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Abstract—We propose an approximate model for a nonsaturated IEEE 802.11 DCF network. This model captures the significant

influence of an arbitrary node transmit buffer size on the network performance. We find that increasing the buffer size can improve the

throughput slightly but can lead to a dramatic increase in the packet delay without necessarily a corresponding reduction in the packet

loss rate. This result suggests that there may be little benefit in provisioning very large buffers, even for loss-sensitive applications. Our

model outperforms prior models in terms of simplicity, computation speed, and accuracy. The simplicity stems from using a renewal

theory approach for the collision probability instead of the usual multidimensional Markov chain, and it makes our model easier to

understand, manipulate and extend; for instance, we are able to use our model to investigate the important problem of convergence of

the collision probability calculation. The remarkable improvement in the computation speed is due to the use of an efficient numerical

transform inversion algorithm to invert generating functions of key parameters of the model. The accuracy is due to a carefully

constructed model for the service time distribution. We verify our model using ns-2 simulation and show that our analytical results

based on an M/G/1/K queuing model are able to accurately predict a wide range of performance metrics, including the packet loss rate

and the waiting time distribution. In contradiction to claims by other authors, we show that 1) a nonsaturated DCF model like ours that

makes use of decoupling assumptions for the collision probability and queuing dynamics can produce accurate predictions of metrics

other than just the throughput, and 2) the actual service time and waiting time distributions for DCF networks have truncated heavy-

tailed shapes (i.e., appear initially straight on a log-log plot) rather than exponential shapes. Our work will help developers select

appropriate buffer sizes for 802.11 devices, and will help system administrators predict the performance of applications.

Index Terms—IEEE 802.11, fixed point analysis, nonsaturation, M/G/1/K.
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1 INTRODUCTION

THE popular IEEE 802.11 wireless LAN standard [1] uses
a CSMA/CA mechanism called the Distributed Co-

ordination Function (DCF) to regulate access to the shared
medium. The operation of DCF is complicated due to its
distributed, random-access nature, creating a need for
accurate mathematical models to predict performance.
Early performance evaluations [2], [3] of DCF made the
simplifying assumption that each station always has a
packet to transmit. While this saturation assumption is
analytically appealing because it enables queuing dynamics
to be ignored, real traffic flows are nonpersistent and do not
give rise to true saturation. In recent years, performance
evaluation under more realistic nonsaturated traffic (typi-
cally Poisson traffic) has attracted increasing attention [4],
[5], [6], [7], [8], [9], [10], [11], [12]. In nonsaturated operation,
the node transmit buffer size has a significant impact on the
performance, notably in a transition regime from light to
heavy traffic loads (see Fig. 1). However, previous work

fails to adequately model this impact. In this paper, we
develop an accurate model of a nonsaturated single-hop
wireless LAN that yields a wide range of performance
descriptors and correctly captures the influence of an
arbitrary node buffer size. Furthermore, we devise compu-
tationally efficient methods to solve the model for the
performance descriptors. The model is a nontrivial general-
ization of our previous work in [13] which considered small
and infinite buffers. Our analysis is focussed on the basic
access mode of DCF, but could be readily extended to the
RTS-CTS mode.

At the heart of the analysis under saturation is a
decoupling assumption that the collision probability is
constant and independent between stations; this leads to a
fixed-point formulation relating the per-station attempt rate
with the collision probability of a packet [2], [14]. Several
distinct approaches to arrive at a fixed-point formulation
have been proposed, each leading to distinct defining
equations. Bianchi [2] used an approach based on a
bidimensional Markov chain representing backoff states,
Tay and Chua [3] used mean-value arguments, while
Kumar et al. [14] used a renewal theory approach.

Existing models for nonsaturated operation differ in
approach and scope, but they are all in some way derived
from a saturated fixed-point formulation. One simple
approach is to assume that the number of active stations
changes rather slowly and then to locally approximate each
state using saturation results [8]. Another general approach
is to modify a saturated fixed-point formulation to create a
nonsaturated fixed-point formulation [4], [5], [6], [7], [9],
[10], [11], [12]. In [4], a model for a short buffer is developed
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by augmenting the Bianchi Markov chain [2] with postback-
off states (where the station has transmitted a packet and
begins a new backoff regardless of the presence of another
packet to transmit). The analyses in [5], [6] treat Poisson
traffic and an infinite buffer by modeling each station as an
M/G/1/1 queue, and determine packet-level interactions
on the channel using a Bianchi Markov chain extended with
postbackoff states. In [7], each station is modeled as a
discrete-time G/G/1/1 queue, and combined with a
nonsaturated fixed-point formulation based on [3].

The models in [4], [5], [6], [7] are restricted to either small
or infinite buffers. On the other hand, [9], [10], [11], [12]
consider the more challenging case of a general buffer size.
However, none of [9], [10], [11], [12] actually investigates
the impact of different buffer sizes. For example, the buffer
size in [9] is set to 40, the buffer size in [11] and [12] is set to
50, and while the authors in [10] consider different buffer
sizes, they do not validate their analytical results with
simulation. As we demonstrate in Fig. 1, the performance
when the buffer size is larger than 20 is almost the same as
that under the infinite buffer case.

The analysis in [9] uses a three-dimensional extension of
the Bianchi Markov chain that explicitly tracks the buffer
state of a station, as well as the number of other stations
with a nonempty buffer. The models in [10], [11], [12]
represent each station as an M/G/1/K queue, where K is
the buffer size in packets, and model the backoff states of a
station using a bidirectional Markov chain. The models in
[9], [10] dispense with the decoupling assumption for the
collision probability, which adds significantly to the
modeling and computational complexity. Conversely, the
model of [11] and its extension [12] preserve the collision
probability decoupling assumption, and introduce a queue
decoupling assumption whereby the degree of nonsatura-
tion is approximated by the probability of a nonempty
buffer in the M/G/1/K queue. The nonsaturated attempt
rate is approximated by scaling the saturated attempt rate
with the probability of a nonempty buffer (see (12)). The
probability of a nonempty buffer depends on the packet
arrival rate and the distribution of the packet service time.

In [13], we presented an accurate model for nonsaturated
DCF networks that was restricted to small and infinite
buffers. The current paper extends [13] to an arbitrary buffer
size. Like [13], the nonsaturated model in this paper builds
on the saturated renewal model of [14] and the scaling idea
for the nonsaturated attempt rate. Since it bypasses the
Bianchi Markov chain and its complicated interactions, our
model is more compact than prior models, and is therefore
easier to manipulate and extend. For instance, we show that
it enables investigation of the problem of convergence of the
collision probability calculation. The model can also be
extended to characterize heterogeneous DCF networks and
even 802.11e EDCA networks.

Extension to an arbitrary buffer size is not straightfor-
ward, because the extension raises a number of challenges,
namely modeling accuracy, modeling complexity, compu-
tational complexity, and convergence of the fixed-point
equation. In prior models, the latter three problems are
never addressed, while the accuracy of these models is
questionable, as we show in our numerical examples. Our
main modeling contribution is a carefully constructed
model for the service time that, in conjunction with the
simple and intuitive expression for the saturated attempt
rate from [14], leads to a fixed point approximation that
yields accurate predictions for the nonsaturated collision
probability. From this collision probability, we are able to
obtain precise estimates of the throughput, and the mean
and standard deviation of the MAC access delay, using an
access delay model that we developed previously for the
saturated setting [15]. Moreover, using standard results for
the M/G/1/K queue, we show that we can obtain queuing
statistics such as the mean total delay (the service time plus
the waiting time), the packet loss rate due to buffer
overflow, and the complementary cumulative distribution
function (CCDF) of the waiting time. In fact, all perfor-
mance descriptors that can be computed for an M/G/1/K
queue can be computed for our system.

It is our belief thatmanagingmodeling and computational
complexity in an analytical model is vital to maximise its
utility and provide clear advantages over simulation. The
complexity of nonsaturated DCF operation dictates that a
certain degree of modeling complexity is unavoidable in any
accurate performancemodel. OurM/G/1/K queuemodel is
not simple, but it is decidedly more simple than [9], [10]
because, unlike those models, it retains the decoupling
assumption for the collision probability that is used for
saturated modeling [2]. Furthermore, our model is simpler
than [11], [12] because it uses the elegant fixed-point
approach from [14] rather than the Bianchi Markov chain
approach [2]. Nonetheless, to address the complexity issue,
we also describe three model variants of our M/G/1/K
model that trade accuracy for simplicity, namely 1) anM/M/
1/K model for an arbitrary buffer size, 2) a simple model for
the case of buffer size K ¼ 2, and 3) a simple model for the
caseK ¼ 1. The model variants 2) and 3) originate from our
paper [13] and are included in this paper for the purposes of
comparison with our M/G/1/K and M/M/1/K models.
These simpler models are only marginally less accurate than
the M/G/1/K model for the collision probability, through-
put, and mean delay statistics, but not so accurate for more
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Fig. 1. The simulated collision probability versus the normalized total
offered load when the number of contending nodes n ¼ 24 and the buffer
size K ¼ 2, 4, 6, 8, 10, 20, and 1,000.



subtle performance descriptors such as the distribution of the
waiting time and the packet loss rate.

