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Abstract 

In this work, we investigate the regional characteristics of the dynamic interactions between arterial CO2 and BOLD 

(dynamic cerebrovascular reactivity - dCVR) during normal breathing and hypercapnic, externally induced step CO2 

challenges. To obtain dCVR curves at each voxel, we use a custom set of basis functions based on the Laguerre and 

gamma basis sets. This allows us to obtain robust dCVR estimates both in larger regions of interest (ROIs), as well as 

in individual voxels. We also implement classification schemes to identify brain regions with similar dCVR 

characteristics. Our results reveal considerable variability of dCVR across different brain regions, as well as during 

different experimental conditions (normal breathing and hypercapnic challenges), suggesting a differential response 

of cerebral vasculature to spontaneous CO2 fluctuations and larger, externally induced CO2 changes. The clustering 

results suggest that anatomically distinct brain regions exhibit different dCVR curves that do not exhibit the standard, 

positive valued curves that have been previously reported. They also revealed a consistent set of dCVR cluster shapes 

for resting and forcing conditions that exhibited different distribution patterns across brain voxels.  

 

Keywords: Dynamic cerebrovascular reactivity, BOLD; carbon dioxide; fMRI; dynamic end-tidal forcing; hypercapnia; normal breathing  

1. Introduction 

Cerebral blood flow (CBF) is regulated by multifactorial homeostatic mechanisms that maintain its value relatively 

constant. The ability of the brain to achieve this in response to changes in perfusion pressure is termed cerebral 

autoregulation (Lucas et al., 2010; Mitsis et al., 2004, 2002; Panerai, 1998; Tzeng and Ainslie, 2014). In addition to 

perfusion pressure, the cerebrovascular bed is highly responsive to local tissue metabolism (Attwell et al., 2010; 

Iadecola and Nedergaard, 2007) and arterial levels of carbon dioxide (CO2) (Battisti-Charbonney et al., 2011; 

Brugniaux et al., 2007; Duffin, 2011; Ratnatunga and Adiseshiah, 1990). The CBF response to arterial CO2 changes 
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is termed cerebrovascular reactivity (CVR† ) and can be assessed, among other experimental modalities, using 

functional magnetic resonance imaging (fMRI) (Tancredi and Hoge, 2013; Wise et al., 2004; Yezhuvath et al., 2009). 

Also, the important role of CVR in cerebral autoregulation has been suggested (Mitsis et al., 2004; Tzeng et al., 2014). 

To assess CVR, resting fluctuations in arterial CO2 (Golestani et al., 2015; Mitsis et al., 2004; Prokopiou et al., 

2016; Wise et al., 2004), arterial gas manipulation protocols such as end-tidal forcing and prospective control 

(Blockley et al., 2011; Pattinson et al., 2009; Slessarev et al., 2007; Wise et al., 2007) or, more recently, sinusoidally 

modulated gas stimuli (Blockley et al., 2017) and controlled breathing (Bright and Murphy, 2013; Murphy et al., 2011) 

have been used. The advantages of CO2 as a vasoactive stimulus have been suggested (Fierstra et al., 2013). Also, 

resting fluctuations are a desirable stimulus as they remove the need for any external interventions, making it 

applicable to all populations.  

When PaCO2 changes with respect to normocapnia, assuming that oxygen consumption remains constant, the 

blood-oxygen-level-dependent signal obtained with functional magnetic resonance imaging (BOLD–fMRI) can be 

used as a surrogate for changes in regional CBF (Fierstra et al., 2013). This enables the acquisition of time series with 

a high spatial resolution, which reflect the sensitivity of the cerebrovascular bed to contemporaneous changes in 

PaCO2, and allow for investigation of the variability of CVR in different regions of the brain. The vast majority of 

BOLD-based CVR studies define and quantify CVR as the percent change in the BOLD signal per unit increase in 

CO2 (Fierstra et al., 2013). While the largest portion of the literature deals with regions of interest (ROIs) defined in 

the gray matter (GM) where the signal-to-noise ratio (SNR) is high (Bokkers et al., 2010; Bright and Murphy, 2013; 

Wise et al., 2004; Yezhuvath et al., 2009), a few studies have investigated CVR in the brain white matter (WM) 

(Bhogal et al., 2015; Thomas et al., 2014) and ventricles (Thomas et al., 2013). Although the SNR in these structures 

is considerably lower, which makes measuring CVR with BOLD challenging, the aforementioned studies have 

provided evidence that CVR in the brain WM is positive but significantly lower than in the GM, and that cerebrospinal 

fluid (CSF)-rich regions in the brain, such as the lateral ventricles, exhibit a negative BOLD-CVR. These negative 

BOLD responses to PaCO2 challenges were attributed to partial volume effects and to dilation of ventricular vessels 

accompanied by shrinkage in CSF space (Thomas et al., 2013). 

Recent studies have also investigated the dynamic interactions between hypercapnic, externally induced step CO2 

challenges and the BOLD signal, i.e. dynamic CVR (dCVR) (Duffin et al., 2015; Poublanc et al., 2015). Dynamic 

CVR quantifies the transient changes in CBF that occur in response to abrupt changes in PaCO2 and it is an intrinsic 

property of the cerebral vasculature related to elastance and compliance. It determines how fast or slow CBF reaches 

its steady-state value. On the other hand, steady-state CVR refers to the equilibrium condition that occurs as the effects 

of transients are no longer important and ignores the time-course of the transient response. In (Duffin et al., 2015; 

Poublanc et al., 2015), the response delay observed between CO2 and BOLD was associated to the time constant of a 

linear monoexponential curve. This time constant was estimated in a voxel-wise manner for a group of patients with 

diagnosed steno-occlusive disease. The estimated response delay at each voxel was then used to identify regions with 

reduced vasodilatory reserve, associated with the disease pathophysiology. Along these lines, (Donahue et al., 2016) 

also showed significant differences in CVR response delays between a group of healthy subjects and a group of 

subjects with intracranial stenosis using simple respiratory challenges and cross correlation techniques. 

The main purpose of the present study is to investigate in detail the regional characteristics of dCVR in the human 

brain using spontaneous (resting-state) and hypercapnic step changes in CO2 (end-tidal forcing), and BOLD-fMRI. 

We initially conduct our analysis in larger, functionally defined ROIs, possibly involved in the brainstem respiratory 

 

 
† Although CVR is strictly defined as the CBF response to any vasoactive or vasoconstrictive stimulus, it is more frequently employed in the 

literature to denote the CBF response to arterial CO2 changes. For consistency with this literature, this notation is adopted in this work as well. 
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control network of the human brain (Pattinson et al., 2009), as well as in structurally defined ROIs. To this end, we 

use both linear and nonlinear models based on Laguerre function expansions and we show that the effects of CO2 on 

the BOLD signal are predominantly linear for both experimental conditions. Subsequently, we investigate the regional 

variability of dCVR over the entire scan field of view in a voxel-wise fashion. To achieve this, we construct a custom 

basis set based on Laguerre and gamma functions to achieve robust estimation using functional expansions that reduce 

the number of required free parameters (Marmarelis, 2004), and we estimate voxel-specific dCVR curves. We 

subsequently use the results to construct maps of key dCVR curve features such as total area, peak value, time-to-

peak, and power, for each experimental condition, and we use the dCVR feature maps to perform statistical 

comparisons between the two experimental conditions. Finally, we perform clustering analysis on the estimated voxel-

specific dCVR curves to identify brain regions with similar dCVR characteristics. Our results suggest that it is possible 

to obtain reliable dCVR estimates from spontaneous fluctuations using the proposed methodology. The spontaneous 

and forcing dCVR curves overall exhibit similar characteristics; however, regionally specific differences that are 

protocol-specific are also revealed. Finally, the clustering analysis suggests the existence of several different dCVR 

shapes with considerably different characteristics that are correlated to different major brain anatomical structures. 

