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Modeling of a folded plate 

H. Le Dret 
Laboratoire d'Analyse Num~rique, Universit~ Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France 

Abstract. It is shown that the solution of a three-dimensional linear elasticity problem in a thin folded plate converges 
strongly in H 1 to a solution of a two-dimensional model as the thickness goes to 0. This model consists of two plate equations 
coupled through their common edge. 

0 Introduction 

So far, problems of junctions between 3d, 2d and ld-elastic structures do not seem to have been 
investigated from the mathematical viewpoint in spite of their practical importance. The mathemati- 
cal theories for 3d-elastic bodies, for plates and for rods are each fairly well developed (see for 
example Wang and Truesdell (1975), Marsden and Hughes (1983) or Ciarlet (1988 a) for 3d-elasticity, 
Ciarlet and Destuynder (1979), Ciarlet (1980, 1987), Destuynder (1986) for plates, Aganovi~ and 
Tutek (1986), Bermudez and Viafio (1984), Rigolot (1976), Cimeti6re, Geymonat, Le Dret, Raoult 
and Tutek (1988) for rods and all the references therein) but the question of knowing how these 
different structures can be attached to one another seems to be mathematically quite open (see 
Colson (1984) to get an idea of the complexity of the full problem from the engineer's point of view). 
We present here an approach, based on some of Ciarlet and Destuynder's ideas, for the study of a 
"folded" plate, i.e. two plates of thickness e attached along one of their edges at a right angle, 
(Fig. 1). The bodies are assumed to be linearly elastic. This assumption allows us to derive a limit 
2d-model as e goes to 0 and, at the same time, to obtain strong convergence results for the 
displacements (also as a byproduct for the stresses, although we do not emphasize this aspect which 
easily follows from our analysis). However, we do not use the asymptotic expansion method, unlike 
Ciarlet and Destuynder (1979), but rather we pass to the limit in the variational equations and then 
identify this limit. The crucial idea for treating this junction problem, also used by Ciarlet, Le Dret & 
Nzengwa (1987) for a 3d-2d junction and Ciarlet (1988 b) for a 2d-ld junction, seems to be both of 
interest and of wide applicability. This idea consists in scaling the different parts of the bodies under 
consideration independently of each other - each in the same way as is usually done in plate and 
rod theories - but counting the junction region twice, once in each separate scaled part. The scaled 
displacements are defined on two separate domains and contain the information about the junction 
twice. The relations expressing that they actually correspond to the same global displacement of the 
whole structure yield the conditions that the limit displacements must satisfy. 

More specifically, we consider a family of homogeneous isotropic linearly elastic 3d-bodies, as 
depicted in Fig. 1, consisting of two plates of thickness e perpendicular to each other. The bodies 
are made of elastic materials with Lam6 moduli ~ - 3 (/~,/'~), i.e., which are more and more rigid as ~ goes 
to 0. Appropriate dead loads are assumed to act on the bodies so that finite flexural displacements are 
expected in the limit. The bodies are assumed to be clamped on parts of the edges of both plates. 
Then we perform a scaling as indicated above and consider a new scaled unknown, which consists 
of the pair of scaled (defined as usual) displacements on each plate. Due to the clamping condition, 
an Hi-bound independent of e is derived for this unknown. After extraction of a subsequence, the 



402 Computational Mechanics'5 (1990) 

scaled displacements therefore converge weakly to some limit displacement. It is first shown that 
this displacement is of Kirchhoff-Love type in each plate. The continuity relations in the junction 
region are then used to derive boundary conditions for these Kirchhoff-Love displacements on the 
common edge. It is thus proved that the flexural displacements are zero on the common  edge, that 
the angle between the deformed plates is always rc/2 (this is a condition on normal  derivatives of 
the flexural displacements) and that the membrane displacements in the direction of the edge are 
transmitted. No condition is obtained for the membrane displacements perpendicular to the edge. 
The conditions above define a closed subspace in H 1 of Kirchhoff-Love displacements and we show 
then that the limit displacement satisfies well-posed variational equations on this space. This is done 
by approximating arbitrary test-functions of this space by displacements that satisfy the continuity 
relations at the junction for/3 > 0. The construction of these approximations is rather tricky and 
involves the edge conditions above in a crucial way. The approximate test-functions are then used 
in the original variational equations for/3 > 0, all the singular terms can be controlled and the limit 

• problem is obtained by computing the limit of the equations as/3 --+ 0. This limit variational problem 
can be interpreted in the sense of  distributions as a system of coupled plate equations for the flexural 
displacements - the coupling being indicated above - and as a system of coupled membrane 
equations with the edge condition above and free perpendicular edge displacements. The solution 
of the limit problem exists and is unique and therefore the preceding analysis shows that the whole 
family of scaled displacements converges weakly to this solution. Once this fact is established it is 
not hard to see that the convergence is actually strong, since we were essentially dealing with 
minimizers of uniformly strictly convex functionals. 

Finally, we list a few extensions and limitations of the present method. Let us emphasize that, 
in our opinion, the independent scaling idea might prove to be quite useful for treating a variety of 
junction problems. 

Notation. Let £2 be an open subset of IR" and let m be a positive integer. We denote by 
(£2) the space of  C°°-functions with compact  support  in O, 

L 2 (£2) the space of (classes) of  measurable square-integrable real functions on f2, 
H m (£2) the space of functions of L2(£2) whose distributional derivatives up to the order m belong 
to L 2 (£2), 
H 1 (£2) the closure of ~ (~2) in H ~ (£2) and H -  1 (£2) its topological dual. 

More generally H T (£2) is the space of  Hm-functions whose traces vanish on a part  F of the 
boundary of £2. 

Finally, it X is a Hilbert space, L 2 (0, 1;X) is the space of measurable functions from ]0, 1[ into 
1 

X such that S [J u (t) [[2dt < + oc, and H m (0, 1 ;X) is the space of functions of L 2 (0, 1;X) such that all 
0 

their distributional derivatives with respect to t up to the order m belong L 2 (0, 1; X). 
We refer to Adams (1975), Lions and Magenes (1968 a, 1968 b) for the general properties of these 

spaces. 

