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Abstract—This paper describes a multi-body model for pre-
dicting disturbance forces and torques caused by a multi-stage
manipulator (2 DOF) on a floating platform (6 DOF). The
manipulator consists of a beam attached to two parallel linear
ironless actuators and a rotary arm underneath the beam. The
model prediction can be used as a feed-forward in the control of
the magnetic bearings of the platform.

Lagrange’s equations are used for the analysis, which provide
a convenient way for deriving a multi-body model without the
need for separating all bodies and calculation of all interacting
forces and torques.

The model is verified with measurements. The experimental
setup consists of a manipulator on an aluminium platform which
is connected to the fixed world via a 6 DOF force-torque sensor
which is used to verify the model.

I. INTRODUCTION

Most high-precision machines consist of several positioning
stages which are often a cascaded set of long-stroke actuators
with low precision and short-stroke actuators for high precision
positioning [1], [2], [3]. In order to decrease production costs
and time there is an increased demand for higher productivity
of such machines. Several options are available in order to
tackle this problem:

1) Faster machines could be built which would need more
powerful actuators and, therefore, lead to increased
mechanical and thermal stresses, resulting in a bulkier
design.

2) The batch size of the production process could be
increased which would lead to actuators with a longer
stroke.

3) Parallel processing could be used. In this case another
task will be performed while positioning. This way it is
possible to improve performance without the need for
increased machine size.

The first two options do not only result in heavier ma-
chines, but also compromise the accuracy of the machines.
Parallel processing however does not have this drawback. At
Eindhoven University of Technology such a parallel machine
is currently under development (see Fig. 1). The goal of
the project is to build a contactless planar actuator with a
manipulator on top of it. Robots on the fixed world can place
products on the planar actuator, which in turn can be used
for transportation and positioning of the same product. While
moving, the manipulator can be used for e.g. inspection or

calibration of the product. Increased reliability and dynamics
will result from removing all cables which connect it to the
fixed world. Therefore, three different contactless techniques
should be realised in this project:
1) Contactless movement of the planar actuator by using
magnetic bearings and propulsion.
2) Contactless energy transfer by using inductive coupling.
3) Wireless control of the manipulator using a wireless low-
latency data link.
The energy, which is necessary to operate the manipulator, is
provided by the contactless inductive coupling. Furthermore,
the manipulator is controlled from the ground via the wireless
data link.

II. MECHANICAL DESIGN OF THE MANIPULATOR

The planar actuator consists of an array of stationary coils,
above which an ironless platform with permanent magnets is
floating. The manipulator on top of the platform is an H-drive
with two ironless linear actuators attached to a beam. In the
centre of the beam a rotary motor is assembled with an arm
attached to it. The tip of this arm can be positioned anywhere
in the z-y plane between the two horizontal linear legs by
combining the translation of the linear actuators and the rotary
movement of the arm.

The linear actuators are brushless 3-phase ironless actuators.
Therefore, they have no cogging. The rotary drive is a 3-phase
slotless motor, and therefore, also has no cogging. The actuator
properties are listed in Table I. The position of each linear
actuator is measured with incremental encoders which have a
1 pm resolution. The angle of the rotary motor is measured

Manipulator beam

Manipulator arm

Stationary coils

Fig. 1. Contactless planar actuator with manipulator



TABLE I
ACTUATOR PROPERTIES

Property Linear act. Rotary motor
Motor constant 11 4 [NfAms] | 0.144 [Nm/Aps]
Peak current 1 [ALs] 10.8 [Auns)
Continuous current 0 87 [Agms] 1.92 [Ams)
Continuous force 10 [N] -
Continuous torque - 0.28 [Nm]

g
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Fig. 2. Coordinate systems in the manipulator

with a 40 prad resolution. The beam which connects the
linear actuators is sufficiently stiff in order to consider it rigid.
Therefore, movements of the beam in directions other than
the movement direction of the linear actuators are considered
impossible.

III. MODEL DERIVATION USING LAGRANGE’S EQUATIONS

The derivation of the multi-body model is done by using
Lagrange’s equations [4], [5], [6]. These equations eliminate
the need for computing all interacting forces between different
bodies. Only external forces and constraint forces of interest
have to be taken into account.

A. Coordinate systems

The manipulator consists of three separate bodies. The
platform, magnet tracks and bearings together are the first
body with mass, m;. The second body is the beam and has
a mass, my. The rotor of the rotary motor together with the
arm form the last body with mass, ms. Each body has a local
coordinate system attached to it (see Fig. 2), which is used

for describing the position and orientation with respect to the

global coordinate system. Each coordinate system consists of
three mutually orthogonal unit vectors:

e=le & &) fori=0,...,3 )

EO is fixed to the world and can, therefore, not move, € s
placed in the centre of the manipulator platform, € ? is located
in the centre of the beam and &°, finally, is attached to the
rotary arm.

