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ABSTRACT

A modeling procedure is proposed to handle strong electro-mechanical coupling appearing in micro-electro-
mechanical systems (MEMS). The finite element method is used to discretize simultaneously the electrostatic
and mechanical fields. The formulation is consistently derived from variational principles based on the electro-
mechanical free energy. In classical weakly coupled formulations staggered iteration is used between the electro-
static and the mechanical domain. Therefore, in those approaches, linear stiffness is evaluated by finite differences
and equilibrium is reached typically by relaxation techniques. The strong coupling formulation presented here
allows to derive exact tangent matrices of the electro-mechanical system. Thus it allows to compute non-linear
equilibrium positions using Newton-Raphson type of iterations combined with adaptive meshing in case of large
displacements. Furthermore, the tangent matrix obtained in the method exposed in this paper greatly simplifies
the computation of vibration modes and frequencies of the coupled system around equilibrium configurations.
The non-linear variation of frequencies with respect to voltage and stiffness can be then be investigated until
pull-in appears. In order to illustrate the effectiveness of the proposed formulation numerical results are shown
first for the reference problem of a simple flexible capacitor, then for the model of a micro-bridge.

Keywords: Finite Element Method (FEM), Strong Electro-Mechanical Coupling, Micro-Electro-Mechanical
Systems (MEMS), Non-Linearity.

1. INTRODUCTION

When simulating electro-mechanically coupled systems, weak coupling procedures are typically used. The elec-
trostatic field and the mechanical domain are discretized and solved for independently in different analysis steps.
Iterations are then performed: the electrostatic solution provides the electrostatic forces on the structure and
the structure deformation defines the new boundaries for the electrostatic problem. This method is commonly
presented in the literature (see e.g. Lee et al.1) and is illustrated in figure 1.

The method proposed here computes the electric and mechanical fields simultaneously. Since the problem is
non-linear, it must be solved by an iterative algorithm such as the Newton-Raphson method or the Riks-Crisfield’s
technique.2 In figure 1 the weak and strong coupling approaches are compared.

The solution strategy proposed in this work consists in the following steps. Given an electric potential applied
on the boundaries of the structure, a first solution is obtained by considering the coupled problem linearized
around an initial configuration. The resulting structural deformation then defines a modified electric domain
and a new linearised problem is defined around the modified configuration and solved for. This process continues
until the solution has converged, namely until the electric and mechanical equilibrium are satisfied up to a
predefined tolerance (see figure 1). One of the advantages of this formulation is that the tangent stiffness matrix
can be explicitly constructed for the coupled problem and therefore, around a given equilibrium configuration,
the natural frequency of the electrostatically coupled structure can easily be evaluated.

The following section outlines how the fully coupled finite element approach can be devised by applying a
variational approach based on the free energy of the electro-mechanical system. Also we will indicate how the
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Figure 1. Classical weakly coupled procedure (left) compared to the proposed strongly coupled approach (right).

tangent matrix can be derived and summarize the Newton-Raphson and the Riks-Crisfield method to solve the
non-linear coupled problem. The methodology is applied to a simple capacitor problem in section 3 and to a
micro-bridge model in section 4. In both cases the obtained results (namely stability limits and eigenfrequency)
are compared to analytical solutions.

2. FINITE ELEMENT MODEL

A consistent way of deriving a finite element discretization for the coupled electro-mechanical problem consists
in applying the variational principe. Starting from the energy of the coupled system, nodal forces are obtained
for an element by derivation of the energy. The tangent stiffness matrix of the coupled problem is then obtained
by linearisation of the equilibrium equations in the vicinity of an equilibrium position.

