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The simulation of nonlinear ultrasound propagation through tissue realistic media has a wide range

of practical applications. However, this is a computationally difficult problem due to the large size

of the computational domain compared to the acoustic wavelength. Here, the k-space pseudospec-

tral method is used to reduce the number of grid points required per wavelength for accurate simu-

lations. The model is based on coupled first-order acoustic equations valid for nonlinear wave

propagation in heterogeneous media with power law absorption. These are derived from the equa-

tions of fluid mechanics and include a pressure-density relation that incorporates the effects of non-

linearity, power law absorption, and medium heterogeneities. The additional terms accounting for

convective nonlinearity and power law absorption are expressed as spatial gradients making them

efficient to numerically encode. The governing equations are then discretized using a k-space pseu-

dospectral technique in which the spatial gradients are computed using the Fourier-collocation

method. This increases the accuracy of the gradient calculation and thus relaxes the requirement for

dense computational grids compared to conventional finite difference methods. The accuracy and

utility of the developed model is demonstrated via several numerical experiments, including the 3D

simulation of the beam pattern from a clinical ultrasound probe.
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I. INTRODUCTION

The simulation of ultrasound propagation through soft

biological tissue has a wide range of practical applications.

These include the design of transducers for diagnostic and

therapeutic ultrasound, the development of new signal proc-

essing and imaging techniques, studying the aberration of

ultrasound beams in heterogeneous media, ultrasonic tissue

classification, training ultrasonographers to use ultrasound

equipment and interpret ultrasound images, model-based

medical image registration, and treatment planning and do-

simetry for high-intensity focused ultrasound.1 The most

general approach for ultrasound simulation is to directly

solve the equations of continuum mechanics. However, this

is a computationally difficult problem due to the large size

of the region of interest in relation to the size of the acoustic

wavelength. For example, a typical diagnostic ultrasound

image formed using a 3MHz curvilinear transducer has a

depth penetration of around 15 cm. This distance is on the

order of 300 acoustic wavelengths at the fundamental fre-

quency, and 600 wavelengths at the second harmonic. Estab-

lished numerical methods such as the finite difference or

finite element methods require on the order of 10 grid points

per wavelength to achieve acceptable accuracy. This equates

to a computational domain with thousands of grid points in

each spatial dimension. Consequently, many simulations of

interest are simply intractable, or require very large amounts

of computer memory and can take days or weeks to run.2

To reduce this computational burden, simplifying

assumptions are frequently made. For modeling the beam

patterns from ultrasound transducers, a common approach is

to only consider one-way (or forward) wave propagation

(see Huijssen and Verweij3 for a recent review). If the prob-

lem is axisymmetric, the governing equations can also be

solved in 2D.4 However, these approaches are unable to

account for all aspects of nonlinear wave propagation in het-

erogeneous media. For the simulation of diagnostic ultra-

sound images, a Green’s function method is also often used.5

In this case, the scattering medium is modeled as series of

point sources in a homogeneous background (the widely

used FIELD II program is based on this approach). However,

this does not account for more complex acoustic phenomena,

for example, multiple scattering or nonlinearity. Given the
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wide range of possible applications, there is a strong motiva-

tion for the development of new ultrasound simulation tools

with less restrictive assumptions and improved computa-

tional efficiency.

Here, a computationally efficient approach for the simu-

lation of nonlinear wave propagation is derived using a

k-space pseudospectral method.6 In Sec. II, existing methods

for modeling ultrasound propagation in tissue realistic media

are reviewed. In this context, approaches for modeling both

heterogeneous media and power law absorption are dis-

cussed. In Sec. III, governing equations suitable for modeling

nonlinear ultrasound propagation in heterogeneous media

with power law absorption are then developed. In Sec. IV,

these equations are discretized using a k-space pseudospectral

method. The spectral calculation of the spatial derivatives is

performed using the Fourier-collocation method and signifi-

cantly relaxes the requirement for dense computational grids

compared to finite difference methods. In Sec. V, several nu-

merical experiments are presented to illustrate the accuracy

and efficacy of the developed model. Discussion and sum-

mary are then given in Sec. VI, with further details of the

computer code provided in the Appendix.

II. TISSUE REALISTIC ULTRASOUND MODELING

A. Model requirements

The development of accurate models for ultrasound

propagation in soft tissue requires the consideration of three

important factors. (1) In most cases the amplitude of the

acoustic waves is sufficiently large that the wave propaga-

tion is nonlinear. For example, modern ultrasound scanners

rely on nonlinear wave propagation for tissue harmonic

imaging which gives images with improved clarity and con-

trast. (2) The material properties of biological tissue (e.g.,

the sound speed and density) are weakly heterogeneous, with

variations between the different soft tissue types and water

on the order of 5%.1 (3) The tissue is absorbing at ultrasonic

frequencies with the absorption following a frequency power

law. In the context of nonlinear wave propagation, an accu-

rate model of acoustic absorption is of particular importance

as the generation of higher frequency harmonics via nonli-

nearity is delicately balanced with their absorption.

When considered individually as extensions to the

standard equations of linear acoustics, each of these factors

has been extensively studied. It is the unification of these

effects into a consistent set of coupled first-order equations,

in addition to the efficient solution of these equations, that is

the subject of interest here. The use of first-order governing

equations rather than the corresponding second-order wave

equation has several advantages. First, it allows the pressure

and particle velocity to be computed on staggered grids

which improves accuracy. Second, it allows the use of an

anisotropic perfectly matched layer (PML) for absorbing the

acoustic waves at the edges of the computational domain.6

Third, it provides an intuitive way to directly include both

mass and force sources in the discrete equations. Finally, the

explicit calculation of the particle velocity allows the vector

components of acoustic intensity to be directly computed.

This is of particular relevance when modeling the heat depo-

sition from therapeutic ultrasound probes.

