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Modeling of Flexible-Link of the vibrating link that translates, changes with time. Chalhoub and
Manipulators with Prismatic Joints Ulsoy [8] investigated the interrelationship between the arm structural
flexibility and a linear controller design of a spherical coordinate

Rex J. Theodore and Ashitava Ghosal (RRP) robot arm. The equations of motion were derived by the

assumed mode/Lagrangian approach with the last link considered

as flexible. Wang and Wei [10] studied the vibration problem of a

Abstract—The axially translating flexible link in flexible manipulators ~ Moving slender prismatic beam using a Galerkin approximation with
with a prismatic joint can be modeled using the Euler—Bernoulli beam time-dependent basis functions and by applying Newton’s second
equation together with the convective terms. In general, the method of Jaw. Yuh and Young [11] presented the experimental results to
separation of variables cannot be applied to solve this partial differen- validate the approximated dynamic model derived using assumed

tial equation. In this paper, we present a nondimensional form of the . . f
Euler-Bernoulli beam equation using the concept of group velocity and modes method for a flexible beam which has a rotational and

present conditions under which separation of variables and assumed translational motion.
modes method can be used. The use of clamped-mass boundary conditions  In all the aforementioned works, it is invariably assumed that the
lead to a time-dependent frequency equation for the translating flexible translating flexible links can be modeled as beams in flexure with

beam. We present a novel method to solve this time-dependent frequency ) o - L
equation by using a differential form of the frequency equation. We then clamped-free boundary conditions, leading to a time-independent

present a systematic modeling procedure for spatial multi-link flexible frequency equation [7],. [12], [14]. The “free” boundary Condit_ion
manipulators having both revolute and prismatic joints. The assumed however may lead to inaccurate mode shapes and over-estimated
mode/Lagrangian formulation of dynamics is employed to derive closed eigen frequencies which may have destabilizing effect when the
form equations of motion. We show, using a model-based control law, that angjating flexible robot link carries a payloador when a wrist is
the closed-loop dynamic response of modal variables become unstable hed distal d of th iall . lastic b 19
during retraction of a flexible link, compared to the stable dynamic attached at dista ?n of the ax'? y moving east.lt_: eam [19].
response during extension of the link. Numerical simulation results are In such cases the “clamped-mass” boundary conditions are more
presented for a flexible spatial RRP configuration robot arm. We show appropriate. Moreover, use of assumed modes method to discretize
thefi‘tt_he nlumerlcatl)reSléIts c%mlparefavoranyWlth those obtained by using flexibility of a translating elastic link may not be valid, as the
a finite element-based model. principle of separation of space-dependent eigenfunctions and time-
dependent modal amplitudes is not valid under the general condi-
I. INTRODUCTION tions.

Modeling and control of manipulators with flexible links having In this paper, we present a discussion on the applicability of using
only revolute joints have been discussed extensively in the literat@paration of variables for a translating flexible beam. We present
[1]-[6], while the research on modeling prismatic jointed flexiblethe notion of group velocity for dispersive waves and a nondi-
link manipulators is limited [7]-[11]. When a link with the prismaticmensionalized Euler-Bernoulli beam equation based on this group
joint is modeled as flexible, the system becomes a moving bounddgfocity. We show that if the beam is translating at a constant, slow
value problem. Moving boundary value problems have been cd§ompared to the group velocity) speed, the assumed modes method
sidered in other context such as axially moving beam problerigh be used. The use of clamped-mass boundary conditions lead to a
[12]-[14], and deployment dynamics of flexible spacecraft [15}ime-dependent frequency equation for the translating flexible beam.
[16]. We present a novel method to solve this time-dependent frequency