2.1. Total Energy of the coupled system

The total energy of the coupled problem includes the electric and mechanical energies. The expression of energy
density results from thermodynamical considerations.3 Depending on the chosen variables, either the Helmholtz
or the Gibbs’ free energy have to be used. If intensive variables, namely the mechanical stress T and the electric
field E, are chosen, Gibbs’ energy density has to be considered:

G =
1

2
ST T − 1

2
DT E (1)

where T is the stress tensor, S the strain tensor, D the electric displacement tensor and E the electric field.
The internal energy on a volume V is then:

Wint =

∫

V

(

1

2
ST T − 1

2
DT E

)

dV (2)

The constitutive equations determine the relations:

{

T = HS

D = εE
(3)



where H is Hooke’s matrix and ε the permittivity matrix. The compatibility equations are:

{

Sij = 1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

in V

u = u on Γu

{

E = −∇φ in V

φ = φ on Γφ
(4)

where u and φ are respectively the mechanical displacement vector and the electric potential, and where ∇ is
the gradient operator. These variables will be the unknowns of our problem. The overlined variables u and φ
are the displacement and potential imposed on the surfaces. The external energy is defined by

Wext =

∫

V

uT f dV +

∫

ΓT

uT t dS −
∫

V

φρ dV +

∫

Γd

φd dS (5)

where f is the applied body forces, t the surface tractions imposed on ΓT , ρ the imposed charge density and d
the electric displacement imposed on Γd (as shown in figure 2).
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Figure 2. Mechanical and electric domains.

2.2. Internal forces

For sake of conciseness the following developments are outlined for the two dimensional case, but the same
reasoning can be used for the three dimensional case. To obtain the internal forces we will use the virtual work
principle. Let u be a displacement field and φ a potential field verifying the compatibility conditions, implying
that these fields are continuous and differentiable. Let u∗ be a virtual displacement and φ∗ a virtual potential
such as:

{

u∗ = u + δu
φ∗ = φ + δφ

(6)

The variations satisfying the kinematic constraints. Hence the virtual displacements and potential must be zero
on the contour Γu and Γφ where there are imposed, and remain arbitrary on ΓT and ΓD where mechanical stress
and electric displacements are imposed. The variations δui and δφ are then said to be kinematically admissible
and the virtual work principle can be applied.

The total energy is stationary for all displacements and potential fields kinematically admissible if and only
if the mechanical displacements and electric potential exactly satisfy the equilibrium relations. To find the
equilibrium equation of the electromechanical system, we thus must evaluate

δWint = δWext (7)

The internal energy of the coupled problem is:

Wint =
1

2

∫

V

ST T dV − 1

2

∫

V (u)

DT E dV = Wm − We (8)



where Wm is the mechanical energy and We the electric one. The integration volume for the electric part depends
on the mechanical displacement u. The total energy variation due to the displacement yields the mechanical
internal forces and its variation with respect to the potential yields the electric equilibrium equation:

{

fm · δu = δuWint = δuWm − δuWe

fe δφ = δφWint = δφWm − δφWe
(9)

Three of these variations can be evaluated in a straightforward manner. In fact they can be treated as in the
standard variational calculus for uncoupled electrostatics and mechanics to obtain







δuWm = −
∫

V
δuT∇T dV +

∫

S
δuT NT T dS

δφWe =
∫

V (u)
δφT ∇.D dV −

∫

S
δφT D.n dS

δφWm = 0

(10)

On the other hand, the variation of the electric energy due to the displacement u is not common. In order
to express the dependence of the volume of the electric domain with respect to structural displacements let us
perform the change of variables







x = ξ + δux

y = η + δuy

z = χ + δuz

(11)

where ξ, η, χ and x, y, z are respectively the coordinates of structural points in the reference configuration and
in the perturbed state. The perturbed electric energy is then expressed by

W ∗

e =
1

2

∫

V

(∇φ)T J−T εJ−1(∇φ) det JdV (12)

In this expression, V is now the reference volume dV = dξdηdχ, ∇ is the gradient with respect to ξ, η, χ and J

is the Jacobian of the transformation (11). Recalling that the variations are arbitrarily small, one finds:

J−1 =

(

(1 − δξux) −δξuy

−δηux (1 − δηuy)

)

(13)

where δξux denotes ∂δux/∂ξ and so on.

