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Abstract 

A magneto-rheological (MR) fluid damper is a semi-active control device that has recently 

begun to receive more attention in the vibration control community. However, the inherent 

nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve 

high damping control system performance. Therefore the development of an accurate 

modeling method for a MR fluid damper is necessary to take advantage of its unique 

characteristics. Our goal was to develop an alternative method for modeling a MR fluid 

damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior 

of the researched damper is directly estimated through a fuzzy mapping system. In order to 

improve the accuracy of the STF model, a back propagation and a gradient descent method 

are used to train online the fuzzy parameters to minimize the model error function. A series 

of simulations had been done to validate the effectiveness of the suggested modeling method 

when compared with the data measured from experiments on a test rig with a researched MR 

fluid damper. Finally, modeling results show that the proposed STF interference system 

trained online by using neural technique could describe well the behavior of the MR fluid 

damper without need of calculation time for generating the model parameters. 
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1. Introduction 

Nowadays many kinds of actuator was developed and widely used in industry. Among them, 

the magnetic actuator has only been considered and studied since the 1960s. However, it has 

proved the advantages, reliabilities and flexibilities in the real applications. Recently, many 

researchers have been conducted on magnetic actuators and magnetic effects. Vibration 

suppression is considered key in civil engineering to ensure the safety and comfort of their 

occupants and users of mechanical structures. To reduce the system vibration, an effective 

vibration control with isolation is necessary. Vibration control techniques have classically 

been categorized into two areas, passive and active controls. For a long time, efforts were 

made to make the suspension system work optimally by optimizing its parameters, but due to 

the intrinsic limitations of a passive suspension system, improvements were effective only in 

a certain frequency range. Compared with passive suspensions, active suspensions can 

improve the performance of the suspension system over a wide range of frequencies. Semi-

active suspensions were proposed in the early 1970s [1], and can be nearly as effective as 

active suspensions. When the control system fails, the semiactive suspension can still work 

under passive conditions. Compared with active and passive suspension systems, the semi-

active suspension system combines the advantages of both active and passive suspensions 

because it provides better performance when compared with passive suspensions and is 



economical, safe and does not require either higher-power actuators or a large power supply 

as active suspensions do [2]. In early semi-active suspension, many researches on variable 

orifice dampers had been done ([3-4]). With these damper types, regulation on of the damp- 

ing force can be achieved by adjusting the orifice area in the oil-filled damper, thus changing 

the resistance to fluid flow, but adjusting the speed is slow because of mechanical motion 

limitations. Another class of semiactive suspension uses controllable fluids. Two fluids that 

are viable contenders for development of controllable dampers are: electro-rheological (ER) 

fluids and magneto-rheological (MR) fluids. Although the discovery of both ER and MR 

fluids dates back to the late 1940’s, researchers have primarily concentrated on ER fluids for 

civil engineering applications ([5-8]). Recently developed MR fluids appear to be an 

attractive alternative to ER fluids for use in controllable fluid dampers ([9-12]). MR fluids are 

smart materials, which typically consist of micron-sized, magnetically polarizable particles 

dispersed in a carrier medium such as mineral or silicone oil. The particles form chain-like 

fibrous structures in the presence of a high electric field or a magnetic field. When the 

electric field strength or the magnetic field strength reaches a certain value, the suspension 

solidifies and will have high yield stress; conversely, the suspension can be liquefied once 

more by removal of the electric field or the magnetic field. These materials demonstrate 

dramatic changes in their rheological behavior in response to a magnetic field ([9]). The 

process of change is very quick, less than a few milliseconds, and can easily be controlled by 

small amounts of energy on the order of several watts. Consequently, MR fluid dampers, 

which utilize the advantages of MR fluids, are semi-active control devices that are capable of 

generating a force with magnitude sufficient for rapid response in large-scale applications, 

while requiring only a battery for power ([12]). Additionally, these devices offer highly 

reliable operations and their performance is relatively insensitive to temperature fluctuations 

or impurities in the fluid ([9]). As a result, there has been active research and development of 

MR fluid dampers and their applications ([13-18]).  

However, major drawbacks that hinder MR fluid dampers applications are their nonlinear 

force/displacement and hysteretic force/velocity characteristics. Therefore, one of the 

challenges involved in creating high performance MR fluid damper in control applications is 

the development of accurate models that can take full advantage of the unique features of the 

MR device. Both parametric and nonparametric models have been built by researchers to 

describe the behavior of MR fluid dampers. The parametric models based on mechanical 

idealizations have been proposed as the Bingham, Bouc-Wen, phenomenological model, and 

others [19-26]. The Bingham model [19] represents the dry-friction as a signum function on 

the damper velocity and may be considered as a simple model for describing the hysteresis 

characteristic. The Bouc-Wen model uses a differential equation to depict the non-linear 

hysteresis with moderate complexity and is widely applied in building controls. Once the 

characteristic parameters of the Bouc-Wen model are determined, the model can obtain the 

linearity and the smoothness of the transition from the pre-yield to the post-yield region. One 

of the major problems in the Bouc-Wen model is the accurate determination of its 

characteristic parameters which is obtained by using optimization or trial error techniques. 

