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Modeling of conductive particle motion in viscous medium
affected by an electric field considering particle-electrode
interactions and microdischarge phenomenon
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Up and down motion of a spherical conductive particle in dielectric viscous fluid
driven by a DC electric field between two parallel electrodes was investigated. A
nonlinear differential equation, governing the particle dynamics, was derived, based
on Newton’s second law of mechanics, and solved numerically. All the pertain-
ing dimensionless groups were extracted. In contrast to similar previous works,
hydrodynamic interaction between the particle and the electrodes, as well as image
electric forces, has been taken into account. Furthermore, the influence of the mi-
crodischarge produced between the electrodes and the approaching particle on the
particle dynamics has been included in the model. The model results were compared
with experimental data available in the literature, as well as with some additional
experimental data obtained through the present study showing very good agreement.
The results indicate that the wall hydrodynamic effect and the dielectric liquid ionic
conductivity are very dominant factors determining the particle trajectory. A lower
bound is derived for the charge transferred to the particle while rebounding from
an electrode. It is found that the time and length scales of the post-microdischarge
motion of the particle can be as small as microsecond and micrometer, respectively.
The model is able to predict the so called settling/dwelling time phenomenon for the
first time. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4964683]

I. INTRODUCTION

Small conductive particles exposed to a DC electric field are encountered in various technical
and industrial situations, such as electrostatic technologies, high voltage power systems, printing
equipment, surface coating, separation of mixed granular materials,1 and biological cell manip-
ulation. A deep understanding of the particles dynamics is required for designing and maintain-
ing such systems. Also, experimental progresses during past few years in the areas of a micro-
electromechanical systems (MEMS), nano-science, and microfluidics have intensified the interest
in the control of motion and manipulation of particles by electrical forces.2 Accurate prediction
and control of conductive particles motion would improve the performance and efficiency of high
voltage technologies.

One of the common configurations involving tiny conductive particles under influence of a DC
electrical field refers to the recycling system of plastic waste.3 In this configuration, an electric force
is applied to remove conductive impurities, like carbon particles, from liquefied plastic.4,5 Also, it
has been shown that the motion of a conductive particle in a typical parallel electrode system can be
used for measuring the viscosity of fluids.6
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Another interesting potential application of similar configurations is the heat transfer enhance-
ment in fluid flow by the use of micron sized solid particles dispersed in the liquid bulk. Bologa
et al.7 studied the heat transfer enhancement caused by the electric field induced motion of solid
particles in a gas-solid suspension. Added solid particles can improve the heat transfer rate between
a fluid flow and a solid surface by advection, and disturbing and thinning the laminar sub-layer
in the wall vicinity.8 Dispersed particles would improve turbulence intensity of a flow up to 100%
when their size is of the order of the turbulence length scale.9 A theoretical study of local heat trans-
fer enhancement through bombardment of a surface by spherical particles can be found in a paper
by Murray.10 The electric force may help to overcome some difficulties faced by these technologies,
like particle sedimentation and particle clogging. Augmentation of heat transfer rate in a dielectric
fluid medium with the aim of electric force induced motion of added particles may become more
important everywhere the gravitational force is weak, specifically in space transport systems. Also,
heat transfer in colloidal suspensions with charged conductive particles is a field of interest.11

There are many papers on the subject of conductive particle motion induced by electric forces.
Dascalescu and Mihailescu1 proposed a mathematical model for motion of a conductive particle
exposed to DC corona field of coaxial wire-cylinder electrode system. Asano et al.4 conducted an
analytical and experimental study on the acceleration and deceleration of a conductive particle in
the DC electric field in a viscous fluid medium. They found a significant disagreement between their
experimental data and the theoretical model prediction. They attributed this discrepancy to two fac-
tors. One is the hydrodynamic interaction between particle and electrode. The other is the fact that
the particle obtains a charge smaller than expected after the particle-electrode contact.3,12 Recently,
Jiang et al.13 introduced an improved model for predicting the trajectories of conductive particles in
roll-type electrostatic separator. Dascalescu et al.14 conducted a numerical simulation of conductive
particle behavior at the surface of a plate electrode affected by a DC corona field and employed the
model to study the behavior of coal particles in fly-ash corona separators. Wang et al.15 fulfilled an
experimental study about effects of conductive particles on the breakdown voltage of mineral oils
and esters. Karunanayake and Hoshino16 accomplished a numerical simulation for predicting the
electrostatic force acting on a conducting particle in the configurations of two parallel electrodes for
the case in which the particle size is of the same order of the gap between electrodes. Besides the
solid particle case, there is a large amount of studies carried out on the behavior of water droplet.
Valuable experimental data are available from investigations of Jalaal et al.17 and Khorshidi et al.18

As is the case in the work of Asano,4 two main simplifications are usually done by previous
researchers. The first one concerns the electric force being exerted on the particle. It is often consid-
ered a constant electric force equal to E0Q0, where E0 is the uniform electric field far from the
particle and Q0 is the charge acquired by the particle after its collision with the electrodes. The sec-
ond simplification is to neglect the hydrodynamic interaction between the particle and the electrode
surface and simply employ the well-known Stokes’ formula for the viscous drag (6πµRup).

The main goal of this paper is to construct an accurate model for the quantitative prediction of
the motion of a conductive particle in the gap between two parallel electrodes. We take into account
all the pertinent effects, including the influence of electrode presence on both electrical and hydro-
dynamic forces, as well as the microdischarge that takes place between an approaching conductive
particle and the counter electrode (the electrode with charges opposite to that of the particle). The
electric force was calculated by an expression derived by Pérez19 in which the image forces (caused
by image charges and dipoles) have been taken into account. Particle-wall hydrodynamic interaction
was introduced to the problem using appropriate wall-effect functions to modify steady Stokes drag
and the so called added mass forces acting on the particle. Also, the microdischarge effect on the
particle motion has been included by accounting the changes of electric force (both in value and
orientation) immediately after the phenomenon (before the particle-electrode collision).

II. PROBLEM DESCRIPTION AND RELATED ISSUES

Consider a conductive spherical particle with radius, R(=D/2), mass density, ρp, between two
parallel electrodes (see Figure 1). We assume that the particle diameter is greater than 10 µm. This
assumption allows us to neglect any adhesion force between the particles and the electrodes.20 The
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FIG. 1. Schematic presentation of the problem.

upper electrode has been connected to a high voltage supply with positive polarity while the lower
one has been grounded. The electrodes are large enough to consider that the electric field is uniform
everywhere except in a small region in the vicinity of the particle. This electric field has an average
magnitude E0 = ϕ/d, where d denotes the distance between the two electrodes and ϕ is the applied
electric potential. In what follows, it is described how the particle motion is started and how it is
continued by the microdischarge mechanism.

A. Particle starts to move

When the particle is in mechanical contact with the lower electrode, it acquires an electric
charge Q0. Assuming that R/d ≪ 1, the magnitude of Q0, is given by the well-known formula21,22

Q0 = (
π2

6
) · 4πεR2E0, (1)

where ε is the permittivity of the surrounding liquid. After charging, the particle is subjected to a
total electric force,

Fe0 = 0.832Q0E0, (2)

which tends to lift it. When the sum of the buoyancy force Fb and the electric one Fe0 overcomes
the gravitational force Fg , the particle detaches from the electrode and accelerates towards the upper
electrode. After detachment, the particle behavior changes depending on the medium properties and
charge exchange between the medium and the particle. Electrical charges of the particle would leak
into the surrounding liquid due to the liquid electrical conductivity according to the formula23

Qp(t) = Q0e−t/τc, (3)

where t is the time elapsed after the last detachment and τc = ε/σ is the charge relaxation time of
the liquid (σ refers to the electrical conductivity of the liquid). From Eq. (3) it can be deduced that
if the particle flight time, tflight, (the time interval between two successive particle rebound) becomes
considerably lower than the charge relaxation time of the surrounding fluid, it is reasonable to
ignore the charge leakage. Therefore, θc = tflight/τc is a dimensionless parameter that can affect the
particle dynamics. Other dimensionless groups are presented in Section V C.

