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Abstract

This work deals with the modeling of laminated composite and sandwich shells
through a variable separation approach based on a Reissner’s Variational Mixed
Theorem (RMVT). Both the displacement and transverse stress fields are approximated
as a sum of products of separated functions of the in-plane coordinates and the
transverse coordinate. This approach yields to a non-linear problem that is solved by an
iterative process, in which 2D and 1D problems are separately considered at each
iteration. In the thickness direction, a fourth-order expansion in each layer is used. For
the in-plane description, classical Finite Element method is used. Numerical examples
involving several representative shell configurations (deep/shallow, thick/thin) are
addressed to show the accuracy of the present method. It is shown that it can provide
quasi-3D results less costly than classical LW computations. In particular, the estimation
of the transverse stresses, which are of major importance for damage analysis, is very
good.
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Introduction
Composite shells are widely used in the industrial field (aerospace, automotive, marine,
medical industries...) due to their excellent mechanical properties, especially their high
specific stiffness and strength. For composite design, accurate knowledge of displacements
and stresses is required. One way consists in considering the three-dimensional modeli-
sation. However, due to the complexity of such numerical simulations, it is desirable to
take advantage of the geometric ratios and to represent the problem as a two-dimensional
model by referring to shell theories. There are two ways to define the approximation of
the displacement field. A “pure shell” model can be considered in which the displacement
is associated with the local curvilinear vectors, and strain and stress are deduced using the
differential geometry [1]. Alternatively, the shell-like solid approach [2] is widely used to
formulate shell Finite Element (FE), in particular in commercial software. In this case, the
displacement vector is defined in the global cartesian frame. The jacobian matrix trans-
formation is used to express strain and stress with respect to the reference frame defined
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on themiddle surface in order to introduce the constitutive law.With respect to the “pure
shell” approach, differentiation is simplified and the curvatures need to be directly cal-
culated [3]. The development of efficient computational models for the analysis of shells
appears thus of major interest.
According to the published research, various theories for composite shells have been

implemented in the FEM framework. Most of the works mentioned in the subsequent
literature overviewwill refer to “pure shell”models restricted to a linear analysis. Following
Reddy [4], two families of models can be identified:

• The Equivalent Single LayerModels (ESLM), to which belong the Classical Shell The-
ory (CST/Koiter) and First Order Shear Deformation Theory (FSDT/Nagdhi). The
reader can refer to [5] for a detailed description of the assumptions on the strain
field to derive different shell models. CST leads to inaccurate results for composites
because both transverse shear and normal strains are neglected, see [6–8] for shallow
laminated shells. FSDT is themost popularmodel due to the possibility to use a C0 FE,
but it needs shear correction factors and the transverse normal strain is still neglected
(cf. [9–12]). So, Higher-order Shear Deformation Theories (HSDT) have been devel-
oped to overcome these drawbacks. Different kinematics including 7 [13,14] or 9
parameters [15] have been proposed. Reddy has derived a 5 parameter model starting
from a third-order theory by considering the homogeneous top/bottom conditions
for the transverse shear stresses [16]. Note also the variable kinematics approach
based on the Carrera’s Unified Formulation developed in [17,18].
In the ESLM context, a simple way to improve the estimation of the mechanical
quantities consists in adding one zig–zag function, calledMurakami’s function, in the
expression of the displacement. In this way, the slope discontinuity at the interface
between two adjacent layers is introduced. It allows to describe the so-called zig–zag
effect. It has been carried out in conjunction with the FSDT in [19] and [20] based on
dedicated mixed formulation. It has been also used with the HSDT in [21] and [22]
including 9 and 13 parameters, respectively.

• The Layer-Wise Models (LWM), in which the expansion of the mechanical quan-
tities is defined over each layer independently. Some of these works are based on
a linear distribution of the in-plane displacements through each layer, without tak-
ing into account the transverse normal stress. The transverse displacement can be
constant across the whole thickness, such as in [23,24], or in each layer separately,
as in [25]. But, this type of approach fails to predict accurate transverse stresses,
unless using dedicated post-processing steps [24]. Thus, higher-order approaches
taking into account the transverse normal effect have been developed. The three-
dimensional constitutive law is used. Second-, third- and fourth-order expansions are
discussed in [4,26,27]. In this framework, Kulikov [28] has developed the sampling
surfaces method, see also the previously mentioned work [18]. In all the aforemen-
tioned LWM, the number of unknowns depends on the number of layers, which may
thus affect the performance in terms of computational cost.

As an alternative, refined models have been developed in order to improve the accuracy
of ESL models avoiding the additional computational cost of LW approach. Starting from
a LW expansion, enforcing the interlaminar continuity of the displacement and trans-
verse shear stresses, as well as the homogeneous top/bottom conditions, the number of
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unknowns becomes independent of the number of layers. The deduced model can be
derived from the CST [29], as well as from an HSDT with a third-order theory [30–33]
or the sinus model [1]. The number of parameters of the resulting displacement model
varies from 5 to 15. We can also cite two other approaches where only the displacement
continuity [34] or the top/bottom conditions [16] are satisfied. While the above refer-
ences propose models still relying on the 2D constitutive law, the papers [35,36] extend
the zig–zag approach to include the transverse normal stress.
It should be noted that the mentioned works are based on the Finite Element method

for linear elasticity problem in mechanics and applied to laminated composites, knowing
that many other approaches (meshless, analytical, semi-analytical...) are involved in open
literature. Furthermore, the fundamental subject about the shear and membrane locking
of shell is not addressed here. So, this above literature deals with only some aspects of
the broad research activity about composite shells. An extensive assessment of different
approaches for various theories and/or finite element applications can be found in [37–45]
and more recently in [46].
Nevertheless, in the framework of the failure analysis of composite structures, involving

the free edge effect for instance, the prediction of the interlaminar stresses is of major
interest. In particular, the difficulty is to well-describe the interlaminar continuous trans-
verse stresses. Most of the ESLM fail to represent these in the most critical cases, unless
using a post-processing treatment [11,24,47–49]. To overcome these drawbacks, alter-
native formulations to the displacement-based approach have been developed. On the
one hand, several techniques have been devised to correct the transverse shear locking
pathology affecting FSDT-based plate/shell elements, most of which can be stated from
hybrid-mixed approaches [50]. For composites, an assumed strain approach has been
adapted in a FSDT [51] or in a LWM [52]. On the other hand, assumed partial/complete
stress field over the laminate thickness independently aims at increasing the accuracy of
this one. Without considering the transverse normal stress, some authors [53,54] have
adopted a partial hybrid stress approach based on the HellingerReissner Variational Prin-
ciple (HRVP). Using a HSDT approach for displacements, Yong [53] has developed a
generalized stress assumption for the transverse shear stresses only, whereas in-plane
stresses are also involved in [54]. Alternative hybrid approaches take into account the
transverse normal effect. The Fraeijs de VeubekeHuWashizu multifield variational prin-
ciple [55,56] and the Reissner Mixed Variational Theorem [57] are used assuming the
transverse shear stresses only. Note that Sgambitterra et al. [14] have introduced amixed-
field assumptions (γα3 and σ33) to derive a hybrid formulation enforcing the compatibility
straindisplacement relations to be least-squares compatible through the shell thickness.
As a complement to these hybrid methods, mixed formulations are addressed in conjunc-
tion with FSDT [58] (HRVP) or including the Murakami’s zig–zag function [20] (Jing and
Liao’s functional [59]). An advanced method is proposed in [60] by considering all inter-
laminar stresses between two adjacent layers as primary variables and also a higher-order
LW displacement.
In the same way, the partially Reissner’s Mixed Variational Theorem (RMVT) assum-