We address the issue of computational complexity by
devising computationally efficient methods to solve for the
collision probability in the M/G/1/K model. We use
numerical inversion of the generating function to calculate
the probability of a nonempty buffer, which is the main
component of the computational cost. In prior work, there
is no discussion on how to efficiently calculate the
probability of a nonempty buffer. We prove that with our
method, the time complexity of this main component is
reduced to OðK2Þ, or even OðKÞ for low traffic loads, from
Oðð100nÞ2 þK � 1Þ with the method advocated in [11], [12],
where n is the number of contending nodes and K is the
node buffer size. For large K, we also show that an
acceleration technique can be used in the inversion
algorithm to reduce the computational cost even further
to Oð eKKÞ, or Oð eKÞ for low traffic loads, where eK � K.
Thanks to the remarkable reduction in time complexity,
when plotting an analytical curve for a given K according
to our method, the computation time is reduced to several
seconds from several hours using the method in [11], [12].

Under theM/M/1/Kqueuing analysis,we also consider a
relaxed fixed point iteration to calculate the collision
probability and find sufficient conditions for convergence.
As far as we know, no paper in the literature discusses the
convergence of the fixedpoint undernonsaturatedoperation.

To confirm the accuracy of our models, we focus on
Poisson traffic and present extensive numerical examples
comparing outputs of our models with ns-2 simulation, as
well as with outputs of the models in [4], [5], [7], [8], [11],
[12]. We show that our M/G/1/K model is more accurate
than any of the existing models, and captures the effect of
the buffer size. Our analytical results precisely predict the
collision probability, the mean and variance of the MAC
access delay, the mean total delay, the packet loss rate, and
the CCDF of the waiting time. We find that increasing the
buffer size can improve the throughput slightly, but can
lead to a dramatic increase in the packet delay without
necessarily a reduction in the packet loss rate. We also show
that for a large buffer size, our much simpler M/M/1/K
model has comparable accuracy to the M/G/1/K model for
the collision probability, the mean and variance of the MAC
access delay, and the mean total delay. The M/M/1/K
model exhibits inaccuracy when the buffer is small and the
offered traffic approaches saturation. Regarding non-Pois-
son traffic, prior work [4], [13] has illustrated that the 802.11
nonsaturated performance is largely insensitive to the input
traffic arrival distribution. Therefore, Poisson traffic can
serve as a proxy for other traffic types with the same mean
arrival rate, including CBR and on-off traffic.

The accuracy of our model for a wide range of
performance indicators contradicts the view put forward
in [16] that a model like ours that uses a queue decoupling
assumption can only be expected to be accurate for
throughput estimates, and the conclusion in [9] that
maintaining the collision probability decoupling assump-
tion cannot produce accurate results for the nonsaturated
analysis. Furthermore, our results show that the service
time and waiting time distributions of DCF networks have
truncated heavy-tailed shapes rather than exponential
shapes, as claimed in [11].

The rest of this paper is organized as follows: In Section 2,
we first outline the backoff procedure in the IEEE 802.11 DCF
and then analyze the MAC service time under saturation.
Section 3 presents a general fixed-point formulation in terms
of an arbitrary buffer size. Section 4 presents the formulas for
the throughput, the mean and variance of the MAC access
delay, the Laplace transform of thewaiting time distribution,
themean total delay, and the packet loss rate. In Section 5, the
theoretical results are verified via ns2 simulation and
compared with related work. Section 6 concludes the paper.
Finally, Appendix A presents the proofs of Theorem 2 and
Corollary 1, whereas Appendix B gives a table of main
notation and associated equation numbers.

2 THE 802.11 MAC PROTOCOL AND MAC
SERVICE TIME FOR A NONEMPTY BUFFER

Before developing the nonsaturated model in Section 3, we
briefly review the operation of DCF and then derive the
MAC service time under the condition that the buffer is
nonempty. This result plays a critical role in the accurate
modeling of nonsaturated operation.

We first introduce the terminology and assumptions that
will be used in our analysis: a packet transmission is said to
be finished when the packet is either successfully received at
the destination node or dropped due to reaching a
retransmission limit; the service time of a packet is defined
as the interval between when a packet becomes the head-of-
line packet in the buffer and when the packet transmission
is finished; the MAC access delay is defined as the interval
between when a packet becomes the head-of-line packet in
the buffer and when the packet is successfully received at
the destination node; time is measured in slots unless
explicitly indicated. Similar to [2], [14] and most other
saturated and nonsaturated analyses, we assume that 1) all
nodes reside in a single-cell network (i.e., all stations are in
sensing range of each other), 2) the collision processes of the
nodes can be decoupled, such that the collision probability
experienced by each node is constant and identical, and
3) channel conditions are ideal so that transmission errors
are a result of packet collision only. In common with other
nonsaturated analyses, we assume that the interarrival time
(in slots) of packets from the upper layers into the transmit
buffer of each station is independent and identically
distributed, and we focus on homogeneous DCF networks,
where all stations have the same protocol parameter values
(such as the initial window size and the multiplier of the
exponential backoff), the same traffic parameter values
(namely, traffic arrival rate and packet size) and the same
buffer size. We also assume that the buffer size is measured
in units of packets.

2.1 IEEE 802.11 DCF

The IEEE 802.11 DCF [1] is a binary exponential backoff
protocol. The event of finishing a packet transmission
triggers slightly different protocol actions depending on
whether or not the buffer is empty.

If the buffer is not empty (e.g., in saturated operation),
the node immediately enters the initial backoff stage,
wherein the node generates a random backoff count
uniformly distributed in ½0;CW0 � 1�, where CW0 is a
given minimum contention window (CW) size. Thereafter,
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the backoff counter decreases by one for each idle time slot
and is suspended when the channel is busy. The suspended
backoff counter resumes after the channel is sensed idle for
a DCF interframe space (DIFS). When the backoff counter
reaches zero, the node starts the transmission of the next
data packet at the beginning of the next time slot. For each
successful transmission, the sender will receive an acknowl-
edgement (ACK) frame after a short interframe space
(SIFS). If the node does not receive the ACK within a certain
time (i.e., ACK timeout), it assumes that the data packet
were not successfully received at the target node and
doubles the CW and repeats the above procedure. Doubling
of the CW stops after the maximum window size CWmax is
reached. When a retransmission limit M is reached, the
sender drops the data packet.

If the buffer is empty, the node also enters the initial
backoff stage. At the end of the initial backoff stage, if the
buffer is not empty, the node will immediately transmit the
next data packet; otherwise, the node will remain idle.
During the idle duration, when a new packet arrives, the
node will immediately transmit the new packet if it senses
an idle channel for a DIFS period. If the channel is sensed
busy or any transmission fails, the node doubles the CW and
executes the nonempty buffer procedure described above.

2.2 MAC Service Time Conditioned on a Nonempty
Buffer

In this section, we develop an approximate expression for
the conditional MAC service time and calculate its mean,
generating function, and probability mass function. Unless
otherwise specified, we adopt the following notational
conventions in our analysis: if � is a random variable, we let
� denote the mean of �; if � is a nonnegative, integer-valued
random variable, we denote the probability mass function
of � by P ð� ¼ xÞ and the generating function of � by

b�ðzÞ ¼
X1

x¼0

P ð� ¼ xÞzx; for z 2 CC:

Note that if � is not integer-valued, it can be easily discretized
to an integer-valued random variable by defining a lattice,
with spacing � say, such that the values of � fall on the lattice
points (0; �; 2�; . . . ). The computational cost of inverting the
generating function increases with decreasing � , so it is
sometimes prudent to choose a larger � and tolerate some
rounding for the values of �. In IEEE 802.11 DCF, time is
measured in slots, where one slot ¼ 20 �s. Therefore, it is a
natural choice to set � ¼ 20 �s.