B. Accounting for tissue heterogeneities

Over the last half a century, a large number of research-

ers have contributed to an extensive body of knowledge on

the nonlinear propagation of acoustic waves.7 From a theo-

retical perspective, the required governing equations can be

derived by including second order (and in some cases third

order) terms in the conservation equations and pressure-

density relation. However, despite the long history of nonlin-

ear acoustics, most rigorous derivations are based on the

assumption of a homogeneous medium with thermoviscous

absorption. In particular, there have been very few attempts

to consider acoustic heterogeneities at the level of the gov-

erning equations. (Two recent exceptions are the papers by

Taraldsen,8 who derived a heterogeneous Westervelt equa-

tion in Lagrangian coordinates, and Coulouvrat,9 who con-

sidered the case of a heterogeneous and moving turbulent

fluid.) While it is straightforward to consider heterogeneous

medium parameters in the conservation equations, the deri-

vation of a pressure-density relation valid for nonlinear wave

propagation in heterogeneous media is more difficult to find

in the literature.

The most common approach to modeling heterogeneous

medium parameters is to assume that the effects of nonli-

nearity and heterogeneity are sufficiently small that their

interactions can be neglected. In this way, an appropriate

wave equation can be formed by combining the additional

terms from the linear wave equation for heterogeneous

media with those from the nonlinear wave equation for ho-

mogeneous media. For example, Hallaj et al.,10 and Pinton

et al.,2 both utilized a Westervelt equation augmented with

the heterogeneous density term from the linear wave equa-

tion. Jing and Cleveland11 presented a similar wave equation

including local nonlinear effects. This was then reduced to a

Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation suita-

ble for heterogeneous media. Comparisons of simulations

using this equation with experimental measurements of

ultrasound propagation through a heterogeneous gel layer

showed good agreement. An analogous approach was taken

by Verweij and Huijssen12 and Jing and Clement13 where

both the nonlinearity and heterogeneity terms were intro-

duced as contrast source terms. Similarly, Averyanov et al.,

supplemented a linear parabolic wave equation for heteroge-

neous media with additional terms describing the effects of

nonlinearity and absorption.14 While the accuracy of these

wave equations for modeling nonlinear wave propagation in

weakly heterogeneous media is well established, they do not

provide heterogeneous forms of the conservation and

pressure-density equations which can be solved as a set of

coupled first-order equations.

C. Accounting for power law acoustic absorption

Classical lossy wave equations based on the inclusion of

viscosity and thermal conduction into the governing equa-

tions yield an acoustic absorption term that is proportional to

frequency squared. However, the absorption mechanisms in
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soft biological tissue are significantly more complex (includ-

ing vibrational, structural, and chemical relaxations) which

leads to an experimentally observed attenuation of the form

a ¼ a0x
y; (1)

where the power law exponent y is typically in the range

1" 1:5.1 To account for this difference, the thermoviscous

absorption term can be replaced with an alternate loss term.

This idea was first proposed by Blackstock who replaced the

thermoviscous term in the lossy Burgers equation with a

general absorption operator.15 Szabo later derived a causal

form of this operator to account for power law absorption

with an arbitrary frequency dependence.16,17 This was

derived in the form of a time domain convolution operator

and was used to replace the classical thermoviscous absorp-

tion terms in the KZK, Burgers, and Westervelt equations.16

Similar convolution operators for the KZK equation18 and

Kuznetsov’s equation19 have also been derived.

Although Szabo’s lossy operator correctly incorporates

the required power law behavior, the operator is dependent

on the time history of the pressure field which makes it diffi-

cult to encode in a memory efficient manner. As an alterna-

tive, Chen and Holm20 derived a lossy operator based on the

fractional Laplacian. This was similarly used to replace the

absorption terms in the KZK, Burgers, and Westervelt equa-

tions.21 This operator was later extended to correctly account

for power law dispersion as required by the Kramers–Kronig

relations.22 In comparison to Szabo’s operator, the computa-

tion of the fractional Laplacian only depends on the values

of the pressure field at the current time. This makes the oper-

ator efficient to compute, particularly using Fourier-based

pseudospectral and k-space methods.22,23

An alternative approach to using a phenomenological

operator to account for power law absorption is to explicitly

consider the absorption as a sum of relaxation processes. This

is based on a physical analogy with the different absorption

mechanisms in tissue which act as relaxation processes with

varying relaxation times. Models for both a continuous distri-

bution of relaxation parameters24 and a discrete set of relaxa-

tion parameters25 have been proposed. However, despite the

physical appeal of such models, for biological materials the

individual relaxation processes and their relaxation times are

not generally known. Consequently, the model parameters

must instead be derived using a fitting procedure based on ex-

perimental data. In this case, the derived relaxation parameters

do not necessarily have any direct connection with the physi-

cal absorption mechanisms and thus can also be considered as

phenomenological terms. The discrete relaxation model has

been applied to the linear,25 KZK,26 and Westervelt2 equa-

tions. For the latter, two relaxation processes were found to be

sufficient to approximate power law absorption over a

12MHz frequency range.2

Given that only a small number of relaxation parameters

are generally needed to approximate power law absorption

over a given frequency range, there is not a clear argument

for using a phenomenological absorption operator over a

relaxation operator, or vice-versa. Indeed, Näsholm and Holm

have recently shown that, under certain conditions, fractional

loss operators can be derived from a continuum of relaxation

processes, rendering the two approaches equivalent.27 On one

hand, the relaxation approach is more general and is able to

model absorption with an arbitrary frequency dependence. On

the other hand, the extraction of the relaxation parameters

needed for the model requires an a priori fitting procedure for

each value of absorption and range of frequencies under con-

sideration. If the objective is specifically to model power law

absorption (as is the case here), it is easier to directly use an

operator that can account for this behavior.