ing two independent fields for all displacement and transverse stress variables allows to
ensure a priori interlaminar continuous transverse stress fields. The consideration of the
transverse normal stress as an independent assumed variable seems to be important to
obtain accurate distributions through the thickness of the shell (see e.g. [55]). The RMVT
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approach comes from the works of Reissner, see [61,62]. It was first applied for multi-
layered structures in [63] and then, in [64] with higher order displacement field and [65]
with a Layerwise approach for both displacements and transverse stress fields. Afterwards,
the approach was widely developed with a systematic approach based on the Carrrera’s
Unified Formulation to provide a large panel of 2Dmodels for composite structures based
on ESL and/or LW descriptions of the unknowns [66–68]. It has been also applied for
shell structures in [69–71]. Note that the reader can refer to [27] for a survey on RMVT
in this framework, and to [37,72] for a further discussion.
In the present work, the RMVT is considered because it is a natural variational tool for

composite structures as it allows to formulate independent approximations for mechani-
cal variables that are required to be continuous across the stacking direction. It is used in
conjunctionwith a variable separationmethod, namely the ProperGeneralizedDecompo-
sition (PGD). Themain purpose consists in taking advantage of this promising approach to
decrease the high computational cost of a LW approach. In fact, interesting features have
been shown in the model reduction framework [73–75]. So, the aim of the present paper
is to assess this particular representation of the unknowns in the framework of a mixed
formulation to model cylindrical laminated and sandwich shells. Both displacements and
transverse stresses are written under the form of a sum of products of bidimensional
polynomials of (ξ1, ξ2) and unidimensional polynomials of z. A piecewise fourth-order
Lagrange polynomial of z is chosen across the thickness of each layer. As far as the vari-
ation with respect to the in-plane coordinates (ξ1, ξ2) is concerned, a 2D eight-node
quadrilateral FE is employed.With the PGD approach, each unknown function of (ξ1, ξ2)
is approximated using one degree of freedom (dof) per node of the mesh and the LW
unknown functions of z are global for the whole shell. This process yields to two sep-
arate linear problems, i.e., a 2D problem in (ξ1, ξ2) and a 1D problem in z, in which
the number of unknowns is much smaller compared to a classical Layerwise approach.
These two problems are solved successively within an iterative scheme. The interest-
ing feature of this approach lies on the possibility to have a higher-order z-expansion
and to refine the description of the mechanical quantities through the thickness with-
out substantially increasing the computational cost. This is particularly suitable for the
modeling of composite structures. Note that this method has been successfully applied to
displacement-based plate/shell models in [76–79] and also to RMVT plate models in [80].
We now outline the remainder of this article. First, the shell definition and the differen-

tial geometry are recalled. The RMVT formulation is described and the separation of the
in-plane and out-of-plane displacements/ transverse stresses is introduced. The principles
of the PGD are precised in the framework of our study. The particular assumption on the
assumed variables yields to a non-linear problem, that is solved within an iterative pro-
cess. The FE discretization is also described and finally, numerical tests are addressed. A
preliminary convergence study is performed. Then, the influence of classical shell assump-
tions on the strains and the number of numerical layers are studied. The approach is also
assessed for a wide range of applications: deep/shallow shells, cross-ply/angle-ply config-
urations, different slenderness ratios and different degrees of anisotropy for a sandwich
are considered. The accuracy of the results is evaluated by comparison with a 2D elasticity
solution from [81], or results available in the open literature [79,82,83].
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Fig. 1 The map �� and the local basis vectors �ai and �gi for a shell panel

Shell definitions and differential geometry
A shell C with a middle surface S and a constant thickness e, see Fig. 1, is defined by [84]:

C =
{
M ∈ R3 : �OM(ξ , ξ3 = z) = ��(ξ ) + z �a3; ξ ∈ �;−1

2
e ≤ z ≤ 1

2
e
}

where the middle surface can be described by a map �� from a parametric bidimensional
domain � as:

�� : � ⊂ R2 −→ S ⊂ R3

ξ = (ξ1, ξ2) �−→ ��(ξ )
(1)

In Fig. 1, the map �� describing the shell middle surface (in grey) and the local basis
vectors are presented. The basis vectors �ai are defined for a point on S and the basis
vectors �gi are defined for a generic point of the shell.
For a point on the shell middle surface, the covariant basis vectors defining the tangent

plane to the middle surface are usually obtained as follows:

�aα = ��(ξ1, ξ2),α ; �a3 = �a1 × �a2
||�a1 × �a2|| (2)

where �a3 is the unit normal vector to the surface S , see Fig. 1. In Eq. (2) and further on,
latin indices i, j, . . . take their values in the set {1, 2, 3} while greek indices α,β , . . . take
their values in the set {1, 2}. The summation convention on repeated indices is used and
partial derivative is denoted by (),α . A shell is characterized by the first fundamental form
aαβ and the second one bαβ . Their covariant, contravariant and mixed form definitions
are given by:

aαβ = �aα .�aβ aαβ = �aα .�aβ bαβ = �aα ,β .�a3 bβ
α = �aβ .�a3 ,α (3)

The contravariant vectors are constructed from the covariant ones using the following
equations:

�aα .�aβ = δα
β �a3 = �a3; �gα .�gβ = δα

β �g3 = �g3 (4)

where δα
β is the Kronecker symbol.

For a generic point of the shell, covariant basis vectors must be defined and we have

�gα = �OM(ξ , z),α = (δβ
α − zbβ

α) �aβ = μβ
α(z) �aβ and �g3 = �a3 (5)

where bβ
α is the mixed form of the second fundamental form. This basis �gi, illustrated

in Fig. 1, must be used to define quantities for any point of the shell. The form μβ
α(z)



Vidal et al. Adv. Model. and Simul. in Eng. Sci.            (2019) 6:7 Page 6 of 25

introduced in Eq. (5) defines the transport from the shell middle surface to any point of
the shell and is associated with the curvature variation along the thickness direction z of
the shell. The inverse tensor of the mixed tensor μβ

α is denotedmβ
α and is defined as:

mβ
α = (μ−1)βα = 1

μ
{δβ

α + z (bβ
α − 2Hδβ

α)} (6)

where we have introduced the determinant of the mixed tensor μ = det(μβ
α) =

1 − 2Hξ3 + (ξ3)2K and the invariants of the second fundamental form H = 1
2 tr(b

β
α)

and K = det(bβ
α). Finally, the surface element dS and the volume element dC are given

by:

dS = √
a dξ1dξ2 dC = μ dSdz (7)

where a is the determinant of the first fundamental form aαβ . The geometry of a shell
can also be defined using contravariant or mixed forms. Furthermore, covariant and con-
travariant differentiation involving Christoffel symbols are not detailed here and readers
can refer to the book [84].

Reference problem description
The definition of the strain field

For geometrically linear elastic analysis, the components of the strain tensor εij expressed
in the contravariant basis �ai are obtained through covariant differentiation, denoted |, as
follows:

ε = εij (�ai ⊗ �aj) with
2 εγλ = mβ

λ

(
uγ |β − bγβ u3

) + mα
γ

(
uλ|α − bλα u3

)
2 εγ 3 = uγ |3 + mα

γ

(
u3,α + bλ

α uλ

)
ε33 = u3,3

(8)

The mixed tensor mβ
λ carries out the transport from any point of the shell to the shell

middle surface, that is from �gi to �ai.