Tabarroket al. [13] studied the dynamics of an axially movingeduation by using a differential form of the transcendental frequency
beam. They presented certain properties of the mode shapese@fation. We then present a systematic modeling procedure for spatial
C|amped_free beams inflexure, as the beam |ength varies with ’[|rﬁ@.l|tl-|lnk flexible manipulator shaving both revolute and prisma‘[ic
They also derived the equations of motion of a simple cantilevigints. The flexibility of links is approximated by using the assumed
beam having an axial motion on a stationary rigid base by usifigedes method. The Lagrangian formulation of dynamics is employed
Newton’s second law. Buffinton and Kane [12] studied the dynamié@ derive closed form equations of motion. We show that the closed-
of a beam moving at a prescribed rate over two bilateral suppor@op dynamic response of modal variables become unstable during
Regarding the supports as kinematical constraints imposed on refiaction of a flexible link, compared to the stable dynamic response
unrestrained beam, equations of motion were formulated by applyiflgring extension of the link by using a model-based control law.
an alternative form of Kane's method [17] and using assumed mod&& present dynamic simulation results for a spatial RRP (Stanford
technique to discretize the beam. Buffinton [7] later extended thigm) configuration robot with prismatic jointed link modeled as a
formulation to investigate the motion characteristics of a planar Hiexible link, and show that the results compare favorably with a
elastic manipulator considering the translational member as a slenfiigite element-based model.
beam. Tsuchiya [16] studied the dynamics of a spacecraft during
extension of flexible appendages under the assumption of small
extension velocity. Extensive discussions about this assumption were m

madeby Jankovic [18]. . . . . L
In case of flexible-link manipulators with prismatic joints, the F9- 1 shows a uniform flexible beam, of lenditt), vibrating in

complexity ofthe dynamic model increases many fold as the Iengqﬂle ZfX plane anc_i moving axially at a velociiiy(t)_a_long theZ_
direction. The portion of the beam to the left of origin of the fixed

_ ' _ coordinate system is assumed not to be vibrating and any point along
!\r"ﬁé‘uzcrt'ﬁérfcg':(’aed C')tﬁto?rier 1&;2?;;;;"5;‘1 ;\’/‘Igiér?;ﬁ_ggl%éng_neer_nthe neutral axis of the beam is locatedyVe assume that the beam
u Wi | | | . . - . . . .
Indian Institute of Science, Bangalore 560 012, India  (e-mail inextensible along its neutrql axis and hepce the axial velocity is
asitava@mecheng.iisc.eret.in). independent of [13]. The free vibration equation of such a beam can
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Prismatic Joint

Fig. 1. A schematic of the prismatic jointed flexible link with clamped and end-mass conditions.

shear deformation and rotary inertia effects), and is given by Let us introduce the nondimensional variablgs= s/1°, and
. ) ) T = t/(1°/U,) with U, = (1/1°)\/EI/pA. Note thaty,r, and
EIO us,t) + pA(a u(s,1) + QUa (s, t) U, are based on the fully extended length of the bdémas this
s ot? ds0t would give the worst case. The quantity, is the “group velocity”
402 *u(s,t) | dU du(s, t)) —0 ) of the dispersive waves of the Euler—Bernoulli beam equation [21]
’ 052 dt  Os - and°/U, denotes the time taken for any disturbance to travel a

distance of’. We observe that for a rigid bodyl — oc), the time
wheres € (0,1(1)),u(s, t) is the lateral deflection] is the flexural (1°/17,) taken for the disturbance to travel over the entire domain
rigidity, p is the density of the material, andl is the cross-sectional (i°) approaches zero. On the other hand, for a highly flexible beam
area of the link. The boundary conditions for the above partig 1 is small) or for a very long beani® is large), the time for
differential equation (1), for the clamped-mass case, are given asthe disturbance to travel the entire domain will be large. It may be

mentioned that for times smaller thdh/U, the vibratory motion

‘ [u(s,)]s=0 =0 . of the beam isot governed by (1) and the boundary conditions in
EI{GZU(S-/ t)} __7 {G%(SJ)} (2). For times much greater thdh/U, however, one can assume a
ds* | i o2 0s | i “quasi-steady” state, i.e., one can use the instantaneous mode shapes
du(s,t) of the cantilever beam.
{ 63/ } =0 Rewriting the partial differential equation in terms of the nondi-
5 5=0 ) mensional variables;, = and the ratiol//U,, we get
0 u(s,t) [0 u(s, ) . . ;
EI[_—'J } =M, [‘ oz } 2) o'u(n,7) | 9u(y,7) U\ *u(y,7)
Js s=i(t) ot s=i(t) S + > +2 <—> Z A
7 ar? U, ondrt
where M7z, Jz, are the mass and rotary inertia of the load atend of U\ 9%u(n, ) d (U Qu(n, T)
the link (see Fig. 1). + <U7> o2 <E <L_,>> o 0
Equation (1) contains the convective terms ©)
20 (8%u(s, 1) /0s0t), U (8%uls, 1)/0s%), and (AU /dt) (Du(s, ) /Ds),
and if the axial velocity(I') is zero, it reduces to the standardVith the clamped-mass boundary conditions
Euler—-Bernoulli beam equation with clamped-mass boundary [u(n, 7)]p=0 =0
conditions. The above equation also represents a moving boundary [02u(n, )] Jr [8%u(n,T)
value problem as the domain governed by this equation changes T RPYYGE {W}
with time. In this most general form, the above partial differential L9 De=w e r P =
equation cannot be solved using the separation of variables method, {M} -0
as this method requires the general shape of the beam displacement on n=0
not to change with time, while only the amplitude of this shape to [0%u(n, )] My, [0%u(n,T)
change with time [20]. Therefore, it is required that the numerical o | = AL [T} B . 4
solution to the partial differential equation (1) will have to be - S =10/ n=l(0/1°

