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ABSTRACT: Although traditional artificial neural networks have been an attractive topic in modeling membrane
filtration, lower efficiency by trial-and-error constructing and random initializing methods often accompanies neural
networks. To improve traditional neural networks, the present research used the wavelet network, a special feedforward
neural network with a single hidden layer supported by the wavelet theory. Prediction performance and efficiency of the
proposed network were examined with a published experimental dataset of cross-flow membrane filtration. The dataset
was divided into two parts: 62 samples for training data and 329 samples for testing data. Various combinations of
transmembrane pressure, filtration time, ionic strength and zeta potential were used as inputs of the wavelet network
so as to predict the permeate flux. Through the orthogonal least square alogorithm, an initial network with 12 hidden
neurons was obtained which offered a normalized square root of mean square of 0.103 for the training data. The initial
network led to a wavelet network model after training procedures with fast convergence within 30 epochs. Futher the
wavelet network model accurately depicted the positive effects of either transmembrane pressure or zeta potential on
permeate flux. The wavelet network also offered accurate predictions for the testing data, 96.4 % of which deviated the
measured data within the ± 10 % relative error range. Moreover, comparisons indicated the wavelet network model
produced better predictability than the back-forward backpropagation neural network and the multiple regression
models. Thus the wavelet network approach could be employed successfully in modeling dynamic permeate flux in
cross-flow membrane filtration.
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INTRODUCTION
Applications of membrane technology in water and

wastewater treatment have been growing steadily in
recent years (Brindle and Stephenson, 1996; Liao et
al., 2006; Visvanathan et al., 2000). Many full-scale
facilities are running with immersed microfiltration or
ultrafiltration membranes mainly because membranes
can offer higher efficiency for liquid-solid separation
(Visvanathan et al., 2000). However, the effectiveness
of membrane separation is greatly affected by fouling-
the decline in permeate flux due to accumulation of
colloidal matter, organic molecules, sparingly soluble
inorganic compounds and microorganisms on
membrane surfaces or in membrane pores (Defrance et
al., 2000; Song, 1998; Zhang and Song, 2000). Fouling
is an unavoidable deleterious phenomenon in
membrane filtration and makes membrane technology

less competitive in many applications. Therefore,
understanding membrane fouling and developing
controlling methods are crucial for the future of
membrane technologies.

To optimize the operation of membrane filtration,
many modeling methods have been used to predict the
permeate flux decline in recent years. Among these
methods, theoretical models have been established
using numerous factors, which include feedwater
characteristics (such as types of foulants, pH and ionic
compositions), membrane properties (such as surface
roughness, charge properties and hydrophobicity) and
operational conditions (such as transmembrane
pressure, cross-flow velocity and temperature) (Li and
Elimelech, 2004; Song, 1998). Theoretical models can
produce highly detailed and complex descriptions of
membrane fouling; however, they are computationally
intensive and demand a high-level modeling expertise
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(Bowen et al., 1998). Moreover, the mechanisms of
membrane fouling and the effect of key factors on
fouling are still not clear or quite controversial (Tarleton
and Wakeman, 1993; Zhang and Song, 2000), which
makes theoretical models designed with some
necessary assumptions. Such assumptions result in
models which are only valid for certain types of
feedwater under certain conditions. In order to control
membrane filtration effectively and easily, alternative
methods are desired. Because avaiable information
often consists of measured data of several factors and
permeate flux, the alternatives are expected to depend
not on deep insight into complicated mechanisms, but
on full utilization of available information. Furthermore,
such an alternative must have the ability to determine
the connections between input and output only by
analyzing process data. Fortunately, data driven
models, such as artificial neural networks (ANNs),
could act as these alternatives. ANNs are mathematical
algorithms that simulate the capacityof the biological
brain to solve complex problems, and have the ability
to approximate almost any function in a stable and
efficient way (Chattopadhyay and Bandyopadhyay,
2007). ANNs have already been extensively applied to
modeling membrane filtration (Chen and Kim, 2006;
Cheng et al., 2008).