2. Methods 

2.1. Experimental methods 

This work is an extended analysis of the experimental data presented in (Pattinson et al., 2009). 12 right-handed 

healthy volunteers aged 32 ± 5 years (3 female) participated in this study after giving written informed consent in 

accordance with the Oxfordshire Clinical Research Ethics committee.  

2.1.1. Respiratory protocol 

During scanning sessions, subjects were fitted with a facemask (Hans Rudolph, Kansas City, MO, USA) attached 

Fig. 1. Example of changes in PETCO2 and BOLD in one representative subject. Left panels: resting breathing, Right panels: CO2 challenges. 

The bottom panels shows the PET CO2 traces along the corresponding (unshifted) BOLD traces. 
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to a breathing system, which delivered mixtures of air, O2, and CO2. Continuous recordings of tidal CO2 and O2 (CD-

3A and S-3A; AEI Technologies, Pittsburgh, PA, USA), respiratory volume (VMM-400, Interface Associates, Laguna 

Niguel, CA, USA) and oxygen saturations (9500 Multigas Monitor, MR Equipment Corp., NY, USA), were acquired. 

It has been suggested that the end-tidal partial pressure of CO2 (PETCO2) is a suitable surrogate for PaCO2, and 

therefore, PETCO2 can be used as the stimulus for CBF (Hoskins, 1990; Mark et al., 2011; Robbins et al., 1990; Wise 

et al., 2004).  

The study was divided into two parts. The first part of the study was a resting-state experiment. In the second part 

of the study, PETCO2 and PETO2 were targeted using dynamic end-tidal forcing (DEF) (Robbins et al., 1982). The CO2 

challenges were delivered via a computer controlled gas mixing system (Wise et al., 2007). The CO2 challenges were 

designed to raise the subjects’ PETCO2 by either 2 or 4 mmHg above a baseline level maintained at 1 mmHg above 

their natural PETCO2. Representative PETCO2 time series during both conditions are shown in Fig. 1. 

2.1.2. BOLD imaging 

Two thousand seven hundred T2* weighted echo planar imaging (EPI) volumes were acquired on a Siemens Trio 

3T scanner. Sequence parameters: TR/TE = 	1000/30	()  (Repetition/Echo Time), Voxel size = 	2.5 × 2.5 ×2.5	((, 16 slices, Slice thickness = 3	((, Field of View (FOV) = 	160 × 160	((, Flip Angle (FA) = 	70° , 
Acquisition matrix = 	64	 × 	64	(RO × PE), Bandwidth = 	1954	9:/;<. 

 The scan field of view was chosen in the original study (Pattinson et al., 2009) aiming to enhance imaging of the 

brainstem and the noninvasive imaging of human respiratory centers. It comprised 16 oblique coronal slices of the 

brainstem. The coronal-oblique sequence parameters used were selected based on pilot studies as they yielded less 

distortion compared to axial acquisitions and reliable images of the whole brainstem extending rostrally to the 

putamen, and thalamus. The cortical area above the corpus collosum was excluded from the scanning field for two 

reasons: (i) there was an inconsistent overlap in cortical areas between subjects, therefore, the remaining area was 

small, and (ii) there was some image contamination (MRI wrapping) from the brainstem. 

Although the study was divided in two parts, scanning was continuous. The first 1130 images (18 minutes, 50 

seconds) comprised the normal breathing (resting state) experiment. The duration of the first part of the study was 

determined based upon (Wise et al., 2004), but was prolonged to account for the lower SNR in the brainstem. The 

final 1530 images (25 minutes, 30 seconds) comprised the CO2 stimulation experiment. The duration of the second 

part was determined by adaptation of a similar CO2 challenge protocol (Pedersen et al., 1999) for use in the MRI 

scanner. A high resolution T1-weighted structural scan (voxel size 1 × 1 × 1	((= ) was also acquired to aid 

registration to a common stereotactic space of reference. 

Despite the fact that the BOLD images were collected in a limited field of view, the examined dataset is particularly 

suitable for modelling the dynamic effects of CVR on the BOLD fMRI signal, as image acquisition was rapid (TR=1s) 

and a large number of volumes was acquired. Importantly, the dataset includes implementation of a carefully designed 

forcing protocol that consists of a multi-frequency binary sequence for PETCO2 that was specifically devised to spread 

its power in the frequency domain for maximally stimulating both the central and peripheral chemoreceptor (Pedersen 

et al., 1999). This makes it ideal for the analyses performed here – including comparison of the obtained dCVR curves 

between forcing and resting data, as the PETCO2 spectrum exhibited a similar form during both conditions.  

2.2. Data analysis 

2.2.1. Data preprocessing 

The basic pre-statistical analysis of the data was carried out using FSL (FMRIB, Oxford, UK (Jenkinson et al., 
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2012)), as has been previously described in (Pattinson et al., 2009). In brief, pre-processing of the BOLD images 

included spatial smoothing by using a Gaussian kernel of 3.5	(( FWHM, high-pass temporal filtering, motion 

realignment, registration with T1-weighted anatomic images, and normalization to the Montreal Neurological Institute 

(MNI)-152 template space, with resolution of 2 × 2 × 2	((=. Furthermore, functional ROIs were obtained in the 

MNI space, corresponding to areas that revealed increased activity in response to the hypercapnic CO2 challenges 

(rostral dorsal pons (Kölliker-Fuse / parabrachial nucleus), left ventral posterior lateral nucleus of the thalamus, left 

ventrolateral and left ventroanterior nuclei of the thalamus). Also, structural ROIs were defined in areas not showing 

increased activation in response to CO2 challenges (cerebellum, cingulate gyrus, temporal fusiform cortex, and 

hippocampus).  

The recorded PETCO2 time series were shifted by 3 seconds, to account for the time it takes for the blood to travel 

from the lungs to the brain tissue. Also, the time-to-peak values of the two basis functions employed in our analysis 

(see Section 2.2.2), which reflects the delay of the response of the vasculature to changes in PaCO2, are 4.3 and 9.4 

seconds, respectively. Therefore, the range of total delay between the PETCO2 and BOLD times-series assumed in our 

analysis is in a broad agreement with other studies in the literature (Murphy et al., 2011; Panerai et al., 2000; Poulin 

et al., 1996; Wise et al., 2004). 

2.2.2. Mathematical modelling  

Dynamic CO2 reactivity was assessed using linear (impulse response) and non-linear (Volterra kernel) models. In 

this context, we employed the discrete time Volterra Model (DVM) for a >-th order non-linear system, which is given 

by  

 

?(@) =AA…ACDE(F, … ,(DH<(@ −(F)…<E@ − (DHJKJL

M
DNO ,																																										(1) 

 

where ?(@) denotes the output (i.e. %BOLD change) and <(@) the input (i.e. PETCO2 change) of the system at time @, respectively, CDE(F,… ,(DH denotes the q-th order Volterra kernel of the system, and > denotes the model order. 

When > = 1, the right-hand side of (1) reduces to the convolution between the input and the first order Volterra 

kernel, CF((F), which corresponds to the impulse response of a linear system describing the linear effect of the past 

input values on the output. Similarly, when > = 2, in addition to the linear term, the right-hand side of (1) consists of 

a nonlinear term that corresponds to the nonlinear second-order convolution between the input and the second order 

Volterra kernel, CP((F,(P), which describes the effect of pairwise interactions (products) of past input values on the 

output. 