B. Continuation of the motion through the microdischarge mechanism

After detachment, while the conductive particle approaches to the upper electrode, the electric
field between the particle and the electrode increases unboundedly until the surrounding dielectric
liquid breaks down and a microdischarge takes place.20 During the microdischarge, first, the particle
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is neutralized and then it acquires the charge needed to be equipotential with the facing electrode.
From the theoretical point of view, in the configuration under study, the charge transferred to the
particle during the microdischarge event depends on its position at the discharging instant, S̄md, and
is obtained by

Qth = 4πεR2E0
2 *,sinh2αmd

∞


n=1

cosh(nαmd)

sinh2(nαmd)
+- , (4)

where αmd = cosh−1(1 + S̄md) and S̄md = smd/R (see Eq. (37) in Ref. 19). The value of the function
within parentheses in Eq. (4) equals to π2/6 in the limit S̄md → 0, applying Qth→ Q0 (see Eq. (1)).
However, this is an ideal theory, and in practice only a fraction of Qth might be transferred to the
particle (see Subsection VII A for more discussion).

Immediately after the microdischarge, the orientation and magnitude of the electric force Fe

change, and it acts as a breaking repulsion force on the approaching particle. Nevertheless, the par-
ticle may keep on its way of motion until it completely losses its inertia and changes the orientation
of motion without physical contact with the electrode. Hereafter, we refer to this part of the particle
motion as “post-microdischarge motion” which is discussed in Subsection VII B. However, if the
initial inertia of the particle is great enough (usually big particles), the particle could collide with
the electrode. In that case, a proper contact model is required to predict the behavior of the particle
during and after the collision. In both the cases (with and without mechanical collision with the
facing electrode), the particle rebounds and the motion is repeated in the same way.

There is a large amount of research dealing with microdischarge phenomena in different
circumstances.24–26 It is rather difficult to exactly predict the distance between the particle and the
electrode at which the breakdown happens (smd in Figure 1), because in addition to the electrical
properties and purity of the interstitial fluid, it depends on the topographical details of the particle
surface, as well. For example, even a tiny roughness on the particle and electrode surface would
intensify the electric field significantly, since its size may be of the same order of magnitude as
the gap between the particle and the electrode. However, as reported in Ref. 27, the microdischarge
occurs at total electric field strengths (between the particle and the electrode) Emd, similar to the
breakdown electric field of the interstitial fluid.

III. EFFECTIVE FORCES ACTING ON THE PARTICLE

Ignoring adhesion forces between the particle and the electrodes, assuming that no charge
injection takes place into the surrounding liquid from the surface of high voltage electrode and that
no Electrohydrodynamic (EHD) flow sets up between the electrodes, the total external force acting
on the particle will be



Fexternal = Fe + Ff + Fg + Fb, (5)

where Fe, Ff , Fg , and Fb denote the electric force, the fluid force, the gravitational force, and the
bouncy force exerted on the particle, respectively.

In addition to the microdischarge phenomenon, the other main contribution of the present work
pertains to the modification of Fe and Ff terms in Eq. (5). The hydrodynamic force Ff consists
of three distinguished terms, including steady drag, added mass, and history forces. Inclusion of
the history force is extremely time consuming, and we ignore the last one in the present study. A
more detailed discussion on the modification of the electric and hydrodynamic forces is presented in
Secs. III A–III C.

A. Electrostatic force

In the parallel electrode system shown in Figure 1, the electrostatic force applied on a conduc-
tive sphere of radius R, having arbitrary charge Qp, immersed in a medium of dielectric constant ε,
can be calculated using three distinct methods:

• numerical solution of the Laplace equation
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• a Stokesian dynamic approach introduced recently by Drews et al.28

• the image charge method used by Pérez.19

The first method refers to the classical direct method and gives “exact” results, while the two other
ones are approximate methods. The Stokesian dynamic approach is more accurate and also more
complex than the image charge method. In this study we used the third method due to its simplicity,
explicit expression, and less computational cost. It has been shown in Ref. 19 that for R/d ≤ 0.1,
its error is less than 3%. According to this method the total electrostatic force consists of four
distinct terms: charge-external field, charge-image charge, dipole-image dipole, and charge-dipole
interaction. By adding these four terms, Pérez obtained an explicit expression for the total electric
force as follows:19

Fe(H) =


4πεR2E0

2 f0(H − 1) +QpE0 f1(H − 1) +
Qp

2

4πεR2
f2(H − 1), H ≤

d

2R

−4πεR2E0
2 f0(

d

R
− H − 1) +QpE0 f1(

d

R
− H − 1) −

Qp
2

4πεR2
f2(

d

R
− H − 1), H >

d

2R

,

(6)

where H = h/R. h is the distance between the particle center and the lower electrode. E0 denotes
the uniform electric field between the two parallel electrodes in the absence of the particle, and
f0, f1 and f2 are known functions of H (see Ref. 19 for details). Other symbols are as before. The
particle electric charge Qp = Q(t) can be obtained from Eq. (3) for any given time. Using Eq. (6), a
modification factor can be introduced for the electric force as

λe =
Fe

E0Q0
=


g1(H,Qp), H ≤

d

2R

g2(H,Qp), H >
d

2R

, (7a)

where g1(H,Qp) and g2(H,Qp) read

g1(H,Qp) =
6
π2

f0(H − 1) +

(

Qp

Q0

)

f1(H − 1) +
π2

6

(

Qp

Q0

)2

f2(H − 1), (7b)

g2(H,Qp) = −
6
π2

f0(
d

R
− H − 1) +

(

Qp

Q0

)

f1(
d

R
− H − 1) −

π2

6

(

Qp

Q0

)2

f2(
d

R
− H − 1). (7c)

Some numerical values of the functions f0, f1 and f2 are given in Table I. The values in Table I
illustrate the fact that these functions play an important role in the vicinity of the electrodes.
This is caused by the electric field interaction between particle and the electrodes. This electric
field interaction has been considered in the study of a conductive particle behavior in a roll-type
corona-electrostatic separator by Dascalescue et al.29 using an approximate formula,

Fe0 = 0.832Q0E0


1 +

0.21(H − 1)
H − 0.25


, (8)

TABLE I. Numerical values of f0, f1, and f2 functions in vicinity of an
electrode.

S = h/R−1 f0(S) f1(S) f2(S)

0.0001 −220.0924 269.1032 −81.7464

0.001 −34.1924 43.0022 −12.9994
0.01 −5.4889 8.0143 −2.3355
0.1 −0.7177 2.0687 −0.4703
1 −0.03 1.0685 −0.0671

1.5 −0.0100 1.0334 −0.0414
2 −0.0047 1.0190 −0.0283
5 −2.9004 × 10−4 1.0023 −0.0070
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FIG. 2. Dimensionless electric force exerted on a detaching particle (a) and an approaching particle (b).

while the same formula was used in Ref. 20 for modeling of a conductive particle behavior in
the parallel electrode system. In the present work, we use a more accurate one, Eq. (7a), which is
derived specifically for the parallel electrode system and is accurate for R/d ≤ 0.1.

It should be noted that the electric force applied on a detaching particle is completely different
from the force on an approaching one. To illustrate this fact, we plot the force obtained from
Eq. (7a) in Figure 2 for different ratios of the particle radius to the inter-electrode gap. As seen
in Figure 2(a), all detaching particles see the same electric force predicted in Eq. (2) regardless
of the ratio R/d. Also, as expected, deviation of the electric force from E0Q0 (Coulomb force) is
more pronounced for bigger particles so that it reaches to nearly 25% of the gap between the two
electrodes for R/d = 0.09. Approaching particles, in contrast to the detaching ones, are attracted
towards the electrode with an unbounded force, as shown in Figure 2(b).

B. Hydrodynamic force exerted on the particle

In order to determine the total force exerted on a moving particle by the surrounding fluid,
it is needed to solve the continuity and Navier-Stokes equations with the appropriate boundary
and initial conditions. However, when the Reynolds number (based on the particle velocity and
diameter) is sufficiently low (Re ≪ 1), the nonlinear inertial terms can be ignored. In this way
the Navier-Stokes equation is reduced to the unsteady Stokes flow equation. Landau and Lifshitz30

solved this equation for a spherical particle starting to move at t = 0, in an infinite domain of fluid,
using boundary conditions of no-slip on the particle surface (u⃗ = 0 at r = R) and free flow velocity
in the far field (u⃗ = U⃗ at r→ ∞). They determined the total force applied on the particle by the
surrounding fluid as31

Ff =
9µυp

2R2
(V −U) +

1
2
ρ fυp

dV

dt
−

3
2
ρ fυp

dU

dt
+

9ρ fυp

2R



νf

π

t

0

(
dV

dτ
−

dU

dτ
)

dτ
√

t − τ
, (9)

where V and U denote the particle and fluid free velocity, respectively, υp is the particle volume, τ
is a dummy time variable, and d/dt is the Lagrangian time derivative following the particle. For a
stagnant medium (U = 0), Eq. (9) simplifies to

Ff =
9µυp

2R2
V +

1
2
ρ fυp

dV

dt
+

9ρ fυp

2R



νf

π

t

0

dV

dτ

dτ
√

t − τ
. (10)

The first term in Eq. (10) is the well-known Stokes drag,

Fsd =
9µυp

2R2
V =

24
Re

1
2
ρ f AV 2 = 6πµRV, (11)
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and the second term is known as the conventional added (or virtual) mass force. This term is due
to the particle acceleration in the fluid medium. Indeed, the added mass is an inertia added to the
moving particle because it must accelerate (or decelerate) some volume of ambient fluid during its
motion. And the last one is the history force (or fading memory force) that is often called the Basset
force. It is caused by a temporary perturbation in the flow field created due to additional vortices
at the solid particle surface which result from the particle acceleration. In other terms, the unsteady
surface motion interacts with the developing boundary layer on the particle surface and results in a
viscous force additional to the steady motion one. Further information about the concept and impact
of the history force on the particle motion in various circumstances can be found in Refs. 31–37.
Particle to fluid density ratio (ρp/ρ f ) is a key parameter dictating the history force effect on the
particle motion. The smaller ρp/ρ f , the larger the history force effect. We did not account for the
history force in this study.

