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Modeling of Complex Geometries and Boundary

Conditions in Finite Difference/Finite Volume

Time Domain Room Acoustics Simulation
Stefan Bilbao

Abstract—Due to recent increases in computing power, room

acoustics simulation in 3D using time stepping schemes is be-
coming a viable alternative to standard methods based on ray

tracing and the image source method. Finite Difference Time Do-

main (FDTD) methods, operating over regular grids, are perhaps
the best known among such methods, which simulate the acoustic

field in its entirety over the problem domain. In a realistic room

acoustics setting, working over a regular grid is attractive from
a computational standpoint, but is complicated by geometrical

considerations, particularly when the geometry does not conform

neatly to the grid, and those of boundary conditions which em-
ulate the properties of real wall materials. Both such features

may be dealt with through an appeal to methods operating over

unstructured grids, such as finite volume methods, which reduce
to FDTD when employed over regular grids. Through numerical

energy analysis, suchmethods lead to direct stability conditions for

complex problems, including convenient geometrical conditions at
irregular boundaries. Simulation results are presented.

Index Terms—Finite difference time domain method, finite

volume methods, room acoustics.

I. INTRODUCTION

R OOM acoustics simulation, for purposes of auditioning

of virtual spaces, or artificial reverberation is a subject of

continuing interest. Many techniques currently in use rely on

ray-based formulations [1] or image source techniques [2], [3];

other techniques used for analysis purposes include methods

such as the functional transformation method [4], and frequency

domain methods such as the finite element method [5], [6], and

boundary element methods [7]–[9].

Full simulation of acoustic spaces in the time domain is

now coming within reach in specialized hardware (such as,

e.g., GPGPUs [10]–[14]), allowing for much more accurate

rendering. In such approaches, the acoustic field is simulated in

its entirety over the entire problem domain (i.e., the room), and

a technique frequently used is the finite difference time domain

method (FDTD) [15]–[17], or equivalent digital waveguide

mesh algorithms [18]–[20]—as they operate over a regular grid,

these techniques have many benefits from the point of view of
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parallelization. Such techniques are inherently local, leading

to simple algorithm structure and updates in contrast with

other non-local time domain methods (such as pseudo spectral

methods, which have great benefits in terms of accuracy, and

which have been applied in room acoustics simulation [21].

In practice, such local schemes are to be used over realistic

room geometries, for which the problem domain does not

align well with a regular grid, and where nontrivial impedance

boundary conditions are employed. One of the major difficul-

ties been in determining stability conditions in these cases.

An appeal to methods defined over unstructured grids can be

very useful in this regard, even if over the problem interior,

the algorithm is to implemented over a structured grid. A

well-known example of such an unstructured method is the

finite volume technique, based on discrete conservation laws,

which is amenable to stability analysis even under highly

irregular and realistic boundary conditions, and is a flexible

alternative to fitted boundary techniques used exclusively with

regular FDTD schemes [22], [23]. Botteldooren [31] used the

framework of conservation laws in an early investigation of

FDTD methods over quasi-Cartesian grids.

Standard FDTD stability checking techniques such as von

Neumann analysis [24], which are based on spatial Fourier do-

main and temporal frequency domain concepts are often used

to arrive at necessary stability conditions for FDTD methods,

operating over regular grids. When an irregular boundary is im-

posed, and when boundary conditions are nontrivial, as in the

case of realistic impedances, it becomes difficult to arrive at rig-

orous conditions for stability (certain extensions, such as GKS

theory [25], can be used to find stability conditions for simple

geometries such as half- or quarter-spaces). In the interest of

allowing practical, stable designs under realistic conditions, a

technique that will be employed here, for stability analysis, is

the maintenance of strict energy conservation, leading to a direct

bound on solution growth in the time domain. Such techniques

are used directly in the time domain, and may be used over

unstructured grids—in particular, there is no use of frequency

domain concepts. When specialized to Cartesian grids, such

methods yield the same stability conditions as von Neumann

methods—but also include the effects of boundary conditions.

The first order system describing the evolution of the acoustic

field is given in Section II, along with the reduced second order

system, as well as passive boundary conditions suitable in the

context of room modeling. The finite volume technique for the

acoustic wave equation is introduced in Section III. Various im-

plementation details, especially in the case of complex geome-

1558-7916/$31.00 © 2013 IEEE
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tries appear in Section IV, and simulation results are presented

in Section V.