III. NONLINEAR GOVERNING EQUATIONS
FOR HETEROGENEOUS MEDIA

A. General nonlinear equations

The equations required to describe the nonlinear propa-

gation of compressional acoustic waves through heterogene-

ous fluid media can be obtained directly from the equations

of fluid mechanics. Under the assumption of a quiescent, iso-

tropic, and inviscid medium (acoustic absorption is explicitly

considered later as an energy loss term), the momentum and

mass conservation equations can, respectively, be written in

a Eulerian coordinate system as7

q0
@u

@t
þrp ¼ "q

@u

@t
"
1

2
q0r u2

! "

; (2a)

@q

@t
þr $ q0uð Þ ¼ "r $ quð Þ: (2b)

Here p and q are the acoustic pressure and density, u is the

acoustic particle velocity where u2 ¼ u $ u, and q0 is the am-

bient density. Note, in these and subsequent expressions,

only terms up to second order in the acoustic variables are

retained. This is sufficient for modeling the finite amplitude

effects of interest here.

A nonlinear pressure-density relation for an arbitrary

fluid medium can then be obtained by expanding the state

equation p̂ ¼ p̂ q̂; ŝð Þ in a Taylor series about the ambient

density and entropy. Here the^symbol is used to denote a

total quantity, i.e., the sum of ambient and acoustic parts.

Following Lighthill,28 it is assumed that the effects of non-

linearity and changes in entropy (which are due to acoustic

absorption) are both second order. Consequently, higher

order entropy terms can be discarded. Considering the

change in the total pressure of a fluid element for a small

but finite time step dt ¼ t1 " t0, the Taylor series expansion

can then be written as

p̂ðt1Þ" p̂ðt0Þ ¼
@p̂

@q̂

# $

ŝ

q̂ðt1Þ" q̂ðt0Þð Þþ
1

2

@2p̂

@q̂2

# $

ŝ

' q̂ðt1Þ" q̂ðt0Þð Þ2þ
@p̂

@ŝ

# $

q̂

ŝðt1Þ" ŝðt0Þð Þ:

(3)

If the ambient medium parameters are heterogeneous, the

change in the total density q̂ðt1Þ " q̂ðt0Þ can arise either due

to local acoustic perturbations, or due to the displacement of
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the fluid element under consideration to a new position in

which the ambient density is different.29 If q̂ is written as a

function of both position x and time t, the change in q̂

between t0 and t1 can similarly be expanded using a Taylor

series. This yields the expression

q̂ðt1Þ " q̂ðt0Þ ¼
@q̂

@t

# $

x

ðt1 " t0Þ þ
@q̂

@x

# $

t

ðf1 " f0Þ; (4)

where f1 and f0 are the positions of the fluid element at t1
and t0. The first term is the conventional Eulerian descrip-

tion of the acoustic density q (assuming the medium is qui-

escent), while the second term is due to the displacement of

the fluid element. This is equivalent to describing the

change in density within a fixed element in a Eulerian coor-

dinate system which has an additional component due to

the displacement of the surrounding fluid. Defining the par-

ticle displacement vector as d ¼ f1 " f0 and writing the

spatial derivative of q̂ at constant time in vector notation as

@q̂

@x

# $

t

( rq̂ t0ð Þ ¼ rq0;

Eq. (4) then becomes

q̂ðt1Þ " q̂ðt0Þ ¼ qþ d $rq0: (5)

Assuming the medium is initially in thermodynamic equilib-

rium, the equivalent spatial gradients of ŝ and p̂ are zero giv-

ing ŝðt1Þ " ŝðt0Þ ¼ s and p̂ðt1Þ " p̂ðt0Þ ¼ p. Using these

expressions and making the substitutions7

A ( q0
@p̂

@q̂

# $

ŝ

¼ q0c
2
0; B ( q20

@2p̂

@q̂2

# $

ŝ

(where the first equation above defines the isentropic sound

speed c0), Eq. (3) can then be written in the form

p ¼c20 qþ d $rq0ð Þ þ
@p̂

@ŝ

# $

q̂

s

þ
B

2A

c20
q0

q2 þ d $rq0ð Þ2þ2qd $rq0

% &

: (6)

Here B=A is the parameter of nonlinearity which character-

izes the relative contribution of finite-amplitude effects to

the sound speed.7 Note, in the linear case, an equivalent rela-

tion can be derived by considering the Lagrangian derivative

of the state equation.30

The remaining entropy term in Eq. (6) represents an

energy loss or acoustic absorption term. In the case of ther-

moviscous media, this can be related to the thermal conduc-

tivity and specific heat capacity of the medium by explicit

consideration of the appropriate energy conservation equa-

tion.7 More generally (by analogy with Blackstock15), this

can be replaced by a phenomenological loss term of form

@p̂

@ŝ

# $

q̂

s ¼ "
@p̂

@q̂

# $

ŝ

@q̂

@ŝ

# $

p̂

s ( "c20Lq;

where L is a general loss operator. For modeling power law

absorption, it is convenient to define L as a derivative opera-

tor based on the fractional Laplacian22

L ¼ s
@

@t
"r2
! "y=2"1

þg "r2
! " yþ1ð Þ=2"1

: (7)

Here s and g are absorption and dispersion proportionality

coefficients given by s ¼ "2a0c
y"1
0 and g ¼ 2a0c

y
0 tan py=2ð Þ,

a0 is the power law prefactor in Np ðrad=sÞ"y
m"1, and y is

the power law exponent. The two terms in L separately

account for power law absorption and dispersion for

0 < y < 3 and y 6¼ 1 under particular smallness conditions.22

These conditions are generally satisfied for the range of

attenuation parameters observed in soft biological tissue (for

very high values of absorption and frequency the accuracy of

the loss operator decreases due to second-order effects23). The

use of a fractional derivative in the pressure-density relation

can also be related to a general relaxation relationship

between the temperature gradient and resulting heat flux

which leads to a fractional entropy equation.31

B. Reduced nonlinear equations

While the general first-order equations derived in the

previous section could be directly solved using standard nu-

merical techniques, it is both unwieldy and unnecessary to

do so. For many applications in biomedical ultrasonics, it is

sufficient to consider only cumulative nonlinear effects.32

We also make the assumption that the effect of acoustic het-

erogeneities on the wave field can be considered as second-

order. Any higher order heterogeneity terms or interactions

between nonlinearity and heterogeneity terms can then also

be discarded.