Constitutive relation

The stress tensor is obtained from the strain tensor using the constitutive equations. For
this purpose, all these tensors must be referred to the covariant and contravariant basis
vectors, �ai and �ai respectively, associated with the middle surface of the shell. In case of
laminated shells composed of orthotropic plies, this reference frame ensures to consis-
tently take into account the different material orientations of the layers. The tensorial
relation is:

σ ij = Qijkl εkl with σ ij (�ai ⊗ �aj), Qijkl (�ai ⊗ �aj ⊗ �ak ⊗ �al), εkl (�ak ⊗ �al) (9)

It should be noted that the stress tensor is defined in the covariant reference frame,
whereas the strain components are defined in the contravariant frame. If the frame is
assumed to be orthonormal then covariant and contravariant components are equal, that
is super-script and sub-script are interchangeable.
In the framework of the RMVT formulation, the Hooke’s law has to be rewritten under

a convenient mixed form.
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Firstly, stresses σ and strains ε are split into two groups:

σT
p = [σ11(ξ , z) σ22(ξ , z) σ12(ξ , z)], σT

n = [σ13(ξ , z) σ23(ξ , z) σ33(ξ , z)],
εTp = [ε11(ξ , z) ε22(ξ , z) γ12(ξ , z)], εTn = [γ13(ξ , z) γ23(ξ , z) ε33(ξ , z)]

(10)

where the subscripts n and p denote transverse and in-plane values, respectively.
The shell can be made of NC perfectly bonded orthotropic layers. Using the previous

assumptions and the separation between transverse and in-plane components, the three
dimensional constitutive law of the kth layer is given by:⎧⎨

⎩
σ
(k)
pH = Q(k)

pp εpG + Q(k)
pn εnG

σ
(k)
nH = Q(k)

np εpG + Q(k)
nn εnG

(11)

In this equation, the subscriptG indicates that the strain is issued from the geometrical
relations, whileH means that the quantities are calculated from the Hooke’s law.Q(k)

ij are
defined by

Q(k)
pp =

⎡
⎢⎢⎢⎣
Q(k)
11 Q(k)

12 Q(k)
16

Q(k)
12 Q(k)

22 Q(k)
26

Q(k)
16 Q(k)

26 Q(k)
66

⎤
⎥⎥⎥⎦ Q(k)

pn = Q(k)
np

T =

⎡
⎢⎢⎢⎣
0 0 Q(k)

13

0 0 Q(k)
23

0 0 Q(k)
36

⎤
⎥⎥⎥⎦ Q(k)

nn =

⎡
⎢⎢⎢⎣
Q(k)
55 Q(k)

45 0

Q(k)
45 Q(k)

44 0

0 0 Q(k)
33

⎤
⎥⎥⎥⎦

(12)

where Q(k)
ij are the three-dimensional stiffness coefficients of the layer (k).

Finally, RMVT is associated to a mixed form of Hooke’s law, which can be written as{
σpH = CppεpG + CpnσnM
εnH = CnpεpG + CnnσnM

(13)

The assumed transverse stresses are denoted as σnM . The superscript (k) and the coor-
dinates (ξ , z) are omitted for clarity reason.
The relations between the coefficients of the classicalHooke’s lawEq. (12) and themixed

one Eq. (13) are:

Cpp = Qpp − QpnQ−1
nn Qnp; Cpn = QpnQ−1

nn
Cnp = −Q−1

nn Qnp; Cnn = Q−1
nn

(14)

The weak form of the boundary value problem

The formulation of the problem is based on the Reissner’s partially Mixed Variational
Theorem [61], denoted RMVT. In this formulation, the Principle of Virtual Displacement
is modified by introducing the constraint equation to enforce the compatibility of the
transverse strain components. This term also depends on the assumed transverse stresses,
see also [17,72]. Thus, the problem can be formulated as follows:
Find u(M) ∈ U (space of admissible displacements) and σnM such that∫ ∫ ∫

C

(
δεTpGσpH + δεTnGσnM + δσT

nM(εnG − εnH )
)

dC =
∫ ∫

∂CF

δu · t d∂C
(15)

where t is the prescribed surface forces applied on ∂CF . The body force is not considered
in this expression.
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Fig. 2 Middle surface of the cylindrical shell

Application of the proper generalized decomposition to the cylindrical shell
In this section, we develop the application of the PGD for shell analysis with a mixed
formulation. This work is an extension of a previous study on composite cylindrical shell
structures [79].

The cylindrical geometry

A cylindrical shell (see Fig. 2) is described using the following map:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1(ξ1, ξ2) = R cos
(

ξ1

R

)

x2(ξ1, ξ2) = R sin
(

ξ1

R

)

x3(ξ1, ξ2) = ξ2

(16)

Following Eq. (3), the non-zero terms for the covariant and mixed forms are:

a11 = a22 = 1 b11 = b11 = − 1
R

μ1
1 = 1 + z

R
m1

1 =
(
1 + z

R

)−1
(17)

and μ = 1 + z
R
.

The displacement and transverse stress field

Let us denote ui(ξ1, ξ2, ξ3 = z) and σi3(ξ1, ξ2, ξ3 = z) the curvilinear components of
the displacement field and the transverse stresses respectively, associated with the con-
travariant basis vectors �ai. Let� and�z be the bidimensional domain associated with the
mid-surface of the shell [see Eq. (1)], and the unidimensional domain associated with the
normal fiber, respectively. The displacement and transverse stress fields are constructed
as the sum of N products of functions of in-plane coordinates and transverse coordinate
(N ∈ N is the order of the representation) according to

u =

⎡
⎢⎢⎣
u1(ξ , ξ3 = z)
u2(ξ , ξ3 = z)

u3(ξ , ξ3 = z)

⎤
⎥⎥⎦ =

N∑
i=1

⎡
⎢⎢⎢⎣

f i1 (z) v
i
1(ξ )

f i2 (z) v
i
2(ξ )

f i2 (z)f
i
3 (z) v

i
3(ξ )

⎤
⎥⎥⎥⎦ =

N∑
i=1

⎡
⎢⎢⎢⎣
f i1 (z)

f i2 (z)

f i3 (z)

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
vi1(ξ )

vi2(ξ )

vi3(ξ )

⎤
⎥⎥⎥⎦ (18)

σnM =

⎡
⎢⎢⎢⎣

σ13(ξ , ξ3 = z)

σ23(ξ , ξ3 = z)

σ33(ξ , ξ3 = z)

⎤
⎥⎥⎥⎦ =

N∑
i=1

⎡
⎢⎢⎢⎣
f iσ1 (z) τ

i
1(ξ )

f iσ2 (z) τ
i
2(ξ )

f iσ3 (z) τ
i
3(ξ )

⎤
⎥⎥⎥⎦ =

N∑
i=1

⎡
⎢⎢⎢⎣
f iσ1 (z)

f iσ2 (z)

f iσ3 (z)

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣

τ i1(ξ )

τ i2(ξ )

τ i3(ξ )

⎤
⎥⎥⎥⎦ (19)
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where (f i1 , f
i
2 , f

i
3 ), (f iσ1 , f

i
σ2 , f

i
σ3 ) are defined in �z and (vi1, v

i
2, v

i
3), (τ

i
1, τ

i
2, τ

i
3) are defined in �.

The “◦” operator is Hadamard’s element-wise product.
In this paper, a classical eight-node FE approximation is used in� and a LWdescription

is chosen in �z as it is particulary suitable for the modeling of composite structures.

The strain field for the cylindrical composite structure

The strain field in Eq. (8) is free of any approximated shell kinematics. These strain
components are simplified using Eq. (17) and we recover the following relations:

ε11 = 1
μ

(
u1,1 + 1

R
u3

)

ε22 = u2,2
ε33 = u3,3
γ23 = u2,3 + u3,2

γ13 = u1,3 + 1
μ

(
u3,1 − 1

R
u1

)

γ12 = u1,2 + 1
μ

u2,1

(20)

where covariant derivative becomes classical derivative for the case of a cylindrical shell.
Equation (18) must be introduced at this level in order to obtain the compatible strain

expansion along the normal coordinate z of the shell. So, we obtain:

εpG(u) =
N∑
j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ−1
(
f j1 v

j
1,1 + 1

R
f j3 v

j
3

)

f j2 vj2,2

f j1 v
j
1,2 + μ−1 f j2 v

j
2,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

εnG(u) =
N∑
j=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(f j1 )′ v
j
1 + μ−1

(
f j3 v

j
3,1 − 1

R
f j1 v

j
1

)

(f j2 )′ v
j
2 + f j3 v

j
3,2

(f j3 )′ v
j
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

where the prime stands for the derivative with respect to z (f ′
i = dfi

dz
), (),α indicates the

partial derivative with respect to ξα (α = 1, 2).

