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Massachusetts 02139, USA 

Evaporation from nanopores is of fundamental interest in nature and various industrial applications. 

We present a theoretical framework to elucidate evaporation and transport within nanopores by 

incorporating non-equilibrium effects due to the deviation from classical kinetic theory. 

Additionally, we include the non-local effects arising from phase-change in nanoporous 

geometries, and the self-regulation of the shape and position of the liquid-vapor interface in 

response to different operating conditions. We then study the effects of different working 

parameters to determine conditions suitable for maximizing evaporation from nanopores. 

I. Introduction 

Evaporation from micro/nano structures is a ubiquitous phenomenon which plays an important 

role in nature and industrial applications, such as transpiration in plants 1, mammalian perspiration 

2, electronic cooling 3, 4, 5, 6, 7, 8 and water desalination 9, 10. A fundamental understanding of 

interfacial transport at the nanoscale is necessary to take advantage of phase change in such 

structures, among which nanopores have been of particular interest (Figure 1 (a)) 3, 4, 5, 6, 7, 8, 10. 

Consequently, there have been several efforts to analyze evaporation in nanopores (~10 - 100 nm 
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in diameter) 11, 12, 13, 14, where the liquid flow was modeled using the Navier-Stokes equation, the 

interface was characterized with the augmented Young-Laplace equation 15, and the interfacial 

heat/mass flux was described using the Schrage equation derived from kinetic theory 16. However, 

this approach to evaluate the interfacial flux is generally not applicable for several reasons. While 

the traditional approach to evaluate interfacial mass flux accounts for mass conservation, it does 

not consider momentum balance and energy conservation 17, which results in over prediction of 

the interfacial flux, especially at higher evaporation rates 18. Consequently, the traditional approach 

cannot incorporate the non-equilibrium effects close to the liquid-vapor interface during intense 

evaporation 18, 19, 20.  A continuum approach to analyze the vapor flow in the nanopore is also 

inaccurate since the pore size is either comparable or smaller than the mean free path of the vapor 

molecules 21, 22. More interestingly, due to the large curvature of the interface in the nanopore, and 

the possibility of emitted vapor molecules condensing back onto the interface, the net interfacial 

flux at any given location may be influenced by evaporation in the surrounding regions in the same 

pore. Consequently, since the interfacial flux at a given location cannot be calculated simply as an 

explicit function of the local temperature and pressure, evaporation from the nanopores is not a 

locally expressible phenomenon, as modeled traditionally 11, 12, 13, 14. Furthermore, in the case of 

nanoporous membranes, evaporation from a single pore may also be influenced by neighboring 

pores, since vapor originating from adjacent pores can move laterally and interact with each other 

to affect the overall transport. Therefore this non-local nature of interfacial transport from 

nanoporous structures arises due to two aspects: i) inside a single pore, the interfacial flux at any 

given location of the interface depends on evaporation from other regions of the interface; ii) the 

spatial distribution of pores surrounding a single pore can also affect the net flux. Additionally, in 

response to different operating conditions, a change in the shape and position of the interface is 
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expected. The change in interfacial shape or position is a self-regulating mechanism, which affects 

the overall heat/mass flux from a single pore. In summary, the self-regulation of the meniscus, the 

non-equilibrium and non-local effects are critical aspects of phase change and transport in 

nanoporous structures that should be incorporated to optimize the performance of nanoporous 

structures for use in various industrial applications. In this study, we present a theoretical 

framework that addresses these effects to provide a better understanding of interfacial transport in 

nanopores. 

 

Figure 1 (a) Schematic of evaporation from a nanopore: the liquid-vapor interface can 
change its shape (from M1 to M2) or position (from M2 to M3) in response to different working 
conditions. (b) Schematic showing vapor transport from the free molecular regime inside the pore, 
across the Knudsen layer, to the far field equilibrium regime (c) Resistance network for the 
molecular transport inside the pore: the overall transport resistance in the pore is the sum of the 
surface resistance of the liquid-vapor interface and the geometrical resistance from the pore wall. 

II. Problem Description 

We examined evaporation from cylindrical nanopores (~10 - 100 nm in diameter), continuously 

supplied with liquid and exposed to a pure vapor ambient (Figure 1 (a)). While this configuration 

can be used in several applications as large-scale synthesis of nanoporous structures is now 

possible 23, 24, 25, it is particularly important for high flux thermal management 7, 8. In this 
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arrangement, the liquid wets the pore wall and flows to the liquid-vapor interface while 

experiencing viscous resistance. To sustain evaporation, heat is also supplied to the interface via 

conduction through the liquid from the pore wall.  