determined by using either finite difference or finite element-bas&¥e can make some observations from (3) and (4) (see below).
schemes. It should be noted that these numerical schemes arE) The coefficients of the first two terms are unity and the third,
however computationally very expensive for a specified numerical  fourth and fifth terms are in terms &f/U, and the derivative
accuracy and special programming considerations are necessary. of U/U, with respect tor. For a constant axial velocity, the
Moreover, as the finite element model uses polynomial mode shape term containing the derivative df /U, with respect tor is
functions which do not belong to the class obmplete set of zero. For the third and fourth terms to be domindntU,
functions, monotonic convergence to actual solution cannot always should be large.

be guaranteed [19]. However, convergence can be improved by) The ratioU/U,, for a givenU, is largest for the smalledf,,.
considering large number of elements in the model. In the rest of The smallest, is obtained when the beam is fully extended,
the section, we present conditions under which the separation of i.e., whenl = [°.

variables and the assumed modes method can be used to soh® If U/U, < 1, then by dimensional analysis we can drop the
the above problem. third and fourth terms. In typical simulations and experiments
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[11], U is approximately 0.1 m/s, antf, is approximately
3.03 m/s givingU /U, = 0.033 < 1. Hence the convective
terms can be easily neglected. We have run simulations with
various axial speeds, up to 1 m/s withU;, = 59.34 m/s, and

have observed that the contribution of the convective terms are
much smaller compared to the first two terms. In particular, the
tip deflections obtained after neglecting the convective terms
match quite accurately with those obtained from a FEM-based
model derived from the complete partial differential equation
[19]. In this paper, we present numerical simulations, with
U ~ 0.778 m/s and smallest/; = 59.34 m/s

Once the convective terms are dropped, we are left with the
standard Euler—Bernoulli beam equation for a clamped-mass
cantilever. Separation of variables or the assumed modess)
method can then be used with the eigen-frequencies based on
the fully extended lengtli,. Even if the lengthis changing
continuously with time (slowly compared ,) we can still
assume that the “eigen-modes” can be used, i.e., the mode
shape of the translating beam at every instant of time can
be approximated by that of a cantilever beam [11]. However,
we have to solve for the slowly and continuously changing
“eigen-frequencies” (often called “quasi-frequencies” [18]) at
each instant of time. This procedure is illustrated below.

Let the lateral deflection be described agn, )
¥(n)T€(r), where spatial admissible functiong(n)
[¥1(n),2(n),---,¢.(n)]" are the complete eigen func-
tions (in the sense that for arbitrary square-integrable
u(n,7): min |[u(n,7) —P(m)TET)||* = 0). Then, following
the standard procedure of assumed modes method, we can write

d"i(n)
dn*

d*&i(7)

dr?

=0

&(7) + i(n) i=1,2..n (5

and 3, are solutions of the frequency equation

(14 cosh 3; cos 3;) — M 3;(cosh 3, sin 3; — sinh j3; cos ;)
- Jﬁ? (cosh 3; sin 3; + sinh j3; cos f3;)
+ MJBF(1 — cosh B cos 3:) = 0 (8)
where M = M, /pAl,J = J./pAl®. The C; are constants
which normalizes the eigen functions. It can be seen from (8)
that when “clamped-free” end-conditions are used the roots
(8:) of the equation will be constants, however with the
“clamped-mass” end-conditions they will change with time,
albeit slowly. The slowly changing nature @f is shown in
our numerical simulations (see Section V).
The time-dependent frequency equation can be solved by either
using a root finding algorithm at each instant of time or by using
a “table look-up” approach [22]. The former approach may
lead to considerable increase in computational time, while the
latter requires a large storage space for the specified accuracy.
In the following, we present a novel method to solve time-
dependent frequency equation using differential form of the
equation, which then can be solved together with the dynamic
equations of motion.