B. Position and orientation of the bodies

The position of the center of mass of each body with respect
to the fixed world is written as:

fom =z yi = |é%. @)

The orientation of each body is described by means of
Tait-Bryant angles. The orientation of a body is the result of
subsequent rotations )5, 4; and ¢; about, respectively, the local
€%, €4 and (’3 axis. By the use of rotation matrices, A  the
transformation from one coordinate system to another can now
be easily made:

e, =A%, 3)

Rotation matrices and their properties are discussed in more
detail in appendix A.

C. Generalised coordinates

In general, a body has 6 degrees of freedom (DOF) if it
is not subject to any constraints. In presence of constraints,
each constraint removes one degree of freedom. The minimum
required set of coordinates to describe the position and orien-
tation of each body are a set of n generalised coordinates,
g. So q is a (n X The floating platform has
6 DOF due to its complete freedom with respect to the fixed
world. Furthermore, the manipulator adds 1 DOF due to the
translation of the beam and 1 DOF due to the rotational
movement of the rotary motor. The beam is considered rigid
and roller bearings on each side do not allow other movements
of the beam than the one in &3-direction. Therefore, only
1 DOF is added by the beam. So a column of generalised
coordinates for the manipulator on the floating platform is:

L} \.\)Auxuu
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where yrar and ¢rpr denote, respectively, the movement of
the beam and rotation of the arm. Now the position vectors,
7c ;. can be written in terms of ¢.

D. Kinetic and potential energy

The next step in the Lagrangian approach is to define the
total energy available in the system. The total kinetic energy
of the system is the sum of the translational and rotational
kinetic energy of each body:

3
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where m; denotes the mass of body 7, “OF is the angular

velocity of body 4 with respect to the fixed world and MiJ is
the inertia tensor of body ¢ with respect to its centre of mass.

The total potential energy of the system is the sum of the
potential of the gravitational forces acting on each body and
the energy stored in the system in spring-elements. Because
there are no springs in the manipulator and no flexibility is
included in the model the potential energy equation reduces
to:

3
Vo= - § mig - ToM; (6)
i=1
with ¢ the gravitational acceleration vector.
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Fig. 3. Forward and inverse dynamics

E. Forward and inverse dynamic analysis

Once the equations of motion are derived, a dynamic
analysis can be performed. This can be done by forward or
inverse dynamic analysis (see Fig. 3). In the first case a column
of external forces and torques, 7, is the input from which the
trajectories of the generalised coordinates, ¢, and constraint
forces, A, are calculated. For an inverse dgmamic analysis,
trajectories for all generalised coordinates are the inputs from
which the external forces and constraint forces are computed.

F. External forces and torques

In case a forward dynamic analysis is performed, the
external forces and torques are the inputs for the model. The
platform with manipulator is subject to several external forces
and torques. Because the floating platform can move in three
directions and rotate about three axes, an equal amount of
forces and torques is necessary to control all these degrees of
freedom. Furthermore there is the force of the linear motors
which acts between the beam and the platform. The forces
generated by the two linear motors will be treated as a single
force in the middle of the beam. Furthermore, there is the
torque generated by the rotary motor which acts between the
arm and beam. Finally, friction forces in both the linear and
rotary actuators are added as external forces.

In order to incorporate the external forces in the model they
have to be rewritten as generalised non-conservative forces as
described in [4]. Therefore, for each applied force an exertion
point, 7;(¢) is defined as well as a magnitude vector F’i"c.
A similar approach is used for the applied torques, which
results in the definition of a column with rotation parameters,
0, a row of axial vectors, il (Qj) about which the rotation is
performed and a magnitude vector, ﬁ Now the generalised
non-conservative forces can be written as:

AT AN <L (90,\" .

ne _ 2 3 Fnc A = 9 ‘Tnc? 7
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with np and np, respectively, the total number of external

forces and external torques.

G. Constraint equations

In case an inverse dynamic analysis is performed the ex-
ternal forces and torques, which are related to the generalised
coordinates, are substituted by a set of constraint equations.
So only the damping forces remain as external forces. The

platform is forced by m constraints to follow a certain trajec-
tory, From these constraint equations, the constraint forces and
torques necessary to follow the trajectory can be computed.
All constraints will be included as velocity constraints and
can therefore be written as:

e (d.g,1) =0, ®)

where h,,(¢,¢,t) is a (m % 1) column with all constraint
equations. Because all velocity components appear as terms
which are linear in the generalised coordinates, the constraints
are rewritten as:

w7 (g, 0)g+ (g, t) =0, 9

where W (q,t) is a (m x n) matrix which represents the
velocity dependent components, and (g, £), a (mx 1) column
with the remaining non-velocity dependent components.