The liquid flow in nanopores is driven by the capillary pressure generated by the curved meniscus. 

Due to viscous losses in the liquid phase and the wetting nature of the pore wall, the liquid pressure 

at the interface is lower than the vapor pressure, and can even be negative (under tension) 8. When 

the interfacial pressure difference is relatively small, the meniscus is pinned at the top of the pore 

(M1 in Figure1 (a)). In this “pinning regime”, the liquid-vapor interface self-regulates its curvature 

in response to different working conditions, which includes the pore wall temperature and liquid 

supply pressure. When the meniscus is fully extended and the local contact angle reaches the local 

receding contact angle (M2 in Figure 1 (a)), the interface holds the maximum pressure difference. 

While the study of a fully extended meniscus and evaporation has been of primary interest in many 

studies 11, 12, 13, 14, other configurations for the meniscus are possible which need to be elucidated. 

As the working conditions become severe, such as higher pore wall temperatures or heat fluxes, 

the meniscus will recede further into the pore (M3 in Figure 1 (a)). In this “receding regime”, the 

fully-extended liquid-vapor interface moves within the pore to self-adjust the transport resistance 

in both the liquid and the vapor, and maintain the interfacial pressure difference. In more extreme 

operating conditions, the interface region will reach the bottom of the pore, resulting in complete 

dry-out. 

III. Model Formulation 

To predict the behavior of the interface and quantify evaporation within the pore, we have 

established a modeling framework for liquid and vapor transport across the pore. The interface 

region is defined as the liquid above the horizontal plane through the center of the meniscus (Figure 
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1 (b)). A uniform temperature, T, and a pressure, Pli, can be prescribed for the interface region due 

to its small scale, where spatial variations can be neglected.  

A. Liquid Transport 

The liquid flow from the pore inlet to the interface region is governed by the Hagen-Poiseuille 

equation 26: 

   (1) 

where Pin is the liquid pressure at the pore inlet (the bottom of the pore), μl is the liquid viscosity, 

Lf is the flow length (Figure 1 (b)), ṁ is the mass flow rate across the pore, rp is the pore radius 

and ρl is the liquid density. While the liquid pressure at the interface, Pli is a function of Pin and Lf  

(Eqn. (1)), in this study, Pin is held constant and set as the saturation pressure corresponding to the 

far field vapor temperature, T∞. Consequently, the effect of varying Pli on the overall transport is 

studied by varying Lf, or equivalently the pore length Lp. 

B. Interfacial Pressure Balance 

Pli is an important parameter due to its influence on the interface shape. To evaluate the shape of 

the liquid-vapor interface, a cylindrical coordinate system is defined in Figure 1 (b), where the 

origin is located at the center of the pore outlet. The interfacial pressure balance is then given by 

the augmented Young-Laplace equation: 

 2
vi li d

P P      (2) 

where Pvi  is the vapor pressure on the interface, σ is the surface tension, κ is the curvature of the 

meniscus and Πd is the disjoining pressure 27. The dependence of σ on the thickness of the liquid 
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film is neglected in this analysis as its deviation from the bulk value was found to be within 3% 

for ~1 nm liquid films 28. Note that when the liquid-vapor interface is significantly curved, there 

is variation of the liquid pressure inside the interface region, which is not captured in the current 

model (see Eqn. (1)). This nonuniformity in Pli can potentially affect the overall interfacial 

transport by varying the interface shape through Eqn. (2). However, for the analysis of evaporation 

in nanoporous structures, we can simplify the study as follows. Considering the liquid pressure 

drop in the interface region ΔPli, we can rewrite Eqn. (2) while nondimensionlizing both sides with 

the capillary pressure of a hemispherical meniscus inside the nanopore 2σ/rp: 

 
2 2 2
vi li li d

p p p p

P P P

r r r r


  
  

     (3) 

ΔPli scales with μlVl/δ, where Vl is the characteristic liquid velocity. The adsorption layer thickness 

δ is used for the characteristic length in the interface region, which is a conservative estimation 

since the characteristic length for the interface region can be as large as the radius of the pore. 