The internal forces due to the variation of the electric energy with respect to displacements are finally obtained
subtracting from the perturbed energy (12) the reference one. After some developments and a dropping of high
order terms in δ, its expression can be written as

δuWe =
1

2

∫

V

DT

(

−∂φ
∂ξ

0 −2∂φ
∂η

∂φ
∂ξ

∂φ
∂η

−2∂φ
∂ξ

0 −∂φ
∂η

)

∇δu =
1

2

∫

V

DT F∇δu = fm.δu (14)

2.3. The tangent stiffness matrix

The stiffness matrix is obtain by linearisation of the internal forces around a equliibrium position:

fm ≃ Kuuu + Kuφφ
fe ≃ Kφuu + Kφφφ

(15)

It is observed that the total coupled matrix is symmetric. The matrix Kφφ is the same as the stiffness matrices
of the purely electric problem and need not be further discussed. Let us then further discuss the matrix Kuu

and Kuφ.



The coupling matrix Kuφ

To evaluate the matrix Kuφ, one needs only to derive the second term of the internal mechanical force fm with
respect to the voltage. Performing to that purpose a second variation of (14) no with respect to φ, we obtain

δφfm · δu =
∫

V
(∇δφ)T

(

−ε11
∂φ
∂ξ

−ε22
∂φ
∂η

−ε11
∂φ
∂η

ε11
∂φ
∂ξ

ε22
∂φ
∂η

−ε22
∂φ
∂ξ

−ε11
∂φ
∂ξ

−ε22
∂φ
∂η

)

∇δu (16)

where the matrix in the center of this expression is the coupling matrix Kuφ.

The matrix Kuu

The matrix Kuu has two contributions: the first one is due to the stiffness on the domain as in the purely
mechanical problem. The second one derives from the dependency of electric force to structural displacements
namely

δufm.δu =
∫

V
∇δuT H∇δuT

+
∫

V
∇δuT









DξEξ 0 DξEη − 1
2 (DξEξ + DηEη)

0 ε22(Eξ)
2 1

2 (DξEξ + DηEη) DηEξ

DξEη
1
2 (DξEξ + DηEη) ε11(Eη)2 0

− 1
2 (DξEξ + DηEη) DηEξ 0 DηEη









∇δuT

(17)
where the matrix in the center of the expression corresponds to the tangent stiffness matrix. One observes that
the electric force introduces an additional stiffness to the mechanical structure.

2.4. Resolution Algorithm

After discretisation, the equilibrium equation resulting from (9) may be written in the matrix form:

(

Kuu(φ) Kuφ(φ)
Kφu(φ) KΦΦ

) (

U

Φ

)

=

(

F

Q

)

(18)

where Q and F are respectively electric charges and structural forces. This equation constitutes a non-linear
coupled system since the matrices are function of the solution φ. Equation (18) may be rewritten in terms of
the generalised coordinates qT = {U ,Φ}:

r(q) =

(

Kuu(q) Kuφ(q)
Kφu(q) KΦΦ

)

q −
(

F

Q

)

(19)

where r is the residual vector. The non-linear system (19) is then solved in an iterative way by means of the
Newton-Raphson or Riks-Crisfield methods.2, 4

Newton Raphson method

Let us denote qk an approximate value of q resulting from iteration k. The corrections ∆qk are computed by
solving the linearised equation

r(qk+1) = r(qk) +

[

∂r

∂q

]

qk

∆q = 0 (20)

where the Jacobian matrix Kt =
[

∂r
∂q

]

qk
defines the tangent stiffness matrix. The total displacements are

iteratively corrected according to:
qk+1 = qk + ∆qk (21)

until the resulting residual vector comes below a given tolerance.



Riks-Crisfield method

Newton-Raphson method allows to find an equilibrium position solution of the non-linear problem (18) for a
given imposed set of structural displacements (or forces) and electric potential (or displacement). However when
trying to characterize the quasi-static response of the electromechanical system when for instance the voltage is
increased, the Newton-Raphson will not converge if the pull-in potential has been reached since a quasi-static
solution no longer exist.