First, we summarize the model used for the saturated
collision probability and attempt rate, which is from [14].
Let � denote the collision probability experienced by a
tagged node on the condition that the buffer is not empty.
Let �c denote the attempt rate per slot for each node (i.e., the
ratio of the number of attempts to the time spent in backoff
measured in slots) on the condition that the buffer is not
empty. Applying the result in [14], we can express �c ¼

4

�cð�Þ as follows:

�cð�Þ ¼
1þ � þ �2 þ � � � þ �M�1

b0 þ �b1 þ �2b2 þ � � � þ �M�1bM�1

; ð1Þ

where M is the retransmission limit and bk is the mean
backoff time of stage k for each node. On the other hand,
according to the decoupling assumption [2], the collision
probability � can be expressed as follows in terms of �c:

� ¼ �ð�cð�ÞÞ ¼
4
1� ð1� �cð�ÞÞn�1; ð2Þ

where n (n � 2) is the number of contending nodes.
Substituting (1) into (2), we obtain a fixed-point equation
in terms of �. We call the solution of the fixed-point
equation the saturated collision probability. Thereafter, we
let �s denote the saturated collision probability and let �s

denote the saturated attempt rate, where �s ¼ �cð�sÞ.
Let Y c be the service time (in slots) of a packet of a

tagged node on the condition that the buffer is not empty.
We now express the MAC service time in terms of � and �c.

The expression for Y c. Let X be a random variable
representing the backoff count (measured in decrements of
the backoff counter) that elapses before a packet transmis-
sion of the tagged node is finished. Let � be a random
variable representing the time (in slots) that elapses for one
decrement of the backoff counter. Since the tagged node
waits for a duration of � per backoff decrement and it must
observe a backoff count of X before its packet transmission
finishes, Y c is given by

Y c ¼
XX

i¼1

�: ð3Þ

We now find an expression for the backoff count X.
Depending on the collision probability �, a packet may
undergo up to M backoff stages before its transmission is
finished. Therefore, the random variable X is equal to the
sum of the total backoff count spent by the tagged node in
different possible subsets of the M backoff stages, and the
probability of each subset can be expressed in terms of the
collision probability �. We define X as

X ¼
Xj

k¼0

�k; w:p: �ð�; jÞ; 0 � j � M � 1;

where �ð�; jÞ ¼
ð1� �Þ�j; j ¼ 0; . . . ;M � 2;

�M�1; j ¼ M � 1;

� ð4Þ

where “w.p.” means “X is equal to
Pj

k¼0 �k with probability
�ð�; jÞ.” In (4), �k is uniformly distributed in ½0; CWk � 1�
with mean bk, where CWk ¼ 	kCW0 for 0 � k � m� 1 and
CWk ¼ 	mCW0 for m � k � M � 1; CW0 is the minimum
window size (in slots); 	 (>1) is the multiplier of the
exponential backoff; m determines the maximum backoff
window size CWmax (i.e., CWmax ¼ 	mCW0 and 	 ¼ 2 in the
standard); M is the retransmission limit; and �ð�; jÞ is the
probability that the packet transmission finishes at the
jth backoff stage.

The generic slot duration � depends on whether a slot is
idle or interrupted by a successful transmission or a
collision. We define � as

� ¼

; w:p: 1� Pb;
Ts þ 
; w:p: Ps;
Ts þ 
; w:p: Ps;

8
<
: ð5Þ

where
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Pb ¼ 1� ð1� �cÞn ¼ 1� ð1� �Þ
n

n�1;

Ps ¼ n�cð1� �cÞn�1 ¼ nð1� ð1� �Þ
1

n�1Þð1� �Þ;

Ps ¼ Pb � Ps;

ð6Þ

denote the probability of a busy slot, the probability of a
successful transmission from any of the n contending nodes,
and the probability of an unsuccessful transmission from
any of the n contending nodes, respectively; 
 ¼ 1 slots ¼
20 �s; and Ts and Ts are the mean time (in slots) for a
successful transmission and an unsuccessful transmission,
respectively. The parameters Ts and Ts depend on packet
payload length, SIFS, DIFS, and other protocol parameters.
Note we have explicitly expressed � in terms of �. Since the
backoff counter must decrease one slot before the next
decrease, to be strictly correct, we add one slot in each of the
last two terms of �.

The expression for Y
c
. Since X and � depend on �; Y c

also depends on �. Let X ¼
4
Xð�Þ;� ¼

4
�ð�Þ, and Y

c
¼
4

Y
c
ð�Þ denote the mean of X;�, and Y c, respectively. From

(3), we have

Y
c
ð�Þ ¼ Xð�Þ � �ð�Þ: ð7Þ

In (7), Xð�Þ is calculated by

Xð�Þ ¼ b0 þ �b1 þ �2b2 þ � � � þ �M�1bM�1: ð8Þ

Note that the denominator in (1) is just the mean backoff
time Xð�Þ in (8). On the other hand, �ð�Þ is calculated by

�ð�Þ ¼ 
þ PsTs þ PsTs: ð9Þ

The expression for bY c . Since Y c depends on �, we write
bY c ¼

4 bY cð�; zÞ to denote the generating function of Y c. From
(3) and [17], bY cð�; zÞ is calculated by

bY cð�; zÞ ¼ bXð�; b�ð�; zÞÞ; ð10Þ

where from (4) and (5), bXð�; zÞ and b�ð�; zÞ are given by

bXð�; zÞ ¼
XM�1

i¼0

�ð�; iÞ
Yi

k¼0

b�kðzÞ
" #

;

b�ð�; zÞ ¼ ð1� PbÞz

 þ Psz

Tsþ
 þ Psz
Tsþ
;

b�kðzÞ ¼
1

CWk

1�zCWk

1�z ; k ¼ 0; . . . ;m� 1;

1
CWm

1�zCWm

1�z ; k ¼ m; . . . ;M � 1:

(

The calculation of PrfY c ¼ hg for h ¼ 1;2; . . . . To get
the probability mass function of Y c from bY c, we use the
lattice-Poisson numerical inversion algorithm developed in
[18]. The inversion formula used in this algorithm is

PrfY c ¼ hg �
1

2hlrh

Xhl�1

j¼�hl

bY cð�; re�i�j=ðhlÞÞei�j=l; ð11Þ

where h is in slots, and real r and integer l are parameters of
the inversion algorithm. The results we present in Section 5
are calculated using l ¼ 1 and r ¼ 10�4=h. From [18], these
settings for l and r result in a numerical inversion error less
than 10�8.

Remarks. The authors in [11] suggest that the service time
distribution in DCF can be approximated by an expo-

nential distribution. However, our extensive numerical
experiments indicate that the service time distribution
actually has a truncated heavy-tailed shape. For details,
please refer to the explanations of Fig. 11 in Section 5.

3 THE COLLISION PROBABILITY FOR AN

ARBITRARY BUFFER SIZE UNDER

NONSATURATED OPERATION

Armed with the results for the conditional MAC service
time derived in the previous section, we are ready to model
the backoff procedure for nonsaturated operation for an
arbitrary buffer size (i.e., to model the attempt rate and the
collision probability for an arbitrary buffer size).

The node buffer size has a significant impact on the
performance of nonsaturated DCF networks. Fig. 1 plots the
simulated collision probability versus the normalized total
offered load for different node buffer sizes. We observe that,
in a transition regime between light and heavy traffic loads,
the collision probability increases significantly with the
buffer size. The reason is that when the buffer size
increases, more packets are backlogged, and these back-
logged packets will contend for the shared channel and
thereby cause more collisions. In turn, these collisions
dramatically affect the throughput and the delay. Therefore,
a precise characterization of the performance for an
arbitrary buffer size requires an accurate model for the
collision probability. The key to modeling the collision
probability lies in devising a model for the attempt rate. To
do so, we adopt the following approximation idea.

The key approximation. As summarized in Section 2.1,
the backoff procedure executed by a DCF node is the same
irrespective of whether it is saturated or nonsaturated. If we
ignore the time when the backoff counter is idle due to the
absence of a packet, the only difference between the
nonsaturated case and the saturated case is that the mean
number of backoff stages in the former is less than the mean
number in the latter. This inspires us to approximate the
attempt rate of the nonsaturated case by scaling the attempt
rate of the saturated case with the probability of a
nonempty buffer (see (12)). As a consequence, we disregard
the details of the postbackoff state interactions in non-
saturated operation.

The same approximation idea has been adopted in [11]
and its extension [12]. Our main modeling contribution is a
carefully constructed model for the service time derived in
(3) that, in conjunction with the simple and intuitive
expression for the saturated attempt rate from [14], leads
to a fixed point approximation that yields accurate
predictions for the nonsaturated collision probability. More
detailed comparisons between our model and the model in
[11], [12] are given in Section 3.3.

3.1 The General Fixed-Point Equation

This section develops a simple general fixed-point equation
that governs the collision probability under nonsaturated
operation. Recall that �c is the average attempt rate per slot
for each node (i.e., the ratio of the number of attempts to the
time spent in backoff measured in slots) on the condition that
the buffer is not empty. Let p0 be the probability of an empty
buffer. Let � (0 � � � 1) be the general (or average) attempt
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rate per slot for each node. Noting that the attempt rate is
equal to zero when the buffer is empty, we propose that

� ¼ ð1� p0Þ�
c: ð12Þ

In other words, we assume that the general attempt rate � is
equal to the product of the system utilization ð1� p0Þ and
the conditional attempt rate �c.