Returning to the momentum and mass conservation

equations given in Eq. (2), following the approach taken by

Aanonsen et al., 7,33 the second-order terms which appear on

the right hand side can now be re-written in terms of the

acoustic Lagrangian density via the repeated substitution of

the homogeneous acoustic equations in linearized form

(using the premise that the substitution of first-order equa-

tions into second-order terms yields third-order errors). This

gives the expressions

q0
@u

@t
þrp ¼ "rL; (8a)

@q

@t
þr $ q0uð Þ ¼

1

c20

@L

@t
þ

1

q0c
4
0

@p2

@t
; (8b)

where L is the second-order Lagrangian density given by

L ¼
1

2
q0u

2 "
p2

2q0c
2
0

:

This characterizes the difference between the kinetic and

potential energy density of the acoustic wave. If only cumu-

lative nonlinear effects are important, the Lagrangian density

can be set to zero which leaves
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@u

@t
þ

1

q0
rp ¼ 0; (9a)

@q

@t
þr $ q0uð Þ ¼

1

q0c
4
0

@p2

@t
: (9b)

If the governing equations are solved using spectral

methods (as is the case here), it is convenient to re-write the

convective nonlinear term that appears in the mass conserva-

tion equation given in Eq. (9b) in its original form as a spa-

tial gradient. This is because spatial gradients can be

computed spectrally, while temporal gradients require the

use of a finite difference approximation as well as additional

storage. By following the series of substitutions that yield

Eq. (8b) from Eq. (2b), it can be shown that the final term is

equivalent to the expression "2qr $ u (to second order).

Using this substitution gives an alternate form of the mass

conservation equation valid for modeling cumulative nonlin-

ear effects. Combined with the momentum conservation

equation and the pressure-density relation, the full set of

coupled equations can now be written as

@u

@t
¼ "

1

q0
rp; (10a)

@q

@t
¼ " 2qþ q0ð Þr $ u" u $rq0; (10b)

p ¼ c20 qþ d $rq0 þ
B

2A

q2

q0
" Lq

# $

; (10c)

where the loss operator L is defined in Eq. (7). The mo-

mentum conservation equation is identical to the linear

case,34 while the mass conservation equation has an addi-

tional term which accounts for a convective nonlinearity

in which the particle velocity contributes to the wave ve-

locity. The four terms within the pressure-density relation

separately account for linear wave propagation, heteroge-

neities in the ambient density, material nonlinearity, and

power law absorption and dispersion (the sound speed c0
can also be heterogeneous). Note, the u $rq0 term in the

mass conservation equation and the d $rq0 term in the

pressure-density relation cancel when these equations are

combined (or solved as coupled equations). Consequently,

these terms are not included in the discrete equations

given in the following section to improve computational

efficiency.35

Using the mass conservation equation in the form given

in Eq. (9b) and neglecting higher order absorption terms, the

coupled governing equations can also be combined to give a

modified form of the Westervelt equation valid for heteroge-

neous media with power law absorption

r2p"
1

c20

@2p

@t2
"

1

q0
rq0 $rpþ

b

q0c
4
0

@2p2

@t2
" Lr2p ¼ 0;

where b ¼ 1þ B=2A is the coefficient of nonlinearity (an

equivalent expression assimilating the Laplacian into the

loss operator is given in Ref. 36). This expression can be

considered as a particular case of the generalized Westervelt

equation discussed by Taraldsen.8

IV. NUMERICAL IMPLEMENTATION

A. Overview of the k -space method

Closely connected with the development of accurate

governing equations for describing ultrasound propagation

in tissue is the issue of their efficient solution. In a standard

finite difference method, spatial gradients are computed

locally based on the function values at neighboring grid

points. As an alternative, it is also possible to calculate spa-

tial gradients globally using the function values across the

whole domain via spectral methods. This increases the accu-

racy of the gradient calculation and thus reduces the number

of grid points required per wavelength for a given level of

accuracy. For smoothly varying fields, spatial gradients can

be calculated with spectral accuracy up to the Nyquist limit

(two grid points per wavelength). Often the spectral calcula-

tion of spatial gradients is combined with the finite differ-

ence calculation of temporal gradients. However, the finite

difference approximation introduces unwanted numerical

dispersion into the solution that can only be controlled by

reducing the size of the time step or increasing the order of

the approximation.

Fortunately, for the standard linear wave equation valid

for homogeneous and lossless media, an exact finite differ-

ence scheme for the temporal derivative exists. This can be

used to derive an exact pseudospectral discretization of both

the second-order wave equation,37 and the corresponding

coupled first-order conservation equations and pressure-

density relation.6 This approach is known as the k-space

pseudospectral method (or simply the k-space method),

because the difference between the exact and standard finite

difference approximations reduces to an operator in the spa-

tial frequency domain (referred to herein as the k-space oper-

ator). In the case of heterogeneous and absorbing media, the

temporal discretization is no longer exact. However, if these

perturbations are small, the k-space operator still reduces the

unwanted numerical dispersion associated with the finite dif-

ference approximation of the time derivative (see discussion

in Sec. V A).6,37 Recently, Jing and Clement13 presented a k-

space method based on the Westervelt equation for thermo-

viscous media in which the absorption and nonlinearity

terms were introduced as contrast source terms. Here, the k-

space pseudospectral method described by Tabei et al., 6 is

used to discretize the coupled governing equations derived

in Sec. III B.