C. Particle-electrode hydrodynamic interaction (wall effect)

The particle motion in the vicinity of a solid wall is influenced by the wall. As a particle
approaches a solid wall, the interstitial liquid is squeezed out from the gap between the particle and
the wall, increasing the value of the hydrodynamic force on the particle.38 The wall changes the
form and pattern of streamlines around the moving particle and subsequently affects all terms of the
hydrodynamic force acting on the particle. In this section, we present the latest available modifica-
tion functions of wall effect on the steady drag and added mass forces acting on a moving spherical
particle. Note that the wall effect on the particle motion depends on the orientation of its motion
with respect to the wall, as well as on the Reynolds number. Here, only motion perpendicular to the
wall (towards or away from) is considered.

To take into account the wall effect, a common practice is to introduce a correction factor λw,
such that the steady Stokes drag force, Fsd = 6πµRU, is modified as

Fd = λwFsd. (12)

1. Wall effect on the steady drag for low Reynolds numbers (λS)

For a spherical particle moving perpendicularly towards or away from a solid plane wall with
constant velocity in a stagnant viscous medium having Reynolds number much less than unity, the
wall correction function, λS, was derived independently by Maude39 and Brenner40 by solving the
quasi-steady Stokes equation in a bi-spherical coordinate,

λS =
4
3

sinh(α)
∞


n=1

n(n + 1)
(2n − 1)(2n + 3)


2 sinh(2n + 1)α + (2n + 1) sinh 2α

4sinh2(n + 1
2 )α − (2n + 1)2 sinh2 α

− 1
 , (13)

where α = cosh−1(H) and the subscript S in λS refers to the Stokes flow. It is important to note
that although λS has been derived disregarding the inertial terms in the Navier-Stokes equation, as
Brenner40 discussed in his seminal work, its validity goes substantially above 0.5, the value nor-
mally cited as the upper limit of Stokes’ law for an unbounded fluid. In this study the instantaneous
Reynolds number is considerably low near the electrodes but it grows up to 1 ∼ 2 in the middle of
the interelectrode distance.

The following function gives a very good approximation to the exact formula for the entire
range of gap between the particle surface and the wall (S = h1/R − 1 for the lower electrode and
S = h2/R − 1 for the upper one),

λS = 1 +
1
S
+

3
19S + 4

. (14)

The wall effect correction function obtained from Equations (13) and (14), as well as experimental
data of Adamczyk et al.,41 has been depicted in Figure 3(a). As it is seen, there is a very good
agreement among three of them. Therefore, Eq. (14) can be used in calculations of the proposed
model instead of the complicated formula Eq. (13) without losing accuracy. Figure 3(b) indicates
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FIG. 3. Wall correction function. Comparison among results of Eq. (13), Eq. (14), and experimental data (a). Comparison
between the nearest wall and wall-superposition approximations (b).

that the particle-wall interaction starts to influence the particle motion at a distance equal to nearly
ten times the particle diameter. This means that the drag force acting on a typical particle with
D = 1 mm submerged in a parallel electrode system with 10 mm inter-electrode distance will be
continuously affected by the presence of electrodes via the wall effect on the whole gap. Hence, it
seems that λS plays an important role in the up and down motion of conductive particle submerged
in a viscous liquid.

In order to take into account the simultaneous influence of both electrodes on the particle
motion, one approximate approach is to superimpose the effect of both single electrodes,

λsup = λ1 + λ2 − 1, (15)

in which λ1 and λ2 are the wall effect correction functions of the nearest and farthest electrodes,
respectively. The unity has been subtracted from the right side of Eq. (15) in order to avoid
the double counting of the drag force applying on the particle in an unbounded medium. Since the
governing equations for the creeping flow (steady Stokes equations) are linear, it seems that the
wall-superposition approximation is a reasonable method to take into account the simultaneous
influence of both electrodes. The nearest wall and wall-superposition approximations have been
compared in Figure 3(b) for R = 1 mm, and d = 10 mm. As it is clear, they give the same magni-
tudes in the vicinity of the wall. The wall-superposition approximation predicts slightly greater
values in the central region.

2. Wall effect on the added mass force (λam)

As it has been said, the added mass force is due to the acceleration of the fluid caused by the
particle motion. Obviously, when a particle is accelerated in an unbounded medium, the surround-
ing fluid can displace freely in every direction. However, the existence of a wall in the vicinity of
the particle would restrict the displacement of the fluid, causing an increase of the added mass force.
In spite of this consideration, it has been shown that, in the case of a spherical particle normally
approaching to a solid plane wall, the added mass enhancement is small. For example, in an inviscid
flow, the wall effect imposes a factor of (1 + 0.375/H) to the unbounded one, corresponding to a
maximum enhancement of 37.5%.33 Most recently, Simcik and Ruzicka42 conducted a 3D numer-
ical simulation of full Navier-Stokes equations and obtained an accurate correlation for the added
mass force acting on a spherical particle near a solid wall as

Fam = (
1
2
+

0.1785
H

)ρ fυ
dV

dt
, (16)
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which gives a wall modification factor as

λam = 1 +
0.357

H
. (17)

We use Eq. (17) as the wall modification factor of the added mass force in our calculations every-
where is needed.

It is worth to note that according to Eq. (17) the maximum value of λam is equal to 1.357, which
corresponds to the moment of contact between the particle and the wall (i.e., H = 1). Therefore,
based on the analysis of Simcik and Ruzicka,42 the added mass force will increased just up to 37%
which is not much in comparison with the wall effect on the steady drag (see Eq. (13) or Eq. (14)).
So it seems that the steady drag force modified by the wall correction function (λS) is completely
dominant near the wall and wall effects on the added mass forces can be reasonably neglected.
However, we did include it in our calculations in order to give a quantitative comparison.

IV. PARTICLE–WALL COLLISION AND REBOUNDING PROCESSES

Particle–wall as well as particle–particle collisions have an effective impact on liquid–solid
flows because they influence inter-phase transportation phenomena.43 Particularly, particle–wall
collisions would affect the heat transfer rate between a submerged surface and its surrounding
medium by thinning the thermal and viscous boundary sublayers. The change in particle velocity
after rebounding defines the restitution coefficient as

kr =
Vr

Vi

, (18)

where Vi and Vr denote the particle velocity before and after a rebound, respectively. It should be
noted that the impact velocity in a viscous medium is defined in a somewhat different way from
that of a dry collision. In the viscous case, contrary to the dry collision case, the impact velocity is
not the particle velocity in the moment just before the real physical contact. What is taken as the
impact velocity is the maximum particle velocity before the rebound. In a gaseous environment,
the maximum particle velocity is the same as the particle velocity at the real contact. This is not
true for a viscous collision due to a sudden and sharp decrease in the particle velocity right prior
to its collision with the wall.44,45 Such an enormous reduction in the approaching particle velocity
is originated from the particle-wall interaction, which is brought about by a lubrication effect due
to the interstitial liquid and can be quantified by the correction function, λS (for the Stokes flow),
represented in Eq. (13). The restitution coefficient is often expressed as a function of the ratio of the
particle inertia to viscous forces, namely, the Stokes number,

St =
1
9

ρp

ρ f

Rei, (19)

where Rei = ρ fViD/µ f is the particle Reynolds number based on the impact velocity Vi. Almost
all the experimental studies indicate that there is a critical Stokes number, Stc ≈ 10, below which
no rebound occurs.44–47 In the current study, the Stokes number is quite smaller than Stc ≈ 10.
Therefore, the restitution coefficient is not considered.