In all types of ANNs, feedforward backpropagation
neural networks (BPNNs) and radial basis function
networks (RBFNs) have been proven to be the two
most attractive methods for modeling membrane
filtration until now (Al-Abri and Hilal, 2008; Aydiner et
al., 2005; Chen and Kim, 2006; Sahoo and Ray, 2006).
Dornier et al. (1995) first used BPNNs to predict the
dynamic process of membrane fouling during cross-
flow microfiltration of crane sugar. They studied the
effect of the BPNN hidden structure and different
distributions of training data on the predictability, and
they obtained satisfactory accuracy. In following
studies, BPNNs have been shown to be sometimes
better suited and more useful for high nonlinear
processes of membrane filtration (Chellam, 2005; Cinar
et al., 2006; Curcio et al., 2006; Ni Mhurchu and Foley,
2006). Unfortunately, there are lack of reliable rules for
the choice of the hidden structure of BPNNs and the
common way is by trial and error. Moreover, initial
parameters of BPNNs are often assigned random values
which cause a slow convergence during training
process. On the other hand, using the experimental
data of Fabish et al. (1998), Chen and Kim (2006) found

that RBFNs achieved better predictions than BPNNs.
However, Sahoo and Ray (2006) pointed out that the
results of Chen and Kim (2006) were obtained through
the ANNs with unoptimized structures. With the same
experimental data of Fabish et al. (1998), they showed
that there was no apparent difference in predictability
between BPNNs and RBFNs when the structures of
the both type of networks were optimized by genetic
algorithms (GAs). Although the GA optimized networks
may improve the predictability of ANNs, Cheng et al.
(2008) stated that the GAs are inclined to encounter
the pitfall of over fitting when the number of neurons
is too large because of their intrinsic randomness.
Cheng et al. (2008) presented a modified RBFN
(MRBFN) which showed good convergence resulting
from a well initialized structure. They constructed the
MRBFN by choosing neurons from a set candidate
neurons which were prior determined according uniform
partitions of the domain of interest at different levels.
However, their method could encounter the problem of
dimension curse when the input dimension increases,
because the increasing dimension leads to an
exponential increase of the uniform partitions of the
domain. In particular, the dimension curse becomes
more severe when higher levels are carried out in the
case of higher input dimension; and above all, this
dimension curse makes the choosing neurons of the
MRBFN with higher cost of computation. Despite the
vast efforts to improve the efficiency of ANNs in
membrane processes as above, there are still some
problems, for instance, lack of specific methods or the
danger of encountering lower efficiency to determine
the initial network structures and the initial parameters.
Therefore, a more efficient type of ANNs will be
preferred to model the complex process of membrane
filtration.

Wavelet networks have shown to be a promising
alternative to traditional ANNs (Zhang and Benveniste,
1992) and many studies describe wavelet networks as
a powerful tool for function approximation (Zhang and
Benveniste, 1992; Zhang et al., 2001), system
identification (Billings and Wei, 2005; Sjoberg et al.,
1994), automatic control (Sanner and Slotine, 1998;
Oussar et al., 1998), etc. Such network is a special 3-
layer feedforward network as shown in Fig. 1 which is
calculated as follow:
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Fig. 1: The structure of wavelet networks

Where, ŷ  is the output; x is the input; ω is the
connecting weight; ψ is the hidden-layer neuron; s is
the number of hidden neurons. As a distinguishing
characteristic, ψ is a wavelet function and is often
called a wavelon. The wavelet is a function that satisfies
an admissibility condition and it has a property of
compact support, namely, nonzero values only in a
finite domain (Daubechies, 1992). A single wavelet ψ(x)
called a mother wavelet can generate a family of
wavelets by dilating and translating itself as following:

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

∈∈−= −− dnd n
2
1

n,m Zm,Zn:mxx βαψαψ (2)

Where α and β are the dilation and translation step
sizes (typically α=2, β=1), respectively, m is the
translation index and n is the dilation level. Each
wavelet in the family (2) has finite support. Support
refers to the region where the function is nonzero. The
wavelet function of the family (2) can exhibit a support
that is compact or rapidly vanishing (Daubechies,
1992). The wavelet family can be used as tools for
function analysis and synthesis. The concept of a
wavelet family is very similar to a set of sine functions
at different frequencies used in Fourier analysis. The
family (2) is used as a set of candidate wavelets that
constitute the original form of Eq. 1, i.e., the initial
wavelons are chosen from the family (2). For a set of
training data, only part of wavelets in the family (2) are
useful for constituting the wavelet network model

