
ORIGINAL PAPER

Modeling of decentralized processes in dynamic logistic networks
by means of graph-transformational swarms

Larbi Abdenebaoui1 • Hans-Jörg Kreowski1

Received: 16 December 2015 / Accepted: 10 August 2016 / Published online: 31 August 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, we propose to employ the frame-

work of graph-transformational swarms for the modeling

of dynamic logistic networks with decentralized processing

and control. The members of a graph-transformational

swarm act and interact in a common environment graph

with massive parallelism of rule-based activities according

to local control conditions and a global cooperation con-

dition. This corresponds directly to the logistic hubs and

their processes in a logistic network where the processes

run simultaneously and autonomously with a proper way of

coordination. This covers also dynamic changes on the

network structures as the members of a swarm can change

the environment anyhow. The approach is illustrated by the

modeling of automated guided vehicles.

Keywords Dynamic logistic networks � Decentralized
control � Automated guided vehicles � Graph-
transformational swarms � Swarm computation � Graph
transformation

1 Introduction

As logistic networks get larger and larger and more and

more complex, they become more difficult to handle and to

control. The traditional central control does not work

flexibly and efficiently enough in any case so that one must

look for alternative approaches. This applies particularly if

the logistic network may change dynamically. One of the

most significant current paradigms that faces this com-

plexity is the so-called autonomous control approach (cf.

[11]). This approach proposes that each logistic object such

as a container or an automated guided vehicle receives its

own computing processor and makes its decision autono-

mously. Therefore, the components can react locally and

quickly to changes in the environment. However, a major

challenge within this kind of decentralized approach is how

the individuals act and cooperate with each other to reach a

desired global goal. In this paper, we introduce and discuss

graph-transformational swarms as a formal modeling

approach to dynamic logistic networks with decentralized

control. As an illustrative example, we consider and dis-

cuss the routing problem of automated guided vehicles.

The concept of graph-transformational swarms combi-

nes the ideas of swarm computing and the methods of

graph transformation. The basic framework is introduced in

[1], where a simple ant colony, cellular automata, and

discrete particle systems are modeled to demonstrate the

usefulness and flexibility of the approach. A graph-trans-

formational swarm consists of members that act and

interact simultaneously in an environment, which is rep-

resented by a graph. The members are all of the same kind

or of different kinds. Kinds and members are modeled as

graph-transformational units (see, e.g.,[15]); each unit

consists of a set of graph-transformational rules specifying

This article is part of a focus collection on ‘‘Dynamics in Logistics:

Digital Technologies and Related Management Methods.’’

& Larbi Abdenebaoui

larbi@informatik.uni-bremen.de

Hans-Jörg Kreowski

kreo@informatik.uni-bremen.de

1 University of Bremen, P.O. Box 330440, 28334 Bremen,

Germany

123

Logist. Res. (2016) 9:20

DOI 10.1007/s12159-016-0147-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-016-0147-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12159-016-0147-6&domain=pdf

the capability of members and a control condition which

regulates the application of rules.

This paper is organized as follows. In Sect. 2, graph-

transformational swarms are recalled starting with the basic

concepts of graph transformation. Section 3 discusses how

graph-transformational swarms can be used to model

dynamic logistic networks. To illustrate this, essential

aspects of the routing problem of automated guided vehi-

cles are modeled as graph-transformational swarms in

Sect. 4. Section 5 concludes the paper.

2 Graph-transformational swarms

This section recalls the concept of graph-transformational

swarms as introduced in [1] starting with the basic com-

ponents of the chosen graph-transformational approach as

far as needed in this paper (for more details, see, e.g.,

[8, 14, 16, 20]).

2.1 Basic concepts of graph transformation

2.1.1 Graphs and rules

A (directed edge-labeled) graph G ¼ ðV;E; s; t; lÞ consists
of a set V of nodes, a set E of edges such that every edge is

directed and labeled, i.e., s : E ! V and t : E ! V are

mappings assigning a source s(e) and a target t(e) to each

e 2 E and l : E ! R is a labeling function for some

labeling alphabet R. If the target is equal to the source, then
the edge is called a loop. In the following, we call a node

an i-node if it has an i-loop for i 2 R. The components V,

E, s, t, and l of G are also denoted by VG, EG, sG, tG, and lG,

respectively.

Given two graphs G ¼ ðV;E; s; t; lÞ and

H ¼ ðV 0;E0; s0; t0; l0Þ, a graph morphism g : G ! H is given

by two mappings gV : V ! V 0 and gE : E ! E0 such that

s0ðgEðeÞÞ ¼ gVðsðeÞÞ, t0ðgEðeÞÞ ¼ gVðtðeÞÞ and l0ðgEðeÞÞ ¼
lðeÞ for all e 2 E. The image gðGÞ ¼
ðgVðVÞ; gEðEÞ; s00; t00; l00Þ where s00,t00 and l00 are restrictions

of s0, t0 and l0 to the subsets gEðEÞ and gVðVÞ is called a

match of G in H. If gE and gV are inclusions, G is called a

subgraph of H, denoted by G � H. In particular, a match of

G in H is a subgraph. It should be noted that the graph

morphisms yielding matches are not assumed to be

injective.

A rule r ¼ ðL;K;RÞ consists of three graphs, the left-

hand side L, the gluing graph K, and the right-hand side R

such that L � K � R. In this paper, we consider rules that

manipulate only edges (i.e., the nodes are neither deleted

nor added). And when depicted, the gluing graph is omitted

using the same relative positions of nodes in L and R. The

edges in L and R that have the same sources, targets, labels,

and form are also not changed by the rules. K can be

identified in this way as the identical parts of L and R.

In order to permit more flexibility in modeling, we

consider in this paper rules with negative application

conditions. This extends the notion of rules permitting to

express what should not be present in a graph in order to

apply a given rule. A rule with negative application con-

dition r ¼ ðN; L;K;RÞ consists of four components such

that (L, K, R) is a rule and N is the associated negative

application condition composed from a finite set of graphs

N ¼ fC1; . . .;Ckg called each a negative context such that

L � Ci for i 2 ½k�. Every negative context specifies a neg-

ative part Ci � L which consists of the items of Ci that do

not belong to L.