The problem to be solved

The resolution of Eq. (15) is based on a greedy algorithm. If we assume that the first m
functions have been already computed, the trial function for the iterationm+1 is written
as

um+1 = um +
⎡
⎢⎣
f1 v1
f2 v2
f3 v3

⎤
⎥⎦ = um + f ◦ v (23)

σm+1
nM = σm

nM +
⎡
⎢⎣
fσ1 τ1
fσ2 τ2
fσ3 τ3

⎤
⎥⎦ = σm

nM + f σ ◦ τ (24)
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where (v1, v2, v3), (τ1, τ2, τ3), (f1, f2, f3) and (fσ1 , fσ2 , fσ3 ) are the functions to be computed
and um, σm

nM are the associated known sets at iterationm defined by

um =
m∑
i=1

⎡
⎢⎣
f i1 v

i
1

f i2 v
i
2

f i3 v
i
3

⎤
⎥⎦ σm

nM =
m∑
i=1

⎡
⎢⎣
f iσ1 τ i1
f iσ2 τ i2
f iσ3 τ i3

⎤
⎥⎦ (25)

The test functions are

δ

⎡
⎢⎣
f1 v1
f2 v2
f3 v3

⎤
⎥⎦ =

⎡
⎢⎣

δf1 v1 + f1 δv1
δf2 v2 + f2 δv2
δf3 v3 + f3 δv3

⎤
⎥⎦ = δf ◦ v + δv ◦ f (26)

δ

⎡
⎢⎣
fσ1 τ1
fσ2 τ2
fσ3 τ3

⎤
⎥⎦ =

⎡
⎢⎣

δfσ1 τ1 + fσ1 δτ1
δfσ2 τ2 + fσ2 δτ2
δfσ3 τ3 + fσ3 δτ3

⎤
⎥⎦ = δf σ ◦ τ + δτ ◦ f σ (27)

with

v =
⎡
⎢⎣
v1
v2
v3

⎤
⎥⎦ f =

⎡
⎢⎣
f1
f2
f3

⎤
⎥⎦ τ =

⎡
⎢⎣

τ1
τ2
τ3

⎤
⎥⎦ f σ =

⎡
⎢⎣
fσ1
fσ2
fσ3

⎤
⎥⎦ (28)

The test functions defined by Eqs. (26, 27), the trial functions defined by Eqs. (23, 24),
and the mixed constitutive relation Eq. (13) are introduced into the weak form Eq. (15) to
obtain the two following equations:∫

S

∫
�z

[
εpG(f ◦ δv)T

(CppεpG(f ◦ v) + Cpn(f σ ◦ τ)
) + εnG(f ◦ δv)T (f σ ◦ τ)

+(f σ ◦ δτ)T (εnG(f ◦ v) − (CnpεpG(f ◦ v) + Cnn(f σ ◦ τ)))
]

μdz dS

=
∫
SF

(
(f ◦ δv)T t μ

)∣∣∣
z=zF

dS −
∫
S

∫
�z

[
εpG(f ◦ δv)T

(CppεpG(um) + Cpnσ
m
nM

)

+εnG(f ◦ δv)Tσm
nM + (f σ ◦ δτ)T (εnG(um) − (CnpεpG(um) + Cnnσ

m
nM))

]
μdz dS

(29)

∫
�z

∫
S

[
εpG(v ◦ δf )T

(CppεpG(v ◦ f ) + Cpn(τ ◦ f σ )
) + εnG(v ◦ δf )T (τ ◦ f σ )

+(τ ◦ δf σ )T (εnG(v ◦ f ) − (CnpεpG(v ◦ f ) + Cnn(τ ◦ f σ )))
]

dS μdz

=
∫
SF

(v ◦ δf )T t μdS
∣∣∣∣
z=zF

−
∫

�z

∫
S

[
εpG(v ◦ δf )T

(CppεpG(um) + Cpnσ
m
nM

)

+εnG(v ◦ δf )Tσm
nM + (τ ◦ δf σ )T (εnG(um) − (CnpεpG(um) + Cnnσ

m
nM))

]
dS μdz

(30)

For the present work, ∂CF is considered as the partial top or bottom surface of the shell,
that is z = zF with zF = ±e/2.
From Eqs. (29) and (30), a coupled non-linear problem is derived whose solution

is seeked by means of a fixed point method for simplicity reason. An initial function
f (0), f (0)σ is set, and at each step, the algorithm computes two new pairs (v(k+1), f (k+1)),
(τ(k+1), f (k+1)

σ ) such that

• v(k+1), τ(k+1) satisfy Eq. (29) for f , f σ set to f (k) and f (k)σ

• f (k+1), f (k+1)
σ satisfy Eq. (30) for v, τ set to v(k+1), τ(k+1)

These two equations are linear. The first one is solved on S , while the second one is solved
on �z . As in [80], the fixed point algorithm is stopped when the distance between two
consecutive solutions is smaller than a fixed value ε0.
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Finite element discretization

To build the shell finite element approximation, a discrete representation of the functions
(v, τ, f , f σ ) must be introduced. In this work, a classical finite element approximation in
� and �z is used. The elementary vector of degrees of freedom (dof) associated with one
element �e of the mesh in � is denoted qvτe , while the elementary dof vector associated
with one element �ze of the mesh in �z is denoted qffσ

e . The displacement, strain and
transverse stress fields are determined from the values of qvτe and qffσ

e by

ve = N ξqvτe , Ee
v = Bξqvτe , τe = N σξqvτe

f e = N zqffσ
e , Ee

f = Bzqffσ
e , f σ e = N σ zqffσ

e
(31)

where

Ee
v
T =

[
v1 v1,1 v1,2 v2 v2,1 v2,2 v3 v3,1 v3,2

]

and

Ee
f
T =

[
f1 f ′

1 f2 f ′
2 f3 f ′

3

]

ThematricesN ξ ,Bξ ,N z ,Bz ,N σξ ,N σ z contain the interpolation functions, their deriva-
tives and the jacobian components, respectively.

Finite element problem to be solved on�

For the sake of simplicity, the functions f (k), f (k)σ which are assumed to be known, will
be denoted f̃ , f̃ σ , respectively, and the functions v(k+1), τ(k+1) to be computed will be
denoted v and τ, respectively. The strains and the assumed transverse stresses in Eq. (29)
are defined as

εpG(f̃ ◦ v) = �
p
z (f̃ )Ev

εnG(f̃ ◦ v) = �n
z (f̃ )Ev

σnM(f̃σ ◦ τ ) = �
σnz (f̃σ )τ

(32)

with

�
p
z (f̃ ) =

⎡
⎢⎣
0 f̃1/μ 0 0 0 0 f̃3/(μR) 0 0
0 0 0 0 0 f̃2 0 0 0
0 0 f̃1 0 f̃2/μ 0 0 0 0

⎤
⎥⎦ (33)

�n
z (f̃ ) =

⎡
⎢⎣
f̃ ′
1 − f̃1/(μR) 0 0 0 0 0 0 f̃3/μ 0

0 0 0 f̃ ′
2 0 0 0 0 f̃3

0 0 0 0 0 0 f̃ ′
3 0 0

⎤
⎥⎦ (34)

�
σnz (f̃σ ) =

⎡
⎢⎣
f̃σ1 0 0
0 f̃σ2 0
0 0 f̃σ3

⎤
⎥⎦ (35)

The variational problem defined on � from Eq. (29) is
∫

�

[
δEvTkvz(f̃ )Ev + δEvTkvσz (f̃ , f̃σ )τ + δτTkσv

z (f̃ , f̃σ )Ev + δτTkσσ
z (f̃σ )τ

]√
ad�

= ∫
�

δvT tz(f̃ )
√
ad� − ∫

�

[
δEvTσz(f̃ ,um, σm

nM) + δτTεz(f̃σ ,um, σm
nM)

]√
ad�

(36)
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with

kvz(f̃ ) =
∫

�z
�
p
z (f̃ )TCpp�

p
z (f̃ )μdz

kvσz (f̃ , f̃σ ) =
∫

�z

[
�n
z (f̃ )T�

σnz (f̃σ ) + �
p
z (f̃ )TCpn�

σnz (f̃σ )
]
μdz

kσv
z (f̃ , f̃σ ) =

∫
�z

[
�

σnz (f̃σ )T�n
z (f̃ ) − �

σnz (f̃σ )TCnp�
p
z (f̃ )