B. Discrete k -space equations

Solving for the particle velocity in Eq. (10a) using an

explicit first-order forward difference and for the acoustic

density in Eq. (10b) using an implicit first-order forward dif-

ference, the conservation equations written in discrete form

using the Fourier-collocation k-space pseudospectral method

are given by
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@

@n
pn ¼ F

"1 iknjF pnf gf g; (11a)

unþ1
n ¼ unn "

Dt

q0

@

@n
pn; (11b)

@

@n
unþ1
n ¼ F

"1fiknjFfu
nþ1
n gg; (11c)

qnþ1
n ¼

qnn " Dtq0
@

@n
unþ1
n

1þ 2Dt
@

@n
unþ1
n

: (11d)

The acoustic density is artificially divided into Cartesian

components to allow an anisotropic PML to be applied.38

Here, F and F
"1 denote the forward and inverse spatial Fou-

rier transform, the superscript n and nþ 1 denote the func-

tion values at current and next time points, respectively, i is

the imaginary unit, kn is the wavenumber in the n direction,

Dt is the time step, and j is the k-space operator given by6,39

j ¼ sinc crefkDt=2ð Þ; (11e)

where k2 ¼
P

n k
2
n, and cref is a reference sound speed (see

discussion in Sec. V A). Equations (11a)–(11d) are repeated

for each Cartesian direction in R
N where n ¼ x in R

1,

n ¼ x; y inR2, and n ¼ x; y; z inR3. Using the Fourier trans-

form of the negative fractional Laplacian20

F "r2
! "a

q
' (

¼ k2aF qf g;

the corresponding pressure-density relation in discrete form

can be written as

pnþ1 ¼ c20 qnþ1 þ
B

2A

1

q0
qnþ1
! "2

"Ld

# $

; (11f)

where the total acoustic density is given by q ¼
P

n qn and

the discrete loss term is

Ld ¼" sF"1 ky"2
F q0

X

n

@

@n
unþ1
n

( )( )

þ gF"1 ky"1
F qnþ1
' (' (

: (11g)

Here the temporal derivative of the acoustic density in the

absorption term has been replaced using the linearized mass

conservation equation @q=@t ¼ "q0r $ u analogous to the

first-order substitutions made in Sec. III B.

The discrete equations in Eq. (11) are iteratively solved

using a time step based on the Courant–Friedrichs–Lewy

(CFL) number, where Dt ¼ CFLDx=cmax. A CFL number of

0.3 typically provides a good balance between accuracy and

computational speed for weakly heterogeneous media.6 At

each time step, a mass or force source can be included by add-

ing the source values to the appropriate grid points within the

computational domain. Similarly, the output from the simula-

tion can be obtained by recording the acoustic variables at

each time step at particular grid points. For regularly spaced

Cartesian grids, the gradients can be computed efficiently

using the fast Fourier transform (FFT). For the simulations

presented here, a split-field PML was implemented to prevent

waves from wrapping around the domain. The grids were also

spatially and temporally staggered to improve accuracy.6 The

discrete equations were implemented in Cþþ as an extension

to the open source K-WAVE acoustics toolbox for MATLAB

(Mathworks, Natick, MA).40 A description of the computer

code is given in the Appendix.

V. NUMERICAL ACCURACY

A. Accuracy of the k-space operator for wave
propagation in heterogeneous media

In the limit of linear wave propagation in a lossless and

homogeneous medium, the k-space pseudospectral discreti-

zation of the three coupled governing equations is exact, and

the algorithm is unconditionally stable. Although the finite

difference time step still introduces unwanted numerical dis-

persion (or phase error) as expected, this is corrected by the

k-space operator j that appears in Eqs. (11a) and (11c). Pro-

vided the scalar sound speed used in the k-space operator cref
is chosen to match the sound speed in the medium c0, this

correction is exact. However, in the case of heterogeneous

media, there will necessarily be regions of the medium

where the local value of c0 does not match the value of cref .

Consequently, the phase correction provided by j will no

longer be exact, and unwanted numerical dispersion will still

be introduced into the solution.

To illustrate the effect of a mismatched cref and c0, the

phase error as a function of cref for a homogeneous medium

with c0 ¼ 1500 m/s is shown in Fig. 1. This error corre-

sponds to the numerical dispersion (as a percentage of c0) in

the propagation of a plane wave after 50 wavelengths using

four grid points per wavelength and a CFL parameter of 0.3.

When cref ¼ c0, the phase correction provided by the k-space

operator is exact and there is no phase error. When cref ) c0,

the correction is no longer exact. However, the use of the

k-space operator still provides a significant reduction in the

phase error as compared to that introduced by a finite

FIG. 1. Phase error in the propagation of a plane wave after 50 wavelengths

against the reference sound speed cref used in the k-space operator j for

c0 ¼ 1500 m/s.
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difference time step in the absence of this correction (dashed

line shown in Fig. 1). Consequently, for soft biological tissue

where the medium parameters are only weakly heterogene-

ous, the k-space method remains an apposite numerical

technique.

It is useful to note, in the limit as cref approaches 0, j

approaches 1 and thus the k-space operator has no effect (see

Fig. 1). Conversely, for cref * c0, this operator over com-

pensates for the actual phase error introduced by the finite

difference time step and thus increases the total phase error

that is observed. Consequently, for modeling wave propaga-

tion in media with strong sound speed contrasts, care should

be taken to select an appropriate reference sound speed, in

addition to ensuring the appropriate stability constraints are

met.6 In the case of strongly heterogeneous media, if the

maximum phase error introduced by the finite difference

time step is still unacceptable after the k-space correction, a

higher order finite difference scheme could alternatively be

used for the temporal discretization.

