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1 Introduction

Interference sources, affecting wireless technologies, can generally be classified into two 

main categories: intelligent and non-intelligent. Intelligent interferences originate from 

other wireless systems and the non-intelligent interferences are caused by unintentional 

electromagnetic emissions [1]. The characterization and modeling of both types have 

been addressed in many publications.

Non-intelligent sources of interference are commonly characterized based on meas-

urement data. For example, authors in [2] used the results of an extensive measurement 

campaign to empirically model impulsive interferences, caused by electronic devices. In 

this work, the statistics of peak amplitudes, pulse durations, and interarrival times of 

interferences are derived by a set of measurements. A similar approach is presented in 

[3] to model the impulsive interference in digital video broadcasting-terrestrial (DVB-T).

For the intelligent sources, the models are generally developed using analytical 

methods. For example, the authors of [4] developed a method to evaluate the per-

formance of bluetooth under IEEE 802.11b interference. In this study, propagation 

conditions, in addition to PHY and MAC-layer parameters, are used to derive the 
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probability of packet collisions between two systems. Similar analyzing approaches 

are employed in [1, 5–9] to investigate other interference scenarios. In these stud-

ies, it is assumed that the spatial distributions of interfering sources are well defined, 

which is not realistic in many applications.

The aim of this paper is to create measurement-based models for co-channel intel-

ligent interference, further abbreviated by interference, in BLE systems. We first 

investigate the possibility of using AWGN signals instead of WLAN and GFSK sig-

nals as interference. It is shown that WLAN signals can be replaced by AWGN sig-

nals, but this doesn’t hold true for GFSK signals. Then, we exploit these results to 

model interferences by using measured IQ data. To reduce required memory, the 

model is extended to the case that reference data are measured in spectrum domain. 

As the measurements are conducted in realistic environments, this approach excludes 

potential errors exist in analytical models. It is worth noting that spectrum sensing 

is widely used in the literature to tackle interference effects in wireless technologies. 

For example, authors in [10] have proposed a method based on optimized FFT and 

filter banks for sensing the spectrum, and in [11] different efficient energy detection 

methods for spectrum sensing under non-flat spectral characteristics are proposed 

and investigated.

The prominent contributions of this paper can be summarized as follows:

• We have modeled the intelligent interferences on BLE systems via a measurement 

approach.

• The models are extended to frequency domain recordings, which reduce the 

required data. This provides the possibility of capturing the interference for a 

longer duration with the same amount of memory.

• To model and generate the interference signals, we use the statistics of the meas-

ured data. The modeled interference imitates the impact of the original interfer-

ence on a BLE receiver with high accuracy.

• We show that signals originated from WLAN sources can be modeled by an 

AWGN source, which reduces the complexity of the interference model.

The rest of this paper is organized as follows. In Sect. 2, a basic simulation setup is 

introduced to analyze BLE performance in presence of different interfering signals. 

In Sect. 3, the performance of a BLE receiver under modulated interfering signals is 

compared with its performance under the additive white Gaussian noise (AWGN) sig-

nal. Based on results from Sect. 3 and a set of measurement data, interference models 

and their performances are presented in Sect. 4. Section 5 discusses the procedures 

and possible applications of the models introduced in this work. Finally, Sect. 6 sum-

marizes the results of this paper.

2  Methods/experimental

The modeling approaches proposed in this paper are based on a set of measurement 

data. First, a measurement campaign was made in a university room. It is worth to 

note that during capture of interference, in addition to typical wireless local area 
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network (WLAN) devices, a few number of bluetooth devices were operating in either 

advertising or connection mode. The measurement settings are presented in Sect. 2.3. 

The recorded data are then employed to model the interference.

Figure 1 illustrates a simulation setup to analyze the performance of derived models. 