because most wavelets may cover no data due to their
compact supportness (Zhang, 1997). In addition, the
set of training data in practical case is often sparse,
and this sparseness leads to a further reduction of the
number of candidate wavelets in family (2). Clearly, both
the wavelet compact supportness and the sparseness
of training data make the selection of initial wavelons
in Eq. 1 more convenient. Once a given number of initial
wavelons have been chosen, the initial value of the
connecting weight (ω) can be determined by linear
regression (Zhang, 1997). Compared with traditional
ANNs, wavelet networks obviously offer a high
efficient approach for constructing the initial form of
networks. Many studies have exhibited the high
efficiency of wavelet networks according to different
constructing methods, such as the orthogonal least
square (OLS) algorithm and backward elimination
algorithm (Oussar and Dreyfus, 2000; Zhang, 1997). In
particular, Zhang (1997) has reported that wavelet
networks converged fast during training processes
because of their better initialization and wavelet
networks already offered a comparable accuracy even
in their initial form. Specific constructing methods,
better initialization of internal parameters and fast
convergence, all of them make wavelet networks more
suitable than traditional ANNs for modeling complex
nonlinear processes.

Although the great benefit of wavelet networks has
been successfully applied to many fields, any wavelet
network application to membrane systems has not been
reported yet. In this paper, the wavelet network
approach was used to modeling a process of cross-
flow membrane filtration based on the published dataset
of Bowen et al. (1998). The purpose of the current
investigation was to demonstrate the high efficieny of
a wavelet network; to study its predictability of
permeate flux under various operating conditions and
to compare its capability with those of BPNN and the
conventional multiple regression (MR) method. The
research was undertaken in Environmental System
Laboratory located at College of Environmental Science
and Engineering, Hunan University, P.R. China in 2009.

MATERIALS AND METHODS
Experimental data

This study used the experimental data which has
been published in Bowen et al. (1998). In the
experiments, spherical silica colloids with a mean
particle diameter of 65 nm were used to perform cross-

Input

Hidden

Output
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flow membrane ultrafiltration at five different
combinations of pH and ionic strength (I). For each
combination of pH and I, the permeate flux was
measured under five different transmembrane pressures
(∆P) as shown in Fig. 4. In this paper, I, ζ, ∆P and time
(t) acted as the input of wavelet networks to predict
the dynamic permeate flux. Out of 391 data samples, 62
samples were chosen as training data such that more
samples were located in regions of greatest curvature,
as shown in Fig. 4. The other 329 samples were used as
testing data.

Prior to be inputed the wavelet network, the values
of all experimental data were normalized between -1 and
1 as below:

half

cent
norm X

XXX −
= (3)

Where, 2
minmax XXX cent

+
=  is the center of variable

interval, 
2

minmax XXX half
−

=  is the half of interval length,

Xmax is the maximum value of a variable and Xmin is the
minimum value of a variable. On the other hand, a
corresponding denormalization was done to achieve a
reasonable permeate flux after an output of the network
was attained. The normalization method was derived
from Z-score normalization (Priddy and Keller, 2005).
Such normalization can minimize bias within the wavelet
network for one feature over another. It can also speed
up training time by starting the training process for
each feature within the same scale.

Constructing and training the wavelet network
According to Eq. 1, a so-called Mexican hat wavelet

(Zhang, 1997) was chosen as a mother wavelet with the
following form:

( ) ( ) 22
2x

exdx
−

−=ψ (4)

Where, d is the dimension of x, ||x||2=xxT. Then a family
of candidate wavelets was determined by the mother
wavelet and the training data. Then, further
development was done by selecting different number
of wavelons from the candidate family according to the
OLS algorithm and then, the number of wavelon was
determined by the generalized cross-validation (GCV)
criterion. The GCV, a modified form of cross-validation,

is a popular method for choosing the smoothing
parameter. An important early reference is Craven and
Wahba (1979). The GCV criterion consists in estimating
the expected performance of the model evaluated with
fresh data based on the required data (Zhang, 1997).
Thus an initial form of the wavelet network model was
achieved. In the end, the initial wavelet network was
trained to get the final wavelet network model. The
detailed steps are listed as follows:
1) Definition of wavelet support: For ψm,n(x) in the family
(2), denote by Sm,n its support, i.e.,

( ) ( ){ }xmax662.0x:RxS n,mxn,m
d

n,m ψψ >∈= (5)

2) Generating the family of candidate wavelets: With
the definition of Sm,n, each training point xk among N
training points is examined within five dilation levels
(n=0, 1, 2, 3, 4) to find the wavelets whose supports
contain xk. Then the index set of the found wavelet, Ik,
is defined by:

( ){ }nmkk SxnmI ,:, ∈= (6)