The Volterra kernels can be estimated efficiently from the input-output data using a functional expansion technique 

in terms of an orthonormal basis set (Marmarelis, 1993), which is given by 

 

CDE(F, … ,(DH = A … A QRL…RKSRL((F)…SRKE(DHT
RKNRKUL

,																																													T
RLNO

(2) 
 

where VSR((); X = 0,… , Y;( = 0,… ,Z[ is a set of Y + 1 orthonormal basis functions, QR  is the unknown expansion 

coefficient of the j-th order basis function, and Z the memory of the system. Combining (1) and (2), the DVM can be 

re-expressed in a compact matrix form as 

 ] = ^_ + `,																																																																																														(3) 
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where a denotes a matrix the values of which are convolutions of the input with the basis functions. The vector b of 

the unknown expansion coefficients can be estimated using ordinary least squares 

 bcdef = [^h^]jk^h].																																																																																			(4) 
 

A critical issue arising in the application of the functional expansion technique is the proper choice of the basis set, 

as it may considerably influence the final estimates. In this work, dCVR was initially investigated within large ROIs 

using the first (> = 1) and second (> = 2) order DVM, where the unknown values of the Volterra kernels were 

estimated by employing a set of Laguerre basis functions. The Laguerre basis has been extensively used in the 

literature, particularly in the case of physiological systems, as they constitute a complete set in [0, ¥) and they exhibit 

exponentially decaying behavior, which makes them a suitable choice for modeling causal, finite-memory systems 

(Marmarelis, 2004). The j-th order discrete time Laguerre function is given by 

 

SR(() = l(JjF)/P(1 − l)F/PA(−1)m n(ConXCo
T
mNO lRjm(1 − l)m ,																																					(5) 

 

where l	(0 < l < 1) is a parameter that determines the rate of exponential decline of these functions, with larger 

values corresponding to slower decay. 

Fig. 2. (top panel) Extended set of gamma basis functions. The location of the peak and the memory of each function were varied in accordance 

to the dCVR curves obtained with the Laguerre basis in large functionally and structurally defined ROIs. (bottom panel) Reduced set of 

orthonormal functions, which account for 90% of the variance of the extended set, produced using singular value decomposition. The two 

orthonormal functions forming the reduced set were used as basis functions in (2) for modeling dCVR. 
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The values for the model order (Q) and number of Laguerre functions (L) used in the model, and the parameter l 

were selected based on model performance, which was assessed in terms of the normalized mean squared error 

(NMSE) between the measured output (i.e. %BOLD change) and the model prediction given by (1). To prevent 

overfitting, particularly in the case of normal breathing (resting state) BOLD measurements where the SNR is 

considerably lower, the range for L and l  were selected to be 2 < Y < 6 , and 0 < l < 0.6  respectively. The 

comparison of the NMSE values suggested that the dynamic relation between CO2 and BOLD is mainly linear (i.e. > = 1), for both experimental conditions (p-values are shown in Table 1). Therefore, in the following, we present 

results obtained using linear (impulse response) dynamic models. 

Our main purpose was to estimate dCVR curves at single voxels, where the SNR is lower. To this end, we 

constructed a custom, reduced basis set based on gamma density functions, which have been widely used to model 

the hemodynamic response function (HRF) (Friston et al., 1998). We considered gamma pdfs as described in (Hossein-

Zadeh et al., 2003; Knuth et al., 2001) given by 

 

h(t; t, s) = texpV−x√s ∙ {[ n| ∙ {{ o}~/� , { ≥ 00 																																													, { < 0																																																		(6) 
 

where { and s determine the location of the peak and width, respectively. Guided by the range of linear (impulse 

response) dynamics between PETCO2 and BOLD that were initially estimated in the larger ROIs using the Laguerre 

basis functions, we constructed an extended set of gamma functions by varying { and s to span the entire range of the 

CVR dynamics observed in different brain regions (Fig. 2 – top panel). Subsequently, we applied singular value 

decomposition (SVD) on this extended set to obtain a reduced set of orthonormal functions that account for the major 

fraction of the variability in this set. The results yielded two singular vectors (Fig. 2 – bottom panel), as it was found 

that the two absolutely largest singular values accounted for more than 90% of the extended set variability. 

For both the ROI and voxel-specific analyses, the dCVR curve estimates were obtained using equations (1)-(4) 

along with the set of two functions of Fig. 2 (bottom panel). For the voxel-specific analysis, we constructed maps of 

Table 1. The p-values corresponding to the statistical comparison between the NMSE values achieved by a linear (Q=1) and 

non-linear (Q=2) DVM, in different ROIs. Statistical comparisons were performed using the Kruskal-Wallis nonparametric 

one-way ANOVA test. 

BRAIN  

REGION 
Dynamic end-tidal forcing Normal Breathing 

   

Kölliker-Fuse / parabrachial group 0.86  0.86 

Anteroventral thalamic nucleus 0.27 0.53 

Ventrolateral thalamic nucleus 0.49  0.45 

Ventral posterior lateral thalamic nucleus 0.53  0.82 

Cerebellum 0.42 0.86 

Temporal fusiform cortex 0.45 0.53 

Cingulate gyrus 0.39 0.45 

Hippocampus 0.60 0.82 
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the key features of the voxel-specific dCVR, such as area, peak and time-to-peak values, which illustrate the variability 

of dCVR across the brain. The area of the dCVR curve corresponds to the steady state CVR value that is typically 

used as an index of CO2 reactivity in the literature (e.g. Yezhuvath et al. 2009). The peak value describes the maximum 

instantaneous CO2 reactivity. The power corresponds to the dCVR curve sum-of-squares, and the time-to-peak 

corresponds to the time lag of the maximum instantaneous CO2 reactivity and may be used to assess how fast a 

particular voxel/ROI responds to CO2 changes.  

 In addition, we also performed cluster analysis on the shape of the voxel-wise dCVRs, using unsupervised 

clustering (k-means) along with the silhouette criterion for selecting the optimal number of clusters in each case 

(Kaufman et al., 2005; Rousseeuw, 1987). To perform clustering, the values of the dCVR estimates were normalized 

to a unit energy function with respect to the sum of squares of all time points (Orban et al., 2014). 

3. Results 

3.1.1. ROI analysis  

Table 1 illustrates the Å-values of the Kruskal-Wallis nonparametric one-way ANOVA test between the NMSE 

values from all subjects achieved by linear and non-linear models, using the DVM with > = 1 , and > = 2 , 

respectively, for different ROIs. Both models were identified using the functional expansion technique along with the 

Fig. 3. Dynamic cerebrovascular reactivity (dCVR) in different ROIs during forcing (left panel) and resting (right panel) conditions, obtained 

using the reduced gamma function basis set (Fig. 2 – bottom panel). The regional variability of dCVR in amplitude and time-to-peak within 

same condition, and shape between the two conditions is evident. The undershoot observed during normal breathing is absent during forcing 

conditions.  



 

 

Fig. 4. Average dynamic cerebrovascular curves within each ROI across subjects. The red curve in each ROI corresponds to the mean dCVR curve across all su

standard deviation of the dCVR curve across subjects. Analogous to the individual result shown in Fig. 3, the average dCVR curves across subjects reveal that the

during forcing conditions.  
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Laguerre basis. In this context, the null hypothesis was that the NMSE values obtained from both models originate 

from the same distribution. The !-values suggest that we could not reject the null hypothesis, implying that the 

dynamic relation between PETCO2 and %BOLD is predominantly linear for both experimental conditions. 