V. MODELING APPROACH AND EQUATION OF MOTION

In this section, first, we describe a model through which the microdischarge characteristics
are treated. Then the particle equation of motion is presented. Also, we talk about how the model
can be extended to intermediate Reynolds numbers. Finally, dimensionless form of the governing
equations is obtained, and all the relevant dimensionless groups are introduced and discussed.

A. Modeling of the electrostatic force

In order to take into account the microdischarge, an additional parameter, denoted by smd, is
introduced (see Figure 1). This parameter is the distance between the surface of the particle and the
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FIG. 4. The four segments considered in the computation of the particle trajectory.

electrode at which the electron avalanche caused by the local electric breakdown is produced. For
the computation of the electric force, it is convenient to divide the trajectory in four segments: AB,
BC, CD, and DA, as depicted in Figure 4. A and B are discharging points near the lower and upper
electrode, respectively. The dimensionless electric force is calculated in each segment according to
the structure below:

• point A to point B: use Eq. (7b) with h = h1,
• from point B to point C: use Eq. (7c) with h = h2,
• from point C to point D: use Eq. (7b) with h = h2,
• from point D to point A: use Eq. (7c) with h = h1.

Based on the structure above and Eqs. (7b) and (7c), the dimensionless electric force reads

for V ≥ 0 : λe(h,Qp, smd) =


g1(h,Qp) for h ≤ d/2

g2(d − h,Qp) for d/2 < h < d − (smd + R)

−g1(d − h,Qp) for h ≥ d − (smd + R)


, (20a)

for V < 0 : λe(h,Qp, smd) =


−g1(d − h,Qp) for h ≥ d/2

−g2(h,Qp) for smd + R < h < d/2

g1(h,Qp) for h ≤ smd + R


(20b)

where λe is a positive value when the particle travels from the lower discharging point to the
upper one (in the path A to C in Figure 4) and a negative value when it moves from the upper
discharging point to the lower one (in the path C to A in Figure 4). Thus it can be deduced that
during the upward motion when the particle arrives to the point C, the microdischarge takes place
and the electric force direction changes suddenly. As a result, the negative acceleration applying on
the particle tends to prevent the particle from more approaching to the near electrode. This situation
happens again in the downward motion when the particle reaches to the lower discharging point, A.
A typical microdischarge phenomenon near the lower and upper electrodes can be seen in Figure 5.

B. The particle equation of motion

The motion of a particle in a viscous fluid, which subjected to an electric field, is governed by

mph′′(t) =
−→
F f +

−→
F e +

−→
F g +

−→
F b, (21)

where h′′(t) = d2h(t)/dt2. With the above considerations, this equation can be rewritten as

(mp + λam

1
2
ρ fυp)h

′′(t) = −λwφRe(6πµR)h′(t) + λeE0Qmd − (mp − ρ fυp)g. (22)
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FIG. 5. A photograph showing the microdischarge phenomenon created by a 4 mm steel particle approaching to the lower
electrode (a) and the upper electrode (b). The particle has been submerged in silicon oil and subjected to E= 1 MV/mm.

The parameter, Qmd, is the amount of electrical charge acquired by the particle during the particle-
electrode “contact” (we put the word contact between quotation marks to emphasize that it is not
necessarily the mechanical contact). As we mentioned earlier in Section II B, in practice, Qmd might
be only a fraction of the corresponding theoretical value, Qth given in Eq. (4), rather than being
exactly the same as it. However, to the best knowledge of the authors, there is no theory to deter-
mine that Qmd equals to what fraction of Qth. In Subsection VII C, we will describe an approach by
which the exchanged charge, Qmd, can be obtained from the experimental position-time data.

The function φRe = 1 + 0.15Re0.687 is commonly used to modify the Stokes’ drag force to
include intermediate Reynolds numbers (0.1 < Re < 1000).48 Also, an appropriate wall correction
function is needed to account the wall effect on the hydrodynamic force in high or intermediate
Reynolds number regime. One would use the following Cox-Brenner49 function:

λC−B =
1
S


1 +

1
5

(

1 ±
1
2

RU

νf

)

S ln
1
S


, (23)

where positive and negative signs are for the approaching and rebounding particles, respectively.
However, it should be noted that Eq. (23) is held just for S ≪ 1. To the best knowledge of the
authors, there is no explicit expression for the wall correction factor when S is not very smaller
than unity. One possible expensive way is numerical solution of the full Navier-Stokes equations,
but another approximate approach for higher Reynolds number is matching φRe and λC−B in a
point (Sswitch), where the two correction factors φRe and λC−B converge to the same magnitude. This
method has been described in Ref. 50. In spite of agreement between predictions of this method and
experimental data of Ref. 50, one should be careful when using it because, firstly, in this approach
the wall correction factor has been restricted to very small values of S, and secondly, as we tried a
smooth transition from φRe to λC−B at Sswitch is not guaranteed always.

For low Reynolds number, λw = λS. Also, φRe can be removed from Eq. (22), accordingly we
have

(mp + λam

1
2
ρ fυp)h

′′(t) = −λS(6πµR)h′(t) + λeE0Qmd − (mp − ρ fυp)g, (24)

where the modification factors λe, λS and λam are given in Equations (7a), (13) or (14), and (17).
Note that in order to remove the effect of any modification factor it suffices to make it equal to 1 in
Eq. (24). The particle velocity is given by V (t) = d(h(t))/dt (note that V > 0 and V < 0 stand for
the upward and downward motion, respectively).
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C. Dimensionless form of the governing equation and discussion

Dimensionless form of Eq. (24) can be obtained by using appropriate scales for length, veloc-
ity, and time. Since the particle radius (R) is used for calculating of all the relevant forces, it can be a
suitable scale for the length. Also, the terminal velocity of a charged particle (with charge Q0) which
moves in an unbounded medium under the action of a uniform electric field, E0, and Stakes drag is
a good choice for the velocity scale, i.e., V∞ = E0Q0/6πµR. After substitution of Q0 from Eq. (1),
it reads V∞ = π2εRE2

0/9µ. Finally the time can be dimensionlessed by t∞ = R/V∞ (i.e., θ = t/t∞).
Using these scales, Eq. (24) is dimensionlessed as

ΠI

d2H

dθ2
= −λS

dH

dθ
+ λe − Πg , (25)

where

ΠI =
π2

81
(ρp + λam

1
2
ρ f )

εR2E0
2

µ2
(26)

and

Πg =
2
π2

(ρp − ρ f )gR

εE0
2

. (27)

Surprisingly, Πg is exactly the same as the particle apparent weight to the electric force ratio,
i.e., Πg = (mp − m f )g/E0Q0. For conditions in which the up and down motion is possible, the
dimensionless number Πg should lie in the range 0 ≤ Πg < 1. As Πg → 1, the particle apparent
weight will more pronounced on the particle dynamics. Furthermore, it is clear in Eq. (27) that
Πg ∝ E−2

0 . This means that for fixed conditions, as the electric field is strengthened, the particle
behaves more similar to an equivalent buoyant particle. Also, since ΠI ∝ E2

0, the stronger electric
field amplifies the impact of the particle inertia. Therefore, one should be careful in removing the
particle inertia force from the equation of motion.