]
μdz

kσσ
z (f̃σ ) = −

∫
�z

�
σnz (f̃σ )TCnn�

σnz (f̃σ )μdz

(37)

tz(f̃ ) = f̃ ◦ t μ

∣∣∣
z=zF

σz(f̃ ,um, σm
nM) =

∫
�z

[
�
p
z (f̃ )TCppεpG(um) + �n

z (f̃ )Tσm
nM + �

p
z (f̃ )TCpnσ

m
nM

]
μdz

εz(f̃σ ,um, σm
nM) =

∫
�z

[
�

σnz (f̃σ )T
(
εnG(um) − CnpεpG(um) − Cnnσ

m
nM

) ]
μdz

(38)

Note that the units of Cnn, Cnp, Cpn and Cpp are different.
The introduction of the finite element approximation Eq. (31) in the variational Eq. (36)

leads to the linear system

Kz(f̃ , f̃σ ) qvσ = Rv(f̃ , f̃σ ,um, σm
nM) (39)

where

• qvσ is the vector of the nodal displacements / transverse stresses associated with the
finite element mesh in �,

• Kz(f̃ , f̃σ ) is the stiffness matrix obtained by summing the elements’ stiffness
matrices Ke

z(f̃ , f̃σ ) =
∫

�e

[
BT

ξ kvz(f̃ )Bξ + BT
ξ kvσz (f̃ , f̃σ )N σξ + NT

σξkσv
z (f̃ , f̃σ )Bξ +

NT
σξkσσ

z (f̃σ )N σξ

]√
ad�e

• Rv(f̃ , f̃σ ,um, σm
nM) is the equilibrium residual obtained by summing the elements’

residual load vectors Re
v(f̃ , f̃σ ,um, σm

nM) =
∫

�e

[
NT

ξ tz(f̃ ) − BT
ξ σz(f̃ ,um, σm

nM) −
NT

σξεz(f̃σ ,um, σm
nM)

]√
ad�e.

Finite element problem to be solved on�z

For the sake of simplicity, the functions v(k+1), τ(k+1) which are assumed to be known,
will be denoted ṽ, τ̃ and the functions f (k+1), f (k+1)

σ to be computed will be denoted f , f σ .
The strain in Eq. (30) is defined as

εpG(ṽ ◦ f ) = �
p
ξ
(ṽ)Ef

εnG(ṽ ◦ f ) = �n
ξ
(ṽ)Ef

σnM(τ̃ ◦ fσ ) = �
σn
ξ
(τ̃ )f σ

(40)

with

�
p
ξ
(ṽ) =

⎡
⎢⎣
ṽ1,1/μ 0 0 0 ṽ3/(μR) 0

0 0 ṽ2,2 0 0 0
ṽ1,2 0 ṽ2,1/μ 0 0 0

⎤
⎥⎦ (41)
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�n
ξ (ṽ) =

⎡
⎢⎣

−ṽ1/(μR) ṽ1 0 0 ṽ3,1/μ 0
0 0 0 ṽ2 ṽ3,2 0
0 0 0 0 0 ṽ3

⎤
⎥⎦ (42)

�
σn
ξ
(τ̃ ) =

⎡
⎢⎣

τ̃1 0 0
0 τ̃2 0
0 0 τ̃3

⎤
⎥⎦ (43)

The variational problem defined on �z from Eq. (30) is∫
�z

[
δEf Tk fξ (ṽ)Ef + δEf Tkffσ

ξ (ṽ, τ̃ )f σ + δf Tσ k
fσ f
ξ (ṽ, τ̃ )Ef + δf Tσ k

fσ fσ
ξ (τ̃ )f σ

]
μdz

= δf T tξ (ṽ)μ
∣∣∣
z=zF

−
∫

�z

[
δEf Tσξ (ṽ,um, σm

nM) + δf Tσ εξ (τ̃ ,um, σm
nM)

]
μdz

(44)

with

k fξ (ṽ) =
∫

�

�
p
ξ
(ṽ)TCpp�

p
ξ
(ṽ)

√
ad�

kffσ

ξ (ṽ, τ̃ ) =
∫

�

[
�n

ξ (ṽ)
T�

σn
ξ
(τ̃ ) + �

p
ξ
(ṽ)TCpn�

σn
ξ
(τ̃ )

]√
ad�

k fσ fξ (ṽ, τ̃ ) =
∫

�

[
�

σn
ξ
(τ̃ )T�n

ξ (ṽ) − �
σn
ξ
(τ̃ )TCnp�

p
ξ
(ṽ)

]√
ad�

k fσ fσξ (τ̃ ) = −
∫

�

�
σn
ξ
(τ̃ )TCnn�

σn
ξ
(τ̃ )

√
ad�

(45)

and
tξ (ṽ) =

∫
�

ṽ ◦ t√ad�

σξ (ṽ,um, σm
nM) =

∫
�

[
�
p
ξ
(ṽ)TCppεpG(um) + �n

xy(ṽ)Tσm
nM + �

p
ξ
(ṽ)TCpnσ

m
nM

]√
ad�

εξ (τ̃ ,um, σm
nM) =

∫
�

[
�

σn
ξ
(τ̃ )T

(
εnG(um) − CnpεpG(um) − Cnnσ

m
nM

) ]√
ad�

(46)

The introduction of the finite element discretization Eq. (31) in the variational Eq. (44)
leads to the linear system

Kξ (ṽ, τ̃ ) qffσ = Rf (ṽ, τ̃ ,um, σm
nM) (47)

where

• qffσ is the vector of degree of freedom associated with the F.E. approximations in �z ,
• Kξ (ṽ, τ̃ ) is obtained by summing the elements’ stiffness matrices:

Ke
ξ (ṽ, τ̃ ) =

∫
�ze

[
BT
z k

f
ξ (ṽ)Bz + BT

z k
ffσ

ξ (ṽ, τ̃ )N σ z

+NT
σ zk

fσ f
ξ (ṽ, τ̃ )Bz + NT

σ zk
fσ fσ
ξ (τ̃ )N σ z

]
μdze (48)

• Rf (ṽ, τ̃ ,um, σm
nM) = RF

f (ṽ) − RCoup
f (ṽ, τ̃ ,um, σm

nM) is a equilibrium residual with
RF

f (ṽ) = NT
z tξ (ṽ)μ

∣∣
z=zF and RCoup

f (ṽ, τ̃ ,um, σm
nM) is obtained by the summation of

the elements’ residual vectors given by∫
�ze

[
BT
z σξ (ṽ,um, σm

nM) + NT
σ zεξ (τ̃ ,um, σm

nM)
]
μdze (49)

Numerical results
In this section, an eight-node quadrilateral FE based on the Serendipity interpolation
functions is used for the unknowns depending on the in-plane coordinates. The geometry
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of the shell is approximated by this classical FE in the parametric space. The geometrical
transformation is based on an explicit map ��. A Gaussian numerical integration with 3 ×
3 points is used to calculate the elementary matrices.
Several static tests are presented with the aim of validating our approach and evaluating

its efficiency. First, a convergence study is carried out to determine the suitable mesh
for the further analysis. Then, the influence of the approximation on the factor 1/μ is
addressed [1,85]. Three orders of expansion are considered. The influence of the numer-
ical layers is also studied to illustrate the possibility to refine the transverse description
of the displacements and the stresses. The present approach is assessed for deep/shallow
and thick/thin cross-ply/angle-ply/sandwich shells to show the wide range of validity.
Unless otherwise mentioned, the numerical assessments are based on the test case pro-

posed byRen [81]. It concerns a semi-infinite simply-supported cylindrical shell submitted
to a sinusoidal pressure, as detailed below:

Geometry: Composite cross-ply cylindrical shell, R = 10, φ ∈ {π/8,π/3,π/2}, with
the following stacking sequences [0◦], [0◦/90◦], [0◦/90◦/0◦]. All layers have the same

thickness. S = R
e

∈ {2, 4, 10, 40, 100}. The panel is supposed infinite along the x2 = ξ2

direction (bC = 8aC) (Cf. Fig. 2).
Boundary conditions: Simply-supported shell along its straight edges (transverse and

tangential displacements are fixed on the (ξ1, ξ2) mesh), sinusoidal pressure along

the curvature: q(ξ1) = q0 sin
πξ1

Rφ

Material properties: EL = 25 GPa , ET = 1 GPa , GLT = 0.2 GPa ,
GTT = 0.5 GPa , νLT = νTT = 0.25.

where L refers to

the fiber direction, T refers to the transverse direction.
Mesh: Only a quarter of the structure is meshed. The mesh is constituted of Nx × Ny

elements in the ξ1 and ξ2 directions respectively. A space ratio is considered in these
two directions (ratio between the size of the larger and the smaller element).