B. Accuracy of the Fourier-collocation spectral
method for heterogeneous media

The Fourier-collocation spectral method used for the

computation of the spatial derivatives in Eqs. (11) decom-

poses the pressure and velocity fields into a discrete Fourier

series with a finite number of coefficients. This decomposi-

tion is accurate for periodic fields that vary sufficiently

smoothly throughout the computational domain such that

they can be accurately represented using the band-limited set

of supported frequencies (there is an explicit and well under-

stood relationship between the smoothness of a function and

the rate of decay of its Fourier coefficients41). However, this

is not the case when there are sharp gradients in the acoustic

fields. These can occur when the field variables are multi-

plied by heterogeneous medium parameters, for example, in

Eq. (11f). In this case, the band-limited Fourier representa-

tion of the acoustic fields will exhibit oscillations (analogous

to Gibbs’ phenomenon) and will no longer provide an accu-

rate representation of the discontinuities as they appear in

the continuous domain.

To investigate the error introduced when the medium

parameters are heterogeneous, the accuracy of the transmis-

sion and reflection coefficients for a plane wave traveling

through a step change in the ambient density and sound

speed was examined. The resulting coefficients for a 10%

change in the material parameters are shown in Fig. 2(a)

along with their theoretical values (shown as straight solid

lines). At the Nyquist sampling limit (two grid points per

wavelength), there is a large error in the calculated coeffi-

cients. However, this reduces quickly as the number of grid

points is increased. The corresponding results using both

first-order and fourth-order accurate finite difference

schemes (including staggered grids) for the computation of

the spatial derivative are shown in Fig. 2(b), with the relative

errors in the transmission coefficient shown in Fig. 2(c). To

achieve an error in the transmission coefficient of less than

1%, the Fourier-collocation spectral method requires only

three grid points per wavelength, the fourth-order accurate

finite difference scheme requires six points per wavelength,

and the first-order accurate finite difference scheme requires

14. Similar results are observed for the reflection coefficient,

although the overall errors are increased due to the smaller

value of the coefficient (the error in the reflection coefficient

for the Fourier-collocation and fourth-order finite difference

schemes are approximately the same after six grid points per

wavelength). Overall, for three-dimensional simulations,

using a fourth-order accurate finite difference scheme

FIG. 2. (a) Transmission and reflection coefficients computed using the k-

space model for a 10% step change in sound speed and density against the

number of grid points per wavelength. The dashed lines show the results

without the use of the staggered grid. (b) Analogous results when the spatial

gradients are computed using a first-order and fourth-order accurate finite

difference scheme. (c) Corresponding error in the transmission coefficient

with the number of grid points used per wavelength.
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requires around a 10-fold increase in the total number of grid

points to achieve the same level of accuracy, while using a

first-order scheme requires a 100-fold increase. This corre-

sponds to a significant increase in the computer memory

required for a given simulation. For a given CFL, this also

increases the number of time steps required. Similar results

have previously been shown for scattering problems in two

and three dimensions.6,42

C. Nonlinear propagation in media with
thermoviscous absorption

To investigate the accuracy of the k-space model for

simulating nonlinear wave propagation in absorbing media,

the propagation of a monochromatic plane wave was com-

pared to the analytical solution of Burgers equation derived

by Mendousse.7,43 This solution accounts for thermoviscous

absorption (which is proportional to frequency squared) for a

source condition equal to p ¼ p0 sin 2pf0tð Þ. It is convenient
to describe the contribution of nonlinearity to the shape of

the waveform using the non-dimensional shock parameter r.

For a monochromatic plane wave this is defined as

r ¼
bp02pf0x

q0c
3
0

; (12)

where x is the distance between the observation point and

the source. A comparison between the k-space model and

Mendousse’s solution is shown in Fig. 3(a) for r ¼ 1, where

b ¼ 4:8, p0 ¼ 5 MPa, f0 ¼ 1 MHz, q0 ¼ 1000 kg/m3,

c0 ¼ 1500 m/s, and a0 ¼ 0:25 dBMHz"2 cm"1. The k-space

discretization used 30 grid points per wavelength at f0 (sup-

porting at most 15 harmonics) and a CFL number of 0.3. The

amplitudes of the first ten harmonics are shown in Fig. 3(b).

There is a close agreement between the two models illustrat-

ing that acoustic absorption and cumulative nonlinear effects

are correctly encapsulated. The corresponding waveform

calculated using Eq. (11) with j ¼ 1 (equivalent to a leap-

frog pseudospectral model) is also shown. In this case, addi-

tional phase error is noticeable near the maximum and

minimum of the waveform. The corresponding errors as a

function of the CFL number are shown in Fig. 3(b), where

the least squares error metric is defined as

error½%, ¼ 100

P

pk"space tð Þ " pmendousse tð Þ
! "2

P

pmendousse tð Þð Þ2
: (13)

It is evident from this example that the k-space operator still

significantly improves the accuracy of the solution, even

when the governing equations include additional nonlinear-

ity and absorption terms.

A second comparison is shown in Fig. 4 for a varying

shock parameter again using 30 grid points per wavelength

at f0 and a CFL number of 0.3. For low values of the shock

parameter, the range of spatial wave numbers supported by

the computational grid is sufficient to accurately represent

the waveform. Consequently, the least squares error is small.

As the shock parameter is increased, harmonics with wave-

lengths smaller than that supported by the grid spacing are

generated. This creates an aliasing effect known as spectral

blocking in which wavenumbers higher than the Nyquist

limit are aliased to wavenumbers supported by the computa-

tional grid.41 This effect is visible in Fig. 4(b) for r ¼ 3. In

this case, the amplitudes of the generated harmonics no lon-

ger decay, and the energy at 15MHz is erroneously greater

than at 14MHz due to aliasing.