1 The three-dimensional problem 

1.1 We consider a family of three-dimensional isotropic homogeneous linearly elastic bodies whose 
reference configurations are the sets £2~ defined for/3 > 0 as: 

where: £2;" = { x e N 3 , 0  < x l ,  x3 < 1,0 < x2 < e} ,  £2;': = { x~ lR3 ,0  < x2, x3 < 1,0 < x l  < /3 } .  

Let: F; :  = { x e l R 3 , x l  = 1,0 < x3 < 1,0 < x2 </3}, F;': = {xeN3,x2 = 1,0 < x3 < 1,0 < xl </3}. 

See Fig. 1. 
We introduce the following index convention: Latin indices range in { 1,2, 3 }, primed Greek indices 
in { 1,3 } and double-primed Greek indices in { 2, 3 }. 
We assume that  the Lam6 moduli  of the bodies satisfy: 

( ~ ,  J~) = /3- 3 (#, .~.) (1. l )  
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1 x 1 Fig. 1. Elastic 3d-bodies 

for some strictly positive constants # and 2. Since we are in the framework of linearized elasticity, 
the choice of such exponents in plate theory is merely a question of taste. It is always possible to 
multiply all data by a "hanging factor" e r without modifying the resulting limit equations. The e-3 
factor is however the appropriate one for a nonlinear plate to sustain its own weight if its density 
does not depend on e, see Ciarlet (1980, 1987). In the present linear case, we can even consider 
transversal body forces of order g-1 and surface tractions of order 1, and get finite flexural 
displacements in the limit as e ~ 0. Actually, for simplicity we will consider only body forces. 
Extension of our results to more general loading is straightforward. The bodies are thus subjected 
to loadsf~ in L2(Q~) 3 of the form: 

f~,(Xl,X2, X3 ) = ~-2f '  Xl ' - '  X3 , 

on f2; and 

f~,,(xl,x2,x3) = e-2 f~,, (X~ls , x2,x3 ) , 

(x2 ) 
f~ (Xl,X2, X3) = ~-1f'2 x l , - - ,  x3 , 

f ]  (Xl,X2,Xg) = ~-l f]' (~ ,X2,X3) ,  

(1.23 

(1.2") 

on f2~'\f2~, for some functionsfj  andf~' in L 2 0R3). A few words of comments are in order here. We 
are considering a family of materials that become more and more rigid as e ~ 0. It is thus not too 
unreasonable to assume that their density goes to infinity at the same time - although this is not so 
clear when speaking of modern materials. This accounts for the e-1 factor for transversal forces 
which can be interpreted as the weight of  the materials (assume that the bodies are tilted about the 
vertical). There is no such physical interpretation for the factor e -2 for the in-plane loads. This 
choice is mathematically coherent with the choice of transversal forces - a plate is indeed much 
more rigid in the directions of its own plane than in the transversal direction - and leads to O (e) 
membrane displacements. Smaller orders, like the weight in the case above, would lead to smaller 
order membrane displacements, i.e. in our setting this would be equivalent to having zero in-plane 
loads. The explicit form (1.2')-(1.2") is assumed for convenience only because it yields constant 
forces after rescaling. What we actually need to complete the following proofs is that the forces be 
weakly convergent, e.g. in L 2, after rescaling. Therefore, more realistic loads could be assumed at 
no extra cost. Note that (1.2") only holds on £2~'\f2~ to avoid inconsistencies in the junction. This is 
only due to the specific form (1.2')-(1.2"), see remark above. 

As regards the boundary conditions, we assume that the bodies are clamped on F; U F~' and 
traction-free on the rest of  the boundary. Then, the equilibrium equations are naturally expressed 
in variational form as: 

Find u s in W such that: 

~ A~e(u"): e ( v ) -  ~ f ~ . v  = 0, (1.3) 
f2. g2. 

for all v in V ~, where: 

= = , U F , , ~ ,  V~: {veHI(Q~)  3, v 0 on F~ ~j ,  (1.4) 
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and A ~ is the elasticity tensor with Lam6 moduli (#~, 2r), i.e.: 

(Arz)~j = 2#r%-+ 2rzHtij for all symmetric z. 

An immediate consequence of formula (1.1) and of Korn's inequality is: 

Proposition 1.1. For all e > 0, there exists a unique u ~ solution to problem (1.3)-(1.4). 

(1.5) 

2 The scaled problems 

2.1 We use essentially the same idea as in Ciarlet, Le Dret and Nzengwa (1987) which is to scale the 
different parts of  the bodies independently of each other but counting the junction between these 
parts twice. To achieve this, let us introduce two different copies of N 3, (IR3) ' and (p,3),, (we will very 
soon forget about all that and identify these two copies to everybody's ordinary IR 3) and set: 

~ T : = { x e ( ] R 3 ) ' , O < x i  < 1}, Q " : = { x e ( l R 3 ) " , O < x i  < 1}. 

Let us also define: 

(D': : ~'~/N£X2 = 0},  F ' :  : ~'~'~ { x  1 = ] } ,  (,o": = ~'~'N £ x  1 = 0 } ,  i f" :  = ~'~"~ £x2 = 1};  

J ~ : = Q ' n £ 0 < X l < e } ,  J ~ : = ~ d ' N { O < x 2 < e  }. 

We introduce the scaling mapping: 

&:~2' U f2" ~ f2~, 

(xa, ex2, x3) if x~O' ,  
x~-. (2.1) 

( txbx2,x3)  if x~f2".  