In addition to ΠI and Πg there are two other dimensionless groups that originate from the
electric force. One of them pertains to the position of the microdischarge event and the other to
the magnitude of charge obtained by the particle through the microdischarge. These dimensionless
groups are, respectively,

S̄md =
smd

R
(28)

and

ΠQ =
Qp

Q0
. (29)

These parameters appear in the dimensionless electric force as λe = λe(H,ΠQ, S̄md) (see Eq. (20a)).
S̄md pertains directly to the breakdown strength of the intestinal fluid. Unfortunately, details of the
microdischarge phenomenon in the under study problem are not known yet, and up to now there is
no theory to determine ΠQ in a general case. More recently Drews et al.51 have discussed on this
issue. Usually, ΠQ is considered as a free parameter in the proposed models to adjust their results
with experimental data. Generally, S̄md and ΠQ may be different for different electrodes due to the
difference in the topography and roughness height of the electrode surface. These groups together
with θc = tflight/τc form at least five and at most seven dimensionless parameters governing a typical
conductive particle dynamic in the under study configuration. Therefore

H = function(θ, θc,ΠI ,Πg , S̄md,ΠQ). (30)

VI. EXPERIMENTAL APPARATUS AND METHOD

In addition to the experimental data available in the literature, we carried out some experiments
for evaluation of the proposed model. A schematic diagram of the experimental setup is depicted in
Figure 6. A two-parallel-electrode system was constructed inside a cubic plastic box with internal
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FIG. 6. Schematic view of the experimental setup.

dimensions of 150 × 150 × 80 mm. The two flat stainless steel disks are of approximately 70 mm
diameter and 5 mm thickness. One of the disks was fixed to the bottom of the plastic box, while
the other one was hanged from the top of the box with a Teflon screw. The electrodes gap can
be adjusted by the Teflon screw in the range of 0 to 50 mm, with 0.1 mm accuracy. The edges
of both electrodes were smoothed out carefully in order to prevent any charge injection into the
surrounding liquid. A photograph of the test section is shown in Figure 7. The plastic box was
filled with the working dielectric liquid, submerging the electrodes and the conductive particle. The
upper electrode was connected to a DC high voltage power supply (SPELLMAN model: RHR4)
with positive polarity and the lower one was properly grounded. The magnitude of the high voltage
was controlled by an accurate high voltage probe having a resolution of 0.03% (VITREK, 4700
precision high voltage meter). A multimeter (Keithley 6517A) was used to measure continuously
the electric current passing through the liquid. A camera recorded the multimeter panel along each
test. Two spherical particles made of stainless steel with diameters of 2 and 0.5 mm and density of
7800 kg/m3 and 7820 kg/m3, respectively, were used throughout the tests. The particle motion was
observed through the transparent side walls of the plastic box and recorded by a high speed video
camera (PHOTORON, FASTCAM-ultima SE). The filming was carried out with 600 fps. MATLAB
image processing toolbox was utilized whenever it was needed to process the frames.

FIG. 7. Photograph of the test section.
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TABLE II. Parameters of the experimental cases.

Parameter Case-1 (Ref. 3)
Case-2 (Ref. 3 and

present work) Case-3 (A, B and C) (present work)

Dielectric liquid

Oil name Silicone oil (100 cSt) Silicone oil (100 cSt) Silicone oil (50 cSt) + A: No BA, B:
0.25 wt. % BA, C: 0.50 wt. % BA

ρ f (kg/m3) 960 960 950
µ (Pa s) 0.096 0.096 0.048

εr 2.5 2.5 2.5
σ (S/m) 1.3 × 10−12 1.3 × 10−12 A: 2.63 × 10−12, B: 1.30 × 10−11, C:

2.62 × 10−11

τc (s) 17.01 17.01 A: 8.416, B: 1.702, C: 0.845

Particle

Material Glassy carbon Steel Steel

2R (mm) 2 2 0.5

ρp (kg/m3) 1500 7800 7820

Parallel electrode
system

ϕ (kV) 8 10 12

d (mm) 10 10 20

VII. RESULTS AND DISCUSSION

In this section, first, the magnitude of charge transferred to the particle by the microdischarge
is discussed. Then, the effects of the microdischarge location (smd) on the particle dynamics are
presented based on the results obtained by solution of the particle equation of motion. Finally, a
comparison is made between the model predictions and some experimental data of the literature as
well as the present study. Input parameters and the dimensionless groups of all the studied cases are
given, respectively, in Tables II and III.

A. The charge transferred to the particle by the microdischarge

As it was mentioned previously, in the configuration under study, the charge transferred to
the particle during the microdischarge event, Qmd, can be calculated by Eq. (4) according to the
available theory. However, it seems that there is a contradiction in the literature about the amount
of the exchanged charge. While Khayari et al.23 and Tobazeon51 confirm the theoretical value, some
other researchers have claimed that the exchanged charge is just some fraction of Qth. For instance,
Drews et al.28–52 found the charge of Qmd = 0.602Qth and Qmd = 0.66Qth in agreement with their
experimental data carried out on micron sized particles. In a similar way, Choi et al.12 reported that
the experimental results of their study agree with their theoretical model if the acquired charge is
considered as 40%-60% of its theoretical value (i.e., ΠQ = 0.4–0.6). Surprisingly, in the current
study, we showed that their results can be predicted by assuming ΠQ = 1 for the upward motion and

TABLE III. Dimensionless parameters of all the studied cases characteriz-
ing the particle dynamic behavior.

Dimensionless groups
Experimental
cases ΠI Πg S̄md ΠQ θc =max{tflight}/τc

Case 1 0.371 0.076 0.002 1 and
0.81

0.010

Case 2 2.423 0.614 0.001 1 and
0.85

0.015

Case 3A 0.219 0.429 0.001 1 and
0.84

0.125

Case 3B 0.219 0.429 . . . 1 1.968
Case 3C 0.219 0.429 . . . 1 1.917
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FIG. 8. The dimensionless electric force acting on a particle located very close to the electrode with the same-sign charge of
value Qp.

ΠQ = 0.81–0.85 for the downward motion provided that the wall effect is taken into account (see
Figures 16 and 17).

By careful review of the mentioned works, one can find out that the tested particle size and
the acting forces are somewhat different. Here, we show that how the particle apparent weight
would influence the amount of charge obtained by the particle-electrode contact. In order to clarify
this point, we calculate the dimensionless electric force being exerted on the particle, λe, using
Eqs. (7a) and (7b), assuming a smaller acquired charge in the range 0.6Q0 ≤ Qp ≤ Q0. The results
are depicted in Figure 8 for a particle-electrode gap ranged from 1 µm to 55 µm. When Qp is
assumed to be less than Q0, the electric force decreases considerably as the particle approaches
to the electrode. Even, negative values are observed for Qp ≤ 0.8Q0, thus indicating an attractive
force. For example, suppose an occurrence of the microdischarge at smd = 10 µm. If we assume that
the particle acquires Qp = 0.6Q0, then the resulting force will be Fe ≈ 0.09E0Q0, which is much
smaller than the force required for lifting off the particle. Also, assuming Qp = 0.5Q0 leads to an
attraction force of value Fe ≈ −0.29E0Q0. Indeed, the lesser the acquired charge, the smaller the
repulsive electric force. Obviously, this behavior is due to the image charges and dipoles. In fact, for
a particle located at the vicinity of an electrode, as the particle charge decreases, the effect of image
forces is more pronounced.

For a given particle-electrode gap, there is a definite value of Qp below which the particle will
be attracted towards the electrode instead of being repelled. A three dimensional plot of λe (see
Figure 9) clarifies this issue. For example, if the charge transferred to the particle surface is less than
60% of its theoretical value (i.e., ΠQ ≤ 0.6), it will be attracted to the near electrode whenever the
dimensionless gap becomes smaller than 0.008 (S ≤ 0.008).

FIG. 9. Three dimensional plot of the dimensionless electric force as a function of the particle charge, Qp, and the
dimensionless gap, S.
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The minimum charge that the particle needs to be able to rebound (to lift) from the lower
electrode (Q

p,min
), can be determined by Fe ≥ Fg + Fb, which gives g1(Hmin,Qp)E0Q0 ≥ (mp −

m f )g, where Hmin is the particle center position at the instant of rebound (the instant that ve-
locity of particle switch sign). This inequality can be converted to an equality by replacing Qp

with Q
p,min

, i.e., g1(Hmin,Q
p,min

)E0Q0 = (mp − m f )g. Using Eqs. (27) and (28), it is simplified to

g1(Hmin,Q
p,min

) = Πg . After substituting g1(Hmin,Q
p,min

) from Eq. (7b), it results in a second order

polynomial equation as

π2

6
*,

Q
p,min

Q0

+-
2

f2(S̄min) + *,
Q

p,min

Q0

+- f1(S̄min) +
6
π2

f0(S̄min) − Πg = 0, (31a)

where Smin = Hmin − 1. A similar analysis is applicable for the particle bouncing (dropping) from the
upper electrode. In this case the necessary condition is Fe ≥ −(Fg + Fb). Indeed, for possibility of
the particle rebound from the upper electrode, the attractive electric force (negative force) should be
necessarily weaker than the particle apparent weight. Such a constrain results in

π2

6

(

Q̄p,min

Q0

)2

f2(S̄min) +

(

Q̄p,min

Q0

)

f1(S̄min) +
6
π2

f0(S̄min) + Πg = 0, (31b)

where Q̄p,min stands for the minimum charge required for the particle rebound from the upper
electrode and S̄min denotes the dimensionless minimum gap between the particle and the electrode at
the instant of rebound.

In Figure 10, the acceptable roots of Eqs. (31a) and (31b) are depicted as a function of S̄min

for different values of Πg . As it is observed, the minimum charge required for the particle while
bouncing from the upper electrode might be considerably smaller than that of the lower electrode.
Also, as expected, for a buoyant particle (Πg = 0), there is no difference between Q

p,min
and Q̄p,min.