Representative dCVR curves within different ROIs are shown in Fig. 3. The initial part of the dCVR curves 

suggests a similar response to spontaneous and externally induced larger CO2 changes; however, the curves 

corresponding to resting conditions exhibited a more pronounced late undershoot, which is largely absent from the 

forcing curves (see also the voxel-wise results below). Similar dCVR curve shapes under forcing and resting 

conditions were observed at the group level as well (Fig. 4). Representative model output predictions achieved using 

the gamma and Laguerre basis sets for the left anteroventral nucleus of the thalamus functional ROI under end-tidal 

forcing and normal breathing (resting state) conditions are shown in Fig. 5. The gamma and Laguerre models yielded 

similar model predictions, explaining a large fraction of the slower variations in the BOLD signal during end-tidal 

forcing and normal breathing. 

 The estimated dCVR curves in the selected ROIs vary significantly with respect to their area and time-to-peak 

values across subjects (Fig. 6). Under forcing conditions, the left anteroventral nucleus (LAV) of the thalamus 

exhibited significantly higher area values compared to the left ventrolateral (LVL), left ventral posterior lateral 

thalamus (LVPL) and the Kolliker-Fuse parabrachial group (KF/PB) ROIs. Also, the cerebellum and temporal 

fusiform cortex exhibited significantly higher time-to-peak values compared to the left ventrolateral (LVL), left 

ventral posterior lateral (LVPL), and left ventral posterior lateral (LVPL) thalamic nuclei. On the other hand, 

significant differences between the area and time-to-peak values of these ROIs were not observed during normal 

breathing conditions. In the latter case, the area values of the dCVR estimates in the ROIs across all subjects were 

Fig. 5. Representative gamma and Laguerre model output predictions for the left anteroventral nucleus of the thalamus functional ROI during 

end-tidal forcing (top panel) and resting breathing (bottom panel) conditions. The gamma and Laguerre models yielded similar model 

predictions, which explained a large fraction of the slow variations in the BOLD signal during end-tidal forcing and normal breathing (resting 

state conditions). 



11 

found to be overall smaller compared to forcing conditions. Moreover, under normal breathing conditions, the time-

to-peak values of the dCVR estimates in the ROIs were found to be smaller compared to forcing conditions. 

3.1.2. Voxel-wise analysis  

Average maps across subjects of voxel-specific features extracted from the corresponding dCVR curves are shown 

in Fig. 7. The extracted features include area (steady-state CVR), time-to-pea, peak, and power. The area maps 

obtained under forcing conditions generally exhibit higher intensity values compared to the maps obtained under 

resting conditions. Overall, subcortical structures such as the thalamus and the brainstem, as well as regions in the 

cerebral cortex show increased sensitivity to CO2 challenges. In contrast, WM shows lower sensitivity under both 

forcing and resting conditions. Under forcing conditions, periventricular WM regions exhibit considerably smaller 

steady-state CVR values (Fig. 7a). The time-to-peak maps, in which lower intensity values correspond to faster 

response time, show that for many regions in the brain the timing of the maximum instantaneous amplitude of dCVR 

is generally slower during forcing conditions (Fig. 7c-d). 

One-way, nonparametric statistical comparisons between the dCVR feature maps obtained under end-tidal forcing 

Fig. 6. Box plots of dCVR area and time-to-peak values across subjects obtained from the ROI analysis across all subjects, under forcing (left 

column) and normal breathing (right column) conditions. The red horizontal bars and black circles represent median and mean values, 

respectively. Under forcing conditions, the left anteroventral nucleus (LAV) of the thalamus exhibited significantly higher area values compared 

to the left ventrolateral (LVL), left ventral posterior lateral thalamus (LVPL) and the Kolliker-Fuse parabrachial group (KF/PB) ROIs (✱- !	 <

	0.05; Kruskal-Wallis nonparametric one-way ANOVA test). Also, the cerebellum and temporal fusiform cortex exhibited significantly higher 

time-to-peak values compared to the left ventrolateral (LVL), left ventral posterior lateral (LVPL), and left ventral posterior lateral (LVPL) 

thalamic nuclei (✱ - p < 0.05; Kruskal-Wallis nonparametric one-way ANOVA test (see also Fig. S2 in the supplementary material)). No 

significant differences between the area and time-to-peak values of these ROIs were observed during normal breathing conditions. In the latter 

case, the ROI dCVR area values across all subjects were found to be overall smaller compared to forcing conditions (⬥ - !	 < 	0.05; Kruskal-

Wallis nonparametric one-way ANOVA test). Moreover, under normal breathing conditions, the time-to-peak values of the dCVR estimates in 

the ROIs were found to be smaller compared to forcing conditions (⬥ - !	 < 	0.05; Kruskal-Wallis nonparametric one-way ANOVA test). KF/PB: 

Kolliker-Fuse parabrachial group, LAV: left anteroventral thalamus, LVL: left ventrolateral thalamus, LVPL: left ventral posterior lateral 

thalamus, CB: cerebellum, TFus: temporal fusiform cortex, CG: cingulate gyrus, HIPP: hippocampus. 
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Fig. 7. Average regional maps across subjects of voxel-specific dCVR features during end-tidal forcing (left column) and normal breathing (right 

column) conditions superimposed on the MNI 152 standard template. First row (a,b): dCVR area. This feature corresponds to the steady-state CVR 

value. Second row (c,d): dCVR time-to-peak. This feature corresponds to the time lag of the maximum instantaneous effect of CO2 on the BOLD 

signal. Third row (e,f): Peak dCVR value. This feature corresponds to the maximum instantaneous effect of CO2 on the BOLD signal. Fourth row 

(g,h): dCVR power values. This feature corresponds to the dCVR curve sum-of-squares. Under forcing conditions, the area, peak and power maps 

exhibit similar patterns of feature variability across different brain regions, revealing increased sensitivity to CO2 challenges in areas such as the 

brainstem, thalamus and cerebral cortex. Under resting conditions, the area maps exhibit lower area values possibly due to the late undershoot of the 

dCVR curve, which decreases its area. WM is generally less sensitive to the CO2 challenges compared to GM, with periventricular WM regions 

exhibiting the lowest sensitivity. The time-to-peak maps show that the timing of the maximum instantaneous peak value of dCVR is slower during 

forcing conditions, suggesting that CO2 reactivity to larger CO2 challenges is slower compared to spontaneous fluctuations.  
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Fig. 8. One-way, nonparametric statistical comparisons (permutation paired test (Winkler et al., 2014)) of the dCVR feature values at each voxel between 

end-tidal forcing and resting conditions, after registration of the individual feature maps to the MNI standard space. The overlapping area scanned across 

subjects is shown in lighter gray scale. In all cases the voxels corresponding to significantly different feature values (p<0.001) between end-tidal forcing 

versus resting conditions are colored. All p-values were corrected using the TFCE method (Smith and Nichols, 2009). Upper panel: dCVR area. Lower 

panel: dCVR time-to-peak. The comparisons of the area maps (upper panel) show significant differences in the left anterior nuclei, and the left ventral 

posterior lateral nuclei of the thalamus. They also revealed increased sensitivity in the pons and the putamen. In contrast, the comparison of the time-to-peak 

maps (lower panel) revealed significant differences in cortical regions, including the insular and temporal fusiform cortices. Note that no areas exhibiting 

significantly larger dCVR area and time-to-peak values during resting fluctuations, as compared to forcing conditions, were detected. 
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and resting conditions are shown in Fig. 8. The results reveal significant differences (!'()* < 0.001) in the anterior 

and ventral posterior lateral nuclei of the thalamus, the left caudate, the left and right putamen, and the pons. In 

contrast, the comparison of the time-to-peak maps revealed significant differences (!'()* < 0.001) mostly in cortical 

regions, including the insular and temporal fusiform cortices. No significant differences were detected for the voxel-

wise dCVR peak and power values. Also, no areas yielded significantly larger values for any of the features (area, 

time-to-peak, peak, power) during resting fluctuations compared to CO2 challenges.  