Now, the junction between the two plates in ~2~ is actually counted twice by ~b ~, once in ~ '  by J~ 
and another time in O" by J,"(Fig. 2). 
Let: V: = H l r  , ((2 9 3 x H}~. (O")3 

(this will take the clamping condition into account). Next we define an operator: 

O~: W ~ V (2.2) 

The operator O r is not onto. Its range O r W is a closed subspace of V consisting of pairs (v', v") 
satisfying: 

f ~t)~ @Xl,X2, X3) = 13~l(Xl,~X2, X3) 
V~ (e Xl, X2, X3) = e V~ (Xl, g X2, X3) (2.3) 

V ; @ Xl, X2, X3) = t)~ (X D ~ X2, X3) 

for almost all (xl, x2, x3)e ]0, 1 [3. We set 

u (~) = O ~ u r (2.4) 

to be the new scaled unknown whose behavior as e--* 0 we want to study. Let us introduce the 
quadratic forms: 

F"  Z' F '  

0" Ye . . . .  a b Fig. 2 a and b 
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B;(u,v): = 2#e=,~, (u) G'~" (v) + 2e~,=, (u) etrlr (v) 

+ e -2 (4#G,2 (u) e~,2 (v) + 2 (e+~, (u)ez2 (v) + G'~,' (v)ez2 (u))) 

q- e -4 (2f l  q- )~) e22 (H)e22 (V), (2.5) 

and let B"(u, v) denote its double-primed counterpart. Then replacing formulas (1.2) and (2.4) into 
(1.3) and performing the changes of variables in the integrals, we obtain the following variational 
equations for u (e): 

1 1S 
y B;(u(e),v)+ y(B;(u(e) ,v )+y  B;(u(e),v)+ B ~ ' ( u ( e ) , v ) - ~ f . v -  ~ f . v = O  (2.6) 

o,\J; 2 J; o,,\+: 2 j: ~, ~,,\+;, 

for all v in O ~ VL 
Note the crucial trick of splitting the elastic energy in the junction in two, so as to make clear 

that the functional defined on Vby formula (2.6) is coercive. 

3 The limit problem as e ~ 0 

3.1 Let us derive an estimate for u (e). Let tlvll 2 I[Vv' 2 " " -- IIL2( ,)0 + IiV v"lI 2(a,,)9 

for all v = (v', v') in V. As in Ciarlet, Le Dret and Nzengwa (1987) we set: 

1 1 
= = - e~,2(u(~)) , z22(8): = ~ e22 (u(~)) (3.1) ~ , , ,  (~): G,tj,(u(a)), ~,2 (e): e 

on f2', and we define analogous quantities on £2". Then we have: 

Proposition 3.1. There exists a constant C independent of e such that 

Ilu( )llv <- c .  (3.2) 

Proof" Let v = u (e) in the variational Eqs. (2.6). This yields, by the positivity of the elasticity tensor: 

~11~(~) 2 1 S B;(u(e), u(e)) + 1 ~ B2(u(e), u(e)) [[g2(~c2'U~/')9 G ~ ~2' 20" 

1 1 
_< j" B;(u(e),u(~),+ j" B;(u(~),u(~))+ j" B; (u(~) ,u (e ) )+  j" B; (u (e), u (e)) 

= y f " "(~) + Y f " u(~) 
£2' ~2"\J;' 

--< cl II u( )IlL(o' a")3 (3.3) 

But, for e < 1 and by Korn's inequality (recall that clamping holds on F '  and F"), 

II ~(~)1122<~'~a")9 -> lie(u(@ 2 IIL2<a' a")o - c= II u( )ll 2 ,  (3.4) 

which implies, together with inequality (3.3), the desired result. [] 

We can therefore extract a subsequence u (e,) such that: 

Corollary 3.1. u(e,)~-u(O) weakly in Vas e, ~ O. 
As the limit u (0) will turn out to be unique, the whole family u (e) will actually converge weakly 

to u (0). We will thus denote the subsequence e, simply as e for the sake of brevity. 

3.2 Let us now proceed to identify the limit u(0). To begin with, we state the: 

Proposition 3.2. The limit displacement u (0) is of  Kirchhoff-Love type in f2' and f2", i.e. there exist 
six functions ( ;, E H 1 (co'), ( i  ~ H2 (CO'), ( ~,, E H 1 (CO"), (~' ~ H 2 (0)") such that: 

H(O)(x): t (~(XI ,  X3)--(X2--~)~I~(XI,X3),~I(XI,X3),(~3(Xl,X3)--(X2--~)~3~I(Xl,X3) ) (3.5) 
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in £2' and: 

in £2". Moreover 

~(1 ,x3)  = 01~i(1,x3) = ~:(1,x3) = ~2~'(1,x3) = 0. (3.7) 

Proof." As u (8) is bounded in V, we deduce from inequality (3.3) that ~ (8) is bounded in L 2 (£2' U £2") 9. 
Therefore, it follows from the definition of  ~(~), (3.1), that: 

Ile22(u(e))llL2(o,) = O(/32), Ile~,a (u(8))IIL2(a,)= O(e), (3.8) 

Ilell(u(8))lk2<a,,)-- O@2), Ile=,,l(u(8))llL=<o,,)= O(e), (3.9) 

which by weak lower semicontinuity of the norm implies: 

e22(u(0)) = e~,2(u(0)) = 0 in £2', 
el l (U(0))  = e~,,l (U (0)) = 0 in £2". (3.10) 

It is known that formulas (3.10) are equivalent to the representation formulas (3.5)-(3.6) with the 
indicated regularity for the ~'s, see Ciarlet and Destuynder (1979). Formulas (3.7) then follow from 
the clamping condition on F'  U F". [] 

3.3 It is a priori clear that the functions ~ must satisfy usual plate and membrane equations inside 
co' and co". The main problem is to determine which conditions they satisfy on their common 
boundary 7 :=  { Xl = x2 = 0 }. Such conditions indeed come from the continuity relations (2.3) for 
e > 0. Let us first derive the easiest ones. We will make repeated use of the following lemma: 

Lemma 3.1. Let Xbe  a Hilbert space and let u belong to H 1 (0, 1; X). Then u belongs to C([0, 1]; X) 
and we have: 

[ ~,11 ~ ~ 1 1 / 9 1 1  I I  *'~ I 1 \  Hu(x + h) - utxyllx ~. t~n"-IlUllu~(o,1;x), (o.lL) 

whenever x and x + h belong to [0, 1]. 