Let us rewrite the clamped-mass frequency equation (8) as

F(Bi.1) = (1 + cosh B cos ;) — L1
pAl
- (cosh B sin 8; — sinh 3; cos 3;)
JL/B? P C )
- (cosh 3; sin §8; + sinh 3; cos 3;)
Y
+ %(1 — cosh 3; cos 3;) = 0. 9)
p?A?

Since the frequency equation is continuousginand the roots of

the frequency equation are all distinct, we can differentiate (9) with

For separation of variables, the rati¢?¢; (7)/dr?)/¢(7) =
—(d*:(n)/dn*)/¥:(n) must be constant. This constant is
usually denoted by-w? and are called the “eigen-frequencies”
of the system (5). These eigen-frequencies are related to the
roots (3;) of the frequency equation (also called the “wav
number” of system (5)) by the dispersion relation [21], =
U, /152, It can be seen that when length of the vibrating beam

respect to time

Af(3:,1) 0 (B 1) dp: | Of(Bi 1) dl
dt 93 dt a0 (10)
gnd rearrange to obtain
3; 3, )

it~ f2(Bi0) dt

(1) changes continuously with time, these eigen-frequencigg,are

will also change continuously with time irrespective 6f
which are determined by the end-conditions.
We observe from the boundary conditions (4) that it is rea-
sonable to use “free” end-conditions for the choice of eigen
functions (¢ (1)) only if J./pAl* < 1 and My, /pAl < 1,
when the beam is fully extended (i.€., = 1°). On the
other hand, if the rotary inertid.7,) and mass(3{,) of
the load are comparable to that of the vibrating beam, it &nd
more appropriate and correct to use the “mass” end-conditions.
However, this mass end-conditions lead to time-dependent
frequency equations as shown below.

The eigen functiongf(n) satisfying the “clamped-mass”
boundary conditions are given by

¥i(n) = Ci[cos(Bin) —cosh(B:n) + v;(sin(3;n) —sinh(5;n))]

(6)

where

F2(Bi 1) = {1 + m<1

f(8i 1) = lwr“ B (sinh 3; cos 8; — cosh f3; sin j3;)
pAl?
_ Sj; ,{5?(sinh Bi cos 3; 4+ cosh 3; sin 3;)
+ i;ﬁ;ﬁ B(1 = cosh B; cos ;) (12)

My, Jr

a4
~pan’ ﬂ

- (sinh 3; cos 3; — cosh 3; sin 3;)

_ %/3? (sinh 3; cos 8; + cosh 8; sin 3;)
Py
2JL s[2ML 2M7,
s — {14 === cosh 8; cos 3;
PAISJL{/)AI < +pAl>L051J (,Obﬁ:|
- QAZZL B; sinh 3; sin 3;. (13)
Y

This ordinary differential equation (11) gh, which is now a function

b sin 3; — sinh 8; + M 3;(cos 3; — cosh 3;)
T cos i + cosh 3; — M 3;(sin 3; — sinh 3;)

@)

of the generalized variablésanddi/dt), can then be solved together
with the dynamic equations of motion of the system, with the initial
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Unde.formed
link j

Fig. 2. Coordinate systems for the flexible link

condition 3;(t = 0) solved from the frequency equation (9) for
It = 0).

In summary, we can conclude that although the eigenfunctions
;(n) [see (6)] does not strictly satisfy the partial differential equation
(3), the translating flexible beam can be quite accurately modeled as
an instantaneous clamped-mass cantilever beam if the axial velocity
U is constant and small compared to the group velo€ity We
can assume that the separation of variables method can still be used,
however, we need to take into account the slowly changing “eigen-
frequencies”. The time-dependent frequency equation due to the
clamped-mass boundary conditions can be solved using a differential
form of the equation together with the equations of motion.