Therefore, in order to follow the quasi-static evolution of the system in terms of applied potential and resulting
deformation, one needs to apply a so-called continuation technique. One of these techniques is the Riks-Crisfield
method. Calling q the output variables (mechanical displacements and potential) and λ the applied input
(imposed potential on electrodes for instance), Riks-Crisfield technique consists in constraining the distance
between two computed points in the q, λ graph to be at a predefined distance. Hence, instead of prescribing an
increment in ∆λi from a previous equilibrium computation corresponding to λi, a new quasi-static equilibrium
is searched for a combined increment in the driving parameter λi + ∆λk and in the system unknown increments
such that

dk.dk = ∆S2
i (22)

where dk locates the position of the point, with respect to the point i and is defined by (see figure 3)

dk =

[

∆qi + ∆qk

∆λi − ∆λk

]

(23)

This equation will be a new constraint to add to the equilibrium equation (20). Thanks to this constraint,
the incremental load ∆λi becomes an unknown of the problem and will be modified during the process. The
Riks-Crisfield method is more complicated than the Newton-Raphson one but permits to pass the maximum
point of the analysis curve and to continue the analysis in the unstable region.
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(a) Newton-Raphson method
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(b) Riks-Crisfield method

Figure 3. Iterative methods to resolve non-linear problems

3. APPLICATIONS TO A REFERENCE PROBLEM

3.1. Problem

In order to validate the numerical results, the reference problem shown in figure 4 is considered.5 It consists
in a capacitor made of two parallel discs with a voltage applied between them. The upper disc is moveable and
is attached to a spring of stiffness k at its centre while the lower disc is fixed. This simplified problem is very
representative of the mode of operation of micro-systems such as micro-actuators and micro-accelerometers. A
preliminary non-dimensional analysis allows to define what are the assumptions of the problem to be considered.



For this type of problem, the electrostatic assumption is licit.6 For the sake of simplicity, the electrodes of the
capacitor are considered as infinite planes and the electric charges are supposed to be evenly distributed on the
surfaces. This approximation allows to neglect fringing fields and to reduce the system to a one-dimensional
problem. The voltage is applied between planes ’0’ and ’2’ but because of the electrostatic assumption, the
system behaves as if the voltage was applied between planes ’0’ and ’1’. The capacitor is in vacuum and no
damping is considered in the model. Only the strong coupling between the electric and the mechanical fields will
be studied.

V


0


1


2

e


k


x


x


y


Figure 4. Definition of a reference problem

3.2. Analytical Solution

Dynamic equilibrium equation

The dynamic equilibrium equation of the capacitor is written under the assumption of rigid plates. In this
assembly, two mechanical forces occur. First, when the plate moves down from its rest position x0, an upward
force is created :

fm = −k(x − x0)ex (24)

where k is the stiffness of the spring per unit area. The second mechanical force to be considered is the force
due to gravity :

f = mg (25)

where m is the surface mass density of the plate. Because of the small size of the structure, the gravitational
force is very small compared to the electric and the spring restoring forces, and may be neglected. For the electric
part, the only known imposed value is the voltage V between the planes ’0’ and ’2’. The electric force on the
plate surface is then determined by7 :

fe = −1

2
ǫ0

V 2

x2
(26)

where ǫ0 is the permittivity of the electric domain between the electrodes. This result can also be obtained by
energy considerations in the capacitor. Writing Newton’s second law for the capacitor system, we obtain :

mẍ = −k(x − x0) −
1

2
ǫ0

V 2

x2
(27)