Consequently, these techniques demand high computational cost to generate the model 

parameters. Moreover, the fact that each set of constant parameters is valid only for single 



vibration conditions makes the Bouc-Wen model inappropriate for varying excitation 

environments. Therefore, many researches on how to develop a MR fluid damper model for 

higher accuracy and higher adaptability in estimating the behavior of the damper have been 

done. Spencer et al [21] successfully developed a phenomenological model to improve the 

model accuracy with an additional internal dynamical variable. Choi and Lee [22] designed a 

hysteresis damper model based on a polynomial and a curve fitting to predict better the 

damping force when compared with conventional models. Dominguez et al [23, 24] proposed 

a methodology to find out the characteristic parameter of Bouc-Wen model and then designed 

a new non-linear model to simulate the behavior of the MR fluid dampers. Kwok et al 

designed a hysteretic model based on a particle swarm optimization [25] or using GA 

technique [26] to modify the Bonc-Wen model and identify the characteristic parameters of 

the models. The effectiveness of these models with their identification process was proved 

through the experimental test data. However, the parametric modeling methods require 

assumptions as regards the structure of the mechanical model that simulates behavior. The 

approach could be divergent if the initial assumptions for the model structure are flawed, or if 

the proper constraints are not applied to the parameters. Unrealistic parameters such as 

negative mass or stiffness may be obtained. Meanwhile, non-parametric methods could avoid 

these drawbacks of the parametric approaches for modeling, which are adaptive and 

applicable to linear, nonlinear, and hysteretic systems. For modeling MR fluid dampers, 

Chang and Roschke [27] proposed a non-parametric model using multilayer perceptron 

neural network with optimization method for a satisfactory representation of a damper 

behavior. Schurter and Roschke [28] investigated the modeling of MR fluid dampers with an 

adaptive neuro-fuzzy inference system. The fuzzy structure was simple for modeling; 

nevertheless, the training model process relied on input and output information on MR fluid 

dampers and took much computation time. Wang and Liao [29, 30] explored the modeling of 

MR fluid dampers by using a trained direct identification based on recurrent neural network. 

Although, the designed models could predict the dynamic responses of the dampers with high 

precision, the model architectures and the training methods were complex. 

For these reasons, a novel direct modeling method to model simply MR fluid dampers is 

proposed in this paper. This method uses a self tuning fuzzy (STF) system based on neural 

technique and was designed to overcome the disadvantages of conventional models. Here, an 

alternative MR fluid damper model built in the form of the simple fuzzy mapping laws, 

which use triangle membership functions (MFs) and centreaverage defuzzification, is 

considered to estimate directly the MR damping force output with respect to the MR 

characteristics. In order to improve the accuracy of the proposed STF model, the back 

propagation learning rules based on gradient descent method is used to adjust online the 

fuzzy parameters to minimize the model error function. Input information for the fuzzy 

training process is the current supplied for the MR fluid damper and its dynamic responses. 

Effectiveness of the proposed MR fluid damper modelling method is clearly verified through 

comparisons of the experimental data obtained from a damper test rig, and modeling results. 

The results show that the proposed fuzzy interference system trained online by using neural 

technique has satisfactorily representative ability for the behavior of MR fluid damper with 

small computational requirement. 



The remainder of this paper is organized as follows. Section 2 describes the test rig using a 

MR fluid damper. In section 3, some common used models are analysed and then the 

procedure of designing the proposed modeling method is presented. Section 4 shows the 

modeling results of the MR fluid damper using the proposed STF model. Concluding remarks 

are presented in section 5. 

2. Experimental Apparatus 

To take full advantage of the unique features of the MR fluid damper in control applications, 

a model must be developed that can accurately reproduce the behavior of MR fluid damper. 

To verify the precision of the proposed modeling method for a MR fluid damper, a test rig 

using a specific damper was set up to obtain experimental data used in the modelling process 

and to make a comparison between the real damping response and the MR model output. A 

MR fluid damper of the RD-1005-3 series manufactured by LORD Corporation was used in 

this study. The details of the test system are described below. 

2.1 MR fluid damper 

MR fluid damper is a damper containing special fluid, MR fluid, which is allowed to change 

its viscosity with respect to an applied external magnetic field. Here, the MR fluid is non-

magnetic fluids, such as mineral or silicon oil, carrying tiny magnetic particles, such as 

carbonyl iron. The fluid is housed within a cylinder and flows through a small orifice. A 

magnetic coil is built in the piston or on the housing. When a current is supplied to the coil, 

the particles are aligned and the fluid changes from the liquid state to the semi-solid state 

within milliseconds. Consequently, a controllable damping force is produced. The force 

procedure by a linear MR fluid damper depends on magnetic field induced by the current in 

the damper coil and the piston velocity as in Fig. 1. The damper operates in the flow mode 

and this means that the produced force is controlled by the flow resistance of the MR fluid 

portion contained in the gap inside the piston. 