We depict a rule r ¼ ðN; L;K;RÞ with N ¼ fC1; . . .;Ckg
as N �! R where N is represented as a graph with sub-

graph L and extra information such that the negative con-

texts are identified. In this representation, the dashed items

of N belong to the negative parts, the remainder is L. In one

case in Fig. 8, the negative part contains two edges which

are enclosed by a dotted line. In all other cases, the nega-

tive part contains a single edge. In this way, all negative

contexts are easily recognized

Figure 1 shows the rule move which is used in a mod-

ified form in Sect. 4 to model the movement of an auto-

mated guided vehicle with the name a having the target T

which is represented by an edge labeled by a, T. The

(T, d)-edge indicates the direction in which the target T can

be reached in the distance d. In this rule, there are two

negative contexts. The first one is specified by the negative

part consisting of the dashed edge labeled by a00; T 00 and its

source node. It means that the vehicle a can move into the

new position only if there is no other (concurrent) vehicle

that can occupy the same next position. The second neg-

ative context is specified by the negative part that consists

of the dashed edge labeled by a0; T 0 requiring that the

vehicle a can move into the new position only if there is no

other vehicle present there. The gluing graph consists of

the three nodes and the edge labeled by T, d.

The application of a rule r ¼ ðL;K;RÞ to a graph G

replaces a match of L in G by R such that the match of K is

kept. More explicitly, let g : L ! G be the graph morphism

yielding the match g(L). Then, the resulting graph H is

obtained by removing gðLÞ � gðKÞ from G and adding

R� K. All edges keep theirs sources, targets, and labels

with the exception of edges in R� K with sources or

Fig. 1 A graph-transformational rule

20 Page 2 of 13 Logist. Res. (2016) 9:20

123

targets in K. If e 2 ER � EK with sRðeÞ 2 VK (or

tRðeÞ 2 VK), then sHðeÞ ¼ gVðsRðeÞÞ (or tHðeÞ ¼ gVðtRðeÞÞ
resp.).

A rule with negative condition (N, L, K, R) with N ¼
fC1; . . .;Ckg is applied in the same way as (L, K, R) pro-

vided that, for i 2 ½k�, the match of L cannot be extended to

Ci. This means that a rule can only be applied if none of its

negative contexts is around.

Hence, the application of the rule move moves forward

an (a, T)-edge (i.e., the target node becomes the source

node) provided that in the new position, there is no other

(a0; T 0)-edge. And there is no other ða00; T 00Þ-edge having

the same target node.

A rule application is denoted by G¼)
r

H where H is the

resulting graph and called a direct derivation from G to H.

As an example of a rule application, let us consider the

graph G with the explicitly given subgraph in Fig. 2 (The

dots in the graph indicate that the graph G may actually

contain more items than the depicted subgraph). There is

an (a, T)-edge meaning that the vehicle a has the target T.

Moreover, there are four edges ahead, but one is occupied

by vehicle a0 and another one is not accompanied by a

(T, d)-edge so that target T is not reachable with minimal

distance in this direction. Two options remain to complete

a match of the left-hand-side of rule move that avoid the

negative context. One is chosen non-deterministically to

derive the graph H where the vehicle a is moved forward

by one edge. Continuing in this way, the vehicle a will

reach its destination T eventually following always the

directions with minimal distance.

A sequence G ¼ G0 ¼)
r1

G1 ¼)
r2

� � � ¼)
rm

Gm ¼ H is

called a derivation from G to H of length m.

Given the rules ri ¼ ðNi; Li;Ki;RiÞ for i ¼ 1; . . .; n, the

parallel rule p ¼ ðL;K;RÞ is given by the disjoint unions

of the components, i.e., L ¼]n
i¼1Li;K ¼]n

i¼1Ki;R ¼
]n
i¼1Ri. If gi : Li ! G for i ¼ 1; . . .; n are some graph

morphisms from Li in some graph G, then this induces a

graph morphism g : L ! G defined, for all i ¼ 1; . . .; n, by

gVðvÞ ¼ gi;VðvÞ for all v 2 VLi and gEðeÞ ¼ gi;EðeÞ for all

e 2 ELi . Therefore, matches of parallel rules are composed

of matches of their component rules. As we use parallel

rules only in this way, there is no need to carry the negative

application conditions over to the level of parallel rules.

Negative application conditions are only checked for

component rules.

Two direct derivations G¼)
r

H1 and G¼)
r0

H2 of rules r

and r0 are (parallel) independent if the corresponding

matches intersect only in gluing items. Due to the paral-

lelization theorem in [13], we can use the following fact: A

parallel rule p ¼
Pn

i¼1 ri can be applied to G if the rules ri
for i ¼ 1; . . .; n can be applied to G and the matches are

pairwise independent. This allows the use of massive par-

allelism in the context of graph transformation based on

local matches of component rules which are much easier to

find than matches of parallel rules.

2.1.2 Control conditions and graph class expressions

A control condition C is defined over a finite set P of rules

and specifies a set SEM(C) of derivations. Typical control

conditions are regular expressions over P. The regular

expressions have the form r for some rule r or e; e0 or eje0
or e� where e and e0 are regular expressions themselves.

The satisfaction of a control condition in the form of a

regular expression is defined as follows. A direct derivation

applying r satisfies r. A derivation satisfies e; e0 if an initial

section of the derivation satisfies e and the rest e0. It sat-
isfies eje0 if it satisfies e or e0. It satisfies e� if it satisfies en
for some n 2 N where e0 ¼ k and eðnþ1Þ ¼ en; e. A

derivation of length 0 satisfies k. Alternatively to e�, e! is
used. A derivation satisfies e! if it satisfies en, but not

eðnþ1Þ, i.e., e is followed as long as possible. We use also

priority conditions of the form r\ r0 requiring that r can

only be applied if r0 is not applicable. Moreover, control

conditions can be combined by logical operations of which

we use the conjunction and with the obvious meaning:

C&C0 are satisfied if C and C0 are satisfied. The expression
eje0 can be restricted by the priority condition e\ e0 which
requires that e is applied only if e0 is not applicable. Other
examples of control conditions that are used in this paper

· · ·

G

a, T

T, d

T, d

T, d

a , T

· · · =⇒
move

· · ·

H

a, T

T, d

T, d

T, d

a , T

· · ·

Fig. 2 A rule application

Logist. Res. (2016) 9:20 Page 3 of 13 20

123

are the expression krk and [r]. krk requires that a maxi-

mum number of rule r be applied in parallel. [r] requires

that the rule r may be applied or not.