Therefore, from this scaling argument, we obtain: 

 
2 2

l l pli

p

V rP

r


 


   (4) 

For the chosen geometry and operating conditions, ΔPli/(2σ/rp) ≪ κ/rp. Consequently, the liquid 

pressure drop in the interface region has an insignificant effect on Eqn. (2) and does not change 

the interface shape much. It is worthwhile to note that for significantly larger pore diameters (> 1 

μm), this simplification is not accurate since ΔPli/(2σ/rp) ~ κ/rp. More details are provided in the 

supplemental.  
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In Eqn. (2), Πd can be calculated from the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory27, 

29, 30: 

 
36 ( )

slv
d el

p

A

r r
   


  (5) 

where A is the Hamaker constant between the pore wall and the vapor across the liquid medium 

and can be obtained from the dielectric constants and refractive indices of the interacting 

substances 14, 27 and Πel is the electrostatic component of the disjoining pressure. For non-polar 

fluids, Πel = 0 whereas for polar fluids (e. g. water), it can be evaluated as 31: 

 

 
2

2

1

8
el

p

kT

Ze r r

     
  

  (6) 

Here, k is the Boltzmann constant, Z is the valence of ions and e is the elementary charge. While 

Eqn. (5) is derived for the disjoining pressure between two parallel flat surfaces, it can still be 

viewed as a phenomenological expression in porous geometries as supported by molecular 

dynamics 30. Using the axisymmetric boundary condition at the center of the meniscus, we can 

integrate Eqn. (2) from r = 0 to r = rp – δ to obtain the meniscus shape.  

Eqns. (1) and (2), which govern the liquid transport and the interfacial pressure balance, contain 

unknown variables ṁ and Pvi. Using mass conservation, ṁ can be related to the vapor flux from 

the nanopore. However, Pvi does not necessarily take the equilibrium value due to the highly non-

equilibrium vapor transport near the liquid-vapor interface. As a result, both ṁ and Pvi have to be 

solved iteratively with vapor transport, which is analyzed as follows. 
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C. Vapor Transport 

The emitted vapor molecules from the interface travel across the free molecular flow region 32 in 

the nanopore to the Knudsen layer outside the pore 19, and then to the far field to achieve 

equilibrium (Figure1 (b)). To characterize the molecular flow inside the pore, we assign an 

evaporation coefficient, ̅σe and condensation coefficient, ̅σc 33 to the liquid-vapor interface. The 

analysis is carried out by applying the radiation analogy 32, with ̅σe and ̅σc being analogous to the 

emissivity and absorptivity, respectively. By Kirchhoff’s law, we have: 

    , ,
e c

T T  u u   (7) 

where u = (ux, uy, uz) is the velocity of a molecule leaving the interface, and the negative (-) sign 

indicates condensing flow. Considering the evaporating and condensing molecules, Eqn. (7) 

assumes that ̅σe and ̅σc are determined by T and uz for any given fluid 34, 35, 36, 37. The equality of ̅σe 

and ̅σc is well accepted during equilibrium 38. However, even in non-equilibrium, the equality holds 

provided that the dependence of ̅σe and ̅σc on T and u is considered. 

Eqn. (7) can be simplified by considering the effusive molecular beam experiments 39, 40, where 

the molecules emitted from the liquid-vapor interface do not undergo condensation, and are shown 

to maintain the Maxwell-Boltzmann distribution. This indicates that ̅σe does not depend on u. To 

explain this, we denote ξ as the velocity distribution function to yield the number of molecules, dn 

in a unit volume at a certain velocity u, so that: 

   3
dn d u u   (8) 

The equilibrium Maxwell-Boltzmann distribution ξM is given by: 
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 

2

3/2

exp 2

2
M eq

RT
n

RT




  
u

  (9) 

where neq is the number density of the vapor in equilibrium with the liquid and R is the specific 

gas constant. The distribution of molecules emitted from the interface is then ̅σeξM 33. The effusive 

molecular beam experiments show that the probability of finding a molecule at a certain velocity 

is the same as that for Maxwell-Boltzmann velocity distribution. Consequently: 

 
 
 

3 3
e

3 3
e

,

,

M M

M M

T d d

T d d

  
  


 

u u u

u u u
  (10) 

which implies that ̅σe is not a function of u. Hence, it follows from Eqn. (7) that: 

  c e
T      (11) 