We assume that the decoupling assumption commonly
used for saturated performance analysis [2], [14] can be
extended to the nonsaturated setting. We can then express
the general collision probability � experienced by a tagged
node under nonsaturated operation using the same math-
ematical form as for the saturated case (2), namely:

� ¼ �ð�Þ ¼ 1� ð1� �Þn�1: ð13Þ

Note, however, the subtle difference between how the
general collision probability � and the saturated collision
probability �s are computed; � is the solution of the fixed-
point equation � ¼ �ð�Þ, while �s is the solution of the
fixed-point equation � ¼ �ð�cÞ.

To complete the fixed-point equation governed by (12)
and (13), we need to express � (that is, �c and p0) in terms of
the general collision probability �. Since �c ¼

4
�cð�Þ is already

given in (1), we only need to express p0 in terms of �.
In queuing theory, p0 is naturally connected to the traffic

intensity � and can be expressed in terms of �. In our
nonsaturated model, we define � ¼

4
�ð�Þ as

�ð�Þ ¼ Y
c
ð�Þ ¼ Xð�Þ�ð�Þ; ð14Þ

where Y
c
ð�Þ is given by (7) and  is the parameter of the

Poisson arrival process and, in our time-slotted setting,
represents the packet arrival rate per slot. Then, to complete
the fixed-point equation governed by (12) and (13), what we
do next is to express p0 in term of � using well-established
results for the M/G/1/K queue.

3.1.1 Computation of p0 Based on the M/G/1/K Queue

The parameters introduced above for a DCF node translate
in a natural way to parameters of an M/G/1/K queue. In
particular, packets awaiting transmission represent jobs in
the queue, the Poisson distribution with parameter 
describes the packet arrival process to the queue, the
MAC service time Y c represents the service process of a job
in the server, and �ð�Þ ¼ Y

c
ð�Þ describes the traffic

intensity. As explained previously, Zhai et al. [11] and
Zheng et al. [12] also use an M/G/1/K queue model, and
we first describe their method of computation before
describing a simpler method that we employ.

Method used in [11] and [12]. Let pk be the steady-state
probability that there are k packets present in the transmit
buffer of a node at an arbitrary time, where k ¼ 0; 1; 2; . . . ; K.
Let �k be the probability that there are kpackets present in the
buffer after a packet’s transmission is finished, where
k ¼ 0; 1; 2; . . . ; K � 1. From [19], pk can be calculated using

pk ¼
�k

�0þ� ; k ¼ 0; 1; . . . ; K � 1;

1� 1
�0þ� ; k ¼ K:

(
ð15Þ

In (15), � ¼ f�k; 0 � k � K � 1g can be calculated by solving
the system of linear equations below:

� ¼ �

a0 a1 a2 � � � aK�2 1�
PK�2

j¼0 aj

a0 a1 a2 � � � aK�2 1�
PK�2

j¼0 aj

0 a0 a1 � � � aK�3 1�
PK�3

j¼0 aj

..

. ..
. ..

. ..
. ..

. ..
.

� � � � � � � � � � � � a0 1� a0

0
BBBBBB@

1
CCCCCCA
; ð16Þ

where ak ¼
4
akð; Y

cÞ is given by

ak ¼ Prfk packets arrive during MAC service time Y cg

¼
X1

h¼0

ðhÞk

k!
e�h PrfY c ¼ hg

�
XImax

h¼0

ðhÞk

k!
e�h PrfY c ¼ hg:

ð17Þ

In (17), h is measured in slots, PrfY c ¼ hg is given by
(11), and Imax is set to some appropriately large number.
Note that from (17), we have

a0 ¼ bY cð�; e�Þ; ð18Þ

which will be useful later.
In [11] and [12], the expressions for �c;�, and Y c differ

from ours. Furthermore, the authors use (17) to calculate ak
but provide no explanation as to how to obtain PrfY c ¼ hg
from bY c. For the comparative results presented in Section 5
for the model of [11], [12], we use numerical inversion with
the lattice-Poisson algorithm to find PrfY c ¼ hg.

Method used in this paper. Let pk ¼
4
pkð; Y

cÞ. Tijms

[20] introduces a simpler approach to calculate pk for the

M/G/1/K queue. From [20], pk can be directly calculated

using the recursive equations below:

pk ¼
p0k

p00 þ p01 þ � � � þ p0K
; k ¼ 0; 1; . . . ; K;

p0k ¼

1; k ¼ 0;

a0
k�1

þ
Pk�1

j¼1
p0ja

0
k�j

1�a0
0

; k ¼ 1; . . . ; K � 1;

�� ð1� �Þ
Pk�1

j¼1 p
0
j; k ¼ K;

8
>>><
>>>:

ð19Þ

where a0k is given by

a0k ¼
X1

h¼0

ðhÞk

k!
e�h PrfY c � hg: ð20Þ

We construct the generating function ba0 ¼4 ba0ð; zÞ of the
sequence fa0k : k ¼ 0; 1; 2; . . .g:

ba0 ¼
X1

k¼0

a0kz
k

¼
X1

k¼0

X1

h¼0

ðhÞk

k!
e�h PrfY c � hg

" #
zk

¼
X1

h¼0

PrfY c � hge�h
X1

k¼0

ðzhÞk

k!

¼
X1

h¼0

PrfY c � hge�ð1�zÞh

¼
1� e�ð1�zÞ bY cð�; e�ð1�zÞÞ

1� e�ð1�zÞ
:
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Finally, we calculate a0k in (20) by inverting ba0 using the

lattice-Poisson algorithm:

a00 ¼
ba0ð; 0Þ;

a0k �
1

2klrk

Xkl�1

j¼�kl

ba0ð; re�i�j=ðklÞÞei�j=l; k¼ 1; 2; . . . ; K� 1:
ð21Þ

3.1.2 Computation of p0 Based on the M/G/1/1 Analysis

When � ¼ Y
c
< 1; p0 can be calculated using an ap-

proach far simpler than that in Section 3.1.1 without

introducing any additional approximations nor sacrificing

any accuracy. The basic idea is to exploit the fact that pk
in the M/G/1/K queue can be calculated exactly using

results for the M/G/1/1 queue [20]. Let �1
k be the

probability that there are k packets present in the infinite

buffer of a tagged node after it finishes a packet trans-

mission. From [20], pk can be calculated as follows:

pk ¼

�1
k

1��q
K
; k ¼ 0; 1; . . . ; K � 1;

ð1��Þq
K

1��q
K
; k ¼ K:

8
<
: ð22Þ

In (22), q
K
and �1

k are further calculated using

q
K
¼
X1

j¼K

�1
j ¼ 1�

XK�1

j¼0

�1
j ;

�1k ¼

1� �; k ¼ 0;

a0
k�1

�1
0
þ
Pk�1

j¼1
a0
k�j

�1j
1�a0

0

; k ¼ 1; . . . ; K � 1;

8
<
:

ð23Þ

where a0k is shown in (20).
Now, from (22), p0 is given by

p0 ¼
1� �

1� q
K
�
: ð24Þ

To obtain p0, we only need to calculate q
K
. To this end, we

find the generating function of the sequence f�1
k : k ¼

0; 1; 2; . . .g [20]:

b�1 ¼
4 b�1ð; zÞ ¼

ð1� �Þð1� zÞ bY cð�; e�ð1�zÞÞ

bY cð�; e�ð1�zÞÞ � z
:

Then, applying the lattice-Poisson algorithm, q
K

can be

calculated by

q
K
�

1

2KlrK

XKl�1

j¼�Kl

bqð; re�i�j=ðKlÞÞei�j=l; ð25Þ

where bqð; zÞ ¼ 1�zb�1ð;zÞ
1�z .

In the sequel, we will refer to the method described above

as the M/G/1/1method. However, we reiterate that in this

method, we still cast each station as an M/G/1/K queue

but use results for the M/G/1/1 queue to solve for p0.

3.1.3 Computation of p0 Based on Three Simplifications

Our M/G/1/K queue model detailed above is accurate

but admittedly complex. To address the complexity issue,

we now describe three model variants that trade accuracy

for simplicity.

1. The K ¼ 2 case. Under this case, we consider the

M/G/1/2 queue. From (15), (16), and (18), we have

p0 ¼
bY cð�; e�Þ

bY cð�; e�Þ þ �
: ð26Þ

It is worth pointing out that for K ¼ 2; p0 can be

approximated by an even simpler expression [13],

namely,

p0 ¼ e��: ð27Þ

It has been shown in [13] that the approximate
model based on (27) can achieve comparable
accuracy to the model in [4]. However, the accuracy
of (27) is slightly worse than that of (26).