A graph class expression X specifies a set of graphs

denoted by SEMðXÞ. We use the graph class expressions

distance and id�loopedðdistanceÞ. The set SEMðdistanceÞ
contains all graphs without loops and without parallel

edges (i.e., loop-free and simple graphs) where each edge is

labeled with a distance (i.e., a value d 2 N). The set

SEMðid�loopedðdistanceÞÞ contains all graphs that are

obtained from the graphs in SEM(distance) as follows: The

nodes are numbered from 1 to the number of nodes, and

every node gets a loop labeled with its number. These

graphs are called id-looped distance graphs. While the

underlying distance graphs provide the significant infor-

mation, the id-loops are added for technical reasons

because they allow a direct access to nodes via rule

applications.

2.1.3 Graph-transformational units

A graph-transformational unit is a pair gtu ¼ ðP;CÞ where
P is a set of rules and C is a control condition over P. The

semantics of gtu consists of all derivations of the rules in P

allowed by C. A unit gtu0 is related to a unit gtu if gtu0 is

obtained from gtu by renaming identifiers and relabeling

edges. The set of units related to gtu is denoted by

RUðgtuÞ.

2.2 Graph-transformational swarms

A graph-transformational swarm consists of members of

the same kind or of different kinds. All members act

simultaneously in a common environment represented by a

graph. The number of members of each kind is given by the

size of the kind. While a kind is a graph-transformational

unit, the members of this kind are modeled as units related

to the kind so that all members of same kind are alike.

A swarm computation starts with an initial environment.

It consists of iterated rule applications requiring massive

parallelism meaning that each member of the swarm

applies one of its rules in every step. The choice of rules

depends on their applicability and the control conditions of

the members as well as on a cooperation condition.

Moreover, a swarm may have a goal given by a graph class

expression. A computation is considered to be successful if

an environment is reached that meets the goal.

Definition 1 (swarm) A swarm is a system S ¼
ðI;K; s;m; c; gÞ where I is a graph class expression speci-

fying the set of initial environments, K is a finite set of

graph-transformational units, called kinds, s associates a

size sðkÞ 2 N with each kind k 2 K, m associates a family

of members ðmðkÞiÞi2½sðkÞ� with each kind k 2 K with

mðkÞi 2 RUðkÞ for each i 2 ½sðkÞ�, c is a control condition

called cooperation condition, and g is a graph class

expression specifying the goal.1

A swarm may be represented schematically displaying

the components initial, kinds, size, members, cooperation,

and goal followed by their respective values.

Definition 2 (swarm computation) A swarm computation

is a derivation G0 ¼)
p1

G1 ¼)
p2

� � � ¼)
pq

Gq such that

G0 2 SEMðIÞ, pj ¼
P

k2K
P

i2½sðkÞ� rjki with a rule rjki of

mðkÞi for each j 2 ½q�, k 2 K and i 2 ½sðkÞ�, and c and the

control conditions of all members are satisfied. The com-

putation is successful if Gq 2 SEMðgÞ.

That all members must provide a rule to a computational

step is a strong requirement because graph-transforma-

tional rules may not be applicable. In particular, if no rule

of a swarm member is applicable to some environment, no

further computational step would be possible and the

inability of a single member stops the whole swarm. To

avoid this global effect of a local situation, we assume that

each member has the empty rule ð;; ;; ;; ;Þ in addition to

its other rules. The empty rule gets the lowest priority and

is only applied if no other rule of the member can be

applied or is allowed by the control condition of the

member or the cooperation condition of the swarm. In this

way, each member can always act and is no longer able to

terminate the computation of the swarm. In this context, the

empty rule is called sleeping rule. It can always be applied,

is always parallel independent with each other rule appli-

cation, but does not produce any effect. Hence, there is no

difference between the application of the empty rule and no

application within a parallel step.

3 From swarms in nature to logistic networks
as graph-transformational swarms

In this section, we argue that graph-transformational

swarms as introduced in the previous section are appro-

priate means to model dynamic logistic networks. Several

approaches to swarm computation including graph-trans-

formational swarms mimic swarms in nature as pointed

out in Sect. 3.1 in more detail. The interesting aspect is that

already swarms in nature solve problems closely related to

logistics. Moreover and more interesting in the context of

this paper, a closer look the other way round at dynamic

logistic networks in Sect. 3.2 reveals that they can be

considered as graph-transformational swarms.

1 ½n� ¼ f1; . . .; ng.

20 Page 4 of 13 Logist. Res. (2016) 9:20

123

3.1 Relating swarms in nature with logistics

The proposed framework is inspired by the swarm behavior

in nature which describes the group behavior of social

animals. Several studies agree on the assumption that the

swarm behavior results from relatively simple rules on the

individual level (see, e.g., [4–6, 19]). In biology, the

underlying mechanism is also known as self-organization:

The individuals in the group interact locally with other

group members and have no knowledge of the global

behavior of the entire group. Furthermore, all members

play the same role without any hierarchical structure [4].

Using swarm behavior, social animals solve continu-

ously complex problems. For instance, ant colonies as well

as bee hives build nests and manage the resources inside it.