But, as Πg increases their difference grows significantly. For a given condition, a weighty particle
may rebound from the upper electrode surface with less charge in comparison with a lighter one.
However, it should be noted that such conclusion is correct only when the rebound takes place at the
same S̄min for the two compared particles. Another remarkable result from Figure 10 relates to the
effect of S̄min on the minimum required charge. As seen irrespective of both the electrode location
(lower or upper one) and Πg value, lesser minimum separation at the instant of rebound requires
more charge for the rebounding particle.

FIG. 10. The minimum required charge as a function of the minimum particle-electrode gap at the instant of rebound for
different Πg .
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FIG. 11. Three distinct zones determining the possibility of the particle rebound from the upper and lower electrodes.

In Figure 11, the electric-to-apparent weight ratio is plotted versus ΠQ = Qp/Q0 for different
values of the minimum particle-electrode gap. As a general rule, three distinct zones are detectable. In
the zoneg1(Hmin,Qp)/Πg > 1, the particle rebound from both the upper and lower electrode is possible.
In the zone g1(Hmin,Qp)/Πg ≤ −1, the particle can rebound neither from the upper electrode nor from
the lower one. In the middle zone−1 < g1(Hmin,Qp)/Πg ≤ 1, the particle can separate from the upper
electrode and drop low, but it cannot lift from the surface of the lower electrode.

B. Post-microdischarge motion

In order to reveal the effect of the microdischarge on the particle dynamics, first we stud-
ied the length of the post-microdischarge motion, ∆hpmdm, for input parameters of the case 1 in
Table II. The particle trajectories were derived by solving Eq. (24) with the initial conditions:
h(0) = R + smin and h′(0) = 0 for different values of smd and E0 in the range 1 µm ≤ smd ≤ 100 µm
and 0.6 MV/m ≤ E0 ≤ 1.5 MV/m. Eq. (24) cannot be employed to predict the motion of a par-
ticle initially in full contact with the electrode, because as it is clear from Equation (13) or (14),
the wall effect correction function is singular at S = 0, representing no possible contact. In other
words, since S → 0 implies λS → ∞, it is essential to use a minimum distance for the particle-wall
gap, say smin. This strategy has been used by many researchers, for example, Drews et al.28 used
smin = 0.0247R (0.7 µm) in their modeling approach based on the assumption that the microdis-
charge takes place when the particle-electrode gap reduces to 0.7 µm (i.e., smd = 0.7 µm). Indeed,
they assumed that the particle motion is immediately reversed after the microdischarge. We eval-
uated this assumption and found out that it is correct when the microdischarge occurs in a point
very close (in the order of one micron) to the next electrode (see Figure 13). However, as dis-
cussed in Subsection II B, an earlier microdischarge can take place for many reasons, particularly
due to asperities on the particle and electrode surfaces. In that case, the “minimum distance” is
not exactly the same as the “microdischarge point,” and the particle can keep its direct motion
towards the facing electrode. For such cases, the “minimum distance” should be determined by the
post-microdischarge motion.

Variable time steps were utilized for solving the equation of motion. But in order to capture
precisely the details of the particle trajectory and velocity, a constant time step size of 1 µs was
used in the region close to the microdischarge position. Independency of the results was carefully
checked against the time step size. Residual of a typical solution is depicted in Figure 12. It is in the
order of 10−18 that indicates an excellent accuracy for the obtained numerical solution.

The results are shown in Figure 13 for the third microdischarge using logarithmic scale for x

and y axes. As seen, both smd and E0 can influence the length of the post-microdischarge motion.
A stronger electric field can drive the particle closer to the opposite electrode resulting in smaller
smin. However, the wall hydrodynamic effect acts on the opposite side and prevents the particle from
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FIG. 12. Residual of a typical numerical solution in the present study.

more advancing. Indeed, the competition between λe and λS determines the position of the reverse
point in the particle trajectory. It is clear from Figure 13 that ∆hpmdm decreases significantly with
decreasing smd, and ∆hpmdm ≈ 0 for smd ≤ 1 µm which conforms to the assumption of Drews et al.28

Generally, Figure 13 gives smin = f (smd), where f is a function between the microdischarge point
position, smd, and the possible minimum particle-electrode separation, smin. This function can be
used as the initial position of the particle in using the proposed model as

h|t=0 = R + smin where, smin = f (smd). (32)

(Also, instead of R + smin, one would use an arbitrary initial position for the particle. But, in that
case, it should be noted that the time evolution of the predicted trajectory is under the influence of
the particle’s initial position until the first microdischarge occurs. Thus, the experimental trajectory
should not be compared with the first cycle of the predicted trajectory because the experimental
data pertain to a consistent periodic bouncing motion of the particle.) We studied the trajectory of a
glassy carbon particle for three different values of smd: 100 µm, 10 µm, and 1 µm. The results were
derived by solving Eq. (24) with the initial conditions: h(0) = R + smin and h′(0) = 0, where smin

was determined by smin = f (smd) using Figure 13. All other parameters of the model were the same
as in case 1 (see Table II).

The particle trajectory, velocity, and acceleration are depicted in Figures 14(a)–14(c), respec-
tively. It is seen that the location of the microdischarge point can significantly influence the temporal
evolution of the particle trajectory. Table IV shows some relevant quantitatives. Focusing on the
case smd = 100 µm, as an instance, it is seen that right at tmd = 101.970 ms, the particle reaches
the position which has been previously specified for the microdischarge phenomenon (point C in
Figure 4). The particle velocity is almost Vmd = 47.14 mm/s, and it suddenly decreases to nearly
zero in an interval of ∆tpmdm = 583 µs. During this interval, the particle experiences a huge negative

FIG. 13. The length of the post-microdischarge motion, ∆hpmdm, as a function of smd and E0. Other parameters are the same
as case 1 in Table II.
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FIG. 14. Effect of the microdischarge phenomenon on the particle dynamics. (a) The particle trajectory; (b) temporal
evolution of the particle velocity; (c) dimensionless acceleration of the particle for smd= 1 µm (S̄md= 10−3) immediately
after the microdischarge near the upper electrode. Other input parameters are the same as in case 1.

acceleration and can move forward just 10 µm (∆hpmdm = 10 µm). Consequently, its distance from
the front electrode deceases from 100 µm to almost 90 µm. Therefore, the proposed model predicts
no physical contact between the particle and the electrode provided that the microdischarge happens
at smd = 100 µm. This is in agreement with the experimental observation reported in Ref. 23.
Overall behavior of the particle for the other two cases is similar to this case. But there is significant
change in quantitative values of the pertaining parameters, particularly in λe and ∆hpmdm. Compar-
ison between values of these two parameters demonstrates that lesser smd results in lesser ∆hpmdm.
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TABLE IV. Some parameters that characterize the particle dynamic behav-
ior after the microdischarge near the upper electrode.

smd (µm) S̄md λe tmd (ms) Vmd (mm/s) ∆tpmdm (µs) ∆hpmdm (µm)

100 10−1 3.24 101.970 47.14 583 10

10 10−2 15.06 123.666 24.53 121 0.9
1 10−3 83.87 142.516 13.78 16 0.05

This means that in a real case it is difficult to realize whether the particle rebound occurs after a real
contact with the electrode or not.

As seen in Figure 14(b), in the discharging point (point C in Figure 4), there is a sharp change
in the particle velocity. This is also clear from Table IV. As an instance, for smd = 1 µm, the particle
velocity decreases from Vmd = 13.78 mm/s to V ≈ 0 during an interval time of ∆tpmdm = 16 µs.
Such a very rapid change in the velocity causes a large discontinuity in the particle acceleration
as observed in Figure 14(c). This large discontinuity in the particle acceleration would cause the
history force to be important in the rebounding trajectory. (Remember that the history force contains
the acceleration term.)

An outcome of this section is the demonstration of the fact that the time and length scales of the
particle post-microdischarge dynamic are, respectively, microsecond and micrometer. This is a very
important result because such small time and length scales would influence the amount of charge
obtained by the particle through the post-microdischarge motion. Indeed, since the microdischarge
prevents the particle from a “mechanical” contact with the facing electrode, the charge exchange
occurs throughout a thin layer of the interstitial liquid. In this case, the time scale of the charge
exchange event might be comparable with that of the post-microdischarge motion. Based on such
hypotheses, in addition to the particle inertia, even the chemical properties of the dielectric liquid
plasma and roughness of the particle and electrode surfaces would play a role in the process of
charge exchange during the microdischarge event. Further theoretical and experimental investiga-
tions are needed to shed more light on the details of this issue. An appropriate discussion can be
found in Ref. 51. Due to very small time and length scales, a laser interferometry method55 is
required for capturing the details of the post-microdischarge motion.