II. THE WAVE EQUATION AND IMPEDANCE

BOUNDARY CONDITIONS

A. Acoustic Wave Propagation

The acoustic field within a dimensional enclosure can be

described in terms of pressure and particle velocity

as

(1a)

(1b)

Here, is time, and represents position in a dimensional

space, and is confined to a region . is density,

is wave speed and and are the dimensional gradient and

divergence operations, respectively. Though it is the case

which is ultimately of interest in room acoustics applications,

the construction of finite volume methods is insensitive to the

choice of and thus 2D problems will be examined here subse-

quently as test cases.

A single scalar boundary condition must be supplied over the

boundary of the region. To this end, note that by multiplying

(1a) by and integrating over , and making use of the diver-

gence theorem, the following energy balance results:

(2)

where is the component of velocity outward normal

to the dimensional boundary of the volume (with

outward normal vector ) and is a -dimensional dif-

ferential element, or as

(3)

where is the total energy contained in the

acoustic field, and where is a term representing power

outflow.

B. Second Order Wave Equation

The system (1) is often written in a second order form. The

natural representation [26] is in terms of a velocity potential :

(4)

where

(5)

and where is the dimensional Laplacian operator. In this

second order form, the energy balance (2) may be written in

terms of as

(6)

C. Impedance Boundary Conditions

In room acoustics applications, it is usually passive termina-

tions, or wall conditions which are of interest. In this case, one

requires that

(7)

where represents dissipation, and where

is energy stored at the room boundary. It then

follows that the energy balance may be written as

(8)

where the total energy is non-increasing

over time.

Examining the power term from (3), this will be true if pres-

sure and the outward normal component of the velocity are

related, in the frequency domain, by a positive real impedance

[27], corresponding to a passive boundary condition. One par-

ticularly simple case is that of a parallel stiffness/inertance/re-

sistive termination, given by

(9)

over where is the characteristic admittance of

air, and where , and are non-negative functions defined

over the boundary. In this case, the loss and stored boundary

energy are given by

(10)

The complementary case is that of a series stiffness/inertance/

resistive termination, given by

(11)

over where is the characteristic impedance of air,

and where , and are non-negative functions defined over

the boundary. In this case, the loss and stored boundary en-

ergy are given by

(12)

In both cases, the system is passive as long as , , (or

, and ) are constant in time and non-negative, though

they may be variable over the room boundary , allowing for

variation in wall properties with location.
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Fig. 1. Tiling of a 2D region , with boundary as indicated. Two cells,
and are shown, with associated pressures and , as well as the pair of
normal velocities at the common edge, of area . An average
distance between cell centroids is shown as . Cell possesses a boundary,
of area , with associated outward normal velocity .

These are locally reactive conditions, meaning that they may

be characterized in terms of an impedance which is indepen-

dent of the angle of incidence (which is not generally the case)

[28]. Non-locally reactive conditions necessarily involve spatial

derivatives tangential to the boundary, but must also satisfy the

conditions and .

III. FINITE VOLUME METHODS

Finite volume methods have a long history of use in prob-

lems in electromagnetics [29] and aeroacoustics, and are based

on discretizations of conservation laws; for an introduction to

finite volume methods, see the text by Leveque [30]. Bottel-

dooren [31], though not employing finite volume methods di-

rectly, has developed FDTDmethods over quasi-Cartesian grids

using conservation laws.

A. Cells

Consider a tiling of the dimensional volume by poly-

hedral cells , . For two adjacent cells and

, the dimensional surface area of the adjoining face is

written as , and the mean distance between the adja-

cent cells is . denotes the dimensional volume

of cell . See Fig. 1, showing a typical tiling in 2D.

B. Spatial Discretization

To arrive at a finite volume discretization, the first step is to

approximate the system (1) over cells. To this end, integrate (1a)

over the cell , to get, again using the divergence theorem,

(13)

where represents the component of the velocity outward

normal to the boundary . In order to arrive at a discretiza-

tion operating over a finite set of values for the pressure and

velocity fields, the following approximate discrete set of values

is defined. An average pressure over cell is defined as

(14)

If represents an outward normal velocity directed towards

an adjacent cell , averaged over the common face, of area

, then

(15)

where is an indicator function taking the value 1 for and

adjacent, and 0 otherwise. Note that (reflecting

conservation, and leading to a skew symmetry property [32] in

the resulting energy analysis).