Furthermore, they forage for food, transporting it in an

efficient and flexible way. Schools of fishes and flocks of

birds travel over long distances. Obviously, such phenom-

ena have logistic aspects. Therefore, it is somewhat evident

that the behavior of swarms in nature inspires to introduce

concepts of artificial swarms and swarm computation that

are based on the idea of self-organization to solve logistic

problems. One encounters some approaches to swarm

computation in the literature (see, e.g., [2, 3, 9, 12, 18])

where logistic problems are solved as typical examples like

the shortest path problem, the traveling-salespersons prob-

lem and others. One may summarize that the passage from

swarms to logistics is not very long.

3.2 Dynamic logistic networks as graph-

transformational swarms

On the other hand, consider dynamic logistic networks.

Their underlying structures consist of nodes and connecting

edges. The nodes represent logistic hubs of different types

such as production sites, storage facilities, and car pools

or—on a more detailed level—packages, containers, cars,

and trucks, and the edges represent transport lines or

information channels or the like. Without loss of general-

ity, one can assume that there is always some start struc-

ture. To manage the material and information flows in a

logistic network, various logistic processes are running. If

the network is large and widely distributed, then it may not

be meaningful to control the processes centrally. Alterna-

tively, the logistic processes in the network may run

simultaneously and independently of each other each per-

forming its own actions and following its own autonomous

control. But such a decentralized control requires coordi-

nation and cooperation whenever material or information

must be exchanged carrying out the overall tasks. To

coordinate autonomous logistic processes in a network in

such a way that the cooperation works properly, becomes

even more difficult if the network structure is dynamically

changing. One needs appropriate modeling methods like

those provided by graph-transformational swarms.

The underlying structures of dynamic logistic networks

are defined as graphs so that they correspond directly to

environment graphs of graph-transformational swarms

where the initial environments play the role of the start

structures. The various types of logistic entities like hubs,

sites, carriers, and containers together with the actions that

are performed on them or affect them can be seen as kinds

so that the entities themselves are the swarm members. In

particular, the possible process actions correspond to the

rules, and the autonomous control is reflected by the con-

trol conditions. Finally, the coordination of the processes

running on the logistic networks is embodied by the

cooperation conditions and the overall tasks by the goals.

Summarized in Table 1, there is a very close relationship

between the main features of dynamic logistic networks

and the syntactic components of graph-transformational

swarms. Moreover and most interestingly, the idea of

autonomous processes that run simultaneously and decen-

tralized in a logistic network is well reflected on the

semantic level of graph-transformational swarms as all the

members act always in parallel.

3.3 The potentials of the approach

We propose in this paper to model dynamic logistic net-

works by means of graph-transformational swarms. In the

previous subsection, one can see that the notion of such

swarms covers all the main features one expects and finds

in dynamic logistic networks. Nevertheless, one may

wonder which particular potentials and advantages this

approach provides:

1. The concept of graph-transformational swarms offers a

formal framework with a precise mathematical seman-

tics based on massive parallelism of rule applications.

Table 1 Correspondence between dynamic logistic networks and

graph-transformational swarms

Dynamic logistic network Graph-transformational

swarm

Underlying structure Environment graph

Types of logistic entities Kinds

Logistic entities Members

Possible actions Rules

Autonomous control Control conditions

Start structures Initial environments

Coordination Cooperation conditions

Tasks Goals

Simultaneous and decentralized

processing

Massively parallel rule

application

Logist. Res. (2016) 9:20 Page 5 of 13 20

123

2. As the environments are graphs and the processing is

modeled by graph-transformational rules specified by

four graphs each, the approach provides a fundament

for visualization so that it can be considered as a visual

modeling approach.

3. In fact, graph-transformational swarms can be executed

on graph-transformational engines like GrGen.NET

(see [10]) or AGG (see [23]) so that visual simulation is

possible for illustrations, tests, and experiments of

various kinds. In the next section for example, we use

illustrations in Figs. 5 and 9 generated from GrGen.-

NET. They visualize the computational steps in a

simple environment in order to make it easier for a

reader to understand how the developed swarm

behaves. Moreover, the implementation in GrGen.NET

allows us a visual testing using different graphs.

4. The formal semantics is based on derivations which are

sequences of rule applications. Therefore, a proof

technique is provided by induction on the lengths of

derivations.

5. If one fixes the initial environment and bounds the

lengths of derivations, then the behavior of graph-

transformational swarms can be translated into formu-

las of the propositional calculus so that SAT-solvers

can be employed for automatic proving of properties,

as far as they are expressible in propositional calculus.

A typical correctness property one would like to prove

in this way is: Will the goal be reached? Another

property of interest that can be proved in this way is

deadlock freeness.

6. The approach is very flexible and generic because all

the modeling concepts can be chosen from a variety of

possibilities. This applies to the kind of graphs which

may be directed or undirected, labeled or unlabeled,

connected, simple, etc. It applies similarly to the kind of

rules, of control conditions and of graph class expres-

sions. The actual choice may depend on the application

at hand or the taste of the network designers.

7. Graph-transformational swarms do not need extra

features to make logistic networks dynamic, i.e., to

allow the modeling of dynamic changes in the

underlying structure. The members of the swarm

perform their tasks by applying rules to the environ-

ment graph. This includes the possibility of members

to change the environment structurally.

4 Routing of AGVs by a graph-transformational
swarm

In this section, we propose a solution to the routing prob-

lem of the automated guided vehicles (AGVs) using the

notion of graph-transformational swarms. Automated

guided vehicles are driverless transportation engines that

follow traditionally guide paths like lines on the ground.

Their use is expanding rapidly in the last decades. Beside

the classical application in small manufacturing systems,

nowadays, the tendency is to use AGVs more and more for

transport in highly complex systems including external

areas like container terminals (for a general overview, see,

e.g., [17, 26]). One of the important problems that a

designer of an AGV system faces in complex areas is the

collision-free routing problem. The classical way to solve

this problem is the central time windows planning (see,

e.g., [22, 24, 25]). However, the tendency in the last years

is to explore more decentralized approaches (e.g., [21, 27]).

In the same vein, this section proposes a decentralized

solution using the notion of graph-transformational

swarms.