For the sake of simplicity, the simulations are conducted in the equivalent baseband. The 

transmission message (Tx) is modulated and then multiplied by a gain factor to pro-

vide the desired signal. Then, the setup compares two conditions. In the first one, the 

recorded interference signal acts as the interferer. In the second condition, the modeled 

signal is the interference source. Finally, for both signal paths the same demodulation 

algorithm is used to retrieve the transmitted message and present the system perfor-

mance in terms of bit error rate (BER) and/or packet error rate (PER). These parameters 

are calculated without considering adaptive frequency hopping (AFH) algorithm. This 

helps to provide a conservative estimate of coexistence between systems [12].

2.1  BLE signal source

In order to calculate the BER, a random bit sequence is used as transmit message. For 

PER calculations, the transmit message consists of BLE link layer packets. Throughout 

this paper, the PER is derived for short BLE packets with a length of 80 bits. For both 

message types, the BLE signal-source block employs Gaussian frequency shift keying 

(GFSK) modulation to derive the baseband signal [13]. Figure 2 shows the block diagram 

of the BLE modulation algorithm.

The diagram starts with a bits generator which produces a sequence of 0’s and 1’s with 

a certain symbol rate, i.e., 1 Msym/s for basic rate BLE [13]. Then, these bits are mapped 

to a sequence of −1’s and +1’s. Afterwards, an up-sampling block is used to increase 

number of samples for each symbol (an over sampling factor of 10 is used in Fig. 2). In 

the next stage, a Gaussian filter is used to smooth the transition between altering bits. 

Fig. 1 Simulation setup to analyze BLE performance

Fig. 2 BLE modulation scheme block diagram
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The output of the Gaussian filter is the instantaneous frequency deviation fd(t) . In the 

next step, the derived frequency deviation is passed through an integration block to 

obtain the instantaneous phase deviation ψ(t). Finally, the equivalent baseband signal 

is calculated using an exponential function. The modulation’s output spectrum is illus-

trated in Fig. 3. As shown in this figure, the 99% occupied bandwidth is 1.07 MHz and 

further denoted by OBW.

2.2  BLE demodulator

The demodulation is the inverse process of the modulation scheme. In the absence of 

bit errors, the received message equals the original transmit message. In the literature, 

several demodulation algorithms are used for BLE systems [14]. The block diagram of a 

simple algorithm is illustrated in Fig. 4.

First a 2  MHz bandwidth low-pass filter is used to emulate effects of the channel 

selection filter. Then, the instantaneous frequency deviation is calculated by taking the 

derivative of the signal phase. In the next processing step, the frequency deviation is 

integrated over each bit period. Finally, a decision algorithm is used to find the received 

bit sequence. In this case, the decision algorithm utilizes a simple binary decision thresh-

old. If the integration of frequency deviation over a bit is greater than zero, the decision 

algorithm maps that bit to ‘1,’ otherwise it is mapped to ‘0.’

In the simulation setup, the gain factor is used to realize different signal-to-noise 

ratios (SNRs) or, equivalently, the bit energy over noise power spectral density ( Eb/N0 ). 

By using the Eb/N0 parameter, it is implicitly assumed that the interfering signals band-

width is not smaller than the desired signal bandwidth, which is a reasonable assumption 

Fig. 3 Frequency spectrum of a BLE signal

Fig. 4 BLE demodulation scheme block diagram
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for BLE systems. It is worth to note that in the basic rate BLE, the SNR and Eb/N0 are 

approximately equal:

where S and N are the signal and noise power, Eb is the bit energy, N0 is the noise power 

spectral density, and BR denotes the bit rate.

2.3  Recorded interference

Figure 5 shows the functional block diagram of the measurement setup [15]. An omni-

directional antenna is used to capture the signals. As the coaxial cable introduces a high-

signal attenuation due to the long cable length, a low noise amplifier followed by a power 

amplifier was used earlier in the signal path to amplify the signal before sending it to the 

vector signal analyzer (VSA1). The chain is designed so that for the typical interference 

in the air the PA works in its linear region. However, after recording, this issue is again 

verified. This design guarantees a low noise figure (NF) and a high gain receiver chain 

to capture low-power interference events. As a typical BLE receiver has a much higher 

noise figure than that of the proposed receiver chain, it is reasonable to assume that the 

setup accurately records all interference events which might influence an imaginary BLE 

receiver placed at our measurement antenna. Finally, the VSA samples the signal and 

saves the data in time domain (IQ data). These data are used as reference signal in nar-

row-band time domain analysis in one hand and, in other hand, is employed to derive 

the spectrum data for wide-band frequency-based models. To capture the whole ISM 

band, the data are recorded at the center frequency of 2440 MHz with a span of 80 MHz. 