Also, it should be noted that after the microdischarge, the viscosity of interstitial liquid may
change due to tiny bubbles which are produced because of vaporization of water content in the
liquid.24 Also any possible sudden change in the particle temperature can influence the viscous drag
force as explained in Ref. 53. We did not account for such effects in our study.

C. Comparison with experimental data and discussion

In order to use the proposed model, it is required to determine Qmd. Here, first we explain a
simple way to solve this issue. For applying this approach, at least three experimental data points,
representing the particle position-time, are needed. These data points should be quite close to each
other to save the accuracy. They would be extracted through image processing of the particle motion
in the middle of the interelectrode distance. Assume that the three data points are (ha,0), (hm, tm),
and (hb, tb), where, hm ≤ d/2 and 0 < tm < tb. Using these data, we have Va = (hm − ha)/tm, Vm =

(hb − hm)/(tb − tm), and V ′m = (Vm − Va)/tm. By applying Eq. (24) for upward motion of the particle
at h = hm, after some simplification, it reads

(mp + λam,m

1
2
ρ fυp)V

′
m = λe,mE0Q0 − (mp − ρ fυp)g − λS,m(6πµR)Vm. (33)

The parameters λam,m, λS,m and Q0 can be obtained, respectively, from Eqs. (17), (13), and (1) at
h = hm. By equating the dimensionless electric force λe,m, from Eqs. (33) and (7b), we have

6
π2

f0(Hm − 1) +

(

Qm

Q0

)

f1(Hm − 1) +
π2

6

(

Qm

Q0

)2

f2(Hm − 1)
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=
1

E0Q0


(mp + λam,m

1
2
ρ fυp)V

′
m + (mp − ρ fυp)g + λS,m(6πµR)Vm


, (34)

where Qm stands for Q at h = hm. Now, the value of ΠQ = Qmd/Q0 can be easily obtained from
Eq. (34). Since Qm = Qmd exp(−tm/τc), therefore

Qmd = ΠQQ0 exp(tm/τc). (35)

The above mentioned procedure is used for obtaining Qmd from Eq. (35) whenever the pro-
posed model is applied for the prediction of the particle trajectory.

Figure 15 shows a comparison between the predicted results of the model and the experimental
data for the trajectory and velocity of a glassy carbon particle of 2 mm diameter and of 1500 kg/m3

density submerged in silicon oil of 100 cSt viscosity. The data labeled as “experimental” velocity
in this and the following figures have not been measured directly. They have been calculated by
first order forward step differentiation using the experimental data of the particle trajectory. All the
required parameters are given in Table II under the column of case 1. These values are those re-
ported in Ref. 3. The dielectric constant and conductivity of the working liquid have not been given
in the mentioned reference, so we assumed the sounded values of ε = 2.5, σ = 1.3E − 12 S/m
which results in almost τc = 17 s for the charge relaxation time. The three experimental data points
(4.26 mm, 88.18 ms), (5.00 mm, 96.2 ms), and (5.83, 103.88 ms) were selected from the particle
trajectory graph given in Ref. 3 to be used for obtaining Qmd from Eq. (33). Thus, these data give
(ha,0) = (4.26 mm,0 ms), (hm, tm) = (5.00 mm,8.02 ms) and (hb, tb) = (5.83 mm,15.81 ms). Using
these data, it is resulted that Qmd = 0.99Q0. This is in contradiction with Qmd ≈ 0.4Q0 − 0.6Q0

FIG. 15. Numerical and experimental data of the glassy carbon particle motion (case 1); temporal evolution of the particle
trajectory (a) and the particle velocity (b). Numerical results were depicted by lines and obtained by using smd= 2 µm
(S̄md= 2×10−3).
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which has been reported in Ref. 3. In fact, simplification of the particle equation of motion particu-
larly, elimination of the wall effect, has caused such a significant error.

As seen in Figure 15, neglecting the wall effect (λS = 1) causes a very large error in predicting
the temporal evolution of both the trajectory and the velocity of the particle. In contrast, when the
wall effect is taken into account, the model results show good agreement with the experimental
data. In particular, the upward motion is predicted very well when an approximate value of 2 µm is
considered for the microdischarge point (S̄md = 2 × 10−3), which is a reasonable value. In contrast,
the downward motion is not well predicted by the model. As reported in Ref. 3, the glassy carbon
particle settles on the upper electrode for a while (tdwell ≈ 35 ms) before detaching from it. The
origin of this behavior is not clear yet. However, as seen in Figure 15(a) even after shifting the
rebound trajectory from t = 135.7 ms to t = 135.7 ms + tdwell, again considerable discrepancy exists
between the numerical prediction and the experimental data. Possible reasons are as follows: The
most probable reason for such disagreement is the charge transfer between the glassy carbon parti-
cle and the upper electrode. Probably less charge is transferred to the particle during the “collision”
with the upper electrode. Unfortunately, the charge exchange phenomenon in the configuration un-
der study has not been well understood up to now, and as we mentioned earlier in Subsection VII A,
there is a contradiction in the available literature in this regard and complementary investigation is
required to find more details. Here, a natural question comes to mind: Is there any special amount
of charge, Qmd,2, for which the proposed model predicts correctly the downward motion of the
particle? (Qmd,2 denotes for the particle initial charge at the instant of particle rebound.) The answer
is positive. Using try and error technique, we found that the downward motion can be correctly pre-
dicted assuming Qmd,2 = 0.81Qth as seen in Figure 16. This approach has been applied previously
in some models. For example, Bernanek et al.54 used the exchanged charge value as a free parameter
to adopt their model predictions with the experimental data. Figure 16 indicates that the reduction
of the particle charge in downward motion can significantly retard the particle downward trajectory.
We shall refer to Figure 8 in order to find out the reason for this considerable retardation in the
downward motion of the particle. As seen in Figure 8, when the particle is very close to the facing
electrode (some microns), even a little reduction in the particle charge can result in large decrease in
the repulsive electric force. Even attractive electric force can be achieved by extra reduction of the
particle charge which can stick the particle to the electrode and prevent from falling. It seems that
settling/dwelling time originates from the particle charging phenomenon.

In Figure 17, the numerical results of the present model are compared with the experimental
data for a steel particle of 2 mm diameter (case 2 in Table II). The electric potential is 10 kV (in
contrast to 8 kV in the case 1). Other parameters are the same as in case 2 and can be seen in
Table II. Two series of experimental data are seen in the figure. One of them has been adopted
from Ref. 3 (square symbols) and the other pertains to the present work (circle symbols). Three

FIG. 16. Comparison between the experimental and predicted trajectory in which the dimensionless parameter ΠQ has been
considered as free parameter for the upper electrode.
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FIG. 17. Numerical and experimental data of the steel particle motion (case 2). Temporal evolution of the particle trajectory
(a) and the particle velocity (b). The legend depicted in figure (b) holds for figure (a), as well. All the numerical results
have been obtained using smd≈ 1 µm (S̄md≈ 1×10−3). For better prediction of the experimental data, the model is run with
ΠQ = 0.85 for the downward motion of the submerged particle.

different frames showing the upward motion of the particle pertaining to the current study are shown
in Figure 18. Present experiment has been carried out with the same condition as Ref. 3. However,
as seen in Figure 17, there is a little difference between the two series of experimental data. Most
probably, this is due to a little difference in the viscosity of silicon oil (100 cS) which can occurr
due to a limited difference in temperature of the two laboratory. Such estimation is confirmed by
the model because the model results in a good prediction when it is run with a 5% lesser viscosity
(see dashed-dotted line in Figures 17(a) and 17(b)). Generally, the results in Figure 17 are similar to
the previous case. The position-time function is incorrectly predicted without taking the wall hydro-
dynamic effect into account (see Figure 17(a)). Very good agreement between the model numerical
results and the experimental data for the upward motion is observed implying Qmd = Qth (ΠQ = 1).
However, a little faster downward motion is predicted for Qmd = Qth. Again, and similar to the case
1, the particle-electrode charge exchange is responsible for such discrepancy. This minor defect is
improved by applying Qmd = 0.85Qth for the downward motion (V < 0).