4.1 The routing swarm

We model the infrastructure where the AGVs operate as an

id�looped distance graph. In a graphical representation,

the nodes correspond to the ends or intersections of paths

including important stations like pickup and delivery

locations. The edges represent the paths or segments of

paths in the infrastructure depending on their lengths. The

distance of an edge can correspond to the distance of the

corresponding path or to some cost of traversing it.

We propose a solution based on two stages. The first one

consists of the preparation of the layout in a such way that

the AGVs follow later only local information. The second

one consists of the navigation process of the AGVs

depending on an arbitrary task assignment.

The parameter m is the number of AGVs and can be

chosen freely. The swarm has four kinds: preparator, re-

solver, assigner, and navigator. Their sizes are n,n, m, and

m, respectively, where n is the number of nodes in the

underlying graph G 2 SEMðid�loopedðdistanceÞÞ. The

members are obtained by relabeling in such a way that

every node in the graph gets assigned two members, one of

kind preparator and the other of kind resolver, and simi-

larly, every AGV gets assigned a member of kind assigner

and a member of kind navigator. How relabeling is

achieved is described below in the detailed introduction of

the kinds. Syntactically, the cooperation condition is a

regular expression as introduced in Sect. 2.1.2, but for

kinds instead of rules. Semantically, the used cooperation

condition requires that preparator is applied realizing the

layout preparation followed by an arbitrary repetition of

assignments each followed by an arbitrary number of

conflict resolving and navigation steps. The application of a

kind means that all members of this kind act in parallel

according to theirs’ own control conditions while all other

members ‘‘sleep’’, i.e., they apply their sleeping rule by

20 Page 6 of 13 Logist. Res. (2016) 9:20

123

default. The goal is that all AGVs reach their assigned

targets. The swarm is schematically presented in Fig. 3.

As mentioned before, we have implemented the swarm

routing in the graph-transformational tool GrGen.NET.

The resulting computation steps of an experiment with an

environment composed from a very small graph, and three

AGVs are used in this section to accompany the explana-

tion of the behavior of the swarm routing. Fig. 5 summa-

rizes the layout preparation process, and Fig. 9 illustrates

the remainder of the computation which consists of the

assignment and the conflict-free navigation of the AGVs.

4.2 Layout preparation

The layout preparation equips the underlying graph with

additional edges in such a way that every node in the graph

can indicate to an AGV having the target T which next

node can be visited to reach T with the minimal distance

possible. Given an i-node, we code such an indicator as an

outgoing edge e labeled with a pair T, D. We say that i has

an indicator to T with the distance D using the successor s,

where s is the target of e (i.e., s ¼ tðeÞ). If D is minimal

considering simple paths up to the maximal lengths l, we

say that the indicator is l-minimal. If D is minimal con-

sidering all possible paths, then the indicator is optimal. A

path composed from indicators to a target T is called an

indicator path to T. If every node in the graph has only

optimal indicators to every reachable node, then the graph

is called fully indicated.

The members of kind preparator realize the layout

preparation process. The kind preparator specified in Fig. 4

initializes this process with rule init. It adds an indicator in

an X-node to a direct successor s provided that such indi-

cator does not yet exist. The rule connect connects an X-

node with an existing indicator path to T. It is applied if a

direct successor s of X exists having an indicator to T with a

distance D1 provided that there is no other direct successor

of X having the same target T with a distance D2 such that

D2 \D1 þ d. The rule connect generates an indicator to T

with the new distance D1þd using the successor s. If an X-

node has two indicators to a target T with different dis-

tances, the rule select deletes the one with the larger dis-

tance selecting in this way the best one to be kept. The

control condition requires that the rule init is applied with

maximum parallelism. Afterward, the rule connect is

applied followed by select both with maximum parallelism.

Because of the negative application condition of init, init is

applied only once for a given successor node in the whole

swarm computation while connect and select are iterated as

long as possible according to the control condition of

preparator.

routing(m)
initial: id-looped(distance)
kinds : preparator,resolver,assigner,navigator
size : n = #nodes,n,m,m
members: preparatori for i ∈ [n]

resolverj for j ∈ [n]
assignerk for k ∈ [m]
navigatorl for l ∈ [m]

coop: preparator; (assigner; (resolver;navigator)∗)∗
goal: all vehicles arrived

Fig. 3 Schematic representation of the graph-transformational swarm

routing

Fig. 4 Unit preparator

Logist. Res. (2016) 9:20 Page 7 of 13 20

123

In the swarm, there are n members of kind preparator.

The member preparatori for i 2 ½n� is obtained from

preparator by relabeling all occurring X with i.

Then i becomes a fixed label in preparatori. The role of

the other labels must be explained now: They are place-

holders for all possible values so that the rules are rather

rule schemata that must be instantiated before they are

applied. A control condition like ||init|| means accordingly

that the maximum number of the instantiations of the rule

init must be applied in parallel. This mechanism that keeps

the representation of rule sets small is used in all our

examples of transformation units.

In the following, we describe how the members work

together using the computation in Fig. 5 as illustrating

example. In the first step, all members apply the rule init in

parallel generating in every node indicators to all successor

nodes (see the result of the derivation p1 in the example). In

the second step, the parallel application of the rule connect

in parallel connects all nodes to construct indicator paths of

length 2. It connects also those that are already connected

to indicator path of length 1 if the new distance is smaller,

then the old one (in the example, p2 adds indicators in the

nodes 2 and 3). In the third step, all members apply select

in parallel deleting all indicators using path of lengths 2

and 1 that are not 2-minimal (p3 deletes the indicator in 2 to

1 with distance 3 keeping the minimal indicator to 1 with

distance 2). Note that a node can have more than one

minimal indicator to the same target (in the example, the

node 3 gets two indicators to 1 with the same distance 4).

By induction, one can prove that in 2L� 1 steps, all L-

minimal indicators are constructed. If the longest path with

a minimal distance is constructed, then the preparator-

members cannot apply any rule anymore (except the

sleeping rule). And the constructed indicators are optimal.