The MR fluid damper RD-1005-3 used in this research is a compact magneto-rheological 

fluid damper unsurpassed in its combination of controllability, responsiveness and energy 

density. As a magnetic field is applied to the MR fluid inside the mono-tube housing, the 

damping characteristics of the fluid increase with practically infinite precision. This damper 

can be adapted to a wide variety of applications because of its simple design, small size, quiet 

operation, and compact shock absorption with low voltage and current demands that allow for 

real-time damping control. The photographs and specifications of the damper are displayed in 

Fig. 2 and Table 1. 

Based on the dimensions and characteristics of the damper RD-1005-3, the rig to perform the 

damping test and to model the damper was designed and set-up as followings. 



 

Table 1 Technical data for the MR fluid damper RD1005-3 

Lord MR Fluid damper-RD-1005-3 Series 

Parameter Value 

Compressed length (mm) 155 

Extended length (mm) 208 

Weight (g) 800 

Megneto_Rheological fluid  

viscosity (pa-s) @ 40
0
C 

Density (g/cm
3
) 

Solid content by weight,% 

Operating temperature (
0
C) 

MRF-132DG 

0.092±0.015 

2.98-3.18 

80.98 

-40 to +130 

Electrical Characteristics: 

Maximum input current (A) 

Input Voltage (VDC) 

 

2 

12 

Mechanical Characteristics: 

Maximum Extension Force (N) 

Maximum Operating temperature (
0
C) 

 

4448 

171 

Response time (ms) 

(amplifier & power supply dependent) 

<25 (time to reach 90% of max level 

during a 0 to1 amp step input) 

 



2.2 Test rig 

The schematic diagram of the test rig for the RD- 1005-3 damper is depicted in Fig. 3. In the 

experimental system, a hydraulic actuator and a driving controller (VibMaster) manufactured 

by Park electronics were employed to drive the damper. The data acquisition system 

consisted of up to eight control axes (synchro or individual), up to four analog input channel 

users, and four analog output channel users. In the actuator, the servo valve with a nominal 

operational frequency range of 0-50 Hz, made by Moog Inc., was used as the final control 

target to adjust the motion. The actuator has a 3.5 cm diameter cylinder and a ±20 mm stroke 

which was fitted with low friction Teflon seals to reduce non-linear effects. A linear variable 

differential transformer (LVDT) was set-up to measure the displacement of the piston-rod of 

the MR fluid damper. In addition, a compatible load cell with 500 kgf capacity by Bongshin 

was attached in series with the damper rod to measure the damping force. A PC installed with 

the VibMaster control program was used to generate system vibrations, while the PC with a 

current amplified circuit sent the current signal to adjust the damper characteristic. 

Consequently, the feedback signals measured by the LVDT and the load cell were sent back 

to the PC through an Advantech A/D PCI card 1711 to perform full data acquisition with 

input and output signals. 

Finally, the load frame shown in Fig. 3 was designed and fabricated as shown in Fig. 4 for the 

purpose of obtaining the MR fluid damper response. 

 

Fig. 4. RD-1005-3 damper in the test rig 

3. Modeling of the MR fluid damper with the STF mechanism 

Firstly, some common models used to estimate the behavior of a MR fluid damper are 

revised. Based on the analysis those models, the proposed STF model and its designing 

process are described in details. The experimental data obtained from the testing system is 

used for model analyses and designs. 

3.1 Experimental systems 

To obtain the data used to characterize the RD- 1005-3 MR fluid damper behavior, a series of 

experiments was conducted under various sinusoidal displacement excitations while 

simultaneously altering the magnetic coil in a varying current range. The out put of each test 



was the force generated by the damper. The system was excited up to ±5mm by the hydraulic 

actuator within the frequency range of 1 to 2.5Hz. Likewise, the range of current supplied to 

the coil inside the damper varied from 0 to 1.5A. A sampling time of 0.002 seconds was used 

to produce 5000 sets of data from the experiments. The parameters for the experiments are 

listed in Table 2. During all the experiments, the damping force responses were measured 

together with the variation of piston displacement and supplied current for the damper. Fig. 5 

depicts an example of relationship between the piston velocity, the applied current and the 

dynamic response of the damper in 3D map with respect to 1Hz sinusoidal excitation and 

5mm of amplitude applied to the damper. 

Table 2 Parameters setting for the experiments on the MR fluid damper test rig 

 

 

Fig.5: Performance curves for the RD-1005-3 MR fluid damper for a sinusoidal excitation at 

frequency 1Hz and amplitude 5mm 

 

 

 



3.2 Common MR fluid damper models 

3.2.1 Bingham model 

The stress-strain behavior of the Bingham viscoplastic model [31] is often used to describe 

the behaviour of MR fluid. In this model, the plastic viscosity is defined as slop of the 

measured shear stress versus shear strain rate data. Thus, for positive values of the shear rate, ߛሶ  the total stress is given by: ߬ ൌ ߬௬ሺ௙௜௘௟ௗሻ ൅ ሶߛߟ                                          ሺ1ሻ 

Where ߬௬ሺ௙௜௘௟ௗሻis the yield stress induced by the magnetic field and η is the viscosity of the 

fluid. 