A semi-discrete approximation to (1a) is then

(16)

where here, boundary terms have been included: At a cell

with a face adjacent to the boundary of the room (of area ),

represents outward normal velocity, and is an indi-

cator function taking on the value 1 for a cell with such a

boundary face, and the value 0 otherwise. (It is assumed here,

for simplicity, that a boundary cell possesses a single boundary

face—in the case of, example, approximation with square or

cubic elements, such as a staircase approximation, the two or

more unadjoined faces may be coalesced into a single boundary

face with an area which is the sum of those of the unadjoined

faces.)

Similarly, (1b) may then be approximated as

(17)

where only the values between adjacent cells and

need be considered (and stored in implementation).

C. Interleaved Time Discretization

In a discrete time implementation it is convenient to use in-

terleaved approximations to and . For a given sample rate

, and time step , define the approximations and

as

(18)

The use of the same notation for the fully discrete and semi-dis-

crete cases should not cause confusion, as only the fully discrete

case will be considered in the remainder of this article.
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D. Difference and Averaging Operators, and Identities

Shift operations and are defined as

(19)

(20)

Approximations and to the time derivative may be

defined as

(21)

and averaging operations and as

(22)

For any time series , the following identities hold:

(23)

Furthermore, the following inequality holds:

(24)

E. A Fully Discrete Scheme

A fully discrete approximation to system (1) may then be

written, by replacing time derivatives in (16) and (17) by dif-

ference operations, as

(25)

(26)

In this condensed operator formulation, instances of and

are assumed to refer to values and at time step ,

and , respectively. This scheme is fully explicit over the

problem interior; the boundary velocity approximations

will be specified shortly.

Defining a set of discrete velocity potentials by

(27)

one can arrive at a second order scheme analogous to (4):

(28)

F. An Energy Balance

Energy techniques are a useful means of arriving at bounds on

solution growth; such techniques are used in the semi-discrete

case for unstructured finite volume methods in [32], and are

extended here to the case of a fully discrete method.

In analogy with the energy analysis in Section II, one may

multiply (25) by , and sum over the ensemble of cells

to give

(29)

where the boundary term is given by

(30)

One may write, by symmetry, for the term above,

(31)

and furthermore, using , , ,

and the second member (26) of the discrete scheme,

(32)

(33)

Finally, using the identities (23), one arrives at the discrete time

energy balance

(34)

where the time series is given by

(35)

and again represents the stored energy in the problem interior.

G. Discrete Impedance Boundary Conditions

In order that the full scheme remain numerically passive, it

is necessary that the numerical boundary conditions satisfy a

dissipative property analogous to that of the continuous case.

In the case of the specialized impedance condition given in (9),

consider the following discretization:

(36a)

(36b)

for some constants , , , and where a new set of

boundary values has been introduced in order to store

energy.

Using the first of identities (23), the boundary term can then

be written as

(37)
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where

(38)

(39)

Under the complementary boundary condition (11), one may

use, instead, , where

(40a)

(40b)

for some constants , , , and where a new set of

boundary values has been introduced in order to store

energy.

Now, one again has an energy relationship of the form (37),

but with

(41)

(42)

H. Stability Conditions

Under either the parallel or series conditions described above,

in the end, one has for the initial value problem,

(43)

where is the total numerical energy of the

scheme. Thus total energy is monotonically decreasing with

time.

All that remains, from the point of view of stability analysis,

is to show conditions under which the internal stored energy

is non-negative. To this end, using the inequality (24),

(44)

and from (26),

(45)

(46)

and finally, by symmetry over the double summation,

(47)

The internal stored energy in the acoustic field is thus non-

negative under the conditions

(48)

Under this condition, one has, then, for an initial value problem,

(49)

and thus the internal stored energy (itself a positive semi-defi-

nite function of the state) may be bounded in terms of the initial

energy, assumed to be finite.

The condition (48) may thus be viewed as a sufficient sta-

bility condition for the entire scheme. Furthermore, it is based

solely on geometric considerations which may be easily verified

at every cell in the domain. Though it is a necessary condition

as well for several typical FDTD schemes (and reduces to con-

ditions arrived at through standard methods such as, e.g., von

Neumann analysis), in some cases it is not—this point will be

discussed, with reference to schemes operating over hexagonal

grids, in the next section.