I1l. M ODELING OF FLEXIBLE-LINK MANIPULATORS

The dynamics of rigid-arm manipulators is characterized by a
system of nonlinear, coupled, ordinary differential equations [23],
but manipulators with flexible links being continuous (distributed)
dynamical systems, are governed by nonlinear, coupled, ordinary, X
and partial differential equations [1]. In this section, we use the 7 0
assumed modes model to approximate the flexibility of links (see
previous section). We consider only the bending vibrations of flexibfdd- 3 Flexible spherical (RRP) manipulator.
links'. The link deflections with reference to its rigid configuration

are, however, assumed to be small. The 4 x 4 homogeneous transformation matrix from coordinate
system (X;,Y;, Z;) to coordinate system{X;_1,Y;_1,Z;—1) is
A. Flexible-Arm Kinematics given by

By convention, the links of a flexible manipulator are numbered 47!
consecutively from 0 ta starting from base of the manipulator to tip

of the end-effector, where is the total number of links. We define the s g”' - 51?99'7 condy s 9; TR é?sz'j
coordinate systeriX;, Y;, Z;) on link j with origin O; at the distal = buz) o contycondy meoRTy sIAy 5;11 J
end (farthest from the base) oriented so thatz’fhaxns is along the 0 Smoaf COBG’ '1]

axis of jointj 4 1. We also define the coordinate systéi;, Y;, Z;) (14)

on link j with origin OJ in such a way that when the Ilnk is in

its undeformed configuration, the coordinate systeW),Y;. Z;) is  wheref;, o, d,, anda; are the Denavit-Hartenberg parameters [23]
exactly coincident on the coordinate systely., Y;, Z;) (see Fig. 2). representing relationship between coordinate systeisY;, Z;)

and (X,_1,Y;_1,Z; Throughout this papeg;, denotes the
1For most robotic manipulators in general, we can neglect the axial an (Xj=1, V51, Z51). 9 Papek; (@)

torsional vibration components of the links because of their much grea{&lm variable: it is¢; if joint j is revolute, andd] if the joint is
rigidity in the axial direction and due to the structural design of roboti®fismatic. Note that for the link with prismatic joint, = 0. The
systems. 4 x 4 homogeneous transformation matrix from coordinate system
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(X,,Y;,Z;) to (X’JWY,»,ZA,,-), caused by the deformation of link The velocity of the poin{s) on link j can be obtained from the

j—assuming small elasticde formations [1] is given by time derivative of the position vector in the inertial base fraffig,
1 —¢. Sy, b and is given by
g—1 _ (f):' 1 _(PJ- 69 .0 .0 2 0 £ 0.
E; = _@5; b, 1 ’ 522 (15) T, =P+ Biri 4+ Ry (20)
0 0 0 1

where an overdot indicates the time derivative operator.

whereg, = ((bxj,;byj,(b:j)T ands; = (6.,.6,,.6 j) " describe the  Assuming tha; the_ flexible displacements,;(s,t),v;(s,t), _
rotation and translation between the coordlnate sys(e“ng,-./ Z,v) wj(s,t) can be_ discretized by assumed modes method (see Section
and(X;,Y;, Z;), respectively. Leti‘*f- andT? be the4 x 4 homoge- Il), we can write

neous transformation matrices from coordinate systeksY;, Z;) oo
and (X,,Y;.Z;) to the base coordinate systetX,, Yy, Z). re- wj(n,t) = > 07 (g (1)
spectively, then i=1
-0

~0 R 0 i— j— — v )

7= <oj 1’1]> —ASES - ATPEITRAT(16) v;(n,t) = Zu (&7 (1)
and w W

R po ) ) ) ) w;i(n, t) = Z'wi (&7 (1) (21)
0 ] 7 0 70 —2 —2 —1 —1 n
T = <o’l f) —AE) . AR IR (17) =

o wheren = s/l;,1; is the length of flexible linkj, and n; is the
whereR; (RY) is the3 x 3 rotation matrixp’ (p) is the3x 1 position number of modes used to describe the deflection of Jink should
vector, and0 is thel x 3 zero vector. be noted that when we consider the flexible link with a revolute

Using this notation, the position vector of any poiry along the joint, the length of the vibrating link; = a;, remains constant. On
neutral axis of linkj can be expressed with reference to the baske other hand, if for a flexible link with a prismatic joint, the length
coordinate systeniXo, Yo, Zo) as of the vibrating linkl; = 4, would vary with time(¢) as the length