Proof" This is essentially Lemma 2.1, p. 17 of Lions and Magenes (1968 b). 

Proposition 3.3. We have: 

{ ~ ( 0 ,  X3) = 0, ~3(0, X3) = ~(0 ,  X3), (3.12), (3.13) 
 i(0,x3) 0, 

for all x3 in ]0, 1[. 

Remarks." (1) Formulas (3.12) mean that the flexural displacements of each plate are zero on 7. This 
is natural, once an a priori bound is known to hold, since the flexural displacement of  one plate on 
7 is a membrane displacement of the other plate which is much smaller indeed. Thus, the fold stiffens 
the plates. 

(2) Formula (3.13) means that the fold does not affect directly the membrane displacements in 
its own direction. Such displacements are transmitted through the fold. The fold however influences 
those displacements globally, since as we will see, the displacements orthogonal to 7 are independent 
of each other and thus the equations for membrane displacements are not reducible to those of a 
single plane elastic membrane. 

Proof of Proposition 3.3.." For all v in H 1 (0, 1;L2(CO")), let us define: 

T~ (v): = _1 Sv(s, x2,x3)d s ~ L2 (co,,) (3.14) 
80 

and T~' by switching primes and coordinates. As the function u(8)~ belongs to the space 
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H '  (£2') c H 1 (0, 1;L 2 (co")), we can apply L e m m a  3.1, with X = L 2 (co"). It follows then f rom formula  
(3.14) that:  

II T; (u (/3)i) - u (/3)21 ~1 = o I Ig2(o,,,~ - C/31/2 (3.1 5) 

As u (/3)21 ~1 = o ~ ~21 xl = 0 in H 1/2 (co"), we deduce  that:  

~1~,=o = limT',(u(/3)'2) in L2(co"). (3.16) 
e---r 0 

But, using fo rmula  (2.3), we get: 

s 
= // , /3 X2, X 3 ds 

0 (3.17) 

= e~u(e)~(t, ex2,x3) dt 
0 

and  therefore: 
11 //1 ) 2  

II T~(u@)i)ll~2(oy,) = e 2 ~  ~u(e)~(t, ex2, x3)dt dx2dx3 
O0 \ 0  

111 
< e 2 ~ j" ~ u (/3)~ (t,/3 x 2, x3) 2 dt  dx  2 dx 3 (3.1 S) 

000 
// 2 

<_ e II/'/@)2 ItL=<m -< 

by formula  (3.2). Then  ~(0 ,x3)  = 0 and the same p r o o f  also works  for ~['. Let  us turn  to formula  
(3.1 3). We pe r fo rm the same kind of  c o m p u t a t i o n  on the third equa t ion  in fo rmula  (2.3). 

1 
T; (u (/3)~) = ~ u (e)~ (e s, x2, x3) ds 

0 
1 

= ~ u (e)~ (t,/3 x2, x3) dt  (3.19) 
0 

Integrat ing (3.19) with respect to x2, we obtain:  
1 1 

l T; (u (/3)~) (x2, x3) dx2 = ~ T~' (u (e)~) (x b x3) dx  1 . (3.20) 
0 0 

Since the operator :  

L2 ([0, 1] 2) ~ L2 ([0, 11) (3.21) 
1 

vw-,~v(t ,x)dt  
0 

is cont inuous ,  equa t ion  (3.20) holds  t rue in L2(7), and  we can pass to the limit in (3.20), by using 
the equivalents  o f  fo rmula  (3.16). This yields: 

ff~ (0,  X3) = ~ (0,  X3) (3.22) 

since 03 ~ (0, x3) = 93 ~1~ (0,  x3) = 0 by fo rmula  (3.12). [] 

P ropos i t ion  3.3. is actually easy to guess f rom the cont inui ty  condi t ion  (2.3). Here comes a more  
subtle condi t ion  on  no rma l  derivatives. 

Proposition 3.4. We have: 

~ l ~ i ( 0 ,  X3) = - -  ~ 2 ~ ' ( 0 ,  X3) (3.23) 

for all x3 in ]0, 1[. 
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Remark." If  we go back to the geometrical meaning of displacements, we see that  formula (3.23) 
expresses the fact that the two plates stay perpendicular to each other in their deformed con- 
figuration. 

Proof of Proposition 3.4. First of all, let us differentiate the first equation in formula (2.3) with 
respect to x2: 

02 U (g)~ (/3 Xl, X2, X3) = 02 U (/3)~' (Xl,/3 X2, X3). (3.24) 

Now, as was pointed out to the author  by F. Murat,  we remark that: 

{ 02u(/3)~(xl)eL2(O, 1; L2(co ") and (3.25) 

0i (02 u (e) l) (xl) = 02 (01 u (/3)~) (xl) ~ L 2 (0, 1; H -  1 (co")). 