Also, in order to show the effect of the particle apparent weight, we plot the trajectory and ve-
locity of an equivalent buoyant particle in Figure 17 (red dashed line). For this end, the solution code

was run with
−→
F g +

−→
F b = 0 (see Eq. (21)). In this case, there is no difference between the upward

and downward motion, and the only driving force is the electric force. Therefore, a comparison be-
tween E0Q0 and (mp − m f )g can produce a scale to determine the possible difference between the
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FIG. 18. Three different frames of the steel particle motion. The particle diameter and the gap between the two parallel
electrodes are 2 mm and 10 mm, respectively. The parallel electrode system and the particle submerged in silicon oil (100 cS).

upward and downward motion of a typical particle. The apparent weight to the electric force ratio is
2(ρp − ρ f )gR/π2εE0

2 which is exactly the same asΠg (see Eq. (28)). In Figure 19, period ratio of the
downward-to-upwardhalf-cycles,Td/Tu, is depictedasa function ofΠg . It is clear that asΠg → 1,more
difference appears between the upward and downward half-cycles periods in the particle trajectory.
The model predictions are in good agreement with the experimental data as seen in Figure 15.

FIG. 19. The period ratio of the downward-to-upward half-cycles as a function of apparent weight to the electric force ratio.
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In spite of very good prediction shown in Figures 15–17, it is important to note that the his-
tory force has been ignored in the model. It is known that the history force makes a delay in the
accelerated motion of a particle.31 Also, higher acceleration causes longer delay time. Although,
oftentimes the history force can be ignored without anxiety about the accuracy of the results, it is
important to note that in predicting the particle rebound trajectory, it might be important mainly
due to its old wake.55 This has been confirmed by some studies. For example, Gondret et al.33

conducted an experimental study on the bouncing motion of solid spheres onto a solid plate. They
compared some experimental data with numerical results and concluded that it is essential to take
into account the history force in prediction of the bouncing trajectory for Reynolds number up to
103. Rostamei et al.56 extended Gondret’s study in a similar way to higher Reynolds number and
found out similar result. They remarked that in prediction of the particle motion, from the starting
point of motion to the wall impact, the history force effect is small (about 1%–4.3%) and can
be ignored in comparison with the other hydrodynamic forces. But it significantly influences the
bouncing trajectory of the particle after the first collision, even for the Reynolds numbers as much
as 5000. Based on these findings, it deserves to investigate the history force effect on the particle
trajectory in the configuration under study. We will focus on this issue in our next work.

D. Effect of ionic conductivity of the working liquid

It is worthy of particular attention that the conductivity of the surrounding liquid would
strongly affect the particle dynamic behavior, since it determines the charge relaxation time and,
subsequently, the Coulomb force. Therefore, it is very important to have a sufficiently accurate
value of the liquid conductivity for the correct prediction of the particle velocity and trajectory. On
the other hand, the conductivity of dielectric liquids would be affected by several agents including
chemical impurities, water content, temperature, strengths of the applied electric field, and even
the surface characteristics of the measuring electrodes.22,57 For instance, a very small amount of
impurities would increase the conductivity of a dielectric liquid over hundred times. So, it is desir-
able to measure the liquid conductivity in the same conditions of the test. For this reason, the ionic
conductivity was measured by two different methods including IRLAB system (model LDTRP-2)
and directly using the two parallel electrode system of our test cell. The measuring procedure in
our test cell was as follows. First, the plastic box and the electrodes were washed with cleaning
liquid and dried properly. Then, an adequate amount of the sample liquid was poured into the plastic
box. After adjusting the gap between electrodes, a DC voltage of a given value ϕ was applied on
the upper electrode and the consequent electric current, I, was recorded by the multimeter after
almost 2 minutes (steady state). The conductivity was calculated by σ = (A/d) (ϕ/I) in which A is
surface area of the electrode and other parameters are as before. There was no significant difference
between the values given by IRLAB and the one measured by our system for low values of the
applied voltage. However, the electric current showed deviations from the Ohmic behavior for
voltages high enough. For the computations, we used the value of the liquid conductivity obtained
using the parallel electrode system.

A series of experiments were conducted in order to examine the effect of fluid ionic conduc-
tivity on the dynamic behavior of the particle. All parameters pertaining to these experiments have
been given in Table II (case 3 A, B, and C). We used a small amount of butyl-alcohol as an additive
to increase silicon oil conductivity. The results are depicted in Figure 20. First of all, it is observed
that there is a very good agreement between the experimental data and the results obtained by
the model. Such agreement demonstrates that the model has much predictive value. Note that in
Figure 20(a) for each time t, the reported corresponding experimental data, h, have been derived
by an arithmetic averaging of several data points (usually more than five). As seen in Figure 20(a),
when the surrounding liquid is pure silicon oil with a conductivity of σ = 2.63E − 12 S/m (case
3A), the particle keeps its upward motion until it collides with the upper electrode and then re-
bounds downwards. In this case the charge relaxation time is τc = 8.4 s, which is sufficiently larger
than the upward motion time (θc = 0.125). So the charge leakage does not modify the electric force
during the particle motion. However, by adding 0.25 wt. % butyl-alcohol into the pure sample oil, its
conductivity increases nearly five times (σ = 5.22E − 11 S/m) which leads to τc = 1.7 s (case 3-B).
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FIG. 20. Effect of liquid conductivity on the particle dynamics. (a) Temporal evolution of the particle trajectory, (b) ve-
locity of the particle. Lines correspond to the output of the current model and symbols show the experimental data.
σ = 2.63E −12 S/m (black line), σ = 5.22E −11 S/m (red line), σ = 2.62E −11 S/m (blue line). Other parameters can
be found in Table II, Cases 3A-3C.

In this case, θc = 1.968. Thus, considerable charge leakage takes place, which gradually weakens
the Coulomb force. As a consequence, the particle cannot continue its upward motion and falls
down from h = 12.97 mm. In the next case (case 3), which contains more butyl-alcohol (0.5 wt. %),
the flight-to-charge relaxation time is θc = 1.917, which in turn results in a sooner falling of the
particle. It turns back from h = 5.17 mm. It is important to note that trajectory of the downward
motion of the moving particle is better predicted using Qmd = 0.84Qth instead of Qmd = Qth (see
dashed green line in Figure 20(a)). Therefore, it can be deduced that similar to the previous cases,
the particle obtains a little less charge from the upper electrode.

The particle velocity versus its position is shown in Figure 20(b). Similar to the other cases
(see Figures 15(b) and 17), a particle velocity reduction is observed near the electrodes. This effect
is a consequence of the wall hydrodynamic effect on the approaching particle. The present model
predictions are in good agreement with the experimental data. Note that the data dispersion in the
velocity profile (Figure 20(b)) comes from the first order differentiation of the trajectory data and
can be reduced by increasing the number of data.

From these data, it can be deduced that τc plays a very important role in the particle dynamic
behavior, particularly whenever its value is of the same order of the particle flight time. Therefore,
the presence of a tiny amount of impurities in the surrounding liquid, or even on the particle surface,
would significantly change the particle behavior. This convinces us that precise measurements of
the surrounding liquid conductivity are an essential part of any experimental study related to this
field.
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VIII. CONCLUSIONS

A simple and effective model was built for predicting the trajectory of the up and down motion
of a conductive spherical particle submerged in a dielectric liquid subjected to a charge-free and
uniform DC electric field on a parallel electrode system. Both hydrodynamic and electric interac-
tions between the moving particle and the electrodes were taken into account, assuming the Stokes
flow regime. Furthermore, the microdischarge effect on the rebound trajectory of the particle was
included in the model, by accounting the sudden change of the magnitude and instantaneous reverse
of the orientation of the electric force immediately after the microdischarge event. Outputs of the
model were compared with some experimental data available in the literature, as well as with
some additional experimental data obtained through the present study. Generally, good agreement
was observed between the model predictions and the experimental data. The limited discrepancies
may be attributed to the value of the charge transferred to the moving particle by the microdis-
charge phenomenon and the so-called history force. It was found out that the wall hydrodynamic
effect and the dielectric liquid ionic conductivity are the most important factors in the prediction
of the particle trajectory. It was shown that how the particle apparent weight may influence its
dynamic behavior via the charge exchange phenomenon and how the microdischarge phenomenon
can change the particle rebound trajectory. A lower bound was derived for the charge transferred
to the particle while rebounding from an electrode. It is found that the time and length scales
of the post-microdischarge motion of a millimeter sized particle can be as small as microsecond
and micrometer, respectively. Based on these very small scales, the post-microdischarge motion
was introduced as a possible reason for discrepancy between the experimental and the theoretical
amount of the particle charge. The model is able to predict the so-called settling/dwelling time
phenomenon for the first time.
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