Stability analysis

It can be noted from equation (27) that the dynamic behaviour of the structure depends on the applied
voltage V , the spring stiffness k and its rest position x0. A coupling term arises since the presence of the
electric field adds a non-linear term in the equation of motion. The electric force applied to the surface induces
an additional stiffness that modifies the natural frequency of the mechanical system. In the following, the
influence of parameters V and k is discussed for a given value of x0 equal to 1 µm. The solutions of the system
corresponding to different initial conditions are shown in the phase diagrams of figure 5. When no voltage is
applied to the capacitor, the system is stable as shown in figure 5(a). When a voltage is applied, an instability
zone occurs around the stability zone (figure 5(b),(c)). When the plates come closer, the electric force may
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Figure 5. Phase diagrams for increasing values of the applied voltage.

become higher than the spring restoring force and the plates stick together. As voltage increases, the stable zone

reduces and vanishes when the ratio V 2

k
exceeds a given threshold value equal to 0.33 × 10−7 in this example.

Natural frequency shifting

To calculate the natural frequency of the structure, the system must be linearised around its dynamic equi-
librium position noted xe. It results that the natural frequency ω0 of the system is a function of the applied
voltage :

ω0 =

√

(k − ǫ0
V 2

x3
e
)

m
(28)

Note that the natural frequency
√

k/m of the pure mechanical system is retrieved if the electric field is equal
to zero. Equation (28) shows that an increase of the voltage causes a decrease of the natural frequency of the
system. When the pull-in voltage in reached the eigenfrequency becomes null.

3.3. Finite Element Calculations

To illustrate the influence of the coupling between the mechanical and electric fields, we consider the one-
dimension model shown in figure 6 in which the capacitive system is made of three electric elements and three
mechanical elements. The mechanical nodes are noted xi and the electric nodes φi (i=1,...4). The boundary
conditions are:

x4 = 0, φ1 = 0, φ4 = V (29)
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Figure 6. One-dimension problem

The tangent matrix corresponding to the free degrees-of-freedom of this problem takes the form :










−5.3124 10−5 2.6562 10−5 0 0 0
2.6562 10−5

−5.3124 10−5
−. 0 0

0 −. . 
−1.30185 1012 0

0 0 −1.30185 1012 2.6037 1012
−1.30185 1012

0 0 0 −1.30185 1012 2.6037 1012





















φ2

φ3

x1

x2

x3











(30)

The first two lines of this matrix correspond to the electric nodes and the other ones to the mechanical nodes. It
can be observed that coupling terms appear between the mechanical and the electric degrees-of-freedom. It also
follows that the stiffness of the structure decreases as voltage increases. The equilibrium position of the system is
then computed using the Newton-Raphson procedure described earlier. A modification of the static equilibrium
position is observed when a voltage is applied as shown in figure 7(a). It is also found that the natural frequency
of the structure decreases when voltage increases as shown in figure 7(b). The numerical results are consistent
with the analytical developments: in figures 7(a) and (b), the numerical results (black points) are compared
to the analytical values (solid line) for both the equilibrium position and the natural frequency. The perfect
agreement between these results allows to validate the numerical approach.
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Figure 7. Equilibrium position and natural frequency function of the applied voltage for a spring stiffness of 1010 N/m.

4. APPLICATION TO A MICRO-BRIDGE

4.1. Problem Definition

We will now study the behaviour of a beam type resonator presented by Lee et al.1 The resonator is composed of
two electrodes: a clamped-clamped beam and a substrate as shown in figure 8. The beam is made out of silicion.
Its density and its Young modulus are respectively of 2330 kg/m3 and 130GPa. The natural frequencies of the
structure will be evaluated as well as its pull-in voltage.



L = 81µm, b = 10µm

t= 0.5µm

d0 = 2.2µmV

Figure 8. Micro-bridge.