For a given grid size, there are several possible strat-

egies to overcome spectral blocking (see Ref. 41, and refer-

ences therein). For systems with a quadratic nonlinearity,

FIG. 3. (a) Comparison between Mendousse’s analytical solution for the

nonlinear propagation of a plane wave in a lossy medium and the nonlinear

k-space model for a shock parameter of r ¼ 1. (b) Corresponding ampli-

tudes of the first 10 harmonics. (c) Change in the least squares error with the

size of the time step defined by the Courant–Friedrichs–Lewy (CFL)

number.
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aliasing can be counteracted by increasing the grid size in

each spatial dimension by a factor of 1=3 and then filtering

out the additional wavenumbers after each time step. For

convective nonlinearity in the case of incompressible flow,

aliasing errors can also be reduced by using the skew-

symmetric form of the convective term. However, while

these strategies can help minimize aliasing errors, the overall

solution will still be inaccurate if there is significant energy

at wavenumbers not supported by the computational grid.41

This is not a problem specific to spectral methods, rather, it

is applicable regardless of the chosen numerical method. In

this case, if the accurate calculation of the total acoustic

pressure field is the desired outcome, the best strategy is to

monitor the computed wavenumbers for spectral blocking,

and increase the number of grid points used in the simulation

if significant aliasing is observed.

More generally, the accuracy of the k-space model is de-

pendent on several parameters. First, the number of grid

points used per wavelength will control whether the compu-

tational grid can support the propagation of the generated

harmonics. In turn, the rate at which these harmonics are

produced will depend on the shock parameter (for example,

the source strength and the coefficient of nonlinearity), while

the rate at which they are absorbed will depend on the power

law absorption parameters. Finally, the CFL number will

control the amount of unwanted numerical dispersion intro-

duced by the finite difference time step, as well as the accu-

racy with which the nonlinearity and absorption terms in the

pressure-density relation are computed.

D. Linear propagation in media with power law
absorption

To investigate the accuracy of the power law absorption

term for general absorption parameters, the pressure field pro-

duced by a rectangular piston in an absorbing medium was

compared to the fast near-field method as implemented in the

FOCUS toolbox.44 This approach is comparable to evaluating

the Rayleigh–Sommerfeld integral, but converges more rap-

idly by using an equivalent integral expression that removes

numerical singularities. A comparison between the two mod-

els for a 6mm ' 6mm rectangular piston driven by a 3MHz

sinusoid is shown in Fig. 5. To capture the rapid field varia-

tions close to the piston surface, the k-space model used four

grid points per wavelength, with an overall computational

grid size of 384 ' 128 ' 128 grid points. The medium

parameters were set to c0 ¼ 1510 m/s, q0 ¼ 1020 kg/m3, and

a0 ¼ 0:25 dB MHz"1 cm"1. The beam pattern for the k-space

model was produced by taking the maximum steady state

pressure at each grid point. There is excellent agreement

between the two models which confirms that absorption and

near-field effects are correctly modeled.

E. Simulation of nonlinear ultrasound beam patterns

To illustrate the applicability of the developed nonlinear

k-space model to ultrasound simulation more generally, the

beam pattern produced by an Ultrasonix L9-4/38 linear array

probe in a heterogeneous medium was investigated. This

probe has 128 rectangular transducer elements with an ele-

ment pitch of 304.8 lm, an elevation height of 6mm, and an

elevation focus of 19mm. The beam pattern was computed

in three dimensions using 32 active elements and an elec-

tronic focus of 15mm. The computational grid used includ-

ing the PML was 1024 ' 512 ' 512 grid points with a grid

point spacing of 30.5 lm. This corresponds to a maximum

frequency of 25.2 MHz at two grid points per wavelength, or

16.8MHz at three grid points per wavelength (giving a com-

putational domain size of 340' 170' 170 wavelengths at

the maximum frequency). The transducer was driven by a

five cycle tone burst with a center frequency of 5 MHz and

an equivalent source pressure of 0.25MPa per grid node of

FIG. 4. (a) Comparison between Mendousse’s analytical solution and the

nonlinear k-space model for a varying shock parameter using 30 grid points

per wavelength at 1MHz. (b) Corresponding harmonic amplitudes calcu-

lated by the k-space model. (c) Change in the least squares error as a func-

tion of the shock parameter.
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each transducer element. The input signal was assigned to

the x-direction particle velocity (rather than the pressure) to

mimic the directionality of the physical piezoelectric trans-

ducer elements. Each element was represented by 9 grid

points in the azimuth direction (with a kerf width of 1 grid

point) and 196 grid points in the elevation direction. The

beamforming delays were calculated geometrically, and the

elevation focus was modeled by applying additional beam-

forming delays across the grid points in the elevation direc-

tion. The CFL number was set to 0.3 giving a time step of

6 ns, and the simulation was run for 4000 time steps.

For the homogeneous medium, the properties were set

to those of breast tissue, where c0 ¼ 1510 m/s, q0 ¼ 1020

kg/m3, B=A ¼ 9:63, a0 ¼ 0:75 dBMHz"y cm"1, and

y ¼ 1:5.1 For the heterogeneous medium, the sound speed

and density maps were derived from a CT scan of a human

neck. To simulate small scale heterogeneities, the values of

the sound speed and density at each grid point were scaled

by a Gaussian random variable with a mean of 1 and a stand-

ard deviation of 0.05. Each simulation took 7.5 h to run and

used 27 GB of memory (using the Tyan server in the 48 GB

configuration; details are given in the Appendix). The gener-

ated azimuth and elevation plane beam patterns are shown in

Fig. 6. The total beam patterns were produced by taking the

maximum value of the pressure recorded at each grid point,

while the beam patterns at the second harmonic correspond

to the relative spectral amplitudes at this frequency. When

the medium is heterogeneous, the variations in the medium

parameters alter both the shape and the position of the beam

focus. By recording the acoustic signals reflected back to the

active transducer elements, it is straightforward to extend the

simulations to form B-mode ultrasound images.36

F. Comparison with other full-wave nonlinear models

The computational complexity of solving general non-

linear equations means only a limited number of three-

dimensional full-wave models have previously been reported

in the literature. Pinton et al.,2 recently presented a solution

to the heterogeneous Westervelt equation with a relaxation

absorption term using a second-order-in-time, fourth-order-

in-space finite difference method. Simulations using compu-

tational grid sizes on the order of 800' 800' 800 grid

points were run on a distributed cluster with run times on the

order of 32 h. Comparatively, the k-space pseudospectral

method reduces the number of grid points and time steps

required for the same level of accuracy.