Based on this model, an idealized mechanical model referred to as the Bingham model was 

proposed to estimate the behavior of an MR fluid damper by Standway et al [19]. This model 

consists of a Coulomb friction element placed in parallel with a viscous damper as depicted 

in Fig. 6. 

 
 

Fig.6: Bingham model of a MR fluid damper 

 

Here, for nonzero piston velocities, ݔሶ  the force F generated by the device is given by: 

ܨ  ൌ ௖݂݊݃݅ݏሺݔሶሻ ൅ ሶݔ଴ܥ ൅ ଴݂                                  ሺ2ሻ 

 

where C0 is the damping coefficient; fc is the frictional force related to the fluid yield stress; 

and an offset in the force f0 is included to account for the nonzero mean observed in the 

measured force due to the presence of the accumulator. Note that if at any point the velocity 

of the piston is zero, the force generated in the frictional element is equal to the applied force. 

 



 
Fig.7: Comparison between experimental data and the predicted damping forces for a 2.5Hz 

sinusoidal excitation with amplitude 5mm while current supplied to the damper is 1.5A. 

 

To present the damper behavior, the characteristic parameters of the Bingham model in 

equation (2) need to be chosen to fit with the experimental data of the damping system. For 

example, those parameters are chosen as C0 = 50Ns/cm; fc = 950N and f0 = 75N for a 2.5Hz 

sinusoidal excitation with amplitude 5mm while the current supplied to the damper is 1.5A. 

Consequently, the predicted damping force by using the Bingham model is compared with 

the experimental response as plotted in Fig. 7 where the predicted and the measured data are 

the ‘dash’ and the ‘solid line’, respectively. 

From the results, although the force-time and force-displacement behavior are reasonably 

modeled, the predicted force-velocity relation is not captured, especially for velocities that 

are near zero. By using this model, the relationship between the force and velocity is one-to-

one, but the experimentally obtained data is not one-to-one. Furthermore, at zero velocity, the 

measured force has a positive value when the acceleration is negative (for positive 

displacements), and a negative value when the acceleration is positive (for negative 

displacements). This behavior must be captured in a mathematical model to adequately 

characterize the device. Hence, Gamota and Filisko [20] developed an extension of the 

Bingham model, which is given by the viscoelastic-plastic model shown in Fig. 8. 

 

 
 

Fig.8: Extended Bingham model of a MR fluid damper 

 



The model consists of the Bingham model in series with a standard model. The governing 

equations for this model are given as followings 

 
 

Where C0 is the damping coefficient associated with the Bingham model; k1, k2 and C1 are 

associated with the linear solid material. This model can present the force-displacement 

behaviour of the damper better the Bingham model. However, the governing equations (3), 

(4) are extremely stiff, making them difficult to deal with numerically [21]. Therefore, the 

Bingham model or extended Bingham model are normally employed in case there is a 

significant need for a simple model. 

 

3.2.2 Bouc-Wen model 

One model that is numerically tractable and has been used extensively for modeling 

hysteretic systems is the Bouc-Wen model. This model contains components from a viscous 

damper, spring and a hysteretic component. The model can be described by the force 

equation and the associated hysteretic variable as given 

ܨ  ൌ ሶݔܿ ൅ ݔ݇ ൅ ݖߙ ൅ ଴݂                             ሺ5ሻ 

ሶݖ  ൌ െݔ|ߛሶ ௡ିଵ|ݖ|ݖ| െ ሶݔߚ ௡|ݖ| ൅ ሶݔߜ            ሺ6ሻ 

 

where: F is the damping force; f0 is the offset force; c is the viscous coefficient; k is the 

stiffness, ݔሶ  and x are the damper velocity and displacement; α is a scaling factor; z is the 

hysteretic variable; and γ ,β ,δ ,n are the model parameters to be identified. Note that 

when α = 0, the model represents a conventional damper. 

  

In order to determine the Bouc-Wen characteristic parameters predicting the MR fluid 

damper hysteretic response, Kwok et al [26] proposed the nonsymmetrical Bouc-Wen model 

with following modifications 

 

 
 

Where μ is the scale factor for the adjustment of the velocity. 

 

As the optimization results for the test rig applied the damper RD-1005-3 by using GA in 

[23], the relationships between the Bouc-wen parameters and the supplied magnetization 

current, i, are given as  

 



 
 

The Bouc-Wen model built from equations from 7 to 9 is tested for modeling the damping 

force in this study. As a result, the predicted force is plotted as the ‘dash-dot’ line in Fig. 7 for 

a 2.5Hz sinusoidal excitation with amplitude 5mm while the current supplied to the damper is 

1.5A. From the result, it is clearly that to obtain good predicted behavior of a MR fluid 

damper in a specific system, the Bouc-Wen parameters must be tuned by using optimization 

or trial error techniques which causes high computational cost to obtain the optimal 

parameters. Furthermore, to obtain better modeling performance, some modified Bouc-Wen 

models have been proposed. The research results in [21] show that the modified Bouc-Wen 

model improves the modeling accuracy. However, the model complexity is unavoidably 

increased with an extended number of model parameters (14 parameters need to be identified 

in [21]) which may impose difficulties in their identification and take much time for 

optimization process [28]. 