To determine only those vapor molecules evaporating from the interface and exiting the pore, by 

accounting for those molecules that recondense, the vapor transport within the pore needs to be 

solved. Adopting a radiative thermal transport analogy (Figure 1 (c)), we determine the “apparent 

emissivity”, ̅σp at the pore outlet by calculating the “surface resistance” as: 

 
1 1 1p

p c m cA A A

  
  
  

    (12) 

Here, Ac is the cross-section area of the pore, Am is the total surface area of the meniscus, which 

can be determined from Eqn. (2), and η is the molecule transmission probability from the interface 

to the pore outlet. The overall molecular transport resistance consists of a surface resistance from 

the meniscus and a geometrical resistance from the pore wall. The pore wall can be considered as 

an intermediate emitter/absorber with area Ac and emissivity η. The transmission probability η is 
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calculated as a function of the reduced transport length L*, defined as L/rp, where L is the distance 

between the top of the meniscus and the pore outlet, as shown in Figure 1 (b) 
41: 

 
 

2
*2 *2 *3

*2 *
*2

* *2
* *2

8 4 16
1 4

4 4 4
72 4 288ln

2

L L LL L
L

L L
L L


         

  
    

 

  (13) 

Note that in the pinning case, L* = 0, η = 1 and Eqn. (12) simply accounts for the self-condensation 

effect of the curved interface. The calculation of ̅σp allows modeling evaporation from the pore 

outlet to analyze vapor transport across the Knudsen layer to the far field. 

A moment method was established 19 to solve the half-space evaporation problem, with a far field 

boundary at z → ∞, and an evaporative boundary at z = 0, which has shown good agreement with 

numerical solutions of the Boltzmann transport equations (BTE) 17, 18. This agreement ensures that 

when the meniscus is pinned at the top of the pore and not significantly curved, the free molecular 

transport inside the pore does not play a significant role, and our model predictions match the 

results from BTE.  The moment method allows conserving mass, momentum and energy, as 

opposed to the traditional Schrage equation used in previous studies, which considers only mass 

conservation 17. In this study, we apply the moment method to solve the vapor transport outside 

the pore, as described below. 

Assuming an ideal gas behavior in the vapor phase, we have: 

 , ,eq v eq v sat satn P n P   (14) 

where Pv,eq is the equilibrium vapor pressure, Psat is the saturation pressure, and nv,sat is the number 

density of molecules in the saturated vapor at T. Pv,eq is calculated by matching the liquid and vapor 

interfacial chemical potential 42: 
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,

ln
v eqli sat

l sat

PP P
RT

P
 

  
 

  (15) 

The conservation of molecules at the pore outlet requires: 

  0, 0, p p 0, 0,| 1 |
z p z pz u r r M z u r r

              (16) 

Eqn. (14) implies that the molecules leaving the pore consist of two parts, namely the emitted 

molecules, ̅σpξM and the reflected molecules, (1 - ̅σp) ξ | z = 0, uz < 0, r < rp
. In equilibrium, we have: 

 0, 0, 0, 0,| |
z p z p

eq eq

z u r r z u r r M           (17) 

which automatically satisfies Eqn. (16). In non-equilibrium, the distribution in the condensing flow 

is assumed to take the following form 19: 

 
   
 

2

0, 0, 3/2

ˆexp 2
|

2
z p cz u r r

u RT
n

RT




 

  


 
  
 


u z

  (18) 

where ẑ is the unit vector in z-direction, and nc (a parameter yet to be calculated) denotes the 

effective number density of vapor molecules at z=0, directed back to the pore outlet. Note that on 

the top surface of the pore wall (shown as the red dotted line in Figure 1 (b)), there is no flux in 

the z-direction. Since the gradient of the flux is also zero, it follows from mass conservation that 

there cannot be any flux in the r-direction either, which requires the pressure on the top surface of 

the pore wall (Pw) to satisfy the following equation, 

  2 3
0,

ˆ|
pw z r rP m d    u r u   (19) 

where m is the molecular mass and r̂ is the unit vector in r-direction. In the far field, where 

thermodynamic equilibrium is again realized,  
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 
 

2

3/2

ˆexp 2
|

2
z

u RT
n

RT




 

 


 
  
 


u z

  (20) 

where u∞ is the bulk velocity of the far field vapor. By conserving mass, momentum and energy 

(ṁ, Fz and Ė) between the pore outlet and the far field within the periodic boundaries of the unit 

cell (Figure 1 (b)), we have: 

   (21) 