2. The K ¼ 1 case. For this case, in [13], using the

well-known fact that the steady-state probability of a

nonempty buffer is given by �, we define

p0 ¼ 1�minð1; �Þ; ð28Þ

where we use the min function to prevent p0 from

becoming negative since � < 1 is required to main-

tain queue stability.
3. The arbitrary buffer size case. For this case, we

propose the use of an M/M/1/K queue to calculate

p0, where the service time is assumed to be an

exponential distribution with mean Y
c
ð�; �Þ. From

[19], p0 can be calculated using

p0 ¼
1

1þ �þ �2 . . .þ �K
: ð29Þ

As evident from (29), this method has a much lower

computational cost than our other methods for an

arbitrary buffer size.

3.1.4 Time Complexity of Calculating p0
The lattice-Poisson algorithm is an accurate and efficient
method to invert generating functions. However, when K

is large, it is possible to use a variant of the lattice-Poisson
algorithm that employs Euler summation [18] to drama-
tically accelerate the computation in (21) and (25); we shall
refer to this as the lattice-Poisson-Euler algorithm. The
idea behind the acceleration algorithm is to use Euler
summation to avoid the need to sum all the terms of the
Fourier series. As well as the parameters r and l from the
lattice-Poisson algorithm that control the inversion error,
the lattice-Poisson-Euler algorithm requires two additional
parameters: eK, which specifies how many initial terms of
the Fourier series to use, and E, which specifies how
many terms to use after the initial eK terms; the typical
value of E is 11. Theorem 1 below summarizes the time
complexity of calculating p0 using the two algorithms. In
this theorem, if we adopt the lattice-Poisson-Euler algo-
rithm, we set E ¼ 11 and eK � K � 1� E. The lattice-
Poisson-Euler algorithm is not guaranteed to work in all
applications (it requires the inverse function to satisfy
certain regularity properties), but we have found that it
works very well in our application.
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Theorem 1. Suppose l ¼ 1.

1. Assume � ¼ 1 slot. For the M/G/1/K method used in

[11] and [12] (i.e., using (11), (15), (16), and (17)),

at least Oðð100nÞ2 þK � 1Þ operations are required

to calculate p0.
2. For the M/G/1/K method used in this paper (i.e., using

(19) and (21)), a) if we adopt the lattice-Poisson

algorithm, OðK2Þ operations are required to calculate

p0; b) if we adopt the lattice-Poisson-Euler algorithm,

Oð eKKÞ operations are required to calculate p0.
3. For the M/G/1/1 method used in this paper (i.e., using

(24) and (25)), a) if we adopt the lattice-Poisson

algorithm, OðKÞ operations are required to calculate

p0; b) if we use the lattice-Poisson-Euler algorithm,

Oð eKÞ operations are required to calculate p0.

Proof.

1. The main computational load to calculate p0 lies
in calculating ak; k ¼ 0; 1; . . . ; K � 2. We now
evaluate the time complexity of calculating these
aks in the three steps below.

First, we estimate Imax � 100n. To elaborate,

we have proved in [21] that the mean of the

saturated service time is OðnÞ. That is, Y
c
� nms¼

n 1000
20

slots ¼ 50n slots. So, to accurately estimate

ak in (17), we should calculate the probability

mass function of Y c to at least 2	 ð50nÞ terms

(i.e., from PrfY c ¼ 1g to PrfY c ¼ 100ng). Hence,

we should set Imax � 100n.

Second, we need at least Oðð100nÞ2Þ oper-

ations to calculate PrfY c ¼ hg; h ¼ 1; . . . ; Imax.

From (11), calculating each PrfY c ¼ hg needs 2h

operations and thus we need at least
PImax

h¼1 2h �P100n
h¼1 2h > ð100nÞ2 operations to calculate these

Imax probabilities.
Third, given PrfY c ¼ hg; h ¼ 1; . . . ; Imax, we

need OðK � 1Þ operations to calculate these aks

(k ¼ 0; 1; . . . ; K � 2) since the time complexity of

calculating each ak can be regarded as constant.
In short, we need at least Oðð100nÞ2 þK � 1Þ

operations to calculate ak; k ¼ 0; 1; . . . ; K � 2.
2.

a) From (21), we need 2k operations to calcu-
late ak; k¼ 1; . . . ; K� 1. Therefore, we need
OðK2Þ operations to compute p0:

XK�1

k¼1

2k ¼ K2 �K ¼ OðK2Þ:

b) We now consider using the lattice-Poisson-

Euler algorithm to calculate ak; k¼1; . . . ; K�1.

When k � E þ eK, the lattice-Poisson-Euler
algorithm reverts to the lattice-Poisson algo-

rithm and hence needs 2k operations for each

k; when k > E þ eK, it performs E þ eK þ 1

operations for each k. Therefore, we need

Oð eKKÞ operations to calculate p0:

XEþeK

k¼1

2kþ
XK�1

k¼EþeKþ1

ðE þ eK þ 1Þ

¼ ½ðE þ eK þ 1Þ2 � ðE þ eK þ 1Þ�

þ ½ðE þ eK þ 1ÞðK � ðE þ eK þ 1ÞÞ�

¼ ðE þ eK þ 1ÞðK � 1Þ

¼ Oð eKKÞ:

3.

a) From (24) and (25), we need 2K operations to
calculate p0.

b) The lattice-Poisson-Euler algorithm needs
E þ eK þ 1 ¼ Oð eKÞ operations to calculate
p0. tu

Remark. Owing to the remarkable reduction in time

complexity, when plotting an analytical curve for a

given K according to our methods, the computation time

is reduced to several seconds compared to several hours

when the method in [11] and [12] is used, which is

shown in Table 1. The lattice-Poisson-Euler algorithm is

highly effective in reducing the computational cost when

K is large. We find that a setting of eK ¼ 50 is sufficient

to obtain the same accuracy as the lattice-Poisson

algorithm, which implies that there is sufficient smooth-

ness in the inverse function to give rise to a rapidly

decaying Fourier series [18].

According to Theorem 1, item 2, the time complexity

using the lattice-Poisson-Euler algorithm when K ¼ 1;000

is reduced to Oð5	 104Þ from Oð106Þ when the lattice-

Poisson algorithm is used.

3.2 Convergence Analysis of the Fixed Point

The general fixed point governed by (12) and (13) is the key

to calculating the collision probability and all other

performance metrics. In this section, we investigate the

convergence of the general fixed point. Given , the general

fixed point � is a solution to

� ¼ �ð�ð; �ÞÞ; ð30Þ

where � ¼
4
�ð; �Þ is given by (12).

We now consider the following relaxed fixed point

iteration for calculating the general fixed point �:

�
kþ1

¼ ð1� �Þ�ð�ð; �
k
ÞÞ þ ��

k
; 0 < � < 1: ð31Þ

Note that � ¼ 0 corresponds to the usual fixed point

iteration by repeated substitution. Using the relaxed

iteration, Kumar et al. [14] proved the convergence of the

sequence for the special case of p0 ¼ 0 and M ¼ 1. Here,

we carry out the convergence analysis for the general case

(i.e., the case of p0 6¼ 0 and M < 1).
Theorem 2 below presents conditions (related to the

parameter � and the initial iteration value �
1
) under which

the sequence f�
k
; k � 1g converges to a general fixed

point �. Note that in this section and the proofs of

Theorem 2 and Corollary 1, g0 denotes the first derivative

of function g with respect to �.
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Theorem 2. Given 	; , and n, if p00
�� �� � B, where B is a positive

constant, the sequence f�
k
; k � 1g converges from above to a

general fixed point � if the following conditions hold:

1: � �
�0ð�Þj jmax

1þ �0ð�Þj jmax
;

2: �
1
> �ð�ð; �

1
ÞÞ:

ð32Þ

In (32), �0ð�Þj jmax is defined as follows:

�0ð�Þj jmax¼
4 ðn� 1ÞðBþ 2	Þ

b0
:

Proof. Please refer to the Appendix A. tu

Remarks. If the fixedpoint is unique, the sequence f�
k
; k � 1g

must converge to the unique fixed point. If the fixed

point is not unique, the sequence must converge to the

fixed point that is nearest to �
1
.