 

3.2.3 A hysteretic model 

 
 

Fig.9: Hysteretic model of a MR fluid damper 

 

For a simple model, Kwok et at [25] proposed a hysteretic model to predict the damping 

force of the MR fluid damper RD-1005-3 as illustrated in Fig. 9. The model can be expressed 

as following equations 

 

ܨ  ൌ ሶݔܿ ൅ ݔ݇ ൅ ݖߙ ൅ ଴݂                            ሺ10ሻ 

ݖ  ൌ tanh൫ݔߚሶ ൅  ሻ൯                      ሺ11ሻݔሺ݊݃݅ݏߜ

 



where: c and k are the viscous and stiffness coefficients; α the scale factor of the hysteresis; 

z the hysteretic variable given by the hyperbolic tangent function and f0 is the damper force 

offset; and β ,δ are the model parameters to be identified. 

 

As the results in [25], the parameters in equations 9 and 10 are given: 

ܥ  ൌ 1929݅ ൅ 1232; ݇ ൌ െ1700݅ ൅ 5100; 
ߙ  ൌ െ244݅ଶ ൅ 918݅ ൅ 32; ଴݂ ൌ െ18݅ ൅ 57                ሺ12ሻ 

ߚ  ൌ 100; ߜ  ൌ 0.3݅ ൅ 0.58             
 

However, to obtain the parameters as in equation (12), a swam optimization [26] based on 

GA algorithm must be used to select the most suitable values with respect to each specific 

system using the damper RD-1005-3. Hence, when using the set of resulting parameters in 

[26] to apply to the test system of the MR fluid damper RD-1005-3 in this study, the 

hysteretic model cannot present well the damper behavior. For example, the modeling result 

by using the hysteretic model, for a 2.5Hz sinusoidal excitation with amplitude 5mm while 

the current supplied to the damper is 1.5A, is depicted in Fig. 7 as the ‘short dash’ line. The 

result proves that although the estimated force in this case is better than in case of using 

Bingham or Bouc-Wen model, the nonlinear characteristic of the damper cannot be described 

well. Moreover, the swam optimization is also take training time to generate the parameters 

of hysteretic model. 

 

3.3 Proposed MR fluid damper model based on STF 

From above analyses, the common models can predict the characteristic of a MR fluid 

damper with high accuracy and applicability. However, the parameters representing those 

models need to be tuned by using optimization or trial error techniques which causes high 

computational cost to generate the parameters. In addition, those models only adapt with 

specific damping systems. For a new system, the optimization process must be done again for 

a full prediction the damper behavior. Therefore, a non-parametric method based on 

intelligent techniques, for example, is an effective solution to estimate directly the MR fluid 

damper behavior with high precision. 

 

Fuzzy system is an intelligent tool imitating the logical thinking of human and then is capable 

of approximating any continuous function. However, there is no systematic method to design 

and examine the number of rules, input space partitions and membership functions (MFs). 

Meanwhile, neural network mimics the biological information processing mechanisms. It is 

typically designed to perform a nonlinear mapping from a set of inputs to a set of outputs. 

They are non-programmed adaptive information processing systems that can autonomously 

develop operational capabilities in response to an information environment. It learns from 

experience and generalizes from previous examples. This technique modifies its behavior in 

response to the environment, and is ideal in case that the required mapping algorithm is un-

known and the tolerance to faulty input information is required. Hence an identification 

system using fuzzy and neural theory can easily be selected as an effective method for 

directly modeling MR fluid dampers purpose. 



 
 

Fig.10: Experimental data measured at sinusoidal excitations (frequency range (1, 2.5) Hz 

and 5mm of amplitude), and supplied current in range (0, 1.5) A 

 

Here, a newly simple direct modeling method for a MR fluid damper based on the STF 

mechanism is proposed. This proposed model is based on centreaverage defuzzification 

architecture, which is a computationally efficient and well suited for implementation of non 

linear system. In addition, the back propagation is used to decide online the shapes of 

membership function and fuzzy rules together with the gradient descent method to minimize 

the modelling error. As a result, the designed fuzzy inference system has higher learning 

ability that improves the identification quality. The following analyses are used to design the 

proposed STF model. 

The fist factor affecting the dynamic response of the damper is the applied displacement on 

the piston rod. Fig. 10 displaces the comparison between damping results under various sine 

excitations with 5mm amplitude and frequency range from 1Hz to 2.5Hz while the supplied 

current level is in range from 0 to 1.5A. The results show that at fixed current level applied to 

the damper, the damping force varies due to the piston rod velocity which is caused by the 

simultaneous change of frequency and/or amplitude of the applied excitation. 



 
Fig.11: Experimental data measured at sinusoidal excitation (frequency 2.5Hz, and amplitude 

5mm), and within current range (0.5, 1.5) A 

 

The second factor affecting the behavior of the damper is the changing of current applied to 

the damper coil. Fig. 11 shows an example of measuring results in plots of force-time, force-

displacement, and force-velocity relation with respect to a 2.5Hz sinusoidal excitation and 

5mm of amplitude while the current supplied to the damper is in range between 0 and 1.5A. 