0 0 -0 d; of the translating beam is the joint variable.
=P+ Ry (18) We choose “clamped-mass” eigen functions for flexible links
where of the manipulator system. The clamped-mass end-conditions lead
s 0 to time-dependent frequency equation as shown in Section I, for
0]+ v(st) if joint j is revolute the ’_[ranslating _flexible link, and for revolute jointed flexible-link
0 u;j(s,t) manipulators with more than onelink [4], [19]. )
T = 0 u;(s.1) The4 x 4 homogeneous transformation matrR’ that describes
0]+ [vi(s,t) if joint j is prismatic the link deformations for linkj, can now be ertten as
s 0 if joint j is revolute, (see (22) at the bottom of the page)

(19) if joint j is prismatic, (see (23) at the bottom of the page) where
I is the 4 x 4 identity matrix and note that all variables in the
andu;(s,t),v,(s,1),w;(s,t) are displacements with reference to theransformation matrix are evaluatedpt= 1, tip of the link j. The
neutral axis of flexible linkj at a distances and at timet, due to generalized flexible deformation variables in this case are therefore,
flexibility in the respective directions. Note that the dependence @f, = (£,7(1),&,” (1), &7 (1), - -, &3 (1), & (1), &7 (1) The ve-
u;,v;,w; on the spatial coordinatés), makes the system infinite Iocny of any point on flexible linkj expressed in undeformed local
dimensional, leading to coupled ordinary and partial differentidink coordinate system is given by (see (24) at the bottom of the

equations of motion. next page).
81“ (1) e oy 7 (1)
t) v t)
0 an G 877 ) 0
| | 98P
A L T 0 ’ v e (22)
1= ) i 1 w w ; w
-2 W) 0 U e (1)
an
0 0 0 0
'7(1) ,,’,“'j U,
0 0 877 5 (t) v, 1 (1)&7 (1)
nj (()l,' ( ),z:j v LU
- _ eI (¢ W (DE (¢
E§1:I+Z 0 0 o &7 () ¢ (1§ (1) (23)

=1 Ou, (1) uj oY, ](1)

G ) 0
0
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5 is the third column vector of the rotation matrﬁl?, and

The dynamic equations of motion are obtained using the L& 1;(t) are the total length of the translating beam, and length of the
grange’s formulation of dynamics. It may be noted that the geReam outside the joint hub at tinte respectively.

B. Dynamic Equations of Motion and 2°

eralized force corresponding to joint variable is the joint inputl’; Under the assumption that the links are slender beams [20], the
(torquer; for a revolute joint, or forceF; for a prismatic joint). For kinetic energy of the flexible linlj can be obtained as
the flexible deformation variabldg ;) the corresponding generalized y
. . . . . - 1 [ drj dr]-
force will be “zero”, if the corresponding elastic deflections or rota- Tink; = 3 piA; b T ds (29)

tions have no displacement at those locations where external forces
are applied, and note that this corresponds to the case when “clampgbérep; is the density of the materiali; is the cross-sectional area,
condition is used for controlled end of the link [1]. It should be notednd; is the length of flexible link;.
that other conditions for controlled end of the link, such as “pinned” The kinetic energy due to the payload is given by
condition, or “free” condition will have “nonzero” generalized forces 0N T o
) ; ; ; ; 1 dp, dp
corresponding to the generalized flexible deformation variables. Tpaylond = =my [ —* 2 (30)
The general form of Lagrange’s equations (for clamped condition) ' 2 dt dt

are then, for joint variable, wherep? is position vector of tip of the end-effector [see (17)], and

d [ oT oT 1% m, is mass of the payload.
dt <aqr.) T e, " 0q. L (25) 2) Potential Energy The potential energy of the flexible manip-
’ ’ ’ ulator system arises from two sources—due to the deformation of

for flexible deformation variable links and due to gravity. Assuming slender beam type of links and
N . neglecting the axial and torsional vibration of links, the potential

i( ‘()_T ) — .OT + .OI» =0 (26) energy due to bending deformations of lipkabout the transversk;
dt\9qy;; 945 04y and Z, axes, is given by [20]

whereT is the total kinetic energy of the flexible manipulator system, " 920, (s, 1) 2

andV is the total potential energy due to elastic deformations and Vij= 7/ <E Iy <T>

gravity.