H. Lagrange multipliers

In order to incorporate the constraint equations in the
equations of Lagrange, a (n x 1) column, A, of so called
Lagrange multipliers is introduced. The Lagrange multipliers
represent the constraint forces and torques. By writing the
constraints now as WA they can be treated as generalised
forces in the equations of Lagrange.

1. Equations of Lagrange
The equations of motion now follow from the extended
equations of Lagrange as described in [4]:

d [or o1 v
(di (dQ) T ag
The equations of Lagrange together with the constraint equa-
tions (9) now completely describe the dynamics of the sys-
tem. In order to solve the equations they are rewritten and
combined. Therefore, first the cquations of Lagrange without
constraints (i.e. WA = Q) are put in the following form:

M(g)§ + I(q.4) = S(g)z, an

where M(q) is the mass-matrix, H(q,¢), a matrix with
centripetal, Coriolis and gravitational terms and S(g), the
distribution of external forces and torques, 7. The next step
is differentiating the constraint equations (9) with respect to
time:

T
*-) =Q" + WA  (10)
(?g_ —

w7 (g, t)§+ @(g,q,t) = 0, (12)
where
ow(q,
(g, 1) =
owT(g,t) owT(gtq dagr) . 1P
\Ta dq ag )¢

The total dynamics is now written as:
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Fig. 4. First eigenmode of the plate using FEA

As the goal of the model is to predict the forces and torques
on the platform, now an expression is derived for the Lagrange
multipliers. For a certain trajectory of the platform and ma-
nipulator, the Lagrange multipliers namely contain the forces
and torques which keep the platform balanced. From (14) an
expression for the generalised accelerations, ¢, is now derived
as:

G=M"(q) (S(gr — H(q.4) + W(g,t)A). (15

Using this expression in (9) and solving for A results in:

A:(ET(g,f)M"( W(g)~

, ) ) . (16)
(WT(q,)M " (q) (H(g.4) - S(9)T))

So an expression for A is now available in terms of ¢, ¢, 7
and {.

IV. MODEL VALIDATION

A. Finite element analysis

The platform is modelled as a rigid body. This assumption is
only valid up to a certain {frequency. Therefore, a finite element
analysis (FEA) of the isolated plate is performed. Because both
the linear actuators and the bearing support add stiffness to the
plate, the isolated plate is, therefore, a worst case scenario.
The baseplate is modelled as a 300x300x 10 mm aluminium
plate. The first eigenmode of the plate is predicted o occur at
350 Hz (see Fig. 4). Because the frequency range in which the
manipulator will stay below 80 Hz, the plate can be considered

rigid.

B. Experimental setup

A real manipulator is built and used for verification pur-
poses. It is placcd on a 6 DOF sensor (see Fig. 5) which can
measure forces and torques in three directions, respectively.
As a result of placing the platform on a very stiff sensor
its location is considered fixed to the world. The measured
reaction forces and torques are equal in magnitude to the forces
and torques necessary to stabilise the platform in case it is
floating.

Manipulator platform
mounting

Tool center point .6 DOF sensor

Fixed world

Fig. 5. Mounting of 6 DOF sensor

C. Impulse response

Impulse response measurements were performed in order to
characterise the eigenfrequencies in the manipulator. Thereto
an impulse hammer, with built-in force sensor, is used to
excite the platform, while the reaction forces and torques
on the platform are measured with the 6 DOF sensor. The
measurements were performed with the beam in both outer
positions as well as in the centre. From the impulse responses
(see Figs. 6-11, note: all figures share the same Iegend) we can
now conclude most dynamics appear above 80 Hz.

D. Transfer functions

The manipulator beam is supposed to be rigid. A rigid
beam allows the total force produced by the two linear
actuators to be modelled as a single force in the middle of
the beam. One way to validate this assumption is to measure
the transfer functions from one linear actuator to itself and
its cross terms from the other linear actuator and compare
the results. The control scheme of the legs of the manipulator
is shown in Fig. 12. So each manipulator leg has its own
controller, C, which is a 10 Hz low bandwidth PD-controller.
The controller is implemented in such a way that no crosstalk
effects are taken into account. The transfer function of each
linear actuator as well as the transfer function of the cross
terms is measured using noise injection after the controller.
Noise is injected at w; and wy and measured at vy and vs.
Now the transfer function is computed as:

1 for i = i
——— fori=
U]‘ 1 + ClPU f17
Hw:;!;’: —C. P (X
’ — LY for i j

Using these transfer function definitions the plant transfer
functions are computed as:

s (18)

Measurement data is collected by making the manipulator
follow a simple trajectory while injecting band limited white
noise. The transfer functions (see Figs. 13 and 14) are now
computed using an averaging procedure. In these figures only
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the results are shown for one leg, ), as the other leg has
similar results. It becomes clear that the cross term, Py, is
almost identical to the direct transfer function. From this we
can conclude that a very stiff connection must be present
between the two legs. Therefore, the assumption of considering
the beam rigid is valid. Note that this also shows that a MIMO
controller, which takes care of the cross terms, might achieve
much better control results.