From this figure, it is readily apparent that as follows: 

 

 The force produced by the damper is not centered at zero. This effect is due to the 

effect of an accumulator containing high pressure nitrogen gas in the damper. The 

accumulator helps to prevent cavitations in the fluid during normal operation and 

accounts for the volume of fluid displayed by the piston rod as well as thermal 

expansion of the fluid. 

 The greater current level, the greater damping force. 

 The force increasing speed is faster at lower current levels because of the effect of 

magnetic field saturation. 

Based on the above analyses, the damping force of the MR fluid damper depends on the 

displacement/ velocity of the damper rod and the current supplied for the coil inside the 

damper. Therefore, the designed STF model contains two parts: one is the neural-fuzzy 

inference (NFI) that is used to estimate the damping force (u) caused by the displacement of 

the damper rod, and the other is the scheduling gain fuzzy inference (SGFI) which is used to 

switch between the damping force levels (k) with respect to the current levels supplied for the 

MR coil. Consequently, the estimated damping force of the STF model (fMR_est) is computed 

as a multiple of the NFI estimated force and the SGFI gain ெ݂ோ_௘௦௧ ൌ ݇ ൈ  ሺ13ሻ                     ݑ



To evaluate the accuracy of the MR model, an error function (E) is defined by the difference 

between the damping force (fMR_est) estimated from the MR model and the real damping force 

obtained from experiment (fMR) when the input conditions (MR current and 

displacement/velocity) for both the model and real MR fluid damper system are the same. 

Therefore, the error function is expressed by the following equation: 

ܧ  ൌ 0.5ሺ ெ݂ோ೐ೞ೟ െ ெ݂ோሻଶ                           ሺ14ሻ 

 

 

 
 

Fig.12: Structure of identification for a MR fluid damper using proposed STF model 

 

Finally, to improve the identification quality of the proposed model, a learning mechanism 

using neural methodology is used to adjust the fuzzy parameters with the purpose of 

modeling error minimization. Hence, the overall structure of the proposed STF model for a 

MR fluid damper is shown in Fig. 12. 

 

3.3.1 Neural-Fuzzy inference (NFI) 

The NFI system takes part in estimating the damping force caused by the applied 

displacement to the damper. The NFI set is therefore designed with two inputs (in2, and in3) 

and one output (u). 

  The ranges of these inputs are from -1 to 1, which are obtained from the applied 

displacement, and its derivative (velocity) through scale factors chosen from the range of 

displacement and specification of the MR fluid damper. For each input variable, five triangle 

membership functions (MFs) are used. Here, “NB”, “NS”, “ZE”, “PS” and “PB” are 

“Negative Big”, “Negative Small”, “Zero”, “Positive Small” and “Positive Big”, respectively. 

The centroids of the MFs are set initially at the same intervals and the same shape sizes as in 

Fig. 13a. Because all of the MFs are triangle shapes, so we can express these MFs as follows: 

௜ሻݔሺߤ  ൌ 1 െ 2หݔ௜ െ ௝ܽ௜ห௝ܾ௜ , ݆ ൌ 1,2 … … … … … … ܰ                     ሺ15ሻ 

 

Where aj is the centre of the j
th

 triangle and bj is the width; N is the number of triangles. 



 
 

(a) Initial membership functions for NFI inputs: in2(t), in3(t) 

 
(b) Initial membership functions for NFI output: u (t) 

 

Fig.13: Initial Membership functions of the NFI inputs and output 

 

The fuzzy reasoning results of outputs are determined by an aggregation operation of fuzzy 

sets of inputs and the designed fuzzy rules, where the MAXMIN aggregation method and 

“centroid” defuzzification method are used. In the proposed neural-fuzzy inference, with a 

pair of inputs (in2, in3), the output of the proposed neural-fuzzy system can be computed as 

 

 
where μj and wj are the height and weight of the NFI output respectively, which are obtained 

from the rule j
th

. The output u of the NFI system has five membership functions: “NB”, “NS”, 

“ZE”, “PS”, and “PB”, with the same meaning as the MFs of the inputs. The ranges of the 

output are set from -1 to 1. The estimated force is then obtained by multiplying the output and 

a scale factor chosen from the specification of the MR fluid damper. The initial output 

weights are decided from the experimental results with constant supplied current where the 

damping force values are caused by the corresponding point of input displacement and 

velocity. Figure 14 shows an example of these experiments. Here the force value of 

compression or extension is not the same even if they have the same velocity because of the 

nonlinearity of the damper. Therefore, the output weights are not set initially at the same 

intervals as in Fig. 13b. 



 
Fig.14: Experimental results: displacement, velocity and force vs. time at a sinusoidal 

excitation (frequency 2.5Hz and amplitude 5mm) 

 

Table 3 Rules table for neural-fuzzy inference of the STF MR model 

 

 
 

By using the above fuzzy sets of input, output variable, experimental data, damper behaviors, 

and experiences, the fuzzy rules for the NFI part of the MR model are described in Table 3. 