3.1.3. Clustering analysis  

Table S1 in the supplementary material illustrates the number of clusters that resulted from the classification 

analysis of the dCVR curve shapes. For all subjects, the optimal number of clusters varied between four and five. Fig. 

9 shows the mean dCVR curve of each cluster that resulted from the clustering analysis of voxel-specific dCVR curves 

obtained from a representative subject. The cluster indices were selected so that mean dCVR curves that are overall 

more negative correspond to a smaller index values whereas mean dCVR curves that are overall more positive 

correspond to greater index values. Tables S4 and S5 in the supplementary material show the predominant dCVR 

cluster in the ROIs, which is defined as the cluster with the highest percentage of voxels within each ROI. Under 

forcing conditions, the vast majority of the ROI voxels was classified into the cluster with the highest cluster index 

value (4 or 5). This implies that the predominant dCVR curve was unimodal and positive. This result was highly 

reproducible across subjects. On the other hand, under resting conditions, most of the ROI voxels were classified  

Fig. 9. Mean dCVR curves of clusters obtained using k-means clustering and the silhouette criterion for selecting the optimal number of classes 

of voxel-specific dCVR curves obtained from a representative subject. Left panel: End-tidal forcing. Right panel: normal breathing. The cluster 

indices were selected so that mean dCVR curves that are overall more negative correspond to a smaller index values, whereas mean dCVR curves 

that are overall more positive correspond to larger index values. 
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Fig. 10. Representative maps of the cluster spatial distribution within the GM, WM, and CSF anatomical ROIs as well as the entire brain volume for 3 

representative subjects during end-tidal forcing conditions. The three representative subjects are shown in (a), (b) and (c) respectively. Smaller cluster 

index values correspond to more negative dCVR curve shapes, whereas higher index values correspond to more positive dCVR curve shapes. 

Representative dCVR cluster means are shown in Fig. 9(a). The histogram below each anatomical ROI map displays the distribution of ROI voxels into 

the clusters formed after application of the clustering analysis. The histograms were normalized with respect to the total number of voxels in each 

anatomical ROI. The percentage of voxels falling in each cluster for each representative subject is given in Table S2 in the supplementary material. The 

vast majority of voxels in GM were classified in cluster 5. Similarly, the majority of voxels in WM were classified in cluster 5; however, the proportion 

of voxels classified into cluster 2 was increased compared to GM. In CSF regions, the proportion of voxels classified in cluster 5 was decreased compared 

to GM and WM, whereas the proportion of voxels classified in clusters 1-3 was increased. 
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Fig. 11. Representative maps of the cluster spatial distribution within the GM, WM, and CSF anatomical ROIs as well as the entire brain volume for 3 

representative subjects during normal breathing (resting state) conditions. The three representative subjects are shown in (a), (b) and (c) respectively. 

Smaller cluster index values correspond to more positive dCVR curve shapes, whereas higher index values correspond to more positive dCVR curve 

shapes. Representative dCVR cluster means are shown in Fig. 9(b). The histogram below each anatomical ROI map displays the distribution of ROI 

voxels into the clusters formed after application of the clustering analysis. The histograms were normalized with respect to the total number of voxels 

in each anatomical structure. The percentage of voxels falling in each cluster for each representative subject is given in Table S3 in the supplementary 

material. The vast majority of voxels in all structures were classified into cluster 3, which corresponds to dCVR curve shapes characterized by an early 

overshoot followed by a late undershoot. 



Fig. 12. Reproducibility of the spatial distribution of each dCVR cluster during end-tidal forcing (a) and normal breathing (b) conditions. The voxels (MNI sp

least 6 subjects are shown. Smaller cluster index values correspond to more negative dCVR curve shapes, whereas higher index values correspond to more pos

means are shown in Fig. S1 in the supplementary material. Under forcing conditions, the vast majority of voxels was consistently (across subjects) classified

curves with a large positive overshoot , for most subjects. Voxels in periventricular regions were consistently classified into cluster 2, which corresponds to b

followed by a small positive overshoot, for most subjects. Ventricular voxels were classified into cluster 1, which corresponds to unimodal curves with a larg

other hand, under resting conditions the vast majority of voxels was consistently classified in cluster 3, which is characterized by a large overshoot followed 



18 

 

into cluster 3 (see Fig. 9). The predominant dCVR cluster curve in this case was bimodal, consisting of a large 

overshoot followed by a late, smaller undershoot. However, in the latter case the dominant dCVR cluster in each ROI 

was found to be less consistent across subjects as compared to forcing conditions, possibly due to the lower SNR. 

During end-tidal forcing (Fig. 10), the majority of GM voxel-specific dCVR responses to step CO2 challenges were 

classified into cluster 5. In WM, while most of the voxel-specific dCVR responses are classified into cluster 5, the 

number of voxels classified into cluster 2 is higher compared to GM. This suggests that WM has more voxels 

responding with an initial undershoot to step CO2 challenges compared to GM. This effect is more pronounced in 

CSF-rich regions, where, in comparison to GM, the number of voxel-specific dCVR curves classified into cluster 1 

was found to be lower and the number of voxel-specific dCVR curves classified into clusters 1-3 was found to be 

higher. During normal breathing (Fig 11), on the other hand, the largest proportion of voxel-specific responses were 

classified into cluster 3, which corresponds to dCVR curve shapes characterized by an early overshoot followed by a 

late undershoot. This explains the different dCVR shapes for larger ROIs shown in Fig. 3.  

The reproducibility of the spatial distribution of each dCVR cluster across subjects during each condition is shown 

in Fig. 12. Spatial comparison of dCVR clusters across subjects requires an equal number of clusters for all subjects. 

As the optimal number of clusters identified across subjects and experimental conditions (resting/forcing) varied 

between 4 and 5 (Table S1 in the supplementary material), clusters with high inter-cluster similarity were merged 

together to form 4 dCVR curve clusters for all subjects and experimental conditions. The inter-cluster similarity 

between the dCVR clusters was evaluated in terms of the pointwise Euclidean distance between the centroid (mean 

dCVR curve) of each cluster. This resulted into clusters 4 and 5 being merged together in all cases, as their mean 

dCVR curves were found to be the most similar among all clusters. Representative cluster means are shown in Fig. 

S1 in the supplementary material. Fig. 12 shows the voxels (MNI space) that were assigned to the same cluster in at 

least 6 subjects. For most subjects, under forcing conditions the vast majority of voxels was classified into cluster 4. 

Also, voxels in periventricular regions were consistently classified into cluster 2, while ventricular voxels were 

classified into cluster 1. On the other hand, under resting conditions the vast majority of voxels was classified into 

cluster 3, for most subjects. 

4. Discussion 

We investigated the regional variability of dCVR by modeling the dynamic interactions between CO2 and BOLD 

in healthy subjects during resting conditions and hypercapnic step changes induced by dynamic end-tidal forcing. To 

this end, we employed an efficient systems identification technique (functional expansions) to obtain estimates of 

dCVR curves within single voxels over the entire scan field of view, and larger ROIs possibly involved in the 

brainstem respiratory control network, whereby we constructed a custom basis set by using the Laguerre and gamma 

basis sets (see Section 2). Based on this, we demonstrated that dCVR exhibits significant regional variability that 

suggests the dynamic effect of CO2 on the BOLD signal strongly depends on brain region. Our results suggest that the 

proposed methodology yields robust dCVR estimates in single voxels even during resting conditions, despite the low 

SNR associated with the latter. This is supported by the similarity of the main dCVR curve shape and features between 

resting and forcing conditions (Figs. 4 and 7 respectively), as well as by the similar cluster mean curve shapes, which 

resulted from the clustering analysis (Fig. 9). Also, the proposed methodology has important implications as it suggests 

that it is feasible to obtain reliable dCVR curve estimates without the need of externally induced stimuli (end-

tidal/prospective forcing, controlled breathing).  