E. Friction force

The motor currents as well as the position of both linear
actuators are measured. From this data the friction force is
estimated, using the fact that for a constant velocity the
acceleration is zero. Therefore, the motor currents at constant
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velocity should be zero if no friction is present. In Fig. 15 F Inverse dynamic analysis
the constant velocity trajectory is plotted and in Fig. 16 the
reconstructed friction from the motor currents is shown. The
experiment was repeated for several speeds, but no significant
velocity dependence was found, therefore the friction can be
estimated as Coulomb friction of approximately 2 N, which is
about ten percent of the total available actuator force.

Now the model assumptions are checked, the model itself
is validated. A movement profile (see Figs. 17 and 18) is fol-
lowed by the manipulator and measurement data is collected.
The movement profile is used as an constraint input for the
model and the constraint forces are computed.
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V. RESULTS

In Figs. 19-21 the results of the simulation as well as the
measured forces and torques are shown. The used controller
for the linear motor consists of a lead-lag up to 60 Hz and has
a lowpass filter at 70 Hz in order to suppress following unmod-
elled dynamics. The measured forces and torques are filtered
with a 4™ order Butterworth filter with a cut-off frequency
of 80 Hz. F, and T}, are predicted quite well, however some
offsets are present. This offset is due to calibration problems
of the 6 DOF sensor. The predicted torque about €} shows
globally the same peaks as the measured force, but is not very
accurate. The reasons for this deviation are the existence of a
noise component in the unfiltered signal, which has a much
larger amplitude than the signal itself, as well as the previously
mentioned calibration problem of the 6 DOF sensor. Therefore
further fine-tuning of the model parameters is delayed until the
sensor is better calibrated.
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Fig. 21.  Torque on platform about &7

V1. CONCLUSIONS AND RECOMMENDATIONS

A multi-body model was derived for a manipulator on a
floating platform. It will be used for predicting disturbance
forces and torques on the platform. A manipulator was built
and placed on a 6 DOF sensor for verification purposes.
The multi-body model was verified with measurements. The
rigid body behaviour of the manipulator is predicted very
well, however some unmodelled dynamics, make the model
unreliable for frequencies above 80 Hz. Better results could
be achieved by recalibrating the 6 DOF sensor, which would
allow more reliable measurements, which in turn would allow
better fine-tuning of the model parameters. Finally, further
investigation of the crosstalk between the linear actuators, and
implementation of a MIMO controller could lead to better
control results,
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APPENDIX A
ROTATION MATRICES

A rotation matrix is a function of the rotation parameters of a body and allows the transformation from one coordinate system
to another. A total of three basic rotations exists, one about each axis. If a body is rotated using the Tait-Bryant sequence, it is
rotated first about the local € -axis, followed by a rotation about the local €,-axis and finally a rotation about €5 is performed.
Therefore the total rotation sequence can be described by an initial coordinate system, two intermediate systems and a final

coordinate orientation. The rotation about the ¢9-axis is written as:

[ 1 0 0

=AY = | 0 cos() sin(0) | &°
0 —sin(0) cos(0)

About the &1-axis:

—P()S(’(/)) 0 —sin(y)

52 — AZIEI — 1 0 é’l'
( by 0 cos(y)
And finally about the & § xis:
' , cos(¢) sin(¢p) O )
%= A%%e* = | —sin(¢) cos(¢) 0 | &%
i 0 0 1
So the rotation matrix, which describes the complete Tait-Bryant sequence can be constructed as:
‘ cos(¢) sin(¢) 0 cos(yp) 0 —sin(y) 1 0 O
8% = A AP AN = | sin(¢) cos(4) O 0 1 0 0 cos() sin(8) | é°
0 0 1 sin{) 0  cos(y) 0 —sin(f) cos(d)

0

cos(tp) cos(@p)  cos(B) sin(¢@) + sin(6) sin(t)) cos(¢p) sin(0) sin(¢) — cos(f) sin(¢) cos(¢)
= | —cos(¢)sin(p) cos(#)cos(P) — sin(@) sin(¢)) sin(¢) sin(F) cos(¢p) + cos(d) sin(e)) sin(¢) | €
sin(y)) — sin(@) cos() cos(8) cos(v)

(19)

20

@n

(22)

So it is simply a multiplication of the rotation matrices related to respectively a rotation about the local €5, €, and €, axis.