The union of Ik for all xk in the family (2) gives the
indices of candidate wavelets whose supports contain
at least one training data point. This results in the family
of candidate wavelets

( ){ }Nnm IIInmW ∪∪∪∈= L21, ,:ψ (7)

Let L be the number of wavelets in W. For
convenience of the following presentation, the double
index (m, n) is replaced by a single index j=1, 2, …, L,
i.e.,

{ }LW ψψψ ,,, 21 L= (8)

3) Determination of the initial wavelet network: The
initial wavelet network is achieved by a hybrid
algorithm (Zhang, 1992; Zhang, 1997) where, the OLS
algorithm determines the relative optimal combination
of certain number of candidate wavelets and then the
GCV criterion points out the most reasonable
combination of certain number of candidate wavelets.
The hybrid algorithm can be done as follows:
Algorithm: I={1, 2, …, L};

pj = ψj for all j   I;∈



A. L. Wei et al.

399

Int. J. Environ. Sci. Tech., 6 (3), 395-406, Summer 2009

l0 = 0, ql0 = 0;
Begin-loop

For i = 1: L ( )
11 −−

−=
ii ll

T
jjj qqpp ψ  for all j    I;

{ }0: =−= jpjII ;
If I is empty, set s = i-1 and break the loop;
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As a result, the initial wavelet can be achieved with
the form of Eq. 1.

4) Training the wavelet network: A common back-
propagation training method is applied to fit the training
data, as well as possible in this paper. The details about
back-propagation method can be found in Haykin
(1999). The performance of the training process is
evaluated with normalized square root of mean square
(NSRMSE)
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In addition, the NSRMSE was used as the stopping
criteria for training ANN, and it was also a performance
index of model prediction in this paper.

RESULTS AND DISCUSSION
The wavelet network model

By examining each training input xk consisting of
I, æ, ÄP and t, the family of 152 candidate wavelets
was achieved and each of the wavelets had a support
covering at least one training input. By comparison,
the number of candidate wavelets would be:
(24)0+ (24)1+ (24)2+ (24)3+ (24)4 = 69905
If the candidate wavelets were attained by the
technique of uniform partition of input space that
was described in Cheng et al. (2008). Note that the
exponent 4 of 24 in the parenthesis is the dimension
of input xk. Clearly, the number of 69905 wavelets
would be a dimension curse. Therefore, even if
generating the 69905 wavelets was not tedious, the
big number would certainly cause higher cost of
computation in the following selection of network
neurons. However, with the number of 152 candidate
wavelets in this paper, the proposed method was not
very sensitive to the input dimension of training data.
In fact, such insensitivity resulted from the compact
support of wavelets and the sparseness of training
data, both of which were useful to avoid the
superfluous wavelets to be included in the candidate
family.

Fig. 2 shows the varying GCV with respect to the
number of selected wavelons according to the OLS
algorithm. The GCV criterion was applied to the
number of the selected wavelets, which was a model
order determination problem. This criterion of
minimum GCV avoided the danger of overfitting the
training data. The minimum GCV was attained at the
number 12, i.e., the combination of the chosen 12
wavelets were used to constitute the initial wavelet
network with a relative optimal approximation.
Because it would be very tedious to tell the optimal
combination of a certain number of wavelets from all
the subsets of the same size of the candidate family,
the chosen 12 wavelets was determined by stepwise
selection method. This method fisrt selected one
wavelet which was optimal for fitting the traning data,
then the second one such that it was optimal while
cooperating with the first selected one, then the third
one which was similarly selected and so on. In this
way, the stepwise selection by the OLS algorithm

∈

;~ yqT
ll ii

=ω
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Fig. 2: GCV with respect to the number of selected candidate wavelet

Fig. 3: NSRMSE with repect to epochs for training the wavelet network

successfully made a trade-off between the optimality
and the efficiency. The obtained initial network fitted
the training data with an NSRMSE of 0.103. Such
smaller NSRMSE agrees with Zhang (1992) who
repor ted that the OLS str a tegy could offer
satisfactory accuracy. Consequently, the OLS

strategy and the GCV criterion could lead to an
efficient constructing procedure and a better
initialization for the wavelet network.