Corollary 1. For the M/M/1/K method, the sequence f�
k
; k � 1g

converges from above to a general fixed point � if we let � and

�
1
satisfy (32) and let B ¼ K �0j jmax, where

�0j jmax¼
4
½X

0
ð1Þð
þ Ts þ TsÞ þXð1Þð2Ts þ njTs � TsjÞ�:

Proof. Please refer to the Appendix A. tu

Choices of �
1
and �. We can set � ¼

�0ð�Þj jmax

1þ �0ð�Þj jmax
based on

condition 1 in Theorem 2, and �
1
¼ �ð 1b0Þ þ ", where

0 < " < 1� �ð 1b0Þ. To justify the latter, we note that �cð�Þ is

a decreasing function of � [22], and so we have �cð�Þ �

�cð0Þ ¼ 1
b0

for � 2 ½0; 1� and, hence,

�ð; �1Þ � �cð�1Þ �
1

b0
:

Noting that �ð�Þ is an increasing function of �, we have

�ð�ð; �1ÞÞ � �
1

b0

� �
< �

1

b0

� �
þ " ¼ �

1
;

which satisfies condition 2. in Theorem 2.

In Section 4, we will use the relaxed iteration algorithm
with the above choices of �

1
and � to calculate the

collision probability.

3.3 Comparison between Models in [11] and [12]
and Our Models

The models in [11] and [12] are the most closely related

existing models to our work. Note that [12] uses the same

method as [11] but improves on the accuracy by revising the

expression for � used in [11]. Like our models, Zhai et al.

[11] and Zheng et al. [12] permit an arbitrary buffer size and

invoke the key approximation (12) and the M/G/1/K and

M/M/1/K queue assumptions. However, as already dis-

cussed, we go much further and the result is that our

models outperform those of [11], [12] in terms of modeling

accuracy, modeling complexity, computational complexity,

and convergence of the fixed-point equation. To be more

explicit, we present a comparison in Table 1 of the attributes

of the M/G/1/K method of [11], [12] with our M/G/1/K,

M/G/1/1, and M/M/1/K methods. In this table, lines 3 to

5 compare modeling complexity, line 6 compares computa-

tional complexity, line 7 compares convergence of the fixed-

point equation, and line 8 compares modeling accuracy

(demonstrated in Figs. 2, 3, and 4).

Note that in [12], p0 is calculated according to (15), (16),

and (17). However, for the calculation of ak in (17), there is

no discussion of the nontrivial task of deriving PrfY c ¼ hg

from bY c. To analyze the time complexity of calculating p0,

we assume that PrfY c ¼ hg is derived from bY c according to

(11). Also, since there is no need to invert the generating

function for the M/M/1/K method, we insert “-” in the

corresponding field. In addition, we also show in Table 1

the practical time to plot one theoretical curve in Fig. 4

when n ¼ 24 and K ¼ 2, 6, and 20 using different methods.

The time is calculated after we finish running the Matlab

codes on an X86-based PC with Pentium(R) Dual-Core

CPU E5300 @ 2.60 GHz, 2.00 GB Physical Memory, and

Windows 7 Ultimate operating system.
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In lines 4 to 6, we compare the calculation methods of Y
c
; bY c, and p0, respectively. In line 7, we compare the convergence of �.



4 COMPUTATION OF THROUGHPUT, DELAY, AND

PACKET LOSS RATE

This section presents formulas for the throughput, the mean

and variance of the MAC access delay, the total delay, and

the packet loss rate.

Throughput. For the throughput per node, s, we adopt

the expression derived in [2], [14], namely

s ¼
Ps

n

L

�
; ð33Þ
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Fig. 3. (a) The collision probability and (b) the mean MAC access delay versus the normalized total offered load when n ¼ 8 and K ¼ 1;000. Note that
the MAC access delay formulas from others’ model such as the Emm model are inaccurate even for the saturated networks when the total offered
load > 0:5.

Fig. 2. (a) The collision probability and (b) the mean MAC access delay versus the normalized total offered load when n ¼ 8 and K ¼ 2.

Fig. 4. The collision probability versus the normalized total offered load when n ¼ 24 and (a) K ¼ 2, (b) K ¼ 6, and (c) K ¼ 20.



where L is the packet size in bits, Ps

n is the per node

probability of successful packet transmission.
Mean and variance of MAC access delay. Let D denote

the MAC access delay. From [21, (18)], the mean of the

MAC access delay D can be calculated as follows:

D ¼ A1 þB1;

where A1 ¼
1� �

ð1� �MÞ

XM�1

i¼0

�i �1
Xi

k¼0

�k þ iTs

( )
;

B1 ¼ Ts � TACK ;

TACK ¼ the transmission time of an ACK packet;

where �1 is defined in (34).
From [21, (19)], the variance of the MAC access delay

V ar½D� can be calculated as follows:

V ar½D� ¼
1� �

ð1� �MÞ

XM�1

i¼0

�i
�
Ai

2 þBi
2

�
;

where Ai
2 ¼

Xi

k¼0

ð�k�3 þ ð�1Þ
2V arð�kÞÞ;

Bi
2 ¼ �1

Xi

k¼0

�k þ iTs �A1

 !2

;

where �1 and �3 are defined in (34).

q ¼ ðn� 1Þ�ð1� �Þn�2;

�1 ¼ 
þ �2;

�2 ¼ ðqTs þ ð� � qÞTsÞð1� �Þ;

�3 ¼ ðqðTs � �2Þ
2 þ ð� � qÞðTs � �2Þ

2Þð1� �Þ

þ ð1� �ð1� �ÞÞð�2Þ
2:

ð34Þ

More general expressions for the mean and variance of

the MAC access delay can be found in [21, (18) and (19)].

Each of the related works [4], [5], [7], [8], [11], and [12]

develop their own delay models and obtain mean delay

expressions that differ from ours; however, none of them

derive the variance.
Waiting time. Let W be the waiting time of a packet in

the transmit buffer of a node at an arbitrary instant. Let W

be the mean ofW andW 
ðsÞ be the Laplace transform ofW .

For the M/G/1/K queue, we have [19]

W 
ðsÞ ¼

�0 1� bY cð�;e�sÞ
�s

� �K
 !

s

s� þ  bY cð�; e�sÞ

þ ½ bY cð�; e�sÞ�K�1
XK�1

k¼0

�k


� s

� �K�k

;

W ¼
�0 þ �



XK

k¼1

kpk � Y
c
;

ð35Þ

where pk can be calculated by (19) and �k can be calculated

by pk and (15).
Let Wc be the complementary cumulative distribution

function of W , and W 

c ðsÞ be the Laplace transform of Wc.

We have

W 

c ðsÞ ¼

1�W 
ðsÞ

s
: ð36Þ

Then, we can calculate Wc from (36) using the Euler
numerical transform inversion algorithm in [18].

Total delay. Let T t be the mean total delay, which equals
the mean MAC service time plus mean waiting time of a
packet. For the M/G/1/K queue, Takagi [19] expresses T t

as follows:

T t ¼ Y
c
þW ¼

PK
k¼1 kpk

ð1� pKÞ
:

Packet loss rate. The packet loss rate due to buffer
overflow is given by the probability pK of encountering
K packets in the buffer. For the M/G/1/K model, the
packet loss rate is equal to pK in (15); for the M/M/1/K
method, the packet loss rate is equal to pK , which is
similar to (29) in the form of pK ¼ �K

1þ�þ�2þ���þ�K
.

5 MODEL VERIFICATION

We verify our model using the 802.11 simulator in ns2
version 2.28 [23]. The default parameter values shown in
Table 2 are set in accordance with 802.11b and [4], where
one slot is equal to 20 �s and � denotes the propagation
delay. In our simulation, we used the NOAH routing
protocol [14] and removed some bugs in the 802.11
simulator. These bugs, which are reported in [21], sig-
nificantly affected the MAC access delay and the total
delay. Each simulation value is an average over five
simulation runs, where each run was for 100 seconds when
the buffer size < 30 and for 500 seconds when the buffer
size ¼ 1;000. We present the theoretical results under the
assumption of Ts ¼ Ts. For practical networks, this assump-
tion does not necessarily hold. However, many analytical
studies, including [4], [2], and [14], adopt this assumption,
and it has also been adopted by the developers of the ns2
simulation tool [23]. The assumption is equivalent to
assuming that ACK packets are transmitted at the basic
rate and the ACK timeout after a collision matches the
guard time observed by noncolliding nodes.