The IQ data are recorded at sampling rate of 102 MSa/s because for the used VSA the 

sampling rate is about 1.28 times of the user span. Due to the limitations in hardware, 

the maximum time duration of each recording is 2 s.

(1)SNR =

S

N
=

Eb × BR

N0 × OBW
≈

Eb

N0

,

Fig. 5 Measurement setup block diagram

1 KEYSIGHT M9391A PXIe Vector Signal Analyzer



Page 6 of 17Kavousi Ghafi et al. J Wireless Com Network        (2021) 2021:143 

3  AWGN signals for modeling GFSK and WLAN interferences

The goal of this section is to determine if an AWGN source is capable to emulate vari-

ous interference signals. In particular, two common interfering signals are studied: 

the OFDM-modulated signals from IEEE 802.11g-based networks and GFSK-modu-

lated signals from BLE devices. In this paper, the modulated interfering signals are 

designated by the term “interference” and the term “noise” is used to denote AWGN 

signals.

3.1  GFSK signal as interferer

In the following, the effect of interference among BLE devices is analyzed. Conse-

quently, it is assumed that the interference signal is a GFSK-modulated signal as well 

as the desired signal. Figure 6(left) shows the BLE receiver performance against noise 

and GFSK-modulated signal in terms of BERs. The results show that for an AWGN 

interferer, an Eb/N0 greater than 10 dB is required to achieve BER less than 0.1%. For 

the GFSK signal, this point is reached at about 4 dB. For lower BER values, the dis-

crepancy between the two curves is even larger. This shows that a BLE interfering 

signal affects the BLE receiver in a different way compared to noise.

As discussed in Sect.  2, it is possible to calculate the PERs by simulating BLE 

packets and exposing them to different levels of noise and/or interference. Another 

approach is to derive the PER analytically, using BER results. For a given packet of 

length l, the packet is considered to be lost if at least one bit error occurs throughout 

the whole packet.

Figure 6(right) illustrates the PER versus Eb/N0 for two aforementioned interference sce-

narios. The figure shows that simulated and analytical results are in a good agreement. 

This also means that the BER parameter fully describes system performance. Therefore, 

in the next sections, the BER is used to present BLE performance in different interfer-

ence scenarios.

(2)PER = 1 − (1 − BER)l
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Fig. 6 BLE receiver immunity against GFSK modulated and AWGN interferences. Left: BER, right: PER
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3.2  WLAN signal as interferer

In this section, the performance of BLE under the interference of IEEE 802.11g-based 

networks is evaluated. In order to do that, it is assumed that the interference signal is 

an OFDM signal with 20 MHz bandwidth. A comparison between the impact of noise 

and OFDM signals on a BLE receiver is presented in Fig. 7. Because of the large band-

width and noise-like amplitude distribution of OFDM, the BER curves are approxi-

mately equal.

3.3  Results interpretation

The simulation results from Sects. 3.1 and 3.2 show that OFDM and noise interfer-

ing signals affect BLE systems similarly. Apart from that, the GFSK interfering signals 

behave differently compared to noise. This makes it difficult to assume that an AWGN 

source emulates any type of interference in the BLE systems, unlike the claim in [16]. 

However, these results can be utilized to yield an efficient model for many realistic 

interference scenarios.

4  Interference modeling using the reference measurements

As already indicated in Sect. 2.3, the models proposed in this paper are derived from 

interference recordings. Two types of interference models are introduced. First are 

the models that their characteristic parameters are calculated from IQ data. As these 

models require a huge memory to capture reference signal, the approach is then 

extended to spectrum-based models.