Because the length of such a path is shorter or equal n� 1,

the number of steps is bounded by 2n� 3. Summarizing,

the following correctness result holds:

Theorem 1 Given an id-looped distance graph G, the

swarm routing transforms it by the initial preparation

phase in a fully indicated graph in a number of steps

bounded by 2n� 3 where n is the number of nodes in G.

Note that the layout preparation process can be con-

sidered as a distributed version of the Dijkstra’s shortest

path algorithm (cf. [7]).

The behavior of the swarm in the layout preparation

stage can also be interpreted as follows. In the first step, a

change in the environment is introduced using the rules

p1 p2

p3

p4

Fig. 5 A sample computation

of the swarm routing illustrating

the layout preparation process

20 Page 8 of 13 Logist. Res. (2016) 9:20

123

init. The swarm reacts by propagating backwards this

information over all nodes combining the rules connect and

select of all members of kind preparator. In more sophis-

ticated versions of the underlying swarm, one can consider

that additional changes can occur in the environment like

suppression of indicator edges. This can simulate for

example a traffic congestion. Such a change can be also

handled in the same way by propagating the information

backward to all concerned members. For illustration pur-

poses, we keep the preparation process simple and show in

the next subsection how the automated guided vehicles can

use the generated information to navigate conflict-free to

their assigned targets.

4.3 Assignment, conflicts resolving, and navigation

The kinds assigner and navigator model the task assign-

ment and navigation process from the point of view of the

AGVs. However, the task assignment has the most simple

form serving solely the simulation purposes of the com-

putational steps. The kind resolver models the conflict

resolving from the point of view of a node where multiple

AGVs have it as next destination and would like to visit the

same next position which is determined by a direct suc-

cessor of the underlying node.

In the following, we encode an AGV as an AGV-edge

labeled by a, T, p where a is the name of the AGV, T 2 ½n�
corresponds to its assigned target and p 2 N is its current

priority. We call therefore a vector of nodes hn1; n2i, such
that an indicator (T, d) from n1 to n2 exists, an AGV

position. We consider that AGVs with target T can occupy

such position with the restriction that at most one AGV can

be present in a position in a given time. The priority is

needed to resolve conflicts if more than one AGV compete

for one position.

The kind assigner, as specified in Fig. 6, has just a single

rule assign that creates a vehicle edge labeled with

a, T, p between two arbitrary nodes provided that this

position leads to the target T and is free and that the vehicle

edge is not yet present in the whole graph. Note that the

edges labeled by T, d in the rule assign have different

forms meaning that they do not belong to the gluing graph

of the rule. The control condition [assign] requires that the

rule may be applied or not so that not every vehicle must be

present any time. The members assignerj for j 2 ½m� are
obtained from the kind assigner by relabeling all occurring

a with aj and the a0 by ak for j 6¼ k.

The kind resolver has a single rule reserve (see Fig. 7).

It reserves for an incoming AGV-edge labeled by a, T, p a

next possible position hX; si having an indicator T, d pro-

vided that the following four negative contexts are all

satisfied. (1) There is no other concurrent AGV (repre-

sented in the rule by the incoming AGV-edge a1; T1; p1)

with a higher priority ðp1 [pÞ, and can visit too the

position hX; si (see the edge ðT1; d1Þ in the rule). This

negative context with two edges is bordered by a dotted

line to indicate that the two parts should be satisfied

together. (2) The position hX; si is free: There is no other

outgoing AGV-edge labeled by a2; T2; p2 parallel to the

(T, d)-edge. (3) There is no reservation a3 for any other

vehicle in the next position hX; si. (4) The AGV a has not

yet a reservation: There is no outgoing edge labeled by

a. The rule reserve adds an outgoing edge labeled by

a parallel to the (T, d)-edge which indicates that the

underlying position is reserved for the AGV a. The rule

reserve may be applicable for two AGVs with the same

priority both claiming the same next possible position

hX; si. But the control condition requires that the rule is

applied sequentially as long as possible so that only one of

the potential reservations is chosen non-deterministically.

The member resolverj for j 2 ½n� is derived from resolver

by relabeling all occurring X with j. This means in par-

ticular that reservations are done sequentially at the node

with the j-loop, but in parallel for different nodes.

The kind navigator, which is specified in Fig. 8, con-

tains three rules wait, move, and arrive. The rule wait

increments the priority p with 1. The rule move is

responsible of the forward movement of the AGV until the

target is reached. It moves forward the AGV a with the

target T following an a-edge (which is added by a resolver

member). If the target node is reached, the rule arrive can

be applied. The rule arrive deletes the AGV-edge signaling

in this way to the task assigner that the AGV a is free for a

new assignment. The control condition requires that one of

the rules move, arrive, or wait is applied. Therefore, wait

has the lowest priority. The member navigatork for k 2 ½m�
is obtained from navigator by relabeling all occurring

a with ak.

After the layout preparation, only members of kind as-

signer, resolver, and navigator are active. The assigner

members create an arbitrary number less or equal m of

AGV-edges in parallel. According to the parallelization

theorem together with the fact that the T, d edges in the

rule assign do not belong to the gluing graph, the positions

of the created AGVs are pairwise different ensuring a

conflict-free assignment. Afterward, all created AGV-

edges act in parallel by moving forward or waiting

depending on the decision of the resolver members, which

Fig. 6 Unit assigner

Logist. Res. (2016) 9:20 Page 9 of 13 20

123

are present in every node to check for and to resolve

conflicts. They reserve the next possible position of the

AGVs based on their priorities. The AGVs with a reser-

vation are moved forward setting their priorities to one, the

others that arrive to their targets become their corre-

sponding edge deleted, all others have to wait incrementing

their priorities by one. If the number of repetition is high

enough, the swarm reaches its goal, otherwise the process

starts again by assigning new tasks to inactive vehicles.

The swarm repeats this process until the goal is reached.

Especially, we have the following result.

Theorem 2 If the swarm routing reaches its goal, each

AGV that has been assigned to a target reaches this target

collision-free.