Therefore, we can apply Lemma 3.1 to 02 u (/3)~ with X = H -  1 (co"). Similarly: 

01 u (/3)~ (x2) e H a (0, 1; H -  1 (o)')). (3.26) 

In particular, 02u (/3)~ has a trace at x 1 = 0 in H-l(co").  Moreover, since u(/3)~--'-u(0)~ in H a (~'), 
02u(/3)~---~02u(0)~ in H ~ (0,1;H-l(co')) ,  and: 

02U@)~lxl=0 --~" - -  01ff~lxl= 0 in H- l ( co ' ) .  (3.27) 

Similarly: 

01U(/3')~lx2=0"---" - -  02~ '1x2= 0 in H- l (co ' ) .  (3.28) 
3 

Let us choose three functions ~o i in N (]0,1 D, multiply equation (3.24) by l-[ q~i(xi), and integrate: 
i=1 

I~ [~ 

3 3 
02bl@)1(/3Xl,X2, X3) l~ (Pi(Xi) dx -= ~ 02U(~)l'(XI,/3X2, X3) H (Pi(Xi) dx" (3 .29)  

£2' i=1 £2" i=1 

Now, setting g (/3) = z12 (/3) we have: 

02 b/(~)~' (X) = /3 g (/3) (X) - -  01 b/(/3)~ (X),  (3 .30)  

with g(/3) bounded in L 2 (£2") (this follows from formula (3.9)). Therefore, the second integral can 
be rewritten as: 

3 3 
I~-=/3 ~ g(g)(XI,~X2, X3) H (pi(x~)dx- ~ Olbl@)'d(XI,/3X2, X3) U (Pi(X~) dx" (3 .31)  

Q" i=1 f2" i=1 

Let us show that the first integral in (3.31) vanishes in the limit. In fact, we have: 

IJ"l < I~lg(/3)(Xl, x2,x3)~o1(xO~02 ~03(x3)ldxldx2dx 3 < C/3V211g(/3)IIL2(~,,>, (3.32) 
000 

by the Cauchy-Schwarz inequality. Therefore, we need only to consider the second integral, which 
is exactly of  the same type as I] after switching primes and indices. Let us thus turn to studying 
Ii. Lemma 3.1. applied to v (/3) (xl): = 02 U (8)~ (/3 Xl) yields: 

II U @) (Xl) - -  /) (/3) (0)II,/_,~,,~ < C/31/2x1/2 <- C~1/2, 

whence from (3.27): 

V @ ) ( ' ) - - - ' - - - 0 1 f f i l x l =  0 in g I ( U ) ,  

uniformly with respect to Xl. Let us define a linear mapping: 

Le~ : L 2 (0, 1; H -  1 (co")) --* H -  1 (co") 
1 

v I--+ j" v (Xl) (Pl (X1) d x l ,  
0 

(3.33) 

(3.34) 
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as  
1 

< Lo~v,~p > ' =  ~ < v (xO,~  > qh (xl)dxl ,  (3.36) 
0 

for al!, ~p in H01 (co") (all < • ," > symbols will denote pairings between H01 (co') and H-l (co  ') or 
Hi(co ) and H-l(co")).  Clearly, L~ is well defined and continuous with norm IIq~lk~(0,~)As 
~o2(x2) q)s (x~) belongs to H~(co"), we see from formula (3.34) that: 

P =  < L~o~(v'(8)),fp2@fP3> ~ - -  <L~o~(C~l~lx~=o) , f / )2@(P3 > as  /3--+0 (3.37) 
1 

but L~ (~  ~21 ~ =o) = (~  ~2t ~ =o) x (l~o~ (x0 dXl) as is seen from the definition, so that: 

1 

I] ---, - < ~ l~ i lx t=0  ~ ~Ol(Xl)dXl, fP2 @ (P3 > 
0 

= -- ~ ~l~'2(O, x3)cPl(Xl)qo2(x2)(P3(x3)dx as e ~ 0 .  (3.38) 
£2' 

Similarly, from formulas (3.31) and (3.32), we see that 

I~ ~ S ~2 ~]' (0, x3) (P2 (x~) opt (x0 qo3 (x3) dx as e ~ 0 (3.39) 

and the conclusion follows, since ~01, q)2 and ~o3 are arbitrary in @ (]0,1D. [] 

Let us sum up the properties of the ¢'s found so far in a theorem. 

Theorem 3.1. The functions ¢~, ff~' satisfy: 

= = 0 

~1 if2 (0, X3) = - -  O 2 ~ i (0, X3) (3.40) 
  (0,x9 = 

for all x 3 in ]0,1[. 

3.4. We are now in a position to completely determine u(0): conditions (3.40) are the only 
restrictions imposed a priori on the unknowns as we will now prove. The method  consists in showing 
that  we can pass to the limit in the variational equations (3.6) with arbitrary test-functions satisfying 
(3.40). For  simplicity, we will treat the flexural displacement and the membrane displacements 
separately. 
We have proved that  the pair (~ ,  ~]') belongs to the space: 

~ l :  = {(~', ~")eH2(co') x H 2  (co"), ~.' (0 ,x3)  = ¢ " ( 0 ,  x3) = ~ '  (1 ,x3)  = ~ " ( 1 , x 3 )  = 0, 

~1 4 / (1, X3) = ~2 ~//(1,  X3) = 0, ~1 i t (  0, X3) = - -  ~2 ~ r  (0, X3) } . (3.41) 

The space ~U1 is indeed closed in H~, (co') x H2,, (co") and any functional that  is coercive on the latter 
space defines a well-posed variational problem on the former. Actually we will prove that: 

Theorem 3.2. The pair ((~, (]') ~ U  1 is the unique solution of the variational equations: 

CO t 

= I ( - M ~ , O ~ , ~ ' + F ' 2 ~ ' ) d x +  ~ ( -M~, ,a~, , ,¢"- t - fT¢"ldx  
fD r ( D  e 

(3.42) 
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where: 

Ma, = 5 x 2 -  f'~,dx2, F~ = 5f~dx2, 
0 0 

for all test-functions (~', g") in "]/'1" 

1( 
Me, = S X l -  ,,dxl, F~' = SfTdx 1 , 

0 0 

Lemma 3.2. The following weak L2-convergences hold: 

{ /3-1ecz(u' (e))---O 
/3-2 e22 (b/' @)) ---- 

2 # + 2  
- -  e~,~, (u '  (0 ) )  

in /2 '  and: 

{ /3-1e¢,l(U'@))--~.O 

-2el l  (u" (/3)) ~ -- - -  
2 

2 # + 2  
e~,,~,, (u" (0)) 

i n / 2 " .  