4.1  A narrow‑band interference model using IQ data

For the moment, the effects of Bluetooth interfering signals, discussed in Sect. 3.3, are 

ignored. In other words, it is assumed that a noise source can emulate all interference 

events in the recorded signal. Given this assumption, a simple modeling approach is 

to detect the interference events through the recorded data and replace them with 

AWGN events. In the following, the interference is characterized by its mean power, 
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Fig. 7 BLE receiver immunity against OFDM modulated and AWGN interferences
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time duration (pulse width), and pause to the next event. Throughout this work, these 

variables are designated by P, W, and T, respectively (see Fig. 8). The frequency char-

acteristics are ignored because all processing steps are performed for a single channel. 

Later, in the frequency-based model, the center frequency and bandwidth are added 

to these characteristic parameters.

The processing flow graph of this modeling approach is depicted in Fig. 9. First, the 

channel of interest is selected from the wide-band recording by filtering. In the next step, 

a detection algorithm is employed to extract the interference parameters. Further details 

about the detection algorithm are discussed later by an example. Lastly, each detected 

interference is replaced with an AWGN pulse of the same power level and time dura-

tion. During pause times, the algorithm utilizes an AWGN signal with a power equal to 

the instrument noise floor. This assures that the modeled signal represents the recorded 

signal not only during the interference events but also in pause times when there exist 

no interference.

In the following example, the processing steps are applied to measure IQ data. The 

BLE data channel 4, centered at WLAN first channel, is selected for the analysis. This 

Fig. 8 Interference characterization parameters

Fig. 9 Process flow graph of IQ-based interference model

Fig. 10 Envelope power. Left: pre-recorded interference, right: IQ-based modeled interference
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provides the possibility of testing the modeling approach in a situation with dominant 

WLAN interference. Later, the model is also examined in a condition that the bluetooth 

is the main source of interference. Figure 10(left) represents the envelope power of the 

pre-recorded interference signal, passed through the low pass filter block. To consider a 

signal as interference, two constraints are applied. First the signal amplitude should be 

higher than a specified threshold (see Fig. 10(left)). Secondly, it should last for a mini-

mum time period. Setting the constraints properly prevents generating unwanted trigger 

events, caused by noise. For this example, the threshold is set 6 dB above the noise floor 

and the minimum pulse duration is set to 10 μs.

The envelope power of the modeled interference signal is represented in Fig. 10(right). 

For power levels below the threshold, the algorithm ignores interferences. In case that 

several interference signals occur simultaneously, the algorithm models such events as 

an equivalent signal with the average power level.

Since the interference signal consists of events with different power levels, it is not pos-

sible to define a constant signal-to-interference ratio in the simulations. Instead, simula-

tions are performed over a wide range of gain (see Fig. 1). This guarantees the evaluation 

of all interference events. For example, for high gain values only high-power interference 

events cause bit errors. As the gain decreases, interference with lower power levels also 

start to play a role. Figure 11(left) depicts the BER of a BLE receiver versus gain in pres-

ence of pre-recorded and modeled signals. The figure demonstrates a good agreement 

between the results. Doing the simulation for BLE advertising channel 39, centered at 

2480 MHz, indicates that the model performance is degraded. Figure 11(right) illustrates 

the results of this simulation. This is because of the fact that the AWGN source fails to 

accurately model bluetooth interfering signals, as discussed in Sect. 3.3. This problem is 

addressed in frequency-based model in Sect. 4.2.3.

4.1.1  Statistical modeling by means of IQ data

According to what has already been discussed, interference is characterized by P, W, and 