APPENDIX B
FULL MULTI-BODY MODEL DERIVATION

A. Positions and orientations

The column of generalised coordinates for the complete multi-body derivation is chosen as:

1", 23)

q:—[xp Yp Zp Op Up Sp Yrm Orum

which is a slightly different choice than in the main article. Here 1, y, and 2, denote the position of the geometric centre
of the platform instead of the previously used centre of mass of the platform (which lies slightly higher than the geometric
centre). Also the rotation parameters, 0, ¥, and ¢, are now directly related to the geometric centre of the platform, instead
of the centre of mass. The realised rotation is exactly the same, but the notation, however, is more consequent. The choice for
Zp, Yp and z, is very straightforward, as this position is exactly known, in contrast to, the centre of mass, which is estimated.
The centre of mass of the platform is now rewritten as:

FCM] = FP + Fllcz
o 1 (24)
[ Tp Yp Z2p JQ + [ Tl Yha la ]Q

I

where 7, is the position of the geometric centre of the platform and 77, is a body fixed vector (see Fig. 22), which describes
the position of the centre of mass of the platform with respect to its geometric centre. The centre of mass of body 2 and 3
can be rewritten in a similar way, which results in:

Fomy =75+ 71+ [ 0 yrar 0 ] + 75, 25)
L2 w2 }50 + { T21 Y +YLm 22 }51 + [ a0 Y2a  #2ia JET

il

and
Fomy =Tp+ 7o+ [ 0 year 0 &8+ + 75,
= [ Lp Yp 2p }E’fﬂ + { To1 Y1+ Yrm 2o ]El + { T3z Y32 232 ]52 + I L3 Y31 2310 JES,

where 7; are body fixed vectors from body 4 to body j. The rotation matrices are also rewritten in terms of g:

Alo(ela 1/]17 ¢]) = Ala(aﬁ‘) wpv ¢p) (27)
420 (623 1/)27 ¢2) = A20(€1’h 7/)10, ¢p) (28)
A30(93’ 1/)37 d)3) = ASO(Q]H wpa Cbp + ¢RM) (29)

B. Angular velocity

The angular velocity, %@, of coordinate system &7 with respect to & !, is determined using the additive property. The angular
velocity of a body can be written as the sum of the angular velocities caused by its rotations. So for body 1 this results in:

05 = épg? + ¢p€g + Qgpgg = (30)
= { ép -+ (ﬁp sin(vp) (/p cos(0,) — q's,, cos(y,) sin(6,) g}ﬁp cos(thp) cos{(l,) + 1/}p sin(6,) ] e’

=1 CMl
€28
Tlier
€
Fo o
- €, CM,
o 7211
Ta1
£
&
Fig. 22. Body fixed vectors

(26)



where &% and ” denote intermediate coordinate systems. Body 2 can not rotate with respect to body 1, therefore, the angular
velocity is the same, so:

20 10 —1, (31)

o == w

And finally body 3 rotates about ?g with an angle ¢pp so:
305 = 0,80 + 9,5 + $p@h + Grarfs =
T

. ép + (d)P + Q%RM) sin(p) o (32)
= % COS(Q}?) —(¢p + Gra) COS(Q/)Q) Sin<9p) é

(@p + Prar) cos(1,) cos(6,) + 1y sin(d,) |

C. Kinetic and potential energy
Now all terms in (5) are known the kinetic energy, /', can be computed. Also all terms for the potential energy, V, are

known. The resulting equations for the complete 3D-model including all degrees of freedom, however, are very elaborate and
are therefore not written down here. In Appendix C a simplified 2D-model is described, including the corresponding expressions
for T and V.

D. Constraints

Each degree of freedom has a constraint related to it. The constraints on the platform are very straightforward, as the platform
can not move, nor rotate. Therefore the velocities, 4, ¥, and %,, as well as the angular velocities, 0, 1/p, qsp, are zero. The
position of the beam, yz s, follows a certain trajectory, u;{t), therefore the velocity constraint on the beam can be written
as §ra — w1 (t) = 0. Furthermore, the angle of the rotary motor, ¢pas, is defined by ug(¢), which results in the constraint
qBR M — U2(%). So now the column of constraints is written as:

. i)
Up
Zp
[7) .
Bp, = 1%';; = 0, (33)
?p
Yrm — %y (1)
L Prm — () |

or using the format in (9) the constraints are written as:

1 6 0 00 0 0 0 Tp 0
01000000 Up 0
00100000 Zp 0
W7 (g, t)q + (g, t) = 8885?888 Z’; + 8 =0. (34)
000007100 bp 0
600000 10 YLm —13 (1)
100 00 0 0 0 1 || dpar | | —t)

All expressions in the equations of Lagrange are now known and the constraint forces can be computed.