This line of research yields promise, including the clinical setting, as it may lead to protocols which are easier to 

implement and applicable to a potentially wider class of patient populations with disorders associated with 

cerebrovascular dysfunction. Such disorders include arterial stenosis (Mandell et al., 2008b) and occlusion (De Vis et 
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al., 2015), enhanced risk of stroke (Gur et al., 1996; Markus and Cullinane, 2001; Silvestrini et al., 2000), steno-

occlusive diseases such as Moyamoya disease (Donahue et al., 2013; Mikulis et al., 2005), small-vessel diseases 

(Conklin et al., 2011, 2010) and Alzheimer’s disease (Marmarelis et al., 2016, 2013; Silvestrini et al., 2011). Beyond 

cerebrovascular diseases, we speculate that modeling dCVR within structures involved in central chemoreception 

could provide valuable insight towards understanding and treating diseases associated with respiratory control. Altered 

chemoreception has been associated with obstructive sleep apnea (Kaw et al., 2009; Mokhlesi and Tulaimat, 2007; 

Wang et al., 2007), the central hypoventilation syndrome (Dubreuil et al., 2008; Guyenet et al., 2010; Shea et al., 

1993), and multiple system atrophy (Benarroch et al., 2007; Gaig and Iranzo, 2012). Future research is required to test 

the clinical utility of these techniques, potentially in tandem with other complimentary techniques to understand the 

human brainstem (Ezra et al., 2015; Faull et al., 2016, 2015; Faull and Pattinson, 2017). 

4.1.1. The resting-state dCVR late undershoot 

Our analysis revealed that under resting conditions the estimated dCVR curves exhibited a late undershoot that was 

absent during dynamic end-tidal forcing conditions (Fig. 3). A potential explanation of this observation could be a 

reduction in compliance reserve associated with the raised mean PETCO2 baseline during CO2 challenges. This rise in 

mean PETCO2 was a result of both the increase in PETCO2 baseline by 1 mmHg above the subjects’ natural PETCO2 

needed for the system to function correctly, as well as the step CO2 challenges that were delivered to the subjects 

(Section 2.1.1). Previous studies have shown that each 1 mmHg increase or decrease in PaCO2 over the range of 20–

60 mmHg produces a CBF change of same direction of approximately 1–2 ml/100 g/min, or 2.5% (Ide et al., 2003; 

Poulin et al., 1996). During forcing conditions, the recorded rise in mean PETCO2 was approximately 3.4 mmHg (due 

to the hypercapnic steps), which would increase mean CBF by approximately 7 to 16% (Pattinson et al., 2009).  

The reduction in compliance reserve caused by such an increase in mean PETCO2 can be described using the 

arteriolar compliance model of CBF response to a vasoactive stimulus developed in (Behzadi and Liu, 2005). Although 

this model was initially developed for neuronal inputs, its basic idea can be generalized to any input that triggers a 

vasoactive signaling cascade, such as CO2, without any loss of generality. CO2 is believed to contribute to the 

development of pH gradient across arteriolar walls, and both CO2 and pH regulate cerebrovascular contractility 

(Kontos et al., 1977a, 1977b; Lassen, 1968; Yoon et al., 2012). However, the precise molecular mechanisms regulating 

this chemosensitivity are still poorly understood.  

The arteriolar compliance model is an extension of the (Friston et al., 2000) linear feedback model of the CBF 

response to a vasoactive signal. According to the arteriolar compliance model, a vasoactive signal modulates arteriolar 

muscular compliance, which subsequently leads to changes in vessel radius and CBF. Total compliance is defined as 

the parallel combination of an active and a passive component. The active component represents smooth muscle, 

whereas the passive component represents connective tissue, such as basal lamina. This results in a non-linear relation 

between arteriolar radius, which depends on PaCO2, and smooth muscle compliance. A key constituent term of the 

model is the feedback, which represents mechanisms that attempt to drive CBF back to baseline state shortly after the 

onset of the stimulus. Such mechanisms can be the action of stretch-mediated receptors in a vessel wall leading to 

vascular smooth muscle constriction. The feedback term is inversely related to baseline PaCO2. This results from the 

assumption of a non-linear relation between the radius and compliance of arterioles, and the mathematical derivation 

of the model. 

The reciprocal contribution of PaCO2 in the feedback term can be used to describe the late undershoot of dCVR 

curves obtained in our work under normal breathing conditions. Specifically, under normocapnia, the feedback term, 

which tends to drive CBF back to baseline levels shortly after the onset of the stimulus (spontaneous CO2 fluctuations), 

is stronger compared with CO2 challenges. This stronger feedback term results in faster CBF response with a post-

stimulus undershoot. On the other hand, during hypercapnic CO2 challenges, when mean PETCO2 is elevated compared 

to normal breathing, the feedback term is weaker. This results in a slower CBF response with minimal post-stimulus 
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undershoot. These results were illustrated in (Behzadi and Liu, 2005) using realistic simulations and agree with the 

findings in our work, which show a late undershoot in the dCVR curves obtained under normal breathing conditions 

that is absent from dCVR curves obtained under forcing conditions. 

4.1.2. Variability of dCVR curve features across experimental conditions and brain regions 

Resting vs. forcing conditions - ROI analysis: The ROI analysis shown in Fig. 6 revealed significant differences 

(! < 0.05) between the dCVR curve area and time-to-peak values under end-tidal forcing versus normal breathing 

conditions. No significant differences were detected for the dCVR peak and power values between forcing/resting 

conditions. Moreover, these significant differences were found in one direction only. Specifically, no ROIs exhibiting 

larger dCVR area or time-to-peak values for resting breathing compared to end-tidal forcing conditions were found. 

The main reason for the dCVR area differences is that, under normal breathing conditions, the dCVR curves exhibited 

a late undershoot, which decreased the overall dCVR curve area. On the other hand, this late undershoot was absent 

from the dCVR curves obtained under forcing conditions. This is further supported by the dCVR area maps shown in 

Fig. 7, where it can be seen that dCVR area is larger during forcing compared to resting conditions for almost all 

voxels, as well as the clustering results (Figs. 10, 11), which revealed that the dominant dCVR clusters during forcing 

and resting conditions were unimodal (no undershoot) and bimodal, respectively. As a result, the area of the dCVR 

curves obtained under forcing conditions was found to be overall larger compared to resting conditions.  

The differences in the dCVR time-to-peak observed between the two conditions could also be explained by the 

elevated PaCO2 baseline and larger magnitude fluctuations that occurred under forcing conditions. According to the 

(Behzadi and Liu, 2005) arteriolar compliance model, under normal breathing conditions, whereby PaCO2 baseline is 

lower, the CBF response to a vasoactive stimulus resolves faster. In contrast, under hypercapnic conditions, whereby 

the mean PETCO2 baseline was raised by approximately 3.4 mmHg with respect to resting conditions (Section 4.1.1), 

the CBF response is overall slower. The large step CO2 increases induced during forcing conditions may also 

contribute to larger time-to-peak values, as the cerebral vasculature contracts more passively at elevated baseline 

states. Therefore, it may require more time to attain its maximum instantaneous responsivity to larger CO2 increases.  