T. To statistically model the interference, these variables are assumed to be random. A 

straightforward approach is to assume that the random variables are uncorrelated, i.e., 

the CDF of each random variable to be independently calculated. This certainly causes 

the model performance to degrade. Thus, in this paper, the correlations between random 

variables are taken into account to improve this technique.
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Fig. 11 IQ-based model performance. Left: channel 4, right: channel 39
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The statistical modeling process of the interference by means of recorded IQ data 

is illustrated in Fig. 12. The first three blocks are the same as for the previous sec-

tion. Nevertheless, the approach to construct an equivalent signal based on the 

output of the detector block is different. After the detection block, the joint cumu-

lative distribution function (CDF) of random variables is calculated by using a set 

of detected values. Having the joint CDF of random variables, an arbitrary number 

of realizations is generated, using the inverse transform method (ITM) [17]. Finally, 

these realizations and a noise source are used to provide an equivalent baseband sig-

nal. This model can be used to generate an interference longer than recorded sig-

nal. However, in this situation, change in the statistics of the real-world interference 

might cause degradation in performance of the model. Figure 13 compares the BER 

of a BLE receiver in the presence of the pre-recorded and modeled interference at 

BLE data channel 4. As shown in this figure, this model has a satisfactory level of 

accuracy in the environments with dominant WLAN interference.

Fig. 12 Process flow graph of statistical IQ-based interference model
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Fig. 13 Statistical IQ-based model performance in channel 4



Page 11 of 17Kavousi Ghafi et al. J Wireless Com Network        (2021) 2021:143  

4.2  Interference modeling by means of spectrum data

So far, the models were based on measured IQ data. A direct drawback of such a mod-

eling approach is that a large memory is required to accurately model the interference. 

In this section, the pre-recorded spectrum data are used to model the interference in 

order to reduce the required memory. To have a comparable situation with regard to IQ-

based model, first, the same IQ data are used to generate spectrum data in a similar way 

as a RTSA does. Then, the frequency-based model is established based on the derived 

spectrum data.

The RTSA saves the results of successive sweeps (traces). Each trace represents the 

spectral properties of the signal during an acquisition time period tacq[18]. As a con-

sequence, the problem occurs that short events cannot be precisely measured. In the 

following, first a simple approach is employed to analyze BLE performance against inter-

ference when the spectrum data are available. Then, the impact of acquisition time is 

investigated in Sect. 4.2.2. Finally, the characterization approach, introduced in Sect. 4.1, 

is applied to spectrum data to provide a wide-band modeling approach.

4.2.1  Play back interference using spectrum data

In this section, a simple algorithm is proposed to find an equivalent baseband signal 

from spectrum data. This approach can be simply viewed as playing back recorded inter-

ference. Afterwards, the impact of acquisition time granularity limitations is addressed.

The processing steps to construct an equivalent signal are presented in Fig. 14. In the 

rest of this paper, this method is called the reconstruction approach. An AWGN source 

generates a random noise signal of length tacq . It is again implicitly assumed that each 

interference event can be modeled via a noise source. Then, this signal is passed through 

a filter. The filter frequency response is defined by the spectrum data. One can think 

of this algorithm as a bank of filters that weights the spectrum of noise, corresponding 

to measured frequency domain data. Considering X(f) as the Fourier transform of the 

interference signal x(t), the measured spectrum is in the form of absolute value of the 

X(f), i.e., |X(f)|. To model the interference, we use an AWGN signal to make up for the 

lost phase in the measured data. Hence, by considering N(f) as the Fourier transform 

of white Gaussian noise n(t) of power 1, the time domain of the modeled signal can be 

derived by:

(3)xeq(t) = F−1{|X(f )| N (f )},

Fig. 14 Flow graph of reconstruction approach based on spectrum data
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Equation 3 shows how the signal during an acquisition time period is modeled via its 

spectrum representation and a noise signal. The filter output is considered as an equiva-

lent signal for pre-recorded data during an acquisition time period. For the next trace, 

the reconstruction approach is similar. Unlike the model proposed in Sect.  4.1, the 

reconstructed signal represents the interference for the whole ISM band (measurement 

span), not just a single channel.

4.2.2  Acquisition time granularity impacts

The reconstruction approach is potentially limited by the acquisition time granularity 

of the RTSA. If the acquisition time is equal or less than the shortest interference event, 

the equivalent signal is expected to reasonably model the interference, regardless of 

bluetooth interference effects discussed in Sect. 3.3. Nevertheless, for long acquisition 

time periods, a degradation of the model performance is expected. To assess the impact 

of acquisition time on model performance, pre-recorded IQ data are used to derive the 

spectrum data for different acquisition time periods. Afterwards, for each time period, 

the extracted spectrum data are used to reconstruct an equivalent baseband signal.