APPENDIX C
2D-MODEL

Because the full 3D-model results in too elaborate expressions, a 2D-model is introduced here to give the reader an idea
of the resulting equations. The 2D-model consists of a platform and a beam. The rotary arm is removed in this case. The
platform can move in two directions and rotate about the third axis. The beam can still not rotate with respect to platform, but
can only move in €} direction. Therefore in this case, a column of generalised coordinates is:

T
Q:{yp zp Oy yLMWJ . (35)

The orientation of &' with respect to % is now only determined by #, and therefore:

1 0 0
gl=A" (9;9)5,0 = | 0 cos(fp) sin(f,) e’ (36)
0 —sin(0,) cos(0,)

The centres of mass and geometric centre of the bodies are chosen to coincide in order to simplify the resulting equations.
Therefore the position of body 1 can be written as:

Foan =10 vy, 2 |€° 37

and the position of body 2:

For, =10 Yo 2 |E°+[0 wyone 2210 ' =[0 wyp 2 |E°+[0 yrar 22 | AE°
‘ . ’ . 0 . (38)
= [ 0 yp+yrmcos(l,) — za1sin(6,) 2, +yrwm sin(8,) + 221 cos(8),) ] é

The expressions for the angular velocities are also much simpler now, because only one angle is involved, therefore:
10 = . 0
Wg=25=16, 0 0]e° (39)

Now the kinetic energy expression, /', is computed:

o1 . . . . ; . 2
T = 5 <m1 (yf, + zg) + mg ((yp + G cos (0p) + Oy (—yrar sin (0,) — zo1 cos (Hp)))
. 2 . (49
+ (Zp + Yz sin (0p) + 0y (Yras cos (0p) — 221 sin (9;7))) ) + (J1+ J2) 0§)
And the potential energy, V:
V = —g(miz, + ma (zp + Yo sin(6,) + 221 cos(6p))) . 41)

Fig. 23.  2D-model



In this 2D-model also the number of constraint equations is only four. Namely:

{ : 1
- Zp .
R, = i 0, (42)

[ 0
Yo — 1 (t)

or again using the format in (9) the constraints are written as:

1000 Up 0
T C 10 1 00 z,, 0 B
0 06 0 1 YLy —11 ()

After differentiating and combining all energy equations in (10), and rewriting the result together with the constraints in the
format of (14), the following symmetric, mass matrix, M (q), 1s obtained:

my + My 0 mycos(fy)  —mg (yrm sin(f,) -+ 221 cos(B,))
M(g) = my+my  mgsin(8,)  mao (ynm cos(8,) — 291 sin(6,)) AL
2 = ms — 29173 ’ A
Ji+ o+ ma (Yiar +251) .I

where the symmetrical entries are skipped. And for H (g, ¢) is found:

—myf, ((2yLM - 2219,,) sin(0,) + Oy cos(@,,))
mab, (211)1,1\4 cos(0,) — Qp (yoa sin(0p) + 291 cos(@,,))) — g (my + ma)
—MMy (égyLM + gsin((?,,))
Mo (2yLM9pyLM + g (201 8in(0,) — vy (:os(ﬁ,,)))

Hg,q) = (45)

Note that S(g)r in this case is ( as there are no external forces defined.



APPENDIX D
MATLAB: EQUATIONCOMPUTATION3D. M

olic expres

sIyms x p V_Pp Z_p thetd_p psi_p phi_p v_IM phi_RM

syms x_pdot y_pdot z_pdot theta_pdot psi_pdot phi_pdot...

v_ LMd

ot phi_RMdot

syms x_pddot y_pddot z_pddot theta_pddot psi_pddot...

%

phi_p

Load us

ddot y_IMddot phi_RMddot

ed paraneters from parameter

loadparanms

%

Makea tf

WS a

global tfuns

tf

0 cos
0 -si

uns = [x_p yv.p Z_p theta_p psi_p phi_p y_ LM phi_RM];

Define clumn of ger sed o 88 ﬂﬂd dervivatives
= [x_p v_p z_p theta_p psi_p phi_p y_ILM phi_RM].

ot = tdiff (q);

idot = tdiff (gdot);

ctabion matrices

A0lalpha 0 = [1 0 O

(theta_p) sin(theta_p)
n{theta_p) cos(theta_p)]l;

A0lbeta_Olalpha = [cos(psi_p) 0 -sin(psi_p)