   2 3 3
0| |

z u c w c z z u z
F A A P mA u d mA d      u u   (22) 

   (23) 

respectively, where Au is the total area of one unit cell. Note that Eqn. (21), (22) and (23) contain ̅σp, 

which depends on Pvi  (Eqns. (2) and (12)). To evaluate Pvi, we need the velocity distribution 

function at z = -L, which is obtained as follows. The fraction of the overall condensing flow 

reaching z = -L from the pore outlet is given by: 

 , 0 0, 0| |
z zz L u z u       (24) 

where 𝜂 is calculated using Eqn. (8). Conserving the number of molecules at z = -L, we have: 

  , 0 1 1 , 0| 1 |
z zz L u M z L u

            (25) 

where ̅σ1 is the apparent emissivity at z = -L, which, by the invariance of surface resistance, satisfies: 

 1

1

1 1

c m
A A

 
 
 

   (26) 

The average number density, n1 at z = -L is then given by: 
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3

1 z L
n d   u   (27) 

The bulk vapor velocity, u1 can then be calculated from mass conservation as: 

   (28) 

Balancing the momentum in the z-direction between z = -L and z = 0 gives Pvi as follows: 

 
2 2 3

1 1 0|
vi z z

P mn u m u d    u   (29) 

By iteratively solving the liquid transport, the interfacial pressure balance and the vapor transport 

(see the supplemental), we can determine the evaporation regime (pinning or receding) and the net 

heat/mass flux from a single nanopore. 

IV. Results and Discussion 

To illustrate the utility of the new theoretical framework, a case study was carried out considering 

evaporation of octane from silicon nanopores into a vapor ambient maintained at T∞ = 300 K. 

While the modelling framework can be applied to a wide range of working fluids, octane was 

chosen here due to its relatively large mean free path (λ ~ 1.1 μm 43 at the working condition) as 

we require λ ≫ rp to result in a free molecular flow in the nanopore 32. In this study, the 

thermophysical properties of octane were obtained as a function of temperature44, 45, 46 and the 

results are presented in terms of dimensionless quantities defined in Table 1. For reference, we set 

the evaporation and condensation coefficients as ̅σ = 1, the pore radius rp = 40 nm, the pore length 

Lp = 10 μm, and the porosity ϕ = 0.2 and the receding contact gale θr = 0 °. 

Table 1 Non-dimensional quantities used in the present analysis and their physical meaning 

(nsat, ∞ denotes the number density of saturated vapor at T∞). 
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Symbol Expression Physical meaning 

T* (T – T∞)/T∞ Superheat 

j*
 

 sat, 5 / 3

n u

n RT
 

 
 

Heat/mass flux over 

one pore 

h* j*/T* 

Heat transfer 

coefficient 

r* r/rp r-coordinate 

z* z/rp z-coordinate 

L* L/rp Transport length 

 

In Figure 2 (a), the dimensionless heat/mass flux j* and heat transfer coefficient (HTC) h* 

normalized over the cross-section area of the pore are shown as a function of the dimensionless 

superheat T*. When T* is relatively low, evaporation occurs in the pinning regime, where both the 

flux and the HTC increase as the temperature rises due to a higher intensity of molecular emission. 

As the superheat increases, the meniscus extends further (Figure 2(b)) until it becomes fully 

extended. Subsequently, the meniscus will start to recede into the pore. In this receding regime, as 

the superheat is enhanced further, the receding length increases and with the meniscus further 

inside the pore, there is a lower probability for the vapor molecules to escape from the pore (Figure 

2 (c)). Consequently, the increase in flux is less steep and the HTC decreases in the receding regime. 

When the receding length equals the total pore length, the meniscus reaches the bottom of the pore 

and the vapor expands into the liquid causing complete dry-out, an undesirable phenomenon for 

applications relying on maximizing the rate of evaporation. The interfacial transport is more 

efficient in the pinning regime than the receding regime due to minimal vapor transport resistance. 
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Therefore, to achieve the highest possible fluxes with relative low superheats, it is more favorable 

to keep the liquid-vapor interface pinned at the top of the pore. This framework identifies the 

transition from the pinning to receding mode of evaporation in nanopores. 