Verweij and Huijssen3,12 also recently presented an iter-

ative method to solve the linear homogeneous wave equation

with absorption, nonlinearity, and heterogeneity included as

contrast source terms. This approach allows both the spatial

and temporal fields to be sampled at the Nyquist limit

(equivalent to a CFL number of 1). It also provides a mecha-

nism for high frequency harmonics not supported by the

computational grid to be removed via spatiotemporal filter-

ing. However, a significant disadvantage is that the complete

time history of the field data must be stored to allow the

evaluation of the required convolutions. This considerably

increases memory requirements. For the example discussed

in Sec. V E, even after accounting for a reduction in the total

number of grid points by a factor of 8 (assuming the k-space

model requires a conservative four grid points per wave-

length at the maximum frequency of interest) and using a

CFL number of 1, the storage of the time history of one field

variable in single precision still requires 75 GB of memory.

VI. SUMMARY

A set of coupled first-order equations valid for model-

ing nonlinear wave propagation in heterogeneous media

with power law absorption is derived. The additional terms

FIG. 5. (Color online) (a) Azimuth plane beam pattern generated by a rec-

tangular piston in an homogeneous absorbing medium using the k-space

method (top panel) and the fast near-field method (bottom panel). (b) Com-

parison of the pressure maximum along the transducer axis. (c) Comparison

of the lateral pressure at x¼ 6mm and x¼ 22mm.
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accounting for cumulative nonlinear effects and power law

absorption are expressed as spatial gradients which makes

them efficient to numerically encode. The derived govern-

ing equations are then discretized using the k-space pseudo-

spectral method. The use of the k-space operator

significantly reduces the phase error introduced by the finite

difference time step, allowing larger time steps to be taken

for the same level of accuracy. The use of the Fourier-

collocation spectral method similarly improves the accu-

racy of the spatial gradient calculations which relaxes the

requirement for dense computational grids compared to

conventional finite difference methods. A number of nu-

merical examples are given to illustrate the accuracy of the

model. The utility of the nonlinear k-space model is then

demonstrated via the three-dimensional simulation of the

beam pattern from a clinical ultrasound transducer in both

homogeneous and heterogeneous media. Compared to pre-

vious ultrasound models based on the KZK equation, the

current model does not have any restrictions on the direc-

tionality or spatial variation of the sound waves. This facili-

tates arbitrary full-wave simulations of cumulative

nonlinear effects in tissue-realistic media. The model is par-

ticularly relevant to the simulation of diagnostic and thera-

peutic ultrasound fields in heterogeneous media, as well as

the generation of full-wave harmonic ultrasound images.
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APPENDIX: COMPUTER IMPLEMENTATION

The discrete equations described in Sec. IV B were

implemented in Cþþ as an extension to the open source

K-WAVE toolbox.40 The codes were optimized to run using a

Tyan server (MiTAC, Taipei, Taiwan) with two six-core

Intel Xeon X5650 processors. To maximize computational

efficiency, several stages of code optimization were per-

formed.45 First, the 3D FFTs were computed using the real-

to-complex FFT from the FFTW library. Compared to the

complex-to-complex FFT, this reduced the compute time

FIG. 6. (Color online) Normalized azimuth and elevation plane beam patterns generated by a clinical linear array ultrasound transducer for a homogeneous

medium and a heterogeneous medium using a density map derived from a CT scan.
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and memory associated with the FFT by nearly 50%. Sec-

ond, to save memory bandwidth, all operations were com-

puted in single precision. Parameters such as the PML and

wavenumber operators were stored as 1D vectors and virtu-

ally replicated to 3D as needed via indexing. Third, element-

wise operations were parallelized using OPENMP and then

optimized using streaming SIMD extensions (SSE). Multiple

mathematical operations were applied to each grid point

where possible to maximize temporal data locality. Finally,

as the Tyan server is based on the non-uniform memory

access architecture, policies were implemented to bind

threads to cores and allocate memory to nearby memory lo-

cality domains.45

The compute times per time step for a range of compu-

tational grid sizes are shown in Fig. 7. The three curves cor-

respond to three different computer configurations: a

desktop computer with a four-core Intel Core i7 950 proces-

sor and 12 GB of DDR3 RAM, and the Tyan server with ei-

ther 144 GB (18 ' 8 GB) or 48 GB (12 ' 4 GB) of DDR3

RAM. The performance difference between the two memory

configurations for the Tyan server is due to a reduction in

the memory speed from 1333MHz to 1066MHz when the

memory channels are fully populated. The memory usage

for a given grid size can be estimated by

memory usage½GB, )
21NxNyNzþ 9Nx

2
NyNz

10243=4
; (A1)

where Nx, Ny, and Nz are the grid sizes in the x, y, and z

directions. The first term accounts for 21 real matrices and

the second term accounts for 3 real and 3 complex matrices

in the spatial Fourier domain. The relatively large number of

3D matrices is required to store the heterogeneous material

parameters, field values, and temporary results.

For a computational grid with 512 ' 512 ' 512 grid

points, the overall performance of the k-space model running

on the Tyan server (in the 48 GB memory configuration)

was approximately 17 GFLOPS. In this case, the maximum

achievable performance was limited by the available mem-

ory bandwidth as many of the element-wise operations

have limited or no data re-usage so benefit little from the

availability of cache. For comparison, the LINPACK

benchmark from the Intel Math Kernel Library (which is

used to test the theoretical peak performance of Intel pro-

cessors) had a performance of 118 GFLOPS, while the 3D

real-to-complex FFT in isolation had a performance of 42

GFLOPS. For a representative simulation, around 60% of

the total computation time is spent performing the forward

and inverse FFT.
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