(3.43') 

(3.43") 

Proof" The p roof  is very similar to the one o f  Ciarlet, Le Dret  and Nzengwa (1987), but  we include 
it for completeness. Let us introduce the scaled stresses: 

S~,e,(/3): = 2 # 74=, e, (/3 ) + 2 (74/r,(/3) + 7422 (/3))15cc/v 

Z'~'2(g): ----- 2# /3 -1  74a'2(/3) 

~v'22(g): ---~ (2# + 2)/3-27422(/3) q- )~g-274/7,(g ) 

and the analog on/2".  It is easy to check that  they satisfy: d jS/ j (e)=f~ in /2'U/2". 

In particular: 0 2 ~Y?a'2 (/3) = fa, - 0p, ~e,/v (/3). 

Now, each function Za,p, (/3) is bounded  in L 2 (/2') independent ly  of/3, therefore, 0a, Z~,p, (e) is bounded  
in L 2 (0, 1; H -  1 (co')) and as F¢ belongs to L 2 (/2'), we deduce that: 

/3 
02 74,'2 (/3) = ( A ,  - 0p, (/3)) 

converges strongly to 0 in L 2 (0, 1; H-1  (co')). As the traces o f  74a'2 (/3) at x 2 = 0 (resp. x 2 ~--- 1) tend to 
0 strongly in H-1/2(x2=O)(resp. H-1/Z(x2=l))  it follows that  74a,2(/3)~0 strongly in 
H 1 (0, 1; H - 1  (co')). 

Similarly: 02Z22 (e) = f2  - @Z2a, (e). 

and the same argument  as before shows that: 

0 2 ((2 # + 2) 7422 (g) "-~ /]" 747' 7' (/3)) = /32 (j~ _ 0/V z~72/v (/3)) 

converges strongly to 0 in L 2 (0, 1; H - 1 (co,)). As the traces at x2 = 0 and 1 also converge to 0, we see 
that  (2 # + 2) 7422 (e) + 2 74~,~, (e) ~ 0 strongly in H 1 (0, 1; H - 1 (co,)). Fo rmula  (3.43') then follows f rom 
the definition of  the 74's. We argue in the same fashion on /2"  and thereby conclude the p roof  o f  the 
lemma. 

Proof of Theorem 3.2." Let us choose (4', (")  in V1 fl C ~o. Then, in a ne ighborhood of  x 1 = 0, the 
following expansions are valid: 

~' (Xl ,X3)  = X t S l ~ ' ( 0 ,  X3) - t -g~(Xl ,X3)  with [gl[ < ex2 (3.44') 

= -- X 1 0 2 ~" (0, X3) "-~ g~ (Xl, X3) 
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since ~' (0, x3) = 0 and ~1 ~' (0, X3) = -- ~2 ~/1 (0, X3) , and: 

~I~ ' (Xl ,X3)  = Ol~ ' (0 ,  X3) +g'2(Xl,X3) w i t h  Ig~l ~ cx l .  (3.45') 

(actually g~ = Olg~, of course). Similarly, in a neighborhood of x2 = 0, we have: 

//(X2, X3 ) = X2 02 ~ ir (0, X3) -1- g'l' (x2, X3) with 

= -- X2 ~1 ~ '  (0, X3) -t- gl/(X2, X3) 

and 

02 ~" (x2, x3) = ~32 ¢" (0, x3) + g~ (x2, x3) with 

Ig~'l ~ cx 2 
(3.44 ") 

Ig~l <- CX2. (3.45") 

The trick is to define a test-function v (e) belonging to O 8 W and hence admissible in equation (2.6), 
in such a way that v (5) approximates the Kirchhoff-Love displacement corresponding to (~', ~") 
sufficiently closely so as to allow us to pass to the limit in the singular terms of equation (2.6) using 
only the information of Lemma 3.2.; i.e. using the fact that integrals of a product of a weakly 
convergent sequence by a strongly convergent sequence converge to the integral of the product of 
the limits. 
Let us call: 

/ (- (X2- ~) 01 ~'' ~ " - -  ( x 2 -  ~) ~3~') in £2', 
v =  / ( ~ " , - - ( x ~ - - ~ ) O 2 ~ " , - - ( x 1 - - ~ ) O 3 ~ " )  in £2". 

(3.46) 

Then we define v (5) as: v (5) = vl (5) + v2(e ) where vl (e) is such that: 

v i ( e )  = 

@-1 ~t," (/3X2, X3), ~,(XI,  X3),O) 

( 0 

for 0 < X 1 < ~3, 

for e < X l < 2 e ,  

for xl > 2e. 

(3.47') 

in t'2' and: 

(~rl (X2, X3), t3-- 1 ~' (/~ X1 ' X3), O) for 0 <~ X 2 < 13, 

for 

in 0",  where (and here is the point where the conditions entering the definition of V1 are crucial): 

* = - x201 ~'(0,x3) - x2 g'2(xbx3) + ~ gl (ex2,x3) 

(3.48) 
* *  = -- Xl (~2 ~"' (0, X3) -- X 1 g~ (X2, X3) "It- ~ x2 gl  (13 Xl,/33) 
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The remainder v2 (6) is defined as: 

l~ ' (0 ,  X3) , ~ 0 2 ~  (0, X3) ,0 

v2 (6) = 

(note that  
the point  (xb x3) and: 

v~(g) = (2~l~'(2(X2--g),x3),~2~"(2(X2--6),X3),O) 

~i i t (X2, X3), ~ 02 ~//(X2, X3), 0 

for 0 < X l < 6 ,  

• 631 ~'(2(XI -- 6),X3), ~ 632 ~" (2(XI -- g),X3), 0 for 6 < x l  < 2 6 ,  (3.49") 

for 

02 ~" (xl, x3)) means here the derivative o f  ~" with respect to its first variable x2 taken at 

for  0 < x 2 < g, 

for 6 < X 2 < 2 6, (3.49") 

for x2 > 2 6. 