 

Figure 2 (a) Dimensionless flux j* (blue solid line) and heat transfer coefficient h* (green 
dash line) vs. dimensionless superheat T* for the reference case (with the evaporation coefficient 
fixed at 1, the pore radius at 40 nm and the pore length at 10 μm) (b) Shape of liquid-vapor interface 
for selected superheats in the pinning regime (c) Dimensionless receding length L* (blue solid line) 
and transmission probability η (green dash line) vs. dimensionless superheat T* in the receding 
regime 

We also studied the effect of different geometric parameters on the regime transition and interfacial 

flux. In Figure 3 (a) and (b), rp and Lp were varied from the reference case, and the corresponding 

j* vs. T*
 are shown for comparison. In Figure 3 (a), as the pore radius decreases, the capillary 

pressure (~ 1/rp) supporting the flow in the nanopore increases. However, the viscous loss inside 

the pore (~ 1/rp
2 for a fixed flux) increases faster, which gives rise to an earlier regime transition. 
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On the other hand, in Figure 3 (b), the regime transition, namely recession of the meniscus can 

also occur at much lower superheats when longer pores are utilized because it increases the viscous 

losses in the liquid flow. 

 

Figure 3 Effect of (a) pore radius, (b) pore length, (c) evaporation coefficient and (d) 

receding contact angle on the interfacial transport: rp, Lp, ̅σ and θr were independently varied and 

the corresponding j* as a function of T*
 plots are compared to the reference case where the 

parameters are set as: rp = 40 nm, Lp = 10 μm, ̅σ = 1, θr = 0 ° and ϕ = 0.2. 

It should be noted that evaporation of thin liquid films has been analyzed significantly via both 

experiments and computational modeling in literature. While the theoretical framework developed 

in this study is more consistent for the chosen geometry and operating conditions, it does not allow 

a direct comparison with previous studies that consider significantly different operational and 
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geometric parameters. Furthermore, the evaporation coefficient at the interface ( ̅σ) and the 

receding contact angle on the pore wall (θr) can also affect the overall rate of evaporation from 

nanopores. An accurate knowledge of these parameters is necessary to predict the overall 

performance. Consequently, apart from studying sensitivity to the geometric parameters, we also 

quantify the effect of ̅σ and θr. In Figure 3 (c), for a given superheat, a smaller ̅σ corresponds to 

higher vapor transport resistance and lower interfacial flux, resulting in less viscous loss in the 

liquid phase. Consequently, recession begins at a higher superheat. On the other hand, in Figure 3 

(d) when the liquid is less wetting (θr is relatively large), the interfacial transport behaves exactly 

the same as the perfect wetting case except that the meniscus recedes at a lower superheat. 

 

Figure 4 Effect of porosity ϕ on the interfacial transport from one single pore for select 
superheats with other parameters the same as in the reference case (rp = 40 nm, Lp = 10 μm, ̅σ = 1 
and θr = 0 °)  

To study the effect of the spatial distribution of pores, the interfacial flux is plotted as a function 

of the porosity for select superheats (Figure 4). In general, the porosity, which is not determined 

by a single pore, i.e., a global parameter, does not influence the interfacial transport over one single 

pore significantly. However, the net flux shows a different trend with porosity at different 

temperatures. We attribute this to the interaction of vapor emerging from a single pore with two 

other sources of vapor flow, namely the molecules directed back at the interface from the vapor 

ambient (which has a distribution function of ξ | z → ∞, uz < 0), and the vapor emitted from the 
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neighboring pores. When the superheat is relatively low, the vapor flow from the ambient is 

significant. Hence, a higher porosity ensures that for each unit cell, there are fewer molecules 

directed back at the liquid-vapor interface, which favors higher evaporation. When the superheat 

is relatively high, the vapor flow emitted by neighboring pores is more important. Consequently, 

lower porosities result in better pore-level transport since the interactions with the neighboring 

pores are lowered. For an intermediate superheat where the two effects are comparable, there is an 

optimum porosity to ensure maximum flux from a single pore. Note that the planar close-pack 

limit is ϕ ≈ 0.907, so any porosity beyond that cannot be achieved in practice. 

The accuracy of this model to predict the interfacial flux and the regime transition depends on 

several factors including the evaporation coefficient and the receding contact angle. While the 

receding contact angle depends on the selection of the working fluid and pore wall material, it also 

depends on the roughness of the pore wall, which requires detailed experimental characterization. 

Similarly, while the evaporation and condensation coefficients have been determined using 

molecular dynamics study, a significant disagreement still exists between modeling and 

experimental findings33. Consequently, careful experimental characterization of evaporation 

coefficient is necessary. With the limited experimental studies on evaporation from nanostructures 

in literature, comparison of existing results to that from our theoretical framework is challenging. 