Numerical layers: Nz is the total number of numerical layers.
Number of dofs: Ndofxy = 6(3NxNy + 2(Nx + Ny) + 1) and Ndofz = 24 × αNC + 6

are the number of dofs of the two problems associated with vij and f ij respectively. α
is the number of numerical layers per physical layer. So the total number of dofs is
Ndofxy + Ndofz .

Results: The results are made nondimensional using:

ū = u1(0, bC/2, z)
ET

eq0S3
, w̄ = u3(aC/2, bC/2, z)

100ET
eq0S4

σ̄αα = σαα(aC/2, bC/2, z)
q0S2

,

σ̄13 = σ13(0, bC/2, z)
q0S

, σ̄33 = σ33(aC/2, bC/2, z)
q0

Reference values: The 2D exact elasticity results are obtained as in [81].

Few iterations are required to reach the convergence of the fixed point algorithm (cf.
Section ). Moreover, for this test case, only one couple is needed to obtain the solution.
The present approach, denoted VS-LM4, is compared with results available in open

literature:
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Table 1 Convergence study—one layer [0◦]—S=40—φ = π/3— Nz = NC—mesh Nx × 10
with space ratio (50)

Nx ū(0,e/2) w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

4 VS-LM4 9.3287 0.0779 − 0.8406 0.3181 − 8.7001

Error 0.51% 0.02% 8.79% 44.08% 22.50%

8 VS-LM4 9.3744 0.0780 − 0.7908 0.5061 − 7.5489

Error 0.02% 0.10% 2.35% 11.02% 6.29%

14 VS-LM4 9.3769 0.0780 − 0.7786 0.5484 − 7.2645

Error 0.00% 0.04% 0.77% 3.60% 2.29%

20 VS-LM4 9.3775 0.0780 − 0.7756 0.5590 − 7.1931

Error 0.01% 0.03% 0.38% 1.73% 1.28%

26 VS-LM4 9.3775 0.0780 − 0.7744 0.5633 − 7.1654

Error 0.01% 0.02% 0.22% 0.97% 0.89%

32 VS-LM4 9.3775 0.0780 − 0.7738 0.5651 − 7.1503

Error 0.01% 0.02% 0.14% 0.67% 0.68%

Navier 9.3778 0.0780 − 0.7727 0.5688 − 7.1074

Exact 9.3765 0.0780 − 0.7727 0.5688 − 7.1021

Fig. 3 Mesh 26× 10 with a space ratio 50 for one quarter of the shell panel—φ = π/3–R = 10

LM4: It refers to the systematic work of Carrera and his “Carrera’s Unified Formulation”
(CUF), see [37,72,86]. A LayerWise model based on a RMVT approach where each
component is expanded until the fourth-order, is given. 24NC+6 unknown functions
per node are used in this kinematic.

VS-LD4: It refers to the work on the proper generalized decomposition with a spatial
separation between (x, y) and z. A fourth-order expansion is used for the 1D problem
associated to the z-direction. The formulation is based on a displacement approach
(see [79]).

Convergence study

Firstly, a convergence study is performed to determine the suitable mesh to be used for
the following test cases. A one-layered shell with S = 40 and φ = π/3 is considered.
For the mesh, a space ratio is taken equal to 50 in the ξ2-direction, and a regular one is
used in ξ1-direction. The results issued from theNavier approach which is the asymptotic
value of the present model, are also given. The latter are quite similar to the reference
2D elasticity solution given by Ren [81]. Table 1 shows that a 26× 10 mesh (see Fig. 3)
is adequate to model the structure. These results can be considered as converged values.
The maximum error rate remains less than 0.9% for both displacements and stresses with
respect to the reference solution. This mesh is used for the following investigations.
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Table 2 Influence of the order-approximation of 1/μwith respect to S—one layer [0◦]—φ

= π/3—mesh 26× 10—Nz = NC

S Expansion Model ū(0, e/2) w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

2 Zero-order VS-LM4 3.9747 0.7982 − 1.4093 0.4688 0.8883

Error 16.67% 19.83% 42.59% 15.76% 11.17%

2 One-order VS-LM4 4.9928 1.0179 − 2.2682 0.5908 0.9324

Error 4.68% 2.24% 7.59% 6.16% 6.76%

2 Two-order VS-LM4 4.7940 0.9769 − 2.1818 0.5776 0.8967

Error 0.51% 1.88% 11.12% 3.78% 10.33%

Exact 4.7696 0.9956 − 2.4546 0.5565 1.0000

4 Zero-order VS-LM4 2.3665 0.2792 − 1.0406 0.5287 0.9225

error 10.39% 10.50% 21.81% 7.87% 7.75%

4 One-order VS-LM4 2.6745 0.3153 − 1.3452 0.5958 0.9163

error 1.28% 1.08% 1.08% 3.82% 8.37%

4 Two-order VS-LM4 2.6386 0.3112 − 1.3261 0.5909 0.9062

Error 0.09% 0.25% 0.36% 2.97% 9.38%

Exact 2.6408 0.3120 − 1.3309 0.5739 1.0000

10 Zero-order VS-LM4 2.5623 0.1094 − 0.8071 0.5558 − 1.3651

Error 4.54% 4.55% 9.30% 4.13% 9.35%

10 One-order VS-LM4 2.6932 0.1150 − 0.8937 0.5838 − 1.4207

Error 0.33% 0.33% 0.44% 0.69% 5.66%

10 Two-order VS-LM4 2.6846 0.1146 − 0.8908 0.5829 − 1.4165

Error 0.01% 0.01% 0.11% 0.55% 5.94%

Exact 2.6843 0.1146 − 0.8898 0.5798 − 1.5059

40 Zero-order VS-LM4 9.2631 0.0770 − 0.7553 0.5564 − 7.0856

Error 1.21% 1.20% 2.25% 2.19% 0.23%

40 One-order VS-LM4 9.3800 0.0780 − 0.7746 0.5629 − 7.1657

Error 0.04% 0.04% 0.25% 1.05% 0.89%

40 Two-order VS-LM4 9.3775 0.0780 − 0.7744 0.5633 − 7.1654

Error 0.01% 0.02% 0.22% 0.97% 0.89%

Exact 9.3765 0.0780 − 0.7727 0.5688 − 7.1021

Influence of the expansion order for the factor 1/μ

In this section, the influence of the approximation on the factor 1/μ = 1/(1 + z/R)
is addressed for very thick to thin homogeneous shells and for deep or shallow shells,
respectively. For this purpose, the results involving the zero, one and two-order expansions
are compared in Tables 2 and 3. The zero-order approximation (thin shell hypothesis or
Love’s hypothesis) seems to be suitable only for the thin structure with S ≥ 40. For S ≤ 10,
the order of the development of 1/μ should be increased to improve significantly the
accuracy of the solution, including both the displacements and the stresses. Nevertheless,
the use of the second-order expansion has a significant influence only for the thick shell.
Considering different opening angles of the structure in Table 3, it can be inferred

from these results that the use of the two-order expansion allows us again to decrease
significantly the error rate for both displacements and stresses. Nevertheless, the
influence on the transverse normal stress does not appear for the shallow shells
(φ ≤ π/3).
It can be also noticed that the error rate on the transverse shear and normal stresses

remains high for both the thick structures and the shallow shells (φ ≤ π/3), regardless of
the degree of the approximation of 1/μ. Even for φ = π/8, the error rates associated to
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Table 3 Influence of the order-approximation of 1/μwith respect to φ—one layer [0◦]—S
= 4—mesh 26× 10—Nz = NC

φ Expansion Model ū(0,e/2)max w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