For a set of acquisition time periods, the model’s performance is depicted in Fig. 15. 

The simulations are performed for the same data as that of the previous section at BLE 

channel 4. As shown in this figure, the performance of the model is degraded as the 

acquisition time increases. This is because of the fact that for long acquisition time peri-

ods, there are always some interference events shorter than the acquisition time period. 

Under such conditions, the algorithm generates longer pulses and consequently a higher 

BER compared to the actual reference signal. The simulation also indicates that an acqui-

sition time of 30 μs is required for an accurate modeling. This value is subject to change 

depending on the interference scenario. For example, for a lighter occupied environ-

ment, a higher acquisition time is required to achieve the same performance.

4.2.3  A wide‑band interference model using spectrum data

In Sect. 4.1, interference events were detected through recorded IQ data. The events 

were characterized by power level and timing parameters. The frequency properties 
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Fig. 15 Acquisition time impact on the model performance
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were ignored because the analysis was solely done for a single channel. In this sec-

tion, the interference events are detected through measured spectrum, but this time 

frequency properties are also included. Each interference is characterized by mean 

power level (P), timing parameters (W, T), and frequency parameters (BW, F0 ). BW 

and F0 are, respectively, the interference bandwidth and center frequency. Figure 16 

shows the processing flow graph of this modeling approach.

First, events through recorded spectrum data are detected. The detected events are 

divided in three categories based on their BW and F0 : bluetooth, WLAN, and other. 

In the next step, the detected events are used to generate an equivalent-based band 

signal for interference, similar to the approach used in Sect. 4.1 with two differences. 

First, the events in bluetooth category are replaced with signals generated by a BLE 

signal source rather than a noise source. Secondly, as detection is done over the whole 

band, the output of the model is a wide-band signal which covers the measurement 

span, not just a single channel.

In the following example, more details about the detection algorithm are presented. 

Figure 17 shows the spectrum data for two successive traces. Each trace consists of 

256 number of frequency bins. The acquisition time is set to 30  μs. Similar to IQ-

based model, two constraints are considered to detect interference. First, the 99% 

occupied bandwidth of detected event should be greater than a threshold. For this 

example, this threshold is set to 500 KHz. Second, the power spectral density should 

be higher than a predefined level. This level is set to 6 dB above the noise floor power 

spectral density. After detecting events, it is important to correctly associate them 

through successive traces. In simple words, if an event exists during a few number 

Fig. 16 Process flow graph of spectrum-based interference model
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Fig. 17 Power spectral density of recorded interference for two successive traces
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of traces, it should eventually be interpreted as one event. As each trace has tacq time 

length, an estimation for the time duration is as follows:

where N is the number of traces in which a certain event is detected. A similar formula 

is used to estimate pause time. For example, if the start of two events are in a same trace 

the pause time is estimated as 0. As a result, the time resolution in calculating timing 

parameters is tacq.

In the condition that a bluetooth signal coincides with a WLAN signal, some extra 

steps are applied to distinguish them. If the bluetooth signal power is much higher than 

the WLAN signal power, it is expected that 90% occupied bandwidth is much lower than 

the 99% occupied bandwidth. This fact is used to discriminate between two signals. In 

other side, if the bluetooth signal power is not much higher, according to results from 

Sect. 3.1, there is no need to detect bluetooth signal. In this situation, the WLAN signal 

solely models the interference effects.

In the frequency-based model, an important goal is to reduce number of frequency 

bins. While this decreases the required memory in capturing interference, it leads inac-

curacy in detection algorithm. In order to decline number of frequency bins, while keep-

ing the detection algorithm accuracy in a reasonable level, pre-knowledge information 

about WLAN and Bluetooth signals are employed. For example, the center frequency of 

detected WLAN and bluetooth events are always shifted to their nearest standard center 

frequency.