IV. IMPLEMENTATION DETAILS AND REDUCTION

TO FDTD SCHEMES

A. Explicit Update Form

At an internal cell (i.e., one not possessing a boundary),

the updates (25) and (26) may be written, in terms of time series

and , as

(50)

(51)

and similarly, a second order update in the velocity potential

may be written as

(52)

B. Explicit Boundary Updates

Consider the parallel boundary condition (9). At a cell

with a boundary, in the first order form, the updates (25) and



IE
E
E

P
ro

of

6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. , 2013

Fig. 2. Two distinct tilings of a circular region, where the interior cells are
squares on a rectangular grid: Left: Staircase approximation; Right: Fitted
boundary cells.

Fig. 3. Fourier transform (in dB) of pressure output response from a sim-
ulation over a circular domain, using a staircase boundary approximation (left)
and fitted boundary cells (right). Exact modal frequencies for the circular en-
closure are indicated by gray lines.

Fig. 4. Variation in numerical energy for the Cartesian
scheme operating over a circular region, with fitted boundary cells as illustrated
at right in Fig. 2. In this case the initial conditions are set to those corresponding
to an impulse in the problem interior. Gray lines indicate multiples of machine
error in double precision floating point arithmetic, showing numerical lossless-
ness of the simulation.

(36) may be combined to give a pair of updates in the time series

and :

(53)

(54)

where

(55)

(56)

(57)

This pair of updates is explicit if performed in the order

shown (leading to a small degree of serial computation at the

boundary). It is interesting to note that the second order form

is particularly convenient with this boundary condition, as no

additional state is required at the boundary.

The case of the series condition (11) is similar, leading also to

an explicit pair of updates at the boundary cells, but is omitted

here dues to space considerations; in this case (as with virtually

any other reasonably complex boundary condition), additional

state will be required at the boundary.

C. Standard Schemes in 2D and 3D

If, in 2D, the cells are chosen as squares of side length

, then , and . The simplest possible

second order explicit scheme for the 2D wave equation results,

employing nearest neighbors. The scheme, written in terms of

velocity potential (indexed now by and ) is, at an inte-

rior cell,

(58)

The condition (48), evaluated at an interior cell, gives the stan-

dard stability condition

(59)

which is usually arrived at using frequency domain techniques

(von Neumann analysis [24]).

An interesting case is that of regular hexagonal cells, giving

rise to a second order scheme for which each velocity poten-

tial value is updated using six nearest neighbors (assumed a dis-

tance away) [33]. In this case, the sufficient stability condition,

from (48), is ; but, from von Neumann analysis,

the necessary condition is , which is less strict.

More comments on this appear in Section VI.

Similarly, in 3D, the cells can be chosen as cubes of side

length , and thus and . The standard

seven point second order explicit scheme for the 3D wave

equation results, employing nearest neighbors. The second

order form, written in terms of velocity potential (indexed

now by , and ) is

(60)

The condition (48), evaluated at an interior cell, again gives the

standard stability condition

(61)

V. SIMULATION RESULTS

In this section, various simulation results are presented, in

both 2D and 3D, illustrating the properties of such schemes,

as described previously, including comparisons of different

tilings, energy conservation, and variable reflectance properties

at boundaries.

A. Circular Region in 2D

As a very simple test case of a geometry which does not

conform neatly to a Cartesian grid, consider a circular enclosure

in a 2D plane, where a simple rectangular FDTD scheme is
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Fig. 5. Rotated square, of side length 1 m, discretized over a regular Cartesian grid not aligned with the rotation, using a staircase approximation, and fitted
boundary cells (top row). Frequency responses, for excitation/readout points indicated by and respectively, are shown in the bottom row, for the staircase
approximation (dotted) and fitted cells (solid). Exact modal frequencies, under perfectly reflective boundary conditions, are shown as gray lines. The sample rate
is 8 kHz.

employed over the grid interior. Two distinct tilings, namely

a simple “staircase” approximation, and a fitted grid, using

quadrilateral and pentagonal cells at the boundaries, are shown

in Fig. 2. In this case the circular region is of radius 1 m,

the sample rate is chosen as 4 kHz, and the wave speed is

m/s.

Under purely reflective conditions at the boundary (i.e.,

for all boundary cells), it is useful to examine the

response of the enclosure to an impulsive excitation, exciting

the various modal frequencies (which, for this geometry and

these boundary conditions, may be calculated explicitly). Fig. 3

shows the Fourier transforms of these responses, in the case of

a staircase tiling, and a fitted boundary tiling, as illustrated in

Fig. 2. The fitted tiling gives a much better match to the the-

oretical modal frequencies, with deviations appearing in both

cases at higher frequencies, reflecting numerical dispersion of

the scheme itself [34].