In contrast, the dCVR peak and power values were not significantly different between dynamic end-tidal forcing 

and normal breathing conditions, implying that they were not affected significantly by the late undershoot observed 

under normal breathing. Specifically, the dCVR peak value reflects the maximum instantaneous dCVR response. It 

does not depend on the late undershoot, which, according to the (Behzadi and Liu, 2005) model, is associated with 

the baseline CBF state. On the other hand, the dCVR power is defined as the sum of squares of the dCVR curve values. 

In contrast to the dCVR area, for which the late undershoot observed under resting conditions tends to decrease its 

overall value, in the case of dCVR power the late undershoot does not change significantly the overall value compared 

to forcing conditions, as these values are squared when calculating dCVR power. 

Apart from significant differences in dCVR features between experimental conditions, our analysis also revealed 

significant differences in dCVR features between different ROIs within the same condition. Fig. 6 shows that under 

CO2 challenges, the left anteroventral (AV) nucleus of the thalamus exhibits significantly higher area values compared 

to the left ventrolateral (VL), left ventral posterior lateral (VPL) thalamus and the Kolliker-Fuse parabrachial group 

(KF/PB) ROIs (p < 0.05). No significant differences of area values were found between these ROIs under normal 

breathing conditions. A potential hypothesis for this observation is that under forcing conditions there is a larger 

involvement of the AV nucleus in mediating sensory components of respiration to large cortical regions. This results 

in higher BOLD signal fluctuations in the AV nucleus compared to the VL and VPL nuclei. This hypothesis is 

supported by neuroimaging results suggesting that activity in the AV nucleus is more strongly connected with large 

cortical territories involved in processing of respiratory-related information, such as the frontal and anterior cingulate 

cortices, as compared to the VPL nucleus of the thalamus (Evans et al., 2002; McKay et al., 2003; Pattinson et al., 
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2009; Von Leupoldt et al., 2008). It is also supported by diffusion tractography results, which showed similar 

connectivity between the VL and VPL nuclei, but distinct connectivity profiles between these nuclei and the AV 

thalamic nucleus (Pattinson et al., 2009). Also, the cerebellum and temporal fusiform cortex exhibited significantly 

larger time-to-peak values compared to the left ventrolateral (LVL), left anteroventral (LAV), and left ventral posterior 

lateral (LVPL) thalamic nuclei. We speculate that the faster response delay under forcing conditions of the latter 

respiratory-related, functionally-defined ROIs compared to the former structurally-defined ROIs could be associated 

with increased neuronal activity in response to CO2 challenges. 

Resting vs. forcing conditions - Voxel-wise analysis: The statistical comparisons of voxel-specific dCVR area 

values between resting and end-tidal forcing conditions (Fig. 8) revealed significant differences in the anterior and 

ventral posterior lateral nuclei of the thalamus, the left caudate, the left and right putamen, and the pons, in agreement 

with the ROI analysis and the voxel-wise results reported in (Pattinson et al., 2009). In the latter study, these 

differences were identified using standard fMRI voxel-wise analysis, i.e. convolving the CO2 stimuli with a standard 

curve and obtaining a regression coefficient for each voxel. This assumes that the dynamics of the BOLD response to 

CO2 changes are identical in all voxels except a scaling factor. As discussed in the same paper (e.g. Fig. 3 in (Pattinson 

et al., 2009)), the obtained results reflect the slope of the BOLD-PETCO2 relationship. This is mainly due to that in 

voxels that are activated, the SNR increases; therefore, linear correlations become stronger. In the present paper, we 

have applied a dynamic system-theoretical framework to study in detail the voxel-specific dynamics of the BOLD 

response to CO2 changes which are quantified by the corresponding dCVR curves. This provides richer information 

than the analysis presented in (Pattinson et al., 2009) as it allows e.g. for different curve shapes (unimodal/bimodal 

etc.) and time-to-peak values compared to using a uniform curve across the brain.  

Among several possible features that can be extracted from these curves, it was found that the area under the dCVR 

curve yielded statistically significant differences (permutation paired testing, TFCE correction) between 

forcing/resting conditions (Fig. 8). Interestingly, the area of the dCVR curve is equivalent to the steady-state CVR 

response to a unit step change in PETCO2 (steady-state step response in systems theory terminology), which also 

corresponds to the standard definition of CVR (Fierstra et al., 2013). The comparison of the voxel-specific dCVR 

time-to-peak values also revealed significant differences between the two experimental conditions (Fig. 8). These 

differences were detected mainly in cortical regions, including the insular and temporal fusiform cortices. This implies 

that, in these regions, the relative time that the cerebral vasculature needs to attain its maximum instantaneous 

responsivity to changes in PaCO2 during forcing conditions is longer compared to resting conditions. It is known that 

in the presence of a hypercapnic stimulus, there is a larger CBF increase relative to baseline CBF in GM structures 

(especially cortical regions) compared to other structures (Ramsay et al., 1993; Rostrup et al., 2000). As a result, the 

differences in dCVR time-to-peak between forcing versus resting conditions are larger in GM relative to other 

structures in the brain. 

Dissociating the contribution of neuronal activity and vascular reactivity on the BOLD signal using the data 

analyzed in this study (and in a more general context) is challenging, particularly during resting conditions, and lies 

beyond the scope of the present paper. It is worth noting, however, that significant differences in the BOLD response 

to externally induced CO2 step challenges compared to normal breathing that are observed in some brain regions, in 

addition to vascular reactivity, might be due to differences in neural activation (Pattinson et al., 2009). We speculate 

that these neural activation - induced changes in BOLD that occur in response to CO2 challenges seem to be (perhaps 

unsurprisingly) reflected on features depending on the entire shape of the dCVR curve, such as total area, rather than 

individual measures that only depend on instantaneous values of the dCVR curve, such as peak value. This hypothesis 

is supported by the results shown in Figs. 7-11. Specifically, while the increase in dCVR area values during forcing 

conditions is widespread over the entire FOV and is mostly due to the lack of an undershoot in the dCVR shapes (Figs. 

7, 10-11), this increase was more pronounced and hence survived the permutation significance testing in the areas 

shown in Fig. 8 (upper panel). These areas are similar to the areas identified in (Pattinson et al., 2009) as showing 

increased sensitivity to the external CO2 challenges, possibly due to activation of CO2 sensitive neurons. 
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4.1.3. The dCVR curve shape and its relation to the underlying anatomy 

The clustering analysis of the voxel-wise dCVR estimates (Figs. 9-12) revealed that the dCVR shapes are 

distributed symmetrically across the brain. In the case of end-tidal forcing (Fig. 10), the largest part of the brain WM 

and GM was assigned to clusters which corresponded to voxel-specific dCVR curves with more positive curve shapes. 

On the other hand, in the case of normal breathing (Fig. 11), the prevalence of dCVR curve shapes exhibiting a late 

undershoot in the brain WM and GM was overall more widespread compared to end-tidal forcing.  

During hypercapnia, periventricular WM regions were found to exhibit negative steady-state CVR values (Fig. 7). 