φ = π/8 Zero-order VS-LM4 0.1758 0.0206 − 0.1721 0.1465 0.9699

Error 20.37% 14.13% 35.61% 8.30% 3.01%

One-order VS-LM4 0.1943 0.0237 − 0.2138 0.1676 0.9782

Error 11.98% 1.10% 20.01% 4.94% 2.18%

Two-order VS-LM4 0.1925 0.0235 − 0.2117 0.1670 0.9698

Error 12.79% 1.97% 20.78% 4.57% 3.02%

Exact 0.2207(-e/2) 0.0240 − 0.2673 0.1597 1.0000

φ = π/3 Zero-order VS-LM4 2.3665 0.2792 − 1.0406 0.5287 0.9225

Error 10.39% 10.50% 21.81% 7.87% 7.75%

One-order VS-LM4 2.6745 0.3153 − 1.3452 0.5958 0.9163

Error 1.28% 1.08% 1.08% 3.82% 8.37%

Two-order VS-LM4 2.6386 0.3112 − 1.3261 0.5909 0.9062

Error 0.09% 0.25% 0.36% 2.97% 9.38%

Exact 2.6408 0.3120 − 1.3309 0.5739 1.0000

φ = π/2 Zero-order VS-LM4 19.7700 1.2434 − 2.4271 0.9709 − 1.4613

Error 9.90% 9.85% 21.19% 8.83% 15.41%

One-order VS-LM4 22.3131 1.4019 − 3.1382 1.0922 − 1.6628

Error 1.69% 1.63% 1.89% 2.57% 3.75%

Two-order VS-LM4 21.9662 1.3801 − 3.0886 1.0822 − 1.6379

Error 0.10% 0.06% 0.28% 1.62% 5.19%

Exact 21.9433 1.3793 − 3.0799 1.0649 − 1.7275

φ = 5π/6 Zero-order VS-LM4 1268.7500 39.7516 − 15.1031 4.0278 − 13.0670

Error 9.01% 8.99% 20.62% 10.01% 10.39%

One-order VS-LM4 1436.1875 44.9875 − 19.6075 4.5312 − 14.8620

Error 3.00% 3.00% 3.05% 1.24% 1.92%

Two-order VS-LM4 1409.4375 44.1469 − 19.2512 4.4970 − 14.5900

Error 1.08% 1.08% 1.18% 0.48% 0.05%

Exact 1394.3688 43.6759 − 19.0264 4.4756 − 14.5826

the displacement u and the normal stress σ11 are still high. Thus, a residual error remains.
This problem is investigated in the following section.

Influence of the number of numerical layers

The influence of the number of numerical layers is studied for the homogeneous case.
In Tables 4 and 5, four numerical layers per physical layer are considered for moderately
thick to very thick cases and shallow shells, respectively. These configurations are themost
representative ones. First, it can be observed that the accuracy of results with different
opening angles (Table 5) are improved when compared with Table 3, regardless of the
degree of approximation. In particular, the effect on the stresses is more pronounced.
Then, the use of the second order expansion of 1/μ drives to a very good agreement with
the reference solution (Tables 4, 5). Themaximum error rate is 1%, even for the very thick
case. Finally, a refinement in the z-direction in conjunction with a high-order expansion
of 1/μ is required to obtain accurate results for the shallow shells (φ ≤ π/3) or for the
moderately to very thick cases (S ≤ 10).
In Table 6, the suitable number of numerical layers is given for different slenderness

ratios so as to obtain an error rate of about 1% for φ = π/8 (the most critical test). As
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Table 4 One layer [0◦]—φ = π/3—mesh 26×10—Nz = 4 × NC—two-order expansion of
1/μ

S Model ū(0,e/2) w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

2 VS-LM4 4.7645 0.9938 − 2.4609 0.5560 1.0111

Error 0.11% 0.18% 0.25% 0.09% 1.11%

Exact 4.7696 0.9956 − 2.4546 0.5565 1.

4 VS-LM4 2.6411 0.3119 − 1.3329 0.5720 1.0110

Error 0.01% 0.02% 0.16% 0.32% 1.10%

Exact 2.6408 0.3120 − 1.3309 0.5739 1.

10 VS-LM4 2.6847 0.1147 − 0.8907 0.5784 − 1.5176

Error 0.02% 0.02% 0.09% 0.24% 0.77%

Exact 2.6843 0.1146 − 0.8898 0.5798 − 1.5059

Table 5 Influence of the order-approximation of 1/μ—one layer [0◦] - S = 4—mesh 26×
10—numerical layers Nz = 4 × NC

φ Expansion Model ū(0,e/2)max w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

φ = π/8 Zero-order VS-LM4 − 0.0085 0.0211 − 0.2094 0.1415 1.0027

Error 9.30% 11.86% 21.63% 11.44% 0.27%

One-order VS-LM4 − 0.0096 0.0243 − 0.2694 0.1621 1.0103

Error 2.59% 1.30% 0.82% 1.48% 1.03%

Two-order VS-LM4 − 0.0095 0.0241 − 0.2670 0.1616 1.0023

Error 1.72% 0.46% 0.09% 1.14% 0.23%

Exact − 0.0094 0.0240 − 0.2673 0.1597 1.0000

φ = π/3 Zero-order VS-LM4 2.3664 0.2797 − 1.0442 0.5119 1.0101

Error 10.39% 10.32% 21.54% 10.80% 1.01%

One-order VS-LM4 2.6764 0.3160 − 1.3518 0.5766 1.0221

Error 1.35% 1.30% 1.57% 0.49% 2.21%

Two-order VS-LM4 2.6411 0.3119 − 1.3329 0.5720 1.0110

Error 0.01% 0.02% 0.16% 0.32% 1.10%

Exact 2.6408 0.3120 − 1.3309 0.5739 1.0000

expected, it can be seen that the number of numerical layers increases with the thickness
of the structure. Even considering a structure with only one physical layer, the refinement
of the description of mechanical quantities is required as their distributions through the
thickness could be very complex for a shell structure. For illustration, the distributions of
the displacement ū and the stresses σ̄11, σ̄13 through the thickness are provided in Fig. 4.
An oscillating behavior occurs for the displacement and the in-plane stress, which is quite
different than the plate case.Moreover, an asymmetrical distribution can be observed. The
maximumvalue of the transverse shear stress is obtained near the top of the homogeneous
shell.
For the present approach, it should be also noted that the additional computational cost

inducing by the z-refinement is negligible as only the number of dofs of the 1D problem
increases (Ndofz = 24 × αNC + 6, see Table 6). The size of the 2D problem remains
unchanged. This is a main difference with respect to a LW approach where the total
number of unknowns would be Ndofxy × Ndofz = Ndofxy × (24 × αNC + 6).
Thus, despite the simplicity of the stacking sequence, it is observed that the use of a

higher-order theory involving numerical layers is required for thick or shallow shells.
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Table6 One layer [0◦]—φ = π/8—mesh 26×10—two-order expansion of 1/μ

S Model Nz/NC Ndofz ū(0,-e/2) w̄(L,0) σ̄11(-e/2) σ̄13(0) σ̄33max

2 VS-LM4 8 198 0.2156 0.0867 − 0.3054 0.1502 0.9979

Error 1.03% 1.53% 0.78% 1.85% 0.21%

Exact 0.2179 0.0854 − 0.3078 0.1475 1.0000

4 VS-LM4 4 102 0.2202 0.0241 − 0.2670 0.1616 1.0023

Error 0.22% 0.46% 0.09% 1.14% 0.23%

Exact 0.2207 0.0240 − 0.2673 0.1597 1.0000

10 VS-LM4 2 54 0.1334 0.0051 − 0.1484 0.1826 1.0000

Error 0.01% 0.04% 0.05% 1.02% 0.00%

Exact 0.1335 0.0051 − 0.1483 0.1808 1.0000

Fig. 4 Distribution of ū (left), σ̄11 (middle) and σ̄13 (right) along the thickness—S= 2–1 layer—φ = π/8

Fig. 5 Distribution of σ̄13 (left), σ̄33 (right) along the thickness—S= 4–3 layers—φ = π/8,π/2, 5π/6