We assume Poisson arrivals and run two experiments.
In the first experiment, we study the collision probability,
the mean and standard deviation of the MAC access
delay, the mean total delay, the packet loss rate, and the
CCDF of the waiting time. In the second experiment, we
study the distribution of the service time and the waiting
time. We explore the impact on these performance metrics
of different node populations n and different buffer sizes
K. The abscissa of most graphs is the total offered load
� ¼

4 nL
Rdata

, where Rdata is the data rate.
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We provide comparisons of our work with results from

existing models, namely [4] (which we call the Bianchi

extension), [11] (the Hzhai model), [12] (the KJLu model),

[8] (the Emm model), and [7] (the Tickoo model). We

consider the Bianchi extension to be the most accurate

among those works that model the case of K ¼ 2, while we

consider the Hzhai and KJLu models to be the most

accurate among those works that model an arbitrary buffer

size. When presenting the results from the M/M/1/K

method, we use the relaxed iteration algorithm (31) to

calculate the collision probability, where the algorithm

stops when j�k � �kþ1j � 10�8. We find that the collision

probability from our iteration algorithm is the same as that

returned by the fzero function of Matlab.
We now detail the first experiment, shown in Figs. 2, 3, 4,

5, 6, 7, 8, 9, and 10. Figs. 2a and 2b, respectively, plot the

collision probability and the mean MAC access delay for the

case of n ¼ 8 and K ¼ 2 when the normalized total offered

load is varied. In this figure, the curves labeled “Bianchi
Ex.,” “Hzhai M/G/1/K Ex.,” “KJLu M/G/1/K,” “Our
ExpAppx.,” “Our M/M/1/K,” and “Our M/G/1/K” are
calculated according to [4], [11], [12], (27), (29), and (26),
respectively. Fig. 2a shows that our two models and the
model in [4] closely match the simulation results; the Hzhai
model is very inaccurate; the KJLu model is not accurate
when the offered traffic is light but accurate when the
offered traffic approaches saturation. Fig. 2a also shows that
our M/G/1/K model works for small data rate, where
Rdata ¼ 1 Mbps and L ¼ 150 bytes. Fig. 2b shows that our
MAC access delay model is the most accurate among the
existing models, and shows that the MAC access delay
models of [4] and [11] are quite inaccurate.

Figs. 3a and 3b, respectively, plot the collision prob-
ability and the mean MAC access delay for the case of n ¼ 8

and K ¼ 1;000 when the normalized total offered load is
varied. In this figure, the curves labeled “Bianchi Ex.,”
“Tickoo model,” “Emm model,” “Hzhai M/M/1/K Ex.,”
“KJLu M/M/1/K,” “Our M/M/1/K,” and “Our infBuff”
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Fig. 5. The throughput versus the normalized total offered load when
n ¼ 24 and K ¼ 4, 8, and 20.

Fig. 6. The mean MAC access delay versus the normalized total offered
load when n ¼ 24 and K ¼ 4, 8, and 20.

Fig. 7. The standard deviation of the MAC access delay versus the
normalized total offered load when n ¼ 24 and K ¼ 2, 4, 6, 8, 10, and 20.

Fig. 8. The mean total delay versus the normalized total offered load
when n ¼ 24 and K ¼ 2, 4, 6, 8, 10, and 20.

Fig. 9. The packet loss rate when n ¼ 24, K ¼ 2, 20, and 1,000.

Fig. 10. The CCDF of waiting time when n ¼ 24, � ¼ 0:38, and K ¼ 2, 4,
6, 8, 10, and 20.



are calculated according to [5], [7], [8], [11], [12], (29), and
(28), respectively. We observe similar results as in Fig. 2.
The difference is that our two models are more accurate
than that of [5], and the Emm model and the Tickoo model
are wildly inaccurate. In addition, since the authors in the
Emm model do not analyze the nonsaturated collision
probability, we cannot show the corresponding results; the
Tickoo model fails for a total offered load > 0:3 (the fixed-
point iteration in their model converges to a value outside
[0, 1]) and we omit these results; the MAC access delay
formulas from other models such as the Emm model are
inaccurate even for the saturated scenario for a total offered
load > 0:5. In addition, Fig. 3a also shows that our larger
buffer model works for small data rate, where Rdata ¼ 1

Mbps and L ¼ 150 bytes.
We now explain the curves “Bianchi Ex.” and “Bianchi

Ex. (+)” in Fig. 3. In the Bianchi Markov-chain extension [5],
the mean backoff count, which we denote by X



, is a key

variable. Following the derivation arguments in [5], it
appears that X



should be given by

X


¼

1

ð1� �Þ

1� � � �ð2�Þm

ð1� 2�Þ

CW0

2
; ð37Þ

but in their presented expression (i.e., [5, (5)]), the factor
1

ð1��Þ in X


is missing. Note that our estimate of the mean

backoff count, X in (8), can also be written with a factor
1

ð1��Þ , and note also that limM!1 Xð�Þ ¼ X



in (37). To

demonstrate the error due to the absence of 1
ð1��Þ in the

model in [5], we plot the curves “Bianchi Ex.” according to

[5, (5)] and the curves “Bianchi Ex. (+)” after replacing

[5, (5)] by (8). Note that the results after replacing [5, (5)] by

(37) are almost as accurate as those after replacing [5, (5)] by

(8). From Fig. 3a, the curve titled “Bianchi Ex. (+)” closely

matches the simulated results for the collision probability,

just like our model. From Fig. 3b, the new analytical results

greatly improve the accuracy for the MAC access delay but

they are still less accurate than ours. The reason is that the

MAC access delay model in [5] is not as accurate as ours.
Figs. 4a, 4b, and 4c, respectively, plot the collision

probability versus the normalized total offered load when
K ¼ 2; 6; 20, and n ¼ 24. We compare results for the KJLu
M/G/1/K model, and our M/G/1/K, M/G/1/1, and
M/M/1/K methods. The KJLu M/G/1/K model is not
accurate when the offered traffic is light but is more
accurate when the offered traffic approaches saturation.
Our M/G/1/K and M/G/1/1 methods (which give
identical results) are the most accurate. On the other
hand, the collision probability based on our M/M/1/K
method is less accurate than that based on our M/G/1/K
method. Nevertheless, the collision probability based on
our M/M/1/K method only exhibits inaccuracy when the
offered traffic approaches saturation but still closely
matches the simulated result in other cases. As a result,
it will only lead to slight inaccuracy of other performance
metrics when the offered traffic approaches saturation.
Because of space limitations, we do not plot further results
obtained from our M/M/1/K method. Note that as the
normalized total offered load increases, � can increase
beyond 1, which should invalidate our M/G/1/1 method

(22). However, a large number of numerical examples
show that (22) usually still works well for � � 1.

Figs. 5, 6, 7, and 8 plot the throughput, the mean MAC
access delay, the standard deviation of the MAC access
delay, and the total delay for n ¼ 24 and different buffer
sizes. Note that in the transition regime from light to heavy
traffic loads, the buffer size dramatically affects the system
performance, particularly the total delay. Since the colli-
sion probability derived using our M/G/1/K method is
quite accurate (as demonstrated in Fig. 4), the other
performance metrics derived using our M/G/1/K method
also closely match the corresponding simulated results.

Fig. 9 plots the packet loss rate (due to buffer overflow)
versus the normalized total offered load when n ¼ 24 and
K ¼ 2; 20, and 1;000. It can be seen that when � < 0:3, there
is virtually no packet loss, even for the very small buffer
size K ¼ 2. This is because in very light traffic, arrived
packets are quickly transmitted and do not cause buildup of
the queue. However, when � increases beyond 0.3, the
packet loss rate is significant and is influenced by the buffer
size. Surprisingly, we find in this example that for a given �,
the packet loss rate does not decrease monotonically with
increasing K, but rather, increases as K is increased from 2
to 20, and then decreases as K is increased above 20. We
believe the reason for this is the interplay between two
opposing effects when the buffer size of all nodes is
increased; the first is the obvious one of more buffer
positions, which should reduce the buffer loss probability;
the second is that increasing buffer backlog increases
contention which increases the service time, and tends to
increase the buffer loss probability. Note that when K ¼ 2

and the normalized total offered load <0:08 and when
K ¼ 20; 1;000, and the normalized total offered load <0:26,
the simulated collision probabilities are equal to zero and
therefore are not shown in Fig. 9.

Fig. 10 plots the CCDF of the waiting time when
n ¼ 24; � ¼ 0:38, and K ¼ 2; 4; 6; 8; 10, and 20. From this
figure, we see that the waiting time drastically increases as
K increases. For example, when K ¼ 2, less than 1 percent
packets experience a waiting time larger than 100 ms. In
contrast, when K ¼ 20, more than 65 percent packets
experience a waiting time larger than 100 ms. In this figure,
we also plot the CCDF of the waiting time obtained from
the M/M/1/K method when K ¼ 20 (see the solid curve
with circular symbols). Observe that it exhibits a large error
compared with our M/G/1/K method.

The results in Figs. 5, 6, 7, 8, 9, and 10 show that
increasing the buffer size can slightly improve the through-
put but dramatically increase the waiting time. Moreover, it
does not necessarily reduce the packet loss rate. Therefore,
there may be little benefit in provisioning very large buffers,
even for loss-sensitive applications.