In either case the scheme is energy conserving (lossless and

passive), including boundary termination, to machine accuracy.

See Fig. 4, illustrating variation in the least significant bit of the

total energy, in double precision floating point arithmetic.

B. Rotated Rectangular Region in 2D

As another example, consider the case of a square region,

of side length 1 m, under various angles of rotation, as shown

at top in Fig. 5. Again, it is useful to examine plots of fre-

quency responses under perfectly reflective boundary condi-

tions, in the cases of a staircase approximation to the square

over the grid, and an approximation using fitted cells. As can

be seen from the frequency responses, even at a relatively high

sample rate (in this case 8 kHz), the low modal frequencies for

the staircase approximation deviate significantly from theoret-

ical values, whereas for the approximation using fitted cells, the

response remains relatively independent of the rotation angle of

the square.

By symmetry, the wave equation defined over a square ge-

ometry possesses doubled, or degenerate modes at a series of

Fig. 6. Detail of Fig. 5, for a rotation angle of 20 , illustrating a numerically
split degenerate mode pair in the case of the staircase approximation (dotted
line) compared with the response for fitted boundary cells (solid line). The
exact frequency of the mode pair is 340 Hz, indicated by a gray line. The fitted
boundary approximation gives a pair of frequencies at 339 Hz, and for the stair-
case approximation, these are split to 339 Hz and 328.7 Hz.

Fig. 7. Time response for the system described in Fig. 5, under an excitation
of a raised cosine, of duration 2 ms for the staircase approximation (top) and for
fitted boundary cells (bottom). Responses are shown for angles of rotation of 0
(solid line), 20 (dotted line) and 45 (dashed line).

frequencies. Numerically, however, this symmetry can be dis-

turbed, depending on the type of discretization employed at the
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Fig. 8. Time responses for an unrotated but shifted square, in three cases as
shown (black, doted and dashed, respectively). In the first case, at left, the cells
are chosen so as to align exactly with the grid; in the second, such that there is
a quarter cell offset, and in the third, a half cell offset. Excitation/readout points
are indicated on the diagram by and respectively, and the excitation is a
raised cosine pulse of duration 1 ms, and where the sample rate is 8 kHz. Here,
in order to reduce effects of interpolation at input/output locations, 10th order
sinc interpolation is used.

Fig. 9. Frequency responses, under the same geometry and excitation condi-
tions as in Fig. 5, under the boundary condition (11), with , and for
various values of the loss parameter , as indicated. Frequency responses are
shown under no rotation (dotted line) and under a rotation of 20 (solid line).
Fitted boundary cells are employed, and the sample rate is 8 kHz.

boundary. Returning to the case of the rotated square geom-

etry under fixed conditions, at a rotation of 20 , the staircase

approximation exhibits a numerical splitting such degenerate

mode pairs, as illustrated in Fig. 6. The splitting is not apparent

when fitted cells are employed.

As might be expected, the time responses under the fitted

boundary approximation show much greater insensitivity to ro-

tation. See Fig. 7.

As another example, consider the case of an unrotated but

shifted square, such that cells on opposite sides are possibly

not symmetric. Under very accurate interpolation at input and

output locations, there is very little distortion of the resulting

Fig. 10. Frequency responses, under the same geometry and excitation condi-
tions as in Fig. 5, under the boundary condition (11), with values of the param-
eters as indicated. Frequency responses are under no rotation (dotted
line) and under a rotation of 20 (solid line). Fitted boundary cells are employed,
and the sample rate is 8 kHz.

Fig. 11. 3D room geometry (left) and staircase approximation (right). In this
case the wall conditions are set to be purely resistive ( , ,
over the dome section and on the floor, and lossless but reactive ( ,

, ) over all other surfaces.

waveform—as can be seen in Fig. 8, such effects are smaller

than the visible effects of numerical dispersion for the scheme

itself.

The insensitivity of the fitted scheme to rotation persists

under nontrivial boundary conditions, such as, e.g., the series

condition (11). See Fig. 9, showing a comparison of frequency

responses under different choices of the loss parameter , with

, corresponding to a purely resistive termination.

A more realistic case is that of a wall admittance possessing a

strong resonance (i.e., with the mass and stiffness parameters

and nonzero), leading to shifts in the locations of the modal

frequencies in the region close to resonance. See Fig. 10, where

the series condition (11) is again chosen, with a resonance in

the admittance of 500 Hz.