Bending analysis of laminated shells under a sinusoidal pressure

Cross-ply test case

Firstly, a thick three-layer [0◦/90◦/0◦] shell is considered, referring to the test case pro-
posed by Ren [81] described in the preliminaries of the present section. Only distributions
of the transverse normal and shear stresses through the thickness are provided for deep
and shallow shells (see Fig. 5), as those are the most difficult to obtain. Only 1 couple is
built and only one element per layer is used for the problem in �z . It is inferred from
this figure that the present model gives excellent results when compared to the exact
solution. It can be noticed that the top/bottom surface conditions are fulfilled. Moreover,
the maximum value of the transverse normal stress inside the structure increases for the
deepest shell. It becomes greater than the applied load value on the top surface.
For further illustrations, a 24-layer case with S = 4 and φ = π/3 is addressed. The

distributions of displacements and stresses are given in Figs. 6 and 7. This example shows
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Fig. 6 Distribution of ū (left), and w̄ (right) along the thickness—S= 4–24 layers—φ = π/3

Fig. 7 Distribution of σ̄11 (left), σ̄13 (middle) and σ̄33 (right) along the thickness—S= 4–24 layers—φ = π/3

the capability of the approach to provide accurate results for a significant number of layers.
It is to be noted that the agreement of the present solutions with the exact one is very
good. To achieve a solution with the same accuracy, it is needed to use a LW approach.
To illustrate the interest of the present method in terms of computational cost, we can
compare the number of dofs involved for each model. For the present one, the 2D and
1D problems imply Ndofxy = 5118 and Ndofz = 582, respectively, while, a LW approach
with a fourth-order expansion induces NdofLW = 496, 446.

Angle-ply test case

In this section, a test case proposedbyBhaskar [82] involving a three-layer [45◦/−45◦/45◦]
with S = 4 and φ = 1 is given. The material properties and the loads are the same as
the Ren’s test. Numerical results for displacements and stresses are summarized in Table
7 and are compared with the exact solution. Again, the accuracy of the results is very
satisfactory. The continuity of the transverse stresses is naturally fulfilled owing to the
mixed formulation. We also note that the free boundary conditions are satisfied.

Bending analysis of a sandwich shell under a sinusoidal pressure

The approach is now assessed on a sandwich shell. The test is based on the Ren test and
is proposed by Carrera in [83]. It is detailed below:

Geometry: Cylindrical shell with R = 10, S = 4. The thickness of each face sheet is e
10 .

The panel is supposed infinite along the x2 = ξ2 direction.
Boundary conditions: Simply-supported shell along its straight edges, subjected to a

sinusoidal pressure along the curvature: q(ξ1) = q0 sin
πξ1

Rφ
.
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Table 7 Three layers [45◦/ − 45◦/45◦] – φ = 1—S=4

z/e ū w̄ σ̄11 σ̄13 σ̄33

VS-LM4 exact VS-LM4 Exact VS-LM4 Exact VS-LM4 Exact VS-LM4 Exact

− 1/2 − 2.41 − 2.42 7.297 − 1.16 − 1.16 0.00 0 0.00 0

− 1/3 − 2.14 − 2.14 7.329 − 0.43 − 0.43 0.42 0.42 − 0.41 − 0.41

− 1/6− − 1.68 − 1.69 7.329 0.05 0.05 0.48 0.48 − 0.26 − 0.26

− 1/6+ − 1.68 − 1.69 7.329 − 0.61 − 0.61 0.48 0.48 − 0.26 − 0.26

0 − 0.02 − 0.02 7.320 7.319 − 0.02 − 0.02 0.59 0.60 − 0.15 − 0.15

1/6− 1.51 1.51 7.318 0.51 0.51 0.43 0.43 0.27 0.27

1/6+ 1.51 1.51 7.318 − 0.04 − 0.04 0.43 0.43 0.27 0.27

1/3 1.84 1.84 7.325 0.39 0.39 0.32 0.32 0.56 0.56

1/2 2.03 2.02 7.334 0.92 0.92 0.00 0 1.00 1.

Material properties: Face: Eface = 73 GPa, νface = 0.34, Gface = 27.239 GPa
Core: EL = ET = α0.01 MPa, Ezz = α75.85 MPa, ν = 0.01, G = α22.5 MPa, with
α = 1 (B1) or α = 10−2 (B2)

Mesh: Mesh 26× 10 with a space ratio 50 is used for the quarter of the plate.
Number of dofs: Ndofxy = 5.118 and Ndofz = 24 × NC + 6= 78
Results: The results are made nondimensional using:

w̄ = u3(aC/2, bC/2, z)
10Eface
S4eq0

σ̄13 = σ13(0, bC/2, z)
q0S

, σ̄33 = σ33(aC/2, bC/2, z)
q0

Reference values: the LM4 results are given in [83].

The parameter α allows us to define different face-to-core stiffness ratios, i.e. Eface
ETcore =

73.105 and Eface
ETcore = 73.107 for α = 1 and α = 10−2, respectively. This test case is dis-

criminating for the assessment of composite models. In [83], the authors have shown that
LayerWise models are needed to obtain accurate distributions of the transverse stresses
through the thickness for this soft core sandwich shell. Moreover, the use of a mixed
formulation with an order expansion greater than two, also increases the accuracy of
the results. The present approach can be assessed for this discriminating test case. The
distributions through the thickness of the transverse displacement and the transverse
shear/normal stresses are given in Figs. 8 and 9. It can be noticed that the results are
in very good agreement with the LM4 model. The localisation of the transverse stress
in the faces of the sandwich is well-represented. Very high values are reached, contrary
to the plate case where the maximum value occurs on the loading surface. The results
issued from the VS-LD4 model are also provided for further comparison. For both cases,
it shows that the transverse normal stress is very difficult to obtain by a displacement
based formulation even with a higher-order theory.

Bending analysis of laminated shells under a constant pressure

In this section, the Ren configuration involving three layers is considered with a constant
global pressure. To assess the present mixed model, the results of the displacement-
based model with variable separation, denoted VS-LD4, are given. In this simulation, four
numerical layers per physical layer with a fourth-order expansion through the thickness is
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Fig. 8 Distribution of σ̄13 (left), σ̄33 (right) along the thickness—S= 4—sandwich B1—φ = π/3

Fig. 9 Distribution of w̄ (left), σ̄13 (middle), σ̄33 (right) along the thickness—S= 4—sandwich B2—φ = π/3

Fig. 10 Distribution of σ̄13 (left), σ̄33 (right) along the thickness—S= 4—three layers—φ = π/2—constant
pressure

used. Only the distribution of the transverse shear and normal stresses are given in Fig. 10
as these are themost difficult quantities to compute. It can be inferred from this figure that
five couples are needed to obtain accurate results. Nevertheless, the convergence rate is
higher for the transverse normal stress. For this later, only two couples allow us to recover
the load value on the top surface of the shell.

Conclusion
In this paper, a variable separation method in the framework of Reissner’s Mixed Varia-
tional Theorem is proposed for themodeling of laminated composite and sandwich shells.
A 8-node FE for the in-plane unknown approximation and a fourth-order LWdescription
for the thickness unknown approximation are used. In this formulation, all interface con-
ditions are exactly satisfied.The approachhas been assessed throughdifferent benchmarks
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proposed in the open literature. The influence of classical strain assumptions (approxima-
tion of 1/μ) is discussed.We have shown the importance of the expansion of this term for
thick shells. At the same time, the accuracy of the results could be also improved by using
numerical layers in each physical layer without increasing significantly the computational
cost. In fact, the number of layers has no influence on this cost as only the cost of the 1D
problem is affected. This is particularly interesting in the framework of a mixed approach,
where the number of unknowns involving both displacements and transverse stresses
becomes very important in a classical LWmethod.Comparisonswith exact reference solu-
tions, results available in open literature have shown the very good accuracy of themethod
for awide range of applications.Deep/shallow, very thick/thin shell structureswith various
stacking sequences and high anisotropy configurations can be modeled with an excellent
accuracy. So, the present work can provide quasi-3D results avoiding expensive 3D FEM
or LW computations. Therefore, this method seems to have very attractive features.
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