Five membership functions for the each input are used to decide the total twenty five rules by 

using an IF-THEN structure. Here, one fuzzy rule is composed as follows: 

 

Rule i: IF displacement (in2) is Ai and velocity (in3) is Bi THEN MR force (u) is Ci (i=1,2, .., 

25) where Ai, Bi, and Ci are the i
th

 fuzzy sets of the input and output variables used in the 

fuzzy rules. Ai, Bi, and Ci are also the linguistic variable values in2, in3, and u, respectively. 

Furthermore, the NFI system is online optimized by using the neural network as mention 

above. The idea of the proposed method is to use a back propagation algorithm to tune the 

input membership functions shape and the weight of the NFI output during the system 

operation process to minimize the modelling error. The decisive factors in the inputs MFs aj, 

bj, and the weights of the outputs wj are automatically updated by using the neuron network. 

The following set of equations shows the back propagation algorithm: 

 



 
ܽ௜ሺ௜ାଵሻ ൌ ௝ܽ௜ െ ௔ߟ ߲ܧ߲ ௝ܽ௜

௝ܾሺ௜ାଵሻୀ௕ೕ೔ െ ௕ߟ ߲ܧ߲ ௝ܾ௜ݓ௝ሺ௜ାଵሻୀ௪ೕ೔ െ ௪ߟ ௝௜ݓ߲ܧ߲
                                                   ሺ17ሻ 

 

Where, ߟ௔,  ߟ௕ and ߟ௪ are the learning rate which determine the speed of learning; E is the 

error function defined by (14). 

 

The factor 
డாడ௪ೕ೔ in equation (17) can be calculated as  

 

 
Where 

 

 

The next factors 
డாడ௔ೕ೔ in (17) can be computed by: 

 

 

Where: and 
ఋாఋ௙ಾೃ_೐ೞ೟ are 

డ௙ಾೃ_೐ೞ೟డ௨  calculated by using (19) and (20), respectively. 

 

 
 

 

 



The final factor 
డாడ௕ೕ೔ in (17) can be found by: 

௜ܾ߲ܧ߲  ൌ ݀ܧ߲ ெ݂ோ_௘௦௧ ݀ ெ݂ோ_௘௦௧߲ݑ ௜ߤ߲ݑ߲ ௜ܾߜ௜ߤ߲                                  ሺ25ሻ 

 

Where:  డாௗ௙ಾೃ_೐ೞ೟; ௗ௙ಾೃ_೐ೞ೟డ௨  and 
డ௨డఓ೔ is calculated by using (19), (20), and (23), respectively. 

௜ܾߜ௜ߤ߲  ൌ ݔ|2 െ ܽ௜|ܾ௜ଶ                                              ሺ26ሻ 

With the self learning of neural network technique and the decreasing of the modeling error, 

the proposed NFI model works more effectively with high accuracy when compared to the 

real damping response. 

 

3.3.2 Scheduling gain fuzzy inference (SGFI) 

This section provides a description of scheduling gain fuzzy inference which works as an 

intelligent switch to tune the damping force levels (k) with respect to the current levels 

supplied for the MR coil. The SGFI system is then designed with a single input (in1) and a 

single output (k). 

The range of the input is from 0 to 1, which is obtained from the supplied current through a 

scale factor chosen from the current range for the MR fluid damper coil. Five triangle 

membership functions, “Z”(Zero), “VS”(Very Small), “S”(Small), “M”(Medium), and 

“B”(Big), are used for this input variable. The centroids of the MFs are set at the same initial 

intervals and the same shape sizes as in Fig. 15a. These MFs can then be expressed in the 

same form as (15). 

By using a fuzzy system with the same structure as the NFI system in section 3.3.1, with an 

input value (in1), the output gain (k) can be computed as 

 ݇ ൌ ∑ ∑௤ொ௤ୀଵݓ௤ߤ ௤ொ௤ୀଵߤ                                  ሺ27ሻ 

 

Where μq and wq are the height and weight of the SGFI output respectively, which obtained 

from the rule q
th

.Table 4 Rules table for scheduling gain inference of the STF MR model 

 

 
(a) M for SGFI input: in1(t) 

 



 
(b) Membership functions for SGFI output: k(t) 

 

Fig.15: Membership functions of the SGFI inputs and output 

 

 
Fig.16: Damping force response in different current levels at a sinusoidal excitation 

(frequency 2.5Hz and amplitude 5mm) 

 

For the output k of the SGFI system, five MFs are used. Here, “VS”, “S”, “M”, “B”, and 

“VB” are “Very Small”, “Small”, “Medium”, “Big”, and “Very Big”, respectively. The 

ranges of the output are set from 0 to 1. The output force level is then obtained by 

multiplying the gain k and a scale factor chosen from the specification of the MR fluid 

damper. The output weights are decided based on the experimental results and the 

characteristics of the MR fluid damper. Fig. 16 shows examples of experimental results with 

different current levels supplied to the damper while the generated displacements were the 

same. Therefore, the output weights are set as in Fig. 15b. By using the above fuzzy sets of 

input, and output variables, the fuzzy rules for the SGFI part in the MR model are described 

in Table 4 by using an IF-THEN structure. Finally, the output of the proposed STF MR 

model (fMR_est) is the multiplication of the NFI output (u) and the SGFI output gain (k) as in 

equation (13).  