Similar results were also reported in (Mandell et al., 2008a; Naganawa et al., 2002). In these works, the authors 

attributed this result to “vascular steal” effects. Negative CVR can be seen more clearly from the clustering of the 

voxel-specific dCVR curves in the brain WM, shown in Fig. 13, where periventricular WM regions yielded dCVR 

curves that were classified into clusters characterized by prevalently negative dCVR curves (clusters 1 and 2) 

compared to the rest of the brain WM. Similarly, CSF-rich regions in the brain, such as the lateral ventricles, yielded 

a larger proportion of dCVR curves that were classified to clusters characterized by prevalently negative dCVR curves 

(clusters 1 and 2) compared to GM and WM, as shown by the histograms in Fig. 10. This agrees with the findings of 

(Thomas et al., 2013), where the ventricular BOLD signal was found to be anti-correlated with hypercapnic step 

changes in CO2, which was attributed to CSF movement due to the large blood volume increase that occurs in response 

to the large hypercapnic CO2 step changes. 

During resting conditions, the clustering analysis revealed that voxel-specific dCVR curve shapes may be different 

compared to forcing conditions. Specifically, Figs. 10 and 11 show that the histogram of the cluster indices in each 

anatomical structure changes between forcing and normal breathing conditions. Therefore, the dCVR curve shape of 

a particular voxel was found to be different between conditions. This suggests that although the underlying mechanism 

of vasodilation was found linear in the range of PETCO2 values examined in this study, it may respond differently to 

CO2 fluctuations during normal breathing compared to dynamic end-tidal forcing. The main reason for the different 

dCVR shapes is that each experimental condition is associated with a different operating point along the approximately 

linear regime of the PaCO2-BOLD response curve (Behzadi and Liu, 2005). Specifically, during CO2 challenges, the 

recorded rise in mean PETCO2 was approximately 3.4 mmHg (Pattinson et al., 2009). This increment in mean PETCO2, 

in its turn, would result in an increase in mean CBF by approximately 7 to 16%, which according to the arteriolar 

compliance model (Behzadi and Liu, 2005) would have an effect of the shape of the dCVR curve (Sections 4.1.1-

4.1.2). Another possibility to explain the discrepancy in the dCVR curve shape between each condition is that under 

resting-state breathing the SNR is much lower compared to CO2 challenges. This may have affected the estimation of 

dCVR, resulting into different dCVR curve shapes. 

The clustering analysis was generally reproducible at the group level as shown in Fig. 12. However, the cluster 

spatial overlap reduced when considering more subjects. There are two main reasons for this: (i) the misregistration 

Fig. 13. Representative results of the clustering analysis in WM for three representative subjects (same subjects shown in Figs. 9 and 10). While 

most of the voxels were assigned to clusters 4 and 5, which are characterized by dCVR curves exhibiting a large overshoot, WM periventricular 

voxels were mainly classified in clusters which are characterized by dCVR curves exhibiting an initial undershoot. 
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of the individual dCVR maps to the MNI space due to the partial scanning field used in this study, and (ii) the reduction 

of the number of dCVR clusters into 4 to allow comparisons across subjects, which may be suboptimal for some 

subjects. Overall, the cluster reproducibility is stronger for the forcing data, due to the higher SNR. However, we note 

that the difficulty related to registering the limited field of view data to the MNI space affected the reproducibility 

results. 

Similar clustering results were also reported in a recent work by (Champagne et al., 2017). In this work, the authors 

employed a novel protocol, which involved hyperoxic gas challenges, to obtain step hypercapnia-induced response 

delay maps calibrated for blood arrival time. The latter were combined with traditional CVR and (non-calibrated) 

hypercapnia-induced response delay maps to derive clusters of brain regions with distinct CBF characteristics. This 

analysis allowed the authors to define clusters of voxels with long temporal delays during hypercapnia either due to 

vascular morphology or dynamic blood flow redistribution. On the other hand, we performed clustering with respect 

to dCVR curve shapes and we did not explicitly measure the bolus arrival time. Therefore, direct comparison between 

the two clustering results is not straightforward. Nonetheless, some forcing dCVR curves revealed from our analysis 

(e.g. those with an initial undershoot followed by a larger overshoot) possibly reflect a delayed response to CO2 

challenges as well. These shapes were mainly associated with cluster 2, which in most subjects overlaps with the voxel 

clusters with long hypercapnia-induced response delay in (Champagne et al., 2017). However, differentiation of 

possible causes for the longer temporal delays during CO2 challenges was not feasible using the data analyzed in our 

work and remains to be studied in future research. 

4.2. Study Limitations 

The aim of this study was to model the dynamic interactions between %BOLD signal and PaCO2. The data analyzed 

were collected in a previous study aiming to determine the human brainstem respiratory control network (Pattinson et 

al., 2009). The scanning field comprised 16 oblique coronal slices optimized for imaging the brainstem in high 

temporal resolution. This restricted the aim of modeling of dCVR curves mainly in subcortical structures including 

the brainstem and the thalamus and did not allow extension of the analysis in some cortical regions that would enable 

comparisons across cortical lobes. Moreover, the limited scanning field made registration into a common stereotactic 

space challenging, which possibly affected the comparison of our results at the group level (Fig. 8). Future work 

performed using a larger field of view with higher contrast (e.g. (Faull et al., 2015, 2016; Pattinson et al., 2009)) would 

help overcome these limitations.  

During the experiment, subjects wore a face mask that was attached to a breathing system. The baseline of PETCO2 

time-series acquired during the resting-state experiment were slightly higher (44.43 ± 2.09 mmHg) than what is 

typically reported in the literature (40-42 mmHg) possibly due to some small amount of rebreathing. However, this 

should not have affected the results as these baseline values were far from the hypercapnic range (> 50 mmHg). Also, 

in young healthy subjects, changes in PaCO2 and PaO2 are reflected closely in PETCO2 and PETO2, respectively 

(Hoskins, 1990; Mark et al., 2011; Robbins et al., 1990). Therefore, as the subjects who participated in this study were 

healthy and in the young- or mid-age range, we hypothesize that the gradient between PaCO2 (PaO2) and PETCO2 

(PETO2) was constant. As dCVR estimates were obtained using variations of PETCO2 and BOLD around their mean 

values, this suggests that using PETCO2 was suitable for dCVR estimation in our particular subject group.  

Lastly, the respiratory protocol employed in the original study (Pattinson et al., 2009) included challenges raising 

PETCO2 up to 5 mm Hg above the subjects’ natural PETCO2. This hypercapnic range of PETCO2 is at the border between 

the linear and non-linear regions of the PETCO2-BOLD curve (Battisti-Charbonney et al., 2011; Halani et al., 2015; 

Tancredi and Hoge, 2013), which may have resulted in the selection of linear dynamic models between PETCO2 and 

BOLD in our investigation. Therefore, further extension of the present work includes the analysis of data collected 

over a larger hypercapnic range of PETCO2 to investigate modeling of non-linear dCVR. 
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5. Conclusion 

In this work, we used linear and non-linear models to investigative dynamic CO2 reactivity in the human brain 

during both resting breathing and hypercapnic externally induced step changes in CO2, using measurements from 12 

healthy subjects. We initially investigated larger ROIs and concluded that in these regions dynamic CO2 reactivity is 

mainly linear, for both experimental conditions. Therefore, we rigorously investigated the regional variability of 

dynamic CO2 reactivity in individual voxels over the entire scan field of view using linear models. In this context, we 

estimated voxel-specific dynamic CO2 reactivity curves, and we showed that the regional characteristics of these 

curves vary considerably across different brain regions, and that their shape might be different under the two 

experimental conditions. Finally, we performed clustering analysis on the shapes of the estimated curves, which 

resulted into clusters of similar curve shapes that were distributed symmetrically across the brain. Our results suggest 

that it is feasible to obtain reliable estimates of dynamic cerebrovascular reactivity curves from resting-state data, 

which could allow the design of safer and easier to implement clinical protocols for the assessment of dCVR, which 

do not require external stimuli (e.g. hypercapnia), in any patient population. 
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