Figure 18 shows the good performance of this modeling approach for both WLAN and 

bluetooth dominant environments. However, comparing Fig.  18(left) with Fig.  11(left) 

indicates that the spectrum-based model performs less accurate in BLE channel 4. This 

is because of the degradation in detection algorithm for this modeling approach. In 

other words, due to the high occupancy of this channel, the detection algorithm based 

on spectrum data is not as accurate as the detection algorithm in IQ-based model. To 

improve the accuracy of the spectrum-based detection, one solution is to decrease the 

acquisition time period and/or number of frequency bins. While this improves the 

accuracy of the detection algorithm, it also results in a higher required memory which 

contradicts with the aim of this paper. A possible solution, which may be considered 

(4)W = N ∗ tacq ,
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Fig. 18 Spectrum-based model performance. Left: channel 4, right: channel 39
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in future works, is to exploit deep learning algorithms to improve the detection while 

keeping the data decimation rate (required memory) in a reasonable level. In other side, 

as shown in Fig. 18(right), this technique solves the problem of inaccuracy in modeling 

interference originated from bluetooth devices. This implicitly asserts that the detection 

algorithm, explained above, accurately detects and locates all interference signals for this 

channel.

5  Discussion and results

The immunity against interference is a key factor in the development of BLE technology. 

Consequently, designers need to carefully assess the performance of the BLE systems 

against interference. In order to emulate an interference typical to that exist in wireless 

environments, many researchers have tried to establish standard WLAN and bluetooth 

networks [19–22]. For example, in [20] a testbed with nine Raspberry Pi3 (RPi3) equally 

distributed in space is employed to generate bluetooth and WLAN interference. This 

approach has two main drawbacks. First, it requires substantial efforts to meaningfully 

set all connection settings. Secondly, the generated signal does not accurately imitate the 

interference due to the randomness of the real-word interference conditions.

In response to the aforementioned challenges, this paper introduces a new approach 

to emulate interference. In order to achieve this, goal following steps are undertaken.

• Interference is represented by bursts of events. Events are characterized by a set of 

parameters that are defined as random variables. These parameters define the ampli-

tude, time, and frequency behavior of the events.

• A measurement campaign is conducted to record interference. The recorded data 

then are used to derive the statistics of the interference parameters.

• To decimate the required data, the models are extended to the case that recordings 

are performed in the frequency domain. In this situation, it is possible to capture the 

interference for a longer duration.

• The derived statistics, in particular joint CDF of random variables, are exploited to 

generate an interference signal, called also equivalent interference. It is indicated that 

the modeled interference accurately imitates the impact of the original interference 

on a BLE receiver.

• It is shown that the events originated from WLAN sources can simply be modeled 

via an AWGN source. This helps to reduce the complexity of the models in generat-

ing equivalent interference.

Another open question is that in which time duration the CDFs of random variables 

need to be updated. To this end, a massive measurement campaign is required to ana-

lyze the variation of statistics for different interference scenarios.

6  Conclusion

In this paper, interference in BLE systems has been investigated. In the first step, a 

measurement campaign in a university room was performed at 2.4 GHz ISM band. The 

recorded data are used to extract the time and frequency parameters of interference 

events. This is done both in time and frequency domain. While high-time resolution 
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in detecting events is possible in the IQ-based model, the high required memory and 

processing power restricts it to a narrow-band model. The narrow-band analysis also 

causes the degradation in the model performance in the environments with dominant 

bluetooth interfering signals. This can be up to 10 dB deviation in estimating the impact 

of real-world interference on a BLE receiver. To address this problem, the modeling 

approach is extended to a spectrum-based model. Simulations show that it is possible 

to accurately model interference by capturing highly decimated spectrum data as far as 

the acquisition time period is lower than a certain value. This value for a typical univer-

sity room interference scenario is about 30 μs. The results show that for the spectrum-

based model, in the worst case, 3dB deviation can be expected in estimating the impact 

of a real-world interference on BLE receiver. The results of this paper can be utilized 

by BLE designers to efficiently test and improve their systems for different interference 

scenarios.
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