 

4. Modeling results and comparisons 

In this section, simulations are carried out to evaluate the ability of the proposed STF model 

when comparing with the measured dynamic responses. The experimental data including the 

piston displacement and current supplied for the damper coil will be used as the inputs of the 



suggested MR model (section 3.3). Consequently, the model output, damping force, is 

directly obtained through the fuzzy mapping system. At that time, the parameters of the STF 

model are updated after each step of simulation time through the online training process by 

using the neural technique. Here, the deviation between the predicted force and measured 

force is fed back to the learning mechanism (see Fig. 12) inside the STF model as training 

target. The STF parameters are continuously adjusted in the direction to minimize the 

modeling error in equation (14) and then, the proposed STF model can accurately capture the 

force responses of the MR fluid damper in the varying of working conditions. Firstly, the 

dynamic responses were measured by doing experiments on the test rig with a various 

sinusoidal displacement excitations whose frequency is in the range from 1Hz to 2.5Hz, and 

5mm amplitude while the applied current for the damper coil is changed from 0A to 1.5A. 

Figure 17 displays the modeling results of the proposed STF model in a comparison with the 

real damping behavior for a 2.5Hz sinusoidal displacement. The results show that with the 

STF modeling method, the nonlinear characteristic of the MR fluid damper can be directly 

estimated with high accuracy for both the force/time, force/displacement, and force/velocity 

relation in despite of the varying of applied current for the damper. The STF model shows a 

good predicting result especially on low current level. When the value of velocity is high, the 

proposed model describes well the MR fluid damper hysteresis. But in the zero velocity 

regions, there are some error that is because of the system compliance and the existing noise 

in experimental environment. To obtain the high modelling precision as shown in Fig. 17, the 

STF parameters were online optimized by the leaning mechanism with respect to the 

modeling error cost function. Fig. 18 shows the membership functions of the STF system 

after training to obtain the better estimated force of the MR fluid damper for a 2.5Hz 

sinusoidal displacement excitation and 1.5A of the applied current. As the result, the 

proposed STF model can predict the damping force with higher accuracy.  

 

 
Fig.17: Comparison between the estimated force and actual damping force for an applied 

current range (0, 1.5) A at a sinusoidal excitation (frequency 2.5Hz and amplitude 5mm) 

 

 



 
(a) MFs for NFI input in2(t) after training 

 

 
(b) MFs for NFI input in3(t) after training 

 
(c) MFs for NFI output u(t)after training 

 

Fig.18: MFs of the NFI inputs and output after training 



 
 

Fig.19: Comparison between the estimated force and actual damping force for an applied 

current 0A at a chirp excitation (frequency range (1, 2.5) Hz and amplitude 5mm) 

 

Secondly, displacement excitations with a continuous variation of frequency were used to 

fully check the ability of the designed modeling method in case of varying excitation 

environments. Since, experimental data were measured from the damping system with the 

chirp displacement excitations whose frequency was varied from 1Hz to 2.5Hz. 

 

 
Fig.20: Comparison between the estimated force and actual damping force for an applied 

current 0.5A at a chirp excitation (frequency range (1, 2.5) Hz and amplitude 5mm) 

 



 
Fig.21: Comparison between the estimated force and actual damping force for an applied 

current 1.0A at a chirp excitation (frequency range (1, 2.5) Hz and amplitude 5mm) 

 

 
Fig.22: Comparison between the estimated force and actual damping force for an applied 

current 1.5A at a chirp excitation (frequency range (1, 2.5) Hz and amplitude 5mm) 

 

Figures 19, 20, 21, and 22 depict the comparisons of the real damping responses and the 

estimated forces in case of 0A, 0.5A, 1A and 1.5A of the applied current for the MR fluid 

damper coil. From these results, it is clearly that with the online self tuning ability, the 

proposed model has enough strong to describe well the nonlinear behavior of the damper 

under various excitation environments, especially in case of low supplied current level. 

 

 



5. Conclusion 

In this paper, a simple direct modeling method for a MR fluid damper using the STF 

mechanism is proposed. Furthermore, a test rig using the MR fluid damper was fabricated to 

verify the effectiveness of the suggested model. Based on the experimental results and 

modeling results, it is clear that the STF model can predict the force-displacement behavior 

of the MR damper well with high precision. In addition, the proposed STF model with the 

online self tuning ability based on the neural technique does not require computational time 

to generate the characteristic parameters of the model as the common used modelling 

methods such as Bouc-Wen model. Consequently, the STF model can automatically adjust its 

parameters to adapt to a damping system containing large nonlinearities and a working 

environment under perturbation. Based on the proposed model, a controller can be easier 

designed to control the suspension system with high performance. 
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