of Zh on the s-th

latent trait

α′

c = (αc1, . . . ,αcs) is the vector of residuals
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