With the initial wavelet network, the common back-
propagation was used as the traning method. During
the traning procedure, NSRMSE drastically dropped
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Fig. 4: Effects of physic-chemical and hydrodynamic parameters on permeate flux, measured (open symbols) and predicted  (solid
symbols) values

                        (a) pH=4, I=0.072M, ζ=-6.3 mV                                                                                                (b) pH=4, I=0.030M, ζ=-17.9 mV

 (c) pH=4, I=0.0077M, ζ=-24.0 mV        (d) pH=7, I=0.031M, ζ=-46.7 mV

(e) pH=9, I=0.030M, ζ=-80.5 mV
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R2 NSRMSE 
Model type 

Training data Testing data Training data Testing data 
Initial wavelet network 0.990 0.685 0.103 0.610 
The wavelet network model 0.997 0.965 0.016 0.196 
The BPNN model 0.997 0.914 0.068 0.294 
The linear MR model 0.752 0.800 0.494 0.480 
The nonlinear MR model 0.809 0.848 0.433 0.492 
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during the first 30 epochs (shown in Fig. 3). Clearly,
the training process converged so fast even in an
ordinary back-propagation training method. The fast
convergence verified again the better initialization
of the wavelet network approach.

Effect of I, ζ and ∆P on permeate flux
Fig.  4 shows the measuremen ts and the

predictions of the wavelet network model for
permeate flux during cross-flow ultrafiltration of silica
coloids a t  five pressures for  each of five
combinations of pH and I. The wavelet network
model excellently offered predictions (solid symbols)
for both training (cross symbols) and testing (hollow
symbols) data. Moreover, the nonlinearity of the flux-
time profiles was well reproduced by the wavelet
network. As shown in Fig. 4, the predictions, as well
as the measurements accurately described permeate
flux behavior greatly changing with the variations
of ∆P, pH, and I. For each combination of pH and I,
the permeate flux was proportional to ∆P and the
ultimate flux at higher transmembrane pressure was
higher. These phenomena are due to the greater
driving force for permeate flux by higher ∆P (Faibish
et al., 1998). Meanwhile, higher ∆P led to the steeper
flux decline at the earlier stage of the filtration. This
trend is attributed to the higher convective mass of
colloids toward the membrane surface and a more
densely packed cake layer at higher pressure (Faibish
et al., 1998). On the other hand, for each combination
of pH and I, the lowest ∆P was observed with the
least flux decline for both experimental data and
predictions. This observation is an index of operation
approaching the critical flux below which colloids
do not deposit on the membrane surface (Faibish et
al., 1998).

The predictions also accurately described the
positive effect of ζ on permeate flux as shown in the
triple of Fig. 4 a to c and, the triple of Fig. 4 b, d and
e. In the former triple, an increasing flux followed a

decreasing I with the same pH and, in the latter, the
enhancement in permeate flux was preceded by an
increasing pH with the same I. In fact, both of the
above operations led to an increasing ζ (not
considering the sign) of colloids (Bowen et al., 1996).
The enhancements in permeate flux by ζ in Fig. 4 a to
c and Fig. 4 b, d and e, are in qualitative agreement
with the published reports by Huisman et al. (1997)
and McDonogh et al .  (1989). These authors
explained the effect of ζ qualitatively by reasoning
that high zeta potentials increase interparticle
repulsion, thus causing less deposition (thinner cake
layer s)  and more permeable cake layer s.
Consequently, the thinner and more permeable cake
layers lead to an enhancement of permeate flux. Such
an enhancement became more significant in this
paper because of the colloidal particles with a smaller
mean diameter 65 nm. Faibish et al. (1998) have
reported that for particles with diameters smaller than
about 100 nm, the effect of interaction repulsion on
permeate flux becomes dominant. Among all the
predictions and experiments, the combination of
pH=9, I=0.030M and ζ=-80.5mV in Fig. 4 e led to the
highest permeate flux for each ∆P in earlier stage.
Besides, the effect of the highest ζ, lower I also
enhanced the permeate flux for the case in Fig. 4 e,
which is in accordance with the report by Elzo et al.
(1998) who stated that lower I corresponds to larger
distances between particles and such distance
results in more permeable cake layers.  The
predictions in Fig. 4 e agree well with the theoretical
explanation.

Performance comparison
This section describes the superiority of the

wavelet network over BPNN under the same
modeling conditions. The BPNN model used the tanh
function as hidden neurons. Moreover, a comparison
with the conventional MR method was used to show
the better initialization of the wavelet network. Two

Table 1: Comparisons of R2 and NSRMSE for different models
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Fig. 5: Comparisons of prediction performance efficiency: (a) the initial wavelet network; (b) the wavelet network model; (c) the
BPNN; (d) the MR model and (e) the nonlinear MR model
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MR models were built with the identical training data.
One is a linear regression equation with the following
form:

J = 2.488×10-2 – 2.401×10-1{I} – 2.230×10-4{ζ} +
1.376×10-4{∆P} – 8.353×10-4{t}.