In the future, we aim to perform detailed experimental investigations of high flux evaporation from 

nanopores to validate the details of our model. 

V. Conclusions 

The modeling framework presented in this study offers a fundamental understanding of 

evaporation at small scales (~10 – 100 nm), which has significance in thermal management of 

electronics and water purification. The model elucidates the self-regulating nature of evaporation 
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in nanoporous structures and predicts the overall transport to occur either in a pinned or receding 

regime. The model suggests a more efficient transport of energy in the pinning regime, and is 

capable of identifying conditions that can lead to a regime transition. The model also incorporates 

the non-equilibrium effects due to higher heat/mass flux, and the non-local effects due to the use 

of nanoporous geometries. Consequently, a more consistent and thorough understanding of 

evaporation at small scales is developed in this study. In order to illustrate how this model can be 

applied to predict phase change, effects of geometric parameters on octane evaporating in silicon 

nanopores were studied to provide guidelines for the design and fabrication of 

micro/nanostructured surfaces, and to determine conditions suitable for maximizing the energy 

transport. While our modeling framework was developed to emulate the underlying physics more 

consistently, the accuracy of this model to predict the interfacial flux and the regime transition, 

depends on the evaporation and condensation coefficients and the receding contact angle. Further 

investigation into these two microscopic parameters is necessary to gain a comprehensive 

understanding of the interfacial transport at small scales. 
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 Modeling of evaporation from nanopores with non-equilibrium and 
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I. Overall Computation Strategy 

We describe the overall computation strategy where Fig. S1 shows a flow chart for the 

computations performed. The computation is initialized with the liquid pressure of the interface 

region Pli set as the pore inlet pressure Pen and the vapor pressure acting on the meniscus Pvi set as 

the saturation pressure in the far field vapor. With Eqn. (2) (all the equation numbers here are 

referred to the ones in the main text), the interface shape can be solved for and the working regime 

is also determined. In the pinning regime, the apparent evaporation coefficient ̅σp at the pore outlet 

can then be calculated from Eqn. (12) and Pvi can be obtained through Eqn. (14) – (27). If Pvi 

converges to its previous value, the mass flow rate can be extracted from the vapor transport and 

plugged into the liquid transport (Eqn. (1)) to result in Pli. If Pli converges to its previous value as 

well, the problem is then solved in the pinning regime. If either Pli or Pvi does not meet the 

convergence criteria (defined as the relative change less than 0.01%), more iterations are 

conducted. In the receding regime, the meniscus is considered as fully extended. Hence, the 
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interfacial pressure difference (Pvi - Pli) is known given a working condition. We can calculate the 

receding length L from the liquid transport and the vapor transport, respectively, and matching 

them allows us to iteratively obtain L and subsequently solve for the interfacial transport in the 

receding regime.  

 

 

Fig. S1 Computation flow chart describing the iteration loop to determine the evaporative flux across the 
nanopores. 

 



II. Nonuniformity in Liquid Pressure of Interface Region 

The nonuniformity in the liquid pressure of the interface region can potentially affect the overall 

interfacial transport by varying the interface shape through Eqn. (2). The significance of the liquid 

pressure variation at the interface can be estimated using Eqn. (4). With a relatively high heat flux 

(q̇″ = 1 kW/cm2), the characteristic fluid velocity in the pore can be calculated as: 

    (S1) 

Using saturated liquid properties of octane at 300 K, ρl = 696 kg/m3 and hfg = 363.3 kJ/kg, which 

results in Vl = 3.95 × 10-2 m/s. With rp = 40 nm, δ = 1 nm, and σ = 20.98 mN/m, μl = 582.1 μPa∙s, 

determined at 300 K, ΔPli/(2σ/rp) ~ 0.02 and κ/rp is ~ 1 in Eqn.(3). Therefore, ΔPli/(2σ/rp) can be 

neglected and the nonuniformity in the liquid pressure has a negligible effect on the interfacial 

transport for the cases studied in this work. However, it is clear that for significantly larger pore 

diameters (> 1μm), ΔPli/(2σ/rp) becomes greater than 0.25. Consequently, ΔPli/(2σ/rp) cannot be 

neglected. 


	Modeling of evaporation from nanopores with nonequilibrium and non-local effects-1
	Supplemental