Proof Consider a computation G0 ¼)
�

Gn of the swarm

routing. According to the cooperation condition, an initial

section G0 ¼)
�

Gi for some i prepares the initial environ-

ment G0 into a graph with the properties stated in Theo-

rem 1. And the tail Gi ¼)
�

Gn is composed from sections of

the form Gkj ¼)Gkjþ1 ¼)
�

Gkjþ1
for i ¼ k1\ � � �\km ¼ n,

m	 1 where, for j ¼ 1; . . .;m, the first step is an assign-

step and the remainder repeats resolver-steps followed by

navigator-steps. For m ¼ 0, this is the empty sequence.

Then, the theorem can be proved by induction on m. For

m ¼ 0, no car moves so that no collision can happen. Let

now the computation have mþ1 assign-steps. Due to the

induction hypothesis, the vehicles run collision-free for the

first m assign-steps. The ðmþ1Þ-st assign-step adds some

further AGVs, but only if none of these is already present

and the edges where the vehicles are assigned are not

occupied. All further steps are applications of the rule re-

serve alternated with the applications of the rules wait,

move, and arrive. A collision would only happen whenever

two AGVs move onto the same edge at the same time. But

such collision is impossible because the entered edge is

reserved before by exactly one vehicle as discussed in

detail above in the explanations of the kinds. h

The swarm routing is designed to solve conflict-free

situations where two or more concurrent AGVs want to

traverse the same node. However, it should be mentioned

that the presented swarm does not handle deadlocks caused

from circular waits. The characterization, detection, and

avoidance of such situations should be treated in future

work.

Figure 9 illustrates the computations in the navigation

process of three AGVs a1,a2 and a3 starting with the fully

connected graph resulting from the preparation process in

Fig. 5. In the first step in this stage, two AGVs are arbi-

trarily chosen to get assignments and the reminder is kept

inactive. a1 and a3 get assigned, respectively, the targets 1

and 4 and the start positions h3; 1i and h3; 2i as a result of

the application of the rule p5 ¼ assign1 þ assign3 þ sleep2
where the indices in the rules correspond to the indices of

the members that apply them. After the assignment, the

member resolver2 which resolves conflict in node 2

reserves the next position for the AGV a3 through gener-

ating an a3-edge while all other members of kind resolver

apply their sleeping rule, i.e., p6 ¼ reserve2þP
i2½5�nf2g sleepi. The rule p7 ¼ arrive1 þ move3 þ sleep2 is

applied making a1 available for other assignments because

it has already arrived at its target and moving forward the

vehicle a3 to its reserved position. The AGV a2 is still

sleeping in this step. At this point, the repetition of

Fig. 7 Unit resolver

Fig. 8 Unit navigator

20 Page 10 of 13 Logist. Res. (2016) 9:20

123

p5 p6

p7

p8p9

p10

p11 p12

p13

p14

Fig. 9 A sample computation of the swarm routing illustrating the navigation process

Logist. Res. (2016) 9:20 Page 11 of 13 20

123

resolving and navigation is finished allowing that the

assignment starts again. p8 ¼ assigner2 þ
P

i2½3�nf2g sleepi

assigns the target 1 and the start position h5; 4i to the AGV

a2 The other members of kind assigner sleep because the

a1 is not chosen to be assigned and a3 is already assigned.

In the next step, the rule p9 ¼ resolver4 þ
P

i2½5�nf4g sleepi

chooses a2 to move forward reserving the only possible

next edge for it. This step illustrates the behavior of a

member resolver in a situation where concurrent AGVs

having the same maximal priority and want to traverse the

assigned node. Namely one is chosen arbitrarily. Following

this decision, a2 moves forward and a3 waits augmenting

its priority by 1 as a result of the rule

p10 ¼ move2 þ wait3 þ sleep1. The navigation rules yield

that a2 applies its arrive rule and that a3 waits again

because the next position is occupied, that is,

p11 ¼ arrive2 þ wait3 þ sleep1. In the next two steps,

p12 ¼ resolver4 þ
P

i2½5�nf4g sleepi reserves the next posi-

tion for a3 followed by p13 ¼ move3 þ
P

i2½2� sleepi which

moves it to the reserved position. In the last step, and

because the last active AGV a3 arrives at its target

p14 ¼ arrive3 þ
P

i2½2� sleepi, the swarm reaches its goal.

5 Conclusion

In this paper, we have proposed to model dynamic logistic

networks with decentralized processing and control by

means of graph-transformational swarms. The members of

such a swarm act and interact in a common environment

graph. It is a rule-based approach, the semantics of which is

based on massive parallelism according to local control

conditions of the members and a global cooperation con-

dition of the swarm as a whole. As we have discussed

above, this corresponds to dynamic logistic networks with

their logistic hubs and their processes which run simulta-

neously and autonomously with a proper way of coordi-

nation. We have sketched how automated guided vehicles

and their routing can be modeled by a graph-transforma-

tional swarm as an illustrative example. In this example,

we have demonstrated the capability of the approach

regarding visualization in the design level as well as the

computation level. Furthermore, we have provided two

theorems using the advantage of the formal semantics of

graph-transformational swarms. In order to shed more light

on the significance of the approach, we will study the

following topics in future research.

1. More case studies are needed including real applica-

tions. This would allow one to test the implementation

of a logistic network against a formal specification by

means of graph-transformational swarms rather than

against informal or semiformal models or just against

the intuition of the designers.

2. The use of tools must be made more comfortable. At

the moment, one must adapt each graph-transforma-

tional swarm separately by hand to simulate and

visualize it on a graph-transformational engine or to

verify properties on a SAT-solver. By fixing the

syntactic features of swarm modeling, one can con-

struct translators into the tools so that the tools run

automatically on swarms and simulate and verify

logistic networks in this way.

3. It may be meaningful to translate the modeling

concepts of graph-transformational swarms into

explicit modeling concepts of dynamic logistic net-

works. In this way, modelers of networks do not need

to make themselves familiar with the swarm ideas, and

they could follow their intentions directly within the

edifice of ideas of logistic networks.