Another is a nonlinear multiple equation with the
following form:

J = 2.956×10-2 – 2.312×10-1{I} – 2.235×10-4{ζ} +
1.467×10-4{∆P} – 2.747×10-4{ t} + 6.288×10-5{t2}.

Coefficients of both equations were proven
significant by the t-statistic. Several other multiple
polynomial regression models were also tested, but
their coefficients showed worse significance by the
t-test. Table 1 shows the coefficients of multiple
determination R2 and the NSRMSE for permeate flux
obtained with the initial wavelet network, the wavelet
network model, the BPNN model, the linear MR model
and the nonlinear MR model. The wavelet network
model not only provided better results in fitting, but
also the best ones in prediction, with a R2 of 0.997
for the training data and 0.965 for the testing data.
The BPNN model provided results much better than
the MR models. The nonlinear MR model shows
slightly improved in the basis of the linear MR model,
but its prediction ability is not comparable to the
BPNN and wavelet networks. This supposes that
the existing high non-linearity of membrane filtration
is a challenge for the MR method. In particular, it
can be stated that the NSRMSE obtained by the
wavelet network model is much smaller than that
obtained with the other  three methods. The
superiority of the wavelet network model in fitting
and prediction resulted from its better initialization,
because the initial wavelet network has already
provided better results with a R2 of 0.990 and an
NSRMSE of 0.103 for the training data. Moreover,
the number of wavelons of the initial wavelet
network, which was evaluated by GCV criterion, led
to good generalization performance of the wavelet
network model with an NSRMSE of 0.196 for the
testing data.

Fig. 5 a-e shows the predicted versus measured
flux for the initial wavelet network, the wavelet
network model, the BPNN model and the MR
models. Most of data shown in Fig. 5 b fall within

the lines with ±10 % relative error. Only 12 out of
329 predicted testing data lie outside the region
enclosed by the dotted lines, indicating that 96.4
% of the data are within the ± 10 % relative error
range. In Fig. 5 c, 81 out of 329 predicted testing
data is not confined within the two dotted lines. In
Fig. 5 d, only 40 % of the data lie within the ±10 %
relative error range, which is mainly because the
complex nonlinear membrane filtration process
could not be presented by a simple linear method.
Moreover, the simple linear description led to 9
negative results. Although the nonlinear MR model
was slightly better than the linear MR model, it
provided 13 negative predictions, which suggest
that the MR method could not rationally depict the
membrane filtration.

CONCLUSION
The present study shows that a wavelet network

approach could be used to predict permeate flux
decline of cross-flow ultrafiltration of colloidal
suspensions as a function of operating conditions.
The wavelet network approach provided the benefit
of efficient constructing procedures by fully
ultilizing the sparseness of training data and the
compact support property of wavelets. In particular,
in case of multiple input dimensions (4 dimensions
in this paper), this approach could avoid the curse
of dimensionality for the choice of hidden neurons.
Moreover, a better initialization with an NSRMSE of
0.103 by the OLS algorithm and GCV selection
criterion led to fast convergence within 30 epochs
during training procedure. The wavelet network
model excellently described the nonlinear variation
of permeate flux under different operating conditions.
The predictions described the positive effect of ∆P
on permeate flux and moreover, an increasing ζ was
followed by an enhancement in permeate flux. Such
an accurate prediction ability of wavelet networks
could certainly be helpful to optimize practical
operations of membrane filtration. Further, the wavelet
network model offered such satisfactory accuracy that
almost 96.4 % of predictions for the testing data
deviated measured data within the ± 10 % relative
error range. Meanwhile, the comparisons of the
performances of the initial wavelet network, the
wavelet network model, the BPNN model, the linear
MR model and the nonlinear MR model confirmed the
superiority of wavelet networks.
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As it is shown, efficient contruction, better
initialization, faster  convergence and higher
accuracy, all of these has proved that the wavelet
network is a promising alternative to traditional
ANNs in modeling complex membrane filtration
processes. As a modeling tool, wavelet networks
could be used both observation of membrane system
performance and evaluation of exper imental
conditions. In addition, this modeling technique
could be applied as a simulation tool to improve the
operating conditions of other water and wastewater
treatment systems which involve highly nonlinear
processes.
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