Inspection of  formulas (3.47)-(3.48) for x 1 = 6, 2 6 and x 2 = e, 2 6 reveals that  Vl (6) is cont inous in £2' 
and O", by formulas (3.44)-(3.45), and is thus in H1; so is v2(6 ). Moreover,  it is clear that  v(6) 
satisfies the continuity condit ions (2.3) by construction,  and is thus admissible in equat ion (2.6). It 
is also clear that v (6) ~ v strongly in L 2 ((2' U/2"). Let us consider the convergence of  the strain 
tensors. Since the definition of  v (6) is symmetric with respect to the primes, we can deal with v' (6) 
alone. We have: 

e22 (v' (g)) = 0 

which takes care of  the 6 -4 terms in equat ion (2.6). Then, for 0 < x 1 < 6: 

2 e21 (v' (e)) = 02 ~ • (6 x2, x3) q- ~1 ~/(x1, x3) 

= g'~(6X2, X3) --}- gi(Xl,X3) 

(3.50) 

(3.51) 

by formula (3.45). Fo r  s < xl < 2 6: 

2 e21 (v' (6)) - 2 6 - xl (g~ (6 X2, X3) -'~ g2 (X D X3) ) --]- 6 022 ~ rz (2 (xl - 6), x3) (3.52) 
6 

and for x 1 • 26: 

2 e21 (O' (6)) = ~ 022 ~ ,t (Xl, X3). (3.53) 

A routine calculation using the estimates on the functions g~',g~' implies that: 

1 
6-1 e21 (v" (6)) ~ ~ 022 ~" (xl, x3) strongly in L 2 (Q') .  (3.54) 

This takes care of  the term 6 .2  ~ e21 (u' (6))e21 (v' (6)), which therefore tend to 0 by Lemma 3.2. 
g?' 

Next,  we have for 0 < xl < 6" 

6 
2 e23 (v' (6)) = a3 ~" (x> x3) + ~ a23 ~" (0, x3) (3.s5) 
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for e < X l <  2a" 

2ee3(v,(e) ) _ 2 a  Xl ~3~ ' (Xl ,X3)  -~- ~ ~23 ~ " ( 2 ( X l  -- /3),X3) , ( 3 . 5 6 )  

and for x 1 > 2a: 

2 e23 (v' (e)) = ~ ~23 ~" (Xl, X3)' (3.57) 

It is easy to see f rom an estimate of  the form [ ~33 4' (xl, X3) [ < O Xl, that  e -  1 e2 3 (v' @)) --* 1/4 (~23 ~ ~/(Xl, X3) 
strongly in La(£2'). Finally, using again the estimates on the functions g, we see that  
e~,~,(v'(e))--, e~,p,(v') strongly in L2(£2'). We can thus pass to the limit as e ~ 0 in equat ion (2.6), 
which yields equations (3.42) for (~', ~") very regular, after integration with respect to x2 in £2' and 
xl in £2". Then a (not  so obvious, see remark  2 below) density a rgument  shows that  equations (3.42) 
hold for all (~', ~") in ~U 1. Now, equations (3.42) clearly define a well-posed variational problem, 
having thus a unique solution in ~/~1, namely ((~, (~'). [] 
Remarks .  (1) We recognize in (3.42) the weak form of  equations for two plates coupled through 
their normal  derivatives on their c o m m o n  edge (expressed here with the more  familiar material  
constants E and 12): 

E 
A 2 ~  = (~c(m~,-]- F~ inca '  

12 (1 - 122) (3.58) 

E 
A2 (~' = 0~,,M~,, + F~ ' inca" 

12(1 - 122) 

(o,  x3) = (o,  x3) = o 

~ l ( i ( 0 ,  X3) = -- ~2~ / (0 ,  X3) 
(3.59) 

rail (0, X3) = m~2 (0, x3) (3.60) 

plus the conditions coming f rom the clamping on F '  and F"  and the traction-free condi t ion on the 
rest of  the boundary,  where the bending moments  mij are defined by 

E 
! . _ _  

m~,~,. = ]2(1 - v 2) 
[(1 - 12) + 

E 
m~,,a,,: = - i 2  (1 --  12 2) 

[(1 - v) (" + v A ( "  

Formula  (3.60) comes formally f rom integrations by parts in equations (3.42). 
(2) Note  that  formulas (3.59) imply that  the function: 

( : ] -  1, 1 [ × ] 0 ,  1 [ - - ,IR 

(s, t) v-~ { ( ~' (s, t) if s < 0 
( ~(s,t) if s > 0  

(which sort of  "unfolds"  the plates) is actually H 2 with respect to (s, t). The density a rgument  of  the 
p roof  of  Theorem 3.2. relies upon  the fact that  it is possible to approximate  in the H2-norm any 
H 2 (] - 1, 1 [ x ] 0, 1 D function vanishing at s = 0 by C°°-functions also vanishing at s = 0. Let us 
briefly sketch how this can be done. First of  all, due to the boundary  condit ions at s = + 1, we can 
extend any such ( b y  reflexions at t = 0 and 1 into an H2-function of  Q = ] - 1,1 [ x ] - 1,2 [ vanishing 
in a fixed ne ighborhood of  t = - 1 and t = 2. This extension is actually a cont inuous linear operator.  
Let v belong to H 3/2 (] - 1,2 D with compact  support  in ] - 1,2 [. Then the function P (v) defined by: 
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A 2 P(v) = 0 - 1  < s < 0 and 

P(v) = v for s = 0 

P(v) = 0 on  ~Q 

~P(v) 
- 0  on  ~ Q U { s = 0 }  

an 

0 < s < l , - - l < t < 2  

is clearly H2(Q),  depends  cont inuous ly  on v and  if v is C ~, so is P(v). Now, let & be a smoo th ing  
kernel. We approx imate  ( b y  (~ = &* ( - P ( & *  ~1,=0). 
No te  that  the funct ion  ~" above does no t  however  satisfy (the no ta t ion  is self-explanatory): 

E 
A 2 ~ = O = M = + F  in ] - l , l [ x ] 0 , 1 [ .  