Al _

AQ
Al

A2_
A3_

r

r_

r_

r
+

r_

2
S

omega,_10_0 = simple([theta_pdot 0 0] + [0 psi_pdot 0]1*AQlalpha_0 +

010
sin(p
Olbeta
-sin(
001
lbeta_0

_0 = Al
0 = Al

0 = su

Dell

_CM_ 1 =

CM 2 =
[x_1lc
CM_3 =
[x_32

~ CM_ldot

CM_2dot
CM_3dot

Dafine

[0 0

ne

si_p) O cos(psi_p)l;
= [cos{phi_p) sin(phi_p) O
phi_p) cos(phi_p) O
1;
= AO0lbeta_0OlalphaxAOlalpha_0;
OlbetaxA0lbeta_0OlalphaxAQ0lalpha_0;
0;
bs(Al_0, phi_p, phi_p+phi_RM);

P rovechors and derivatives

([xp y.p z_pl] + [x_1cl 1 y lcl 1 z_lcl_ 17+A1l_0)."
(Ix_p y.p z_pl + [x_21 y 21+y_IM z_21]1+A1 0 +
1.2 y_ 1cl 2 z_ lcl 21xA2_0).'

([x.p y.p z_pl + [x_21 y 21+y_IM z_211%A1_0 +

y.32 z_321%*A2_0 + [x_1cl_3 y_1cl_3 z_lcl_31=A3_0).’
= simple (tdiff(r_CM_1));

= simple (tdiff (r_CM_2));
= simple (tdiff (x_CM_3));

angular velocity

phi_pdot]*AQlbeta_0) .’

omega_20_0 = omega_10_0;
omega_30_0 = simple([theta_pdot 0 0] + [0 psi_pdot 0]1«A0lalpha_ 0
[0 0 phi_pdot+phi_RMdot]+Al_0).’

H_

Compute |

CM1_0 =

Q
e
]
&)
i

3
3y

s1mple(Al_Ou;*J_CMl_l*Al_O*omega_lO_O);
simple (A2_0.’ «J_CM2_2xA2_0xomega_20_0);

= simple (A3_0.’ xJ_CM3_3+A3_0Oxomega_30_0);

= T+, 5+m_1xr CM ldot.’*r_CM_ldot+.5+omega_10_0.7xH_CMI1_0O;
= T+.5+m_2+*r_CM _2dot.’ xr_CM_2dot+.5«omega_20_0." xH_CM2_0;
= T+,5+m_3*r CM 3dot.’*r_CM 3dot+.5«omega_30_0.’«H_CM3_0;

+



3
i

= simple(T);

Compu
v = 0;

Vo= Vem 1[0
V = V-m_2x*[0
v
v

pote:

= V-m_3%[0
= simple (V);

Compuite e At
ddtT_gdot = simple (tdiff(
T_a = simple (rowdiff (T, q));
V_q = simple (rowdiff (V, q));

Qnc = zeros(8,1});

% e the ¢« Loon
syms u_1l u_ldot u_2 u_2dot

1

i

x_pdot];

y._pdot];

z_pdot];
theta_pdot];
psi_pdot];
phi_pdot];
v_LMdot~u_1ldot];
phi_RMdot-u_2dot];

it
~ o~

I

~

- o~

~

[SaE~aE= = e e i fis Sl o g
|
FEFFFFETC

~

% Compute W
W = sym(0) rones {length(gdot), length((h));
for i = 1l:length(h}

W(:, i) = rowdiff(h(i), agdot).’;




equat ions

the

132 o

133 lefthand = simple (ddtT _o

s % Comput
sym(0) xones (length (lefthand));
139 for i = l:length(lefthand)

139 for j = l:length(lefthand)
141 eval (["M(’ num2str (i) ’," num2str(j) ...
14

= findddot (lefthand(’ numZstr (i) ...

)
"), agddot (’ num2str(3) "));’1);

145 end

el

151 eqgns lefthand -~ QOnc;
12 egnsrest = simple(egns - Mxgddot);

155 tau = sym(0);
S = sym{(0}=+ones (length(egnsrest), length(tau));

s % end

i % Compute H
178 H = simple(egnsrest + Sxtau);
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APPENDIX E

MATLAB: EQUATIONCOMPUTATION2D .M

% Define the u y Lic expre
syms y_p z_p y.LM theta_p
syms y_pdot z_pdot y_LMdot theta_pdot
syms y_pddot z_pddot y_LMddot theta_pddot
syms J_1 J_2 m_ 1 m_2

syms g z_21

§ Make tfuns a olo
global tfuns
tfuns = [y_p z_p y_LM theta pl;

efine the column of ge

14

g = ly.p zp y 1M theta p].’;
qdot = tdiff(q);
gddot = tdiff (gqdot);