Acknowledgments We are grateful to the anonymous reviewers for

their valuable comments on former versions of this paper.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Abdenebaoui L, Kreowski H-J, Kuske S (2013) Graph-transfor-

mational swarms. In: Bensch S, Drewes F, Freund R, Otto F (eds)

Fifth workshop on non-classical models for automata and appli-

cations-NCMA 2013, Umeå, August 13–August 14, Proceedings.

Österreichische Computer Gesellschaft, pp 35–50

2. Blum C, Merkle D (eds) (2008) Swarm intelligence: introduction

and applications. Natural computing series. Springer, New York

3. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence:

from natural to artificial systems. Oxford University Press,

Oxford

4. Camazine S, Franks NR, Sneyd J, Bonabeau E, Deneubourg J-L,

Theraula G (2001) Self-organization in biological systems.

Princeton University Press, Princeton

5. Couzin ID, Krause J (2003) Self-organization and collective

behavior in vertebrates, volume 32 of advances in the study of

behavior. Academic Press, Cambridge

6. Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-

organizing exploratory pattern of the argentine ant. J Insect

Behav 3(2):159–168

7. Dijkstra EW (1959) A note on two problems in connection with

graphs. Numer Math 1(5):269–271

8. Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of

algebraic graph transformation (monographs in theoretical com-

puter science. An EATCS series). Springer, Berlin

9. Engelbrecht A P (2006) Fundamentals of computational swarm

intelligence. Wiley, New York

20 Page 12 of 13 Logist. Res. (2016) 9:20

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

10. Geiß R, Kroll M (2008) GrGen.NET: a fast, expressive, and

general purpose graph rewrite tool. In: Schürr A, Nagl M, Zün-

dorf A (eds) Proceedings of 3rd international symposium on

applications of graph transformation with industrial relevance

(AGTIVE ’07), volume 5088 of Lecture notes in computer sci-

ence, pp 568–569

11. Hülsmann M, Scholz-Reiter B, Windt K (2011) Autonomous

cooperation and control in logistics. Springer, Berlin

12. Kennedy J, Eberhart RC (2001) Swarm intelligence. Evolutionary

computation series. Morgan Kaufman, San Francisco

13. Kreowski H-J (1977) Manipulationen von Graphmanipulationen.

Ph.D. thesis, Technische Universität Berlin

14. Kreowski H-J, Klempien-Hinrichs R, Kuske S (2006) Some

essentials of graph transformation. In: Ésik Z, Martı́n-Vide C,

Mitrana V (eds) Recent advances in formal languages and

applications, vol 25., Studies in computational intelli-

genceSpringer, Berlin, pp 229–254

15. Kreowski H-J, Kuske S, Rozenberg G (2008) Graph transfor-

mation units—an overview. In: Degano P, Nicola RD, Meseguer

J (eds) Concurrency, graphs and models, essays dedicated to Ugo

Montanari on the occasion of his 65th birthday, volume 5065 of

Lecture notes in computer science (LNCS). Springer, New York,

pp 57–75

16. Kreowski H-J, Kuske S, Rozenberg G (2008) Graph transfor-

mation units—an overview. In: Degano P, Nicola RD, Meseguer

J (eds) Concurrency, graphs and models. Springer, New York

17. Le-Anh T, Koster MD (2006) A review of design and control of

automated guided vehicle systems. Eur J Oper Res 171(1):1–23

18. Olariu S, Zomaya AY (2005) Handbook of bioinspired algo-

rithms and applications. Chapman & Hall/CRC, Boca Raton

19. Partridge BL (1982) The structure and function of fish schools.

Sci Am 246:114–123

20. Rozenberg G (ed) (1997) Handbook of graph grammars and

computing by graph transformation. Foundations, vol 1. World

Scientific, Singapore

21. Schwarz C, Sauer J (2012) Towards decentralised agv control

with negotiations. In: Kersting K, Toussaint M (eds) Proceedings

of the sixth starting AI researchers symphosium, volume 241 of

frontiers in artificial intelligence and applications. IOS Press

22. Smolic-Rocak N, Bogdan S, Kovacic Z, Petrovic T (2010) Time

windows based dynamic routing in multi-AGV systems. IEEE

Trans Autom Sci Eng 7(1):151–155

23. Taentzer G (2000) Agg: a tool environment for algebraic graph

transformation. In: in AGTIVE, ser. Lecture notes in computer

science. Springer, pp 481–488

24. Taghaboni-dutta F, Tanchoco JMA (1995) Comparison of

dynamic routeing techniques for automated guided vehicle sys-

tem. Int J Prod Res 33(10):2653–2669

25. Ter Mors A, Witteveen C, Zutt J, Kuipers FA (2010) Context-

aware route planning. In: Dix J, Witteveen C (eds) Multiagent

system technologies, 8th German conference, MATES 2010,

Leipzig, Germany, volume 6251 of Lecture notes in computer

science. Springer, pp 138–149

26. Vis IF (2006) Survey of research in the design and control of

automated guided vehicle systems. Eur J Oper Res

170(3):677–709

27. Weyns D, Holvoet T, Schelfthout K, Wielemans J (2008)

Decentralized control of automatic guided vehicles: applying

multi-agent systems in practice. In: Companion to the 23rd ACM

SIGPLAN conference on object-oriented programming systems

languages and applications, OOPSLA Companion ’08, New

York, ACM, pp 663–674

Logist. Res. (2016) 9:20 Page 13 of 13 20

123

	Modeling of decentralized processes in dynamic logistic networks by means of graph-transformational swarms
	Abstract
	Introduction
	Graph-transformational swarms
	Basic concepts of graph transformation
	Graphs and rules
	Control conditions and graph class expressions
	Graph-transformational units

	Graph-transformational swarms

	From swarms in nature to logistic networks as graph-transformational swarms
	Relating swarms in nature with logistics
	Dynamic logistic networks as graph-transformational swarms
	The potentials of the approach

	Routing of AGVs by a graph-transformational swarm
	The routing swarm
	Layout preparation
	 Assignment, conflicts resolving, and navigation

	Conclusion
	Acknowledgments
	References