12(1 - v 2) 

3.5. Let us now turn  to f inding the m e m b r a n e  displacements .  Since their  de te rmina t ion  follows 
closely the lines of  the p r o o f  of  T h e o r e m  3.2., we will only sketch the a rgument .  We have seen that  
the quadrup le  (~;,, ~,,) belongs to the space: 

~//'2 : = {(~ ~', ~ ~") ~ H1 (co ')2 X H 1 (co,,)2, ~ ,¢ (1, x3) = { ~,, (1, x3) -- 0, ~ ~ (0, X3) = ~ ~' (0, X3) } (3.61) 

We in t roduce  the notat ion:  

u°': (~{,~;) in o£ u ° . . . . . . .  = , =(ff2,~3)  in co" 

and 
f t /  It I / : = ( ~ I , ~  ) in co', " = ( ~ 2 , ~  r) in co" 

Then,  we have: 
Theorem 3.3. The  m e m b r a n e  displacements  (~;,, ~,,) are the un ique  solut ion in V2 of  the variat ional  
equat ions:  

21~e¢~'(u°')e~T(v') + 21~ + 2 e~"¢(u°')e~'~'(v') dx  

0~, u ) 2/z2 e=,,~,,(u )ea,,a,,(~ ) dx  (3.62) 
2 # + 2  

1 

F'~, = ~J2,,dxl, for all ({;,, {~,,) in ~2 .  
0 

+S( 0,, , ,  2#e~,,,~,,(u )e,,,,tr,(v ) + - -  
(.O H 

= IF'~'{; " d x +  f F~,,~'~,,dx 
(,9  t 0 .1  u 

1 
where F;,  = 5 f , , d  

0 
Proof" Given (~;,, ~,,) in ~U2, we define a d isp lacement  v (e) in O ~ W m u c h  as in the p r o o f  of  Theo rem 
3.2.: 

{ (~(O,  x3), e ~ ( O ,  x3), ~;(O, x3)) for 0 < x2 < ~, 

v'(e) = ( ~  (2(xa - e),x3), e ~ ( 2 ( x l  - e),x3), ~ ( 2 ( x l  - e),x3)) for e < Xl < 2e,  

(~ ~ (Xl, x3), e ¢ ~ (Xl, x3), ~ ~ (xl, x3)) for xl > 2 e, 

( (g~l (0, X3), ~ ( 0 ,  X3), ~;t (0, X3)) for  0 < x 2 < g, 
! 

v" (g) = ~ (e ~ i (2 (x2 - e), x3), ~ ~ (2 (x2 - e), x3), ~ ~ (2 (x2 - e), x3)) for e < x2 < 2 e, 
! 

[ ,  (g¢l(X2, X3), ~ ( x > x 3 ) ,  ~;'(x2,x3)) for x2 > 2e.  

Then  it is easy to check that  e22 (v' (e)) = ell (v" (e)) = 0, tha t  e - 1 e,,2 (v' (e)) and  e - 1 e,,q (v" (e)) converge 
strongly in L 2 and that  ecp, (v' (~))and e~"p,, (v" (e)) also converge strongly in L 2, and  we conclude  as 
in the p r o o f  of  Theo rem 3.2. [] 
Let  us summarize  all the results of  Section 3. 
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Theorem 3.4. The family u (e) converges weakly in H 1 (f2 ,)3 X H 1 (O")3 to a Kirchhoff-Love displace- 
ment u(0) defined by equations (3.5)-(3.6)-(3.42)-(3.62). 

Once this weak convergence is established, it is almost immediate, albeit tedious, to show that: 

Theorem 3.5. u (e) ~ u (0) strongly in H 1 ((2') 3 × H 1 (0") 3. 
The argument is as in Ciarlet, Le Dret and Nzengwa (1987). Therefore we will omit this last 

proof. 

4 Extensions and open problems 

4.1. The most immediate and straightforward extension apart from more general loadings, is to 
consider arbitrary shaped co' and co", with a common straight edge. Another easy one is to deal with 
a "T-structure" (Fig. 3): with a clamping condition on some part of each of the three plates. The 
result is the obvious one obtained by patching our previous results and depicted in Fig. 4. 

One could also consider the corner structure of Fig. 5. 
The author's conjecture is that the result would also be obtained by "patching the three folds". 

It is clear that the limit solution must satisfy the analogs of Theorem 3.1. on each fold. Proving 
along the preceding lines that these conditions alone determine the limit problem requires the 
construction of rather intricate test-functions. This question will be addressed in a forthcoming 
paper. 

Another interesting extension is to consider a fold of arbitrary angle. This extension does not 
seem to be entirely straightforward. 

4.2. It is open problem to find out what happens if only one of the two plates is clamped 
somewhere on its boundary. The method presented here fails from the start, since in this case the 
bound (3.4) clearly cannot hold. However, there certainly must exist some 2d-model for this structure. 
In the same spirit, one would like to be able to consider a fold with a reinforcement: but this cannot 
be done in the same fashion as before if no clamping is assumed on the small triangle (Fig. 6). 

Another open problem is the extension to nonlinear elasticity. Since no existence theorem similar 
to Proposition 1.1. is known in this case, our method cannot be immediately adapted. However, we 
feel that the trick of counting the junction twice is to be kept in mind when approaching this 
problem. 

Finally, we must acknowledge that the terminology "fold" we have used throughout this paper 
is somewhat inaccurate. A real fold model should involve plasticity phenomena, loss of homogeneity 
and isotropy in the folded region and should not be posed in the rectangular geometry we assumed, 
but rather in a smoothly curved domain. Some of the ideas exposed in this paper might be useful, 
however, in the study of these more general situations. 

4 5 6 

Figs. 3-6 
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