HEN &
= [100
0 cos(theta_p) sin(theta_p)

0 -sin(theta_p) cos(theta_p)];
A2_0 = A1_0O;

% derivatives
r_CM__

r CM 2 = ([0 y_p z_pl+[0 y_IM z_211xA1_0).";
r_CM_ldot = simple(tdiff(r_CM_1));
r_CM_2dot = simple(tdiff(r_CM_2));

% D re angular velocity
omega_10_0 = [theta_pdot 0 0].7;
omega_20_0 = [theta_pdot 0 0].7;

% Define p
J_CMI_1 =
000
00 0];
J_CM2_2 = [J.2 00
000
0 0 0];
% Compute kinetlc energy
H.CM1_O0 = simple(Al_0."«J_CM1_1xAl_Oxomega_10_0);
H_CM2_0 = simple (A2_0."xJ_CM2_2+A2 Oxomega_20_0);

sed coordinates and derivat

1@ e
JvE s

= T+.5xm_2+r_CM_2dot.’«r_CM _2dot+.5+omega_20_0."*H_CM2_0;

= simple(T);

% Compubts poten el

vV = 0;

V = Vem_1x[0 0 glxxr_CM_1;

V = V-m_2+[0 0 gl*r_CM_2;
= gimple (V) ;

% Cowpute several de atives

ddtT_gdot = simple (tdiff (rowdiff (T, gdot)));
T_gq = simple(rowdiff (T, q));

V_g = sinple (rowdiff(V, q));

T

T = T+.5xm_lxr_CM_ldot.’*r_CM_ldot+.5+omega_10_0." *H_CM1_0;
T

T




, y_pdot];

, y. LMdot-u_ldot];

h [1

h [h

h = [h, z_pdot];

h [h

h [h, theta_pdot];

@
= sym(0) xones (length(gdot), length(h));
for i = 1l:length(h)

W(:, 1) = rowdiff(h(i), gdot).’;

end
% Compubte w

wtilde = simple (h.’-W.’ xgdot) ;

averyt
5 Lefr ol im bhe ANC .
lefthand = simple (ddtT_qgdot - T_g + V_qg).’;

the Lagrange egquations

5 ¢ k2
M = sym(0)=+ones{length{lefthand)};
for i = l:length(lefthand)

for 3 = l:length(lefthand)

eval (["M({’ num2str (i) 7,’ num2str(3) 7) =

findddot (lefthand (Y num2str (i) '), agddot (/ num2str(3) ’'));’1);

end

hand part of esuat

% S o from le
egqns = lefthand - QOnc;
egnsrest = simple (eqns - Mxgddot);

Set tauy and § toe O in thisx case
tau = sym(0);
S = sym(0)xones (length(egnsrest), length(tau));

tompute i
H = simple (egnsrest + Sxtau);




APPENDIX F
MATLAB: TDIFF.M

»»oglobal tfuns

z a b
= [x];

Define the tfung glokb i :
global tfuns tfunsdot tfunsddot

expandtfuns () ;
ttest = [tfuns tfunsdot tfunsddot];

Jora ctual
for i = 1:2+tl/3

i

P
R

diff (S, ttest(i));
R + Pxttest (i+t1l/3);

i

end

end

end

gernerates the tfunsdot and tfunsddot

[1 = expandtfuns ()
%t Define the N

global tfuns tfun

% Initialise Cfunsdot
tfunsdot = [];
tfunsddot = [];

% TL

for 3 = l:length(tfuns)

tfunsdot = [tfunsdot sym([findsym(tfuns(j)) "dot”])1;
tfunsddot = [tfunsddot sym([findsym(tfuns(]j)) ‘ddot’1)];

end



function R = rowdiff (S, q)

end

% it E
= [1;
% i
S
if s(1) > 1 && s(2) > 1

error (' Invalid input:

elseif s(2) > 1

l:length(g)

)
o]
o]
H
i

R = [R diff (s, g(i))];

end

APPENDIX G
MATLAB: ROWDIFF.M

variab

S should be I-dimensional’};




54
55
56
57

58

end

ks

if 1

EROras

tput evrd
ength (k_m}

ltafter subst
is oanaly
simplify (s - kxm);
findstr (char (k),
findstr (chaxr (k),
findstr (char (h),

e f
fur

g ot

any

char {m));

"ddot’ ) ;

char (m) ) ;

APPENDIX H
MATLAB: FINDDDOT.M

error {'No clear term could be found’);

elseif length (k_ddot)

elseif length(h_m)

error {'Cross term found in ddot!’);

0

U

0

error ("No clear term could be found’);

% Or output the
else
a = simplify(k);

end

SRAID

casible.