1) Kinetic Energy: The total kinetic energy of flexible-link manip- 0%w;(s,t)
ulator system is due to the motions of joints and links, and kinetic + Ejlj: <T> ds (1)

energy due to the payload. The kinetic energy for a revolute jpint
if considered as mass with rotary inertia about the axis of revolutiavhere E; is the Young's modulusf;,, I;. are the area moments of
is given by inertia about respective axes, of ligk Note that for flexible link

" Jj with prismatic joint, the bending deformations of the link in the
lm _ <f1p21> <f1p?1> 27) transverseX andY axes have to be considered as opposed to the
277\ at dt above equation.

The gravitational potential energy due to the mass of joint hub and

wherem ; is the mass of the joint huji)gp?_1 is position vector of due to the elastic link is of the form
the joint j,I;, and Q‘} are the joint inertia matrix, and the angular L
velocity vector of jointj, respectively. In the case of prismatic joint Vi = n'z,,-ng‘j,l + / ijngr(} ds (32)
j. at any instant of time, a part of the translating beam is outside 0
the joint hub and is free to vibrate, while the remaining part of th@hereg is the gravity vector in the inertial coordinate systéoy.
beam is inside the joint hub and is restrained from vibrating [11]. Thene gravitational potential energy due to the payload mass is given by
kinetic energy due to part of the beam inside the joint hub is given by

T, = 59 1,9 +

Vipastona = M09 Py (33)
1[0 AN _ _ _
Tioint; = 5/ . piA;j <F> <7> ds (28) The system’s total potential enerdy’) is then, sum of potential
(5(0=1) " energies [(31) and (32)] over all the links, and due to the payload
where (33).
The closed form dynamic equations of motion for flexible-link
i-? =p,_, + s%?- manipulators can be derived using symbolic manipulation software
k3 O
Zj'w () 50
=1 ' dt if joint j is revolute
nj d{wﬂ t
) dt()
=l
T = g (t) 0w ) &7 (0 di(t) (24)
Z RO dt an (t) dt
o v (dET () 9Y; j(’l)€ (t)n dl;(t) if joint j is prismatic
D= E L(t) dt
=1 ' n
dl;(t)

dt
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Fig. 5. Time history of the vibration mode amplitudes during extension and retraction of the link 3 (——: in-plane vibration, - - -: out-of-plaf@nyibrat

such as REDUCE or MACSYMA. The resulting equations of motioand N-vector of flexible deformation(g,) variables, M is the

in the matrix form can be written as (n+ N) x (n+ N) configuration dependent generalized mass matrix,
h is the (n + N)-vector of Coriolis, and centrifugal terms and the
<M7"r M,y ) <?1'r ) <h,~ (¢.9) ) <Cr (9) ) terms accounting for the interaction of joint variables and their rates
M, My )\i; hy(q.q) cr(q) with flexible variables and their rates,is the (n + N)-vector of
N <O 0 ) <q,»> _ <F) (34) gravitational terms,K is the N x N flexural structure stiffness
0 K/\qg;/) \O matrix of the system[” is the n-vector of input torques (or forces)

' applied at the joints, and is the zero matrix/vector with appropriate
whereq = (q!,q;)". is the n-vector of generalized jointg,). dimensions.
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IV. STABILITY ANALYSIS The new control inputz can be chosen for a specified joint trajectory

In this section, we discuss the stability properties of manipulatof$
with a prismatic jointed flexible link. We assume without loss of
generality that the manipulator operates in a gravity-free environment
(i.e.,c(g) = 0 in (34)). Let us suppose that the control input vector iso that the joint error satisfies
calculated using the nonlinear decoupling technique applied to joints .. .

[3], [24], and S given by P e J B(H) + Gu&(t) + Gpelt) = 0 37

u = (t) - Gué(t) — Gpe(t) (36)

P . i wheree(t) = ¢,.(t) — qf(t). is the vector of joint errors@, and
=M, —M, ;M M, ;)u+ (hr =M. M (h;+ Kq;)). G, are positive constant diagonal position and velocity gain matrices
(35) for the joint variables, respectively. The model-based controller [(35)
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TABLE | vanishing only at the desired equilibrium stdtg, ¢5) = (0,0) of
RRP (NFIGURATION ROBOT SYSTEM PARAMETERS system (40). The time derivative of the Lyapunov function (41) along
Physical system parameters Value the trajectories of system (40) is given by
mass of link 1 (m,) 3.7051kg ) 1 7.
mass of link 2 (m,) 0.3310kg Vi(t) = 29 Kay (42)
mass of link 3 (ms) 0.4303kg
mass of payload (m,) 0.0828kg where
length of link 1 () 0.1m A
length of link 2 (1) 0.3m o BI di) |, ["(P0:\*,
total length of link 3 (%) 1.3m K =Diag 14(t) dt 3/0 dn? dn
rotary inertia of joint 1 ([;) 0.352kgm? 0 5 s
rotary inertia of joint 2 (/2) 3.2kgm? + 2/ 7/<d LZ’ ) <d t;i )dn} } (43)
flexural rigidity of link 3 (E3l;) 1165.4916 Nm? AN AVANL