The second experiment demonstrates that the service

time and waiting time distributions exhibit truncated

heavy-tailed shapes (i.e., the distributions initially approx-

imate straight lines when plotted on loglog coordinates),

rather than exponential-like shapes. Fig. 11 compares the

theoretical models and the simulated results for the service

time distribution. In Fig. 11, the curve titled “Our M/G/1/K

model” is plotted using (11), and the curve titled “Our
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M/M/1/K model” is plotted assuming that the service time

is a geometric distribution, i.e., PrðY c ¼ k
Þ ¼ ð1� qÞk�1q,

where k ¼ 1; 2; . . . ; q ¼ 1=Y
c
, and Y

c
is given in (7). Fig. 12

compares the theoretical models and the simulated results

for the waiting time distribution. In Fig. 12, the curve titled

“Our M/G/1/K model” is plotted using Wc calculated by

(36), and the curve titled “Our M/M/1/K model” is plotted

assuming that the waiting time is a geometric distribution,

i.e., PrðW ¼ k
Þ ¼ ð1� qÞk�1q, where k ¼ 1; 2; . . . ; q ¼ 1=W ,

andW is given in (35). From Figs. 11 and 12, “OurM/G/1/K

model” closely matches the actual distribution while the

“Our M/M/1/K model” is far away from the actual

distribution. Therefore, assuming the service time is an

exponential-like distribution leads to a large error for subtle

performance descriptors, such as the distribution of the

service time, although it can be accurate for coarser

performance descriptors, such as the mean of the service

time. Note that the inaccuracy in the M/G/1/K queuing

model in [11], as shown in Figs. 2 and 3, suggests that the

corresponding exponential service time model used in their

M/M/1/K queuing analysis is even more inaccurate. Due to

this reason, we do not plot the exponential service time

distribution in [11].

6 CONCLUSION

This paper presents a simple approximate model to
characterize the impact of an arbitrary buffer size on the
performance of nonsaturated 802.11 DCF networks. We
devise different methods to address the modeling and
computational complexity. Compared to related work, our
model is the simplest, the most accurate, has the quickest
computation speed, and yields the widest range of
performance descriptors. The work in this paper will
provide guidance to system developers to correctly size
the transmit buffer in 802.11 devices, and to system
administrators to predict the performance of applications.
It also provides a solid foundation for extensions to more
complex modeling scenarios, such as heterogeneous DCF
networks, where stations could have different packet arrival

rates, packet sizes and buffer sizes, and 802.11e EDCA
networks, where access categories are differentiated by
their MAC parameters. The key steps required for these
extensions are generalizations of pivotal parameters to
multiple classes, such as the attempt rate, collision prob-
ability, and service time.

APPENDIX A

PROOFS OF THEOREM 2 AND COROLLARY 1

In this appendix, we provide the proofs of Theorem 2 and

Corollary 1.

Proof of Theorem 2. The key of the proof lies in the fact that

�0ð�Þj j is bounded. Note that �0ð�Þ denotes the first

derivative of the function �ð�Þwith respect to �. We now

prove the convergence in two steps.
Step 1. �0ð�Þj j � �0ð�Þj jmax holds. Ramaiyan et al. [22]

analyzes the properties of the saturated attempt rate (i.e.,
�c) and proves that

�cj j �
1

b0
and ð�cÞ0

�� �� � 2	

b0
:

On the other hand, from (12), we have

�0 ¼ �p00�
c þ ð1� p0Þð�

cÞ0;

�0j j � p00
�� �� �cj j þ ð�cÞ0

�� ��:

Also from (13), noting p00
�� �� � B, we have

�0ð�Þ ¼ ðn� 1Þð1� �Þn�2�0;

�0ð�Þj j � ðn� 1Þ �0j j

� ðn� 1Þð p00
�� �� �cj j þ ð�cÞ0

�� ��Þ

� ðn� 1Þ B
1

b0
þ
2	

b0

� �

� �0ð�Þj jmax:

Step 2. The sequence f�
k
; k � 1g must converge from

above to a general fixed point �. We first prove
�ð�ð; �

k
ÞÞ � �

k
for k � 1. In fact, due to condition 2,
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Fig. 11. The CCDF of MAC service time when n ¼ 24, K ¼ 2, and
� ¼ 0:38; 0:995.

Fig. 12. The CCDF of waiting time when n ¼ 24, K ¼ 2, and
� ¼ 0:38; 0:995.



we only need to provide an inductive proof that if
�ð�ð; �

k
ÞÞ � �

k
, we must have �ð�ð; �

kþ1ÞÞ � �
kþ1
. Note

that �0ð�Þj j � �0ð�Þj jmax and condition 1. We have

�ð�ð; �
kþ1
ÞÞ � �

kþ1

¼ �ð�ð; �
kþ1
ÞÞ � ½ð1� �Þ�ð�ð; �

k
ÞÞ þ ��

k
�

¼ ½�ð�ð; �
kþ1

ÞÞ � �ð�ð; �
k
ÞÞ� þ �ð�ð�ð; �

k
Þ � �

k
Þ

¼ �0ð�ð; �
kÞÞð�kþ1
� �

k
Þ þ �ð�ð�ð; �

k
Þ � �

k
Þ

� �0ð�Þj jmax �
kþ1

� �
k

�� ��þ �ð�ð�ð; �
k
Þ � �

k
Þ

¼ �0ð�Þj jmaxð1� �Þ �ð�ð; �
k
ÞÞ � �

k
j j

þ �ð�ð�ð; �
k
Þ � �

k
Þ

¼ ½�� �0ð�Þj jmaxð1� �Þ�ð�ð�ð; �
k
ÞÞ � �

k
Þ

� 0:

ð38Þ

where �
k is between �
kþ1

and �
k
; in the last third equality,

we use (31).
From (31) and �ð�ð; �

k
ÞÞ � �

k
, we now have 0� �

kþ1
�

�
k
� 1. Note that �ð�ð; �ÞÞ is continuous with respect

to �. Then the bounded and nonincreasing sequence
must converge to a fixed point of �ð�Þ. tu

Proof of Corollary 1. According to Theorem 2, we only

need to prove p00
�� �� � B. The conclusion holds following

Claims 1 and 2 below.
Claim 1. �0j j � �0j jmax. From (6), we have

0 � P 0
b ¼

n

n� 1
ð1� �Þ

1
n�1 � 2;

P 0
s ¼ n

n

n� 1
ð1� �Þ

1
n�1 � 1

h i

¼ nðP 0
b � 1Þ:

From (9), setting Pb ¼ Ps ¼ 1, we can bound �.

�ð�Þ ¼ 
þ PsTs þ PsTs � 
þ Ts þ Ts:

Further, we have

� ¼ 
þ PbTs þ PsðTs � TsÞ;

�
0
¼ P 0

bTs þ nðP 0
b � 1ÞðTs � TsÞ;

�
0

���
��� � 2Ts þ njTs � Tsj:

On the other hand, noting X and X
0
are increasing

with respect to �, we have

X � Xð1Þ and X
0
� X

0
ð1Þ:

Since � ¼ Y
c
, where Y

c
¼ X � �, we have

�0 ¼ ðX
0
� �þX � �

0
Þ and �0j j � �0j jmax:

Claim2. p00
�� ���K �0j jmax. Let �


¼ ð1þ2�þ���þK�K�1Þ

ð1þ�þ�2���þ�K Þ2
, wehave

�
 ¼
ð1þ 2�þ � � � þK�K�1Þ

ð1þ �þ �2 þ � � � þ �KÞ2

�
Kð1þ �þ �2 þ � � � þ �KÞ

ð1þ �þ �2 þ � � � þ �KÞ2

¼
K

ð1þ �þ �2 þ � � � þ �KÞ

� K:

Under the M/M/1/K queue assumption, noting p0 ¼
1

1þ�þ�2þ���þ�K from (29), we have

p00 ¼ ��0�
;

p00
�� �� ¼ ��0�
j j � K �0j jmax:

ut

APPENDIX B

MAIN NOTATION AND ASSOCIATED EQUATION

NUMBERS

Table 3 lists the main mathematical notation used in this

paper and associated equation numbers where the nota-

tion first appears. Note that ð�Þ denotes the mean of ð�Þ and
cð�Þ denotes the generating function of ð�Þ. In addition, we

define �; �
k
; B; p00; �0, and �0ð�Þj jmax in Theorem 2, and

�0j jmax in Corollary 1, and eK and E in Section 3.1.4, and

s; L; D; TACK ; �1; �k; V ar½D�; W; W; W 
; Wc; W 

c , and

T t in Section 4, and � and Rdata in Section 5, respectively.
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