C. Complex Room Geometries in 3D

As an example of the use of such schemes over complex ge-

ometries in 3D, with variable wall conditions, consider the non-

trivial building geometry illustrated in Fig. 11. Boundary con-

ditions are of the parallel type given in (9).
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Fig. 12. Snapshots of the time evolution of the acoustic field, at times as indicated, for the room geometry illustrated in Fig. 11. The sample rate is 4 kHz, and the
velocity potential is excited with a raised cosine pulse.

TABLE I
NUMERICAL ENERGY CONSERVATION

A series of snapshots of cross sections of the time evolution

of the acoustic field (here, ) is shown in Fig. 12.

Under lossless conditions (i.e., if is set to zero everywhere),

the scheme again conserves total energy to machine accuracy,

with a portion of the energy stored at the walls if , . See

Table I, showing the partition of energy in Joules between that

of the acoustic field and that stored at the reactive wall termi-

nations, as a function of time step. It is to be noted that the cal-

culation of numerical energy in the scheme is not necessary in

the final simulation algorithm—beyond being a useful theoret-

ical tool in proving numerical stability, however, it is extremely

useful as a debugging tool when developing 3D codes. If there is

an error in the treatment of a boundary condition (under lossless

conditions) then this will be exhibited as an anomalous variation

in the numerical energy.

VI. CONCLUDING REMARKS

Methods based on unstructured grids or tilings, such as the

finite volume method, have great advantages in real world sim-

ulation problems over complex geometries and with nontrivial

boundary conditions. In the present case of direct simulation of

room acoustics problems, which is a computational task of very

large proportions, a reduction of such schemes to regular lat-

tices is at present necessary—but even in this case it becomes

possible to approach fine-grained modeling of irregular bound-

aries within a coherent framework allowing for stability anal-

ysis. That being said, for large geometries, and at audio sample

rates, a staircase approximation is probably sufficient for room

auralization applications, and the boundary stability analysis de-

scribed here handles this case with ease.

When applied over a regular tiling, as mentioned above,

such finite volume methods reduce to nearest neighbor FDTD

schemes which have been explored in some depth in the room

acoustics literature and the geometrical stability conditions

given here in the unstructured case are, in general, only suf-

ficient: for schemes over Cartesian grids, they correspond to

bounds obtained using standard stability-checking machinery

(such as, e.g., von Neumann analysis for FDTD schemes

[24]), but in others (such as the hexagonal tiling discussed in

Section IV) are too strict. Such distinctions between sufficient

and necessary stability conditions also appear in the consider-

ation of concretely passive stability conditions in waveguide

meshes [33], [35]. The question of extending these approaches

to attack the problem of accurate boundary termination over

complex geometries for more accurate (but less local) FDTD

methods (see, e.g., [16], [36], [37]) remains open.

The wall conditions examined here are more general than

simple reflective conditions, and incorporate (as in previous

work [38]) simple frequency-dependent effects of mass, stiff-

ness and loss. Yet, true wall reflectances are more complex,

and will require more detailed modeling. What must remain

true, however, is that the boundary condition is passive, and

the framework presented here allows for termination by higher

order combinations of canonical mass, stiffness and loss ele-

ments, perhaps fit to measured data through a network synthesis

procedure [27]. Not examined here, however, is the case of

diffuse reflection, which has been approached using digital

waveguide meshes [39] and FDTD schemes [40].

In parallel realizations, new questions emerge: though it is

useful in this regard to retain the regular lattice structure of

FDTD, by specializing finite volume approaches to regular

polyhedra, the resulting finite difference schemes are thus

specialized at the boundary, leading to some departure from an

ideal parallel update. Related to this is the need for a general

approach to tiling of the boundary which is suitable for audio

applications, and which does not add too much additional

complexity to an already quite large computational problem.

That being said, in terms of a raw operation count and memory

requirements, the difference between a crude staircase approx-

imation and a fitted tiling is negligible, and yet leads to great

increases in accuracy. Though not ruled out in this article,
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use of a fully unstructured grid (perhaps through a Delaunay

tesselation of the volume) would have large implications for

parallelizability, and most probably negative, especially given

the size of the problem in typical room acoustics applications.

The stability abalysis techniques presented here, however,

remain unchanged in the fully unstructured case.

Beyond being used in room acoustics applications, as is the

intention here, such methods could also be used as a means of

obtaining much better accuracy in scattering problems which

appear in audio and acoustics, such as, e.g., the numerical de-

termination of head related transfer functions from measured

head geometry [41], using relatively coarse grids at a low audio

sample rate.
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