4.2. Analytical Solutions

The beam structure is a little bit more complicated than in the one dimensional problem. No analytical solution
can be found. In fact, beam bending and non-uniform load repartition have to be taken into account. To check
out numerical results, we will use the analytical approximations proposed by Pamidighantam et al.8 and by
Roark.9

First, we will study the evolution of the natural frequency when the voltage increases. The natural frequency
of a structure without an applied tension is:

f =
(4.730)2t

2π
√

12L2

√

E

ρ
(31)

where the material properties are taken into account with ρ the mass density and E the Young modulus. The
thickness of the beam is denoted by t and its length by L. The frequency shifting will be compared with numerical
results obtained by Lee et al..1

Another interesting quantity is the pull-in voltage. When the pull-in voltage is applied, the plates stick
together. To estimate the pull-in voltage, we use the approximate expression proposed by Pamidighantam et
al.8:

VPI =

√

8Keffd0

27ε0Aeff

(32)

where Keff is the effective stiffness of the beam, Aeff its effective area, d0 the initial gap and ε0 the permittivity.
The effective stiffness includes the contribution of the bending stiffness of the beam, the axial tension and the
non-linear stiffening due to large displacements. In our case, only the bending stiffness has to be taken into
account. The stiffness reduces to

Keff =
32Ebt3

L3
(33)

The effective area accounts for two effects: the variation of the gap spacing along the beam and the fringing field
effects along the edge of the beam. In the case of a fixed-fixed beam large enough to neglect the fringing field,
the area Aeff is:

Aeff = 0.6bL (34)

4.3. Finite Element Results

The resonator is represented by a two dimensional problem. We use a Riks-Crisfield algorithm to pass the
maximum and thereby to accurately evaluate the pull-in voltage.

Pull-in voltage

The pull-in voltage evaluated by the analytical formula is 74.5V. In figure 9 is plotted the graph of displacement
when the applied voltage changes. The displacement first increases when the applied voltage increases until the
pull-in voltage is reached. Then we enter in the instable area of the curve. Physically the plates stick together.
Thanks to our approach we can plot the curve beyond this critical value and enter the unstable area as if the
applied voltage was reduced while the displacement increases so that equilibrium can be maintained.
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Figure 9. Micro-bridge: displacement as function of tension applied between the electrodes

Frequency shifting

In the present case, the natural frequency without applied tension calculated by relation (31) is 585 kHz. Lee
et al.1 found a frequency of 620 kHz. With our modeling, we found 593 kHz. The type of elements used to
simulate the structure influences its stiffness. In this case, they overestimate the stiffness of the structure and
thus the frequency is slightly higher than the analytical one. Figure 10 shows that the decrease due to applied
voltage is the same for both methods. To estimate the natural frequency, Lee et al. calculate the eigenmodes of
the pure mechanical structure and project the equilibrium equations of the coupled problem on these eigenmodes.
After a perturbation analysis to find the linearized stiffness, they obtain the natural frequency of the coupled
problem. Note that such a method is accurate only when the electric force does not significantly influence the
eigenmodes of the coupled structure. The frequency is calculated up to the pull-in. For larger voltages, the
plates stick together and the natural frequency is not defined any more.
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Figure 10. Frequency shifting when a voltage is applied between the electrodes. Lee’s results are indicated by circles
and our results are indicated by triangles.

5. CONCLUSION

Unlike usual methods which iterate between a mechanical and an electric solvers, the method proposed in this
paper consists in resolving the mechanical and electric equilibrium equations at the same time. The formulation
is based on the total energy of the coupled problem. The electric force appears naturally in the mechanical and



electric equilibrium equations. After linearization of the equations, the tangent stiffness matrix is computed.
This matrix allows us to use nonlinear resolution algorithms such as the Newton-Raphson and the Riks-Crisfield
ones. Also, computing eigenfrequencies around a equilibrium position is straightforward.

This new formulation was first validated in a simple one-dimensional case. The analytical expression of the
displacement as a function of the applied voltage and of the eigenfrequency shifting allowed us to check our
results precisely. The validation then pursued with a more complex case: a clamped-clamped beam representing
a micro-bridge. The Riks-Crisfield algorithm permits a precise evaluation of the pull-in voltage. The first
eigenfrequency has been computed and compared to results published elsewhere.

ACKNOWLEDGMENTS

The authors would like to thank I. Klapka (Open Engineering, Belgium) and Dr. P. Dular (University of Liège,
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