It may be seen in (43) above that the flexural rigidiBy, and the
length of the translating flexible bearit), are always positive. The
?zrms inside the bracket are also positive. Hence the sigﬁ aihd
V(t) are determined by the sign af(#)/dt. For extension of the
i) =u (38) link di(t)/dt> 0 which implies K < 0 and thereforel’ () < 0 for

.. . _ r all values of time(t). This implies that the dynamic response of
Misd; +hile.-0) + Ka; = =M, su. (39) the flexible modal variablesq,) is stable during extension of the
We observe from the closed-loop system of (38) and (39) that a twiiexible link. For retraction of the linkgdl () /dt < 0, which implies
differentiable desired joint trajectorg?(¢) will be asymptotically K >0 and thereford’ (t) > 0 and this may lead to unstable dynamic
tracked for the proper choices of gain matriédsandG... However, response of the flexible modal variables.
the feasibility of this control law is based on the stability of (39) It should be mentioned that during extension of the flexible link,
[24] Let us consider “uniform motion” of the joint variables (i.e.the amplitude of modal variableg4) increases as the frequency
4%(t) = 0) with e, & equal to zero at = 0. This results in the new of vibration (w;) decreases so as to conserve the elastic energy

and (36)], thus results in the following set of closed-loop system
equations [19], [24]

control inputz = 0, and we have (proportional toAw? ). However the motion is stable, smb’e(f) <0.
This is observed in our simulations (see Section V) and we also
i, =—M7} (hi(q.q) + Kq,) (40) i '
q; rrifglg, q qy show that the closed-loop eigenvalues have negative real parts for

extension. On the other hand, during retraction of the link, the
frequency increases and the amplitude of modal variables decreases.
SHowever the motion may become unstable sifice 0. Again this is
observed in our numerical simulations and we show that the closed-
loop eigenvalues have positive real parts for retraction. The above
results are in contrast to those reported by Wang and Wei [10].

where a factorization of the typks(q,q) = Nsr(q,4)q; exists,
with M ;s — 2N ;¢ skew-symmetric [24]. Let us then consider th
following candidate Lyapunov function

y 1. . .
V(t)=5(a; Myrri; + a7 Kap) (41)
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V. NUMERICAL RESULTS

In this section, we present the dynamic response of a flexible,
spatial, RRP configuration robot (see Fig. 3). The manipulator j
assumed to operate in a gravity-free environment, and the prismé
jointed link 3 is considered flexible in the numerical simulation.
The flexible link is discretized by two modes in the assumed modes
model. The numerical simulation was performed on a SUN-SPAR%]
10 Workstation. The first-order differential equations of motion (state-
space form) with the control input [see (35) and (36)] were solved by]
a variable step, variable order (of interpolation), predictor-corrector
(PECE), Adams algorithm [25]. The desired trajectory for all the
joints were generated by using a linear segment with parabolic blenc@
type in time. The joint 1 is commanded to move from © 180
in 1.0 s, while the joint 2 is commanded to move frofht® —90°
during the same time period. The prismatic jointed flexible link, on
the other hand, is extended from 0.3 mto 1.0 min 1.0 s in one cast]
while it is retracted from 1.0 m to 0.3 m in 1.0 s for the other. The
desired joint trajectories are shown in Fig. 4. Table | lists the physical
system parameters used for the simulation. (6]

Fig. 5 shows the time history plot of the mode amplitudes of the in-
plane and out-of-plane bending vibration components of link 3 during7
both the extension and retraction of the flexible link 3. We compute
the closed-loop eigenvalues of the RRP manipulator system using tligj
Jacobian of the closed-loop equations of motion in state-space form.
The closed-loop eigenvalues corresponding to the flexible variabl
are shown in Figs. 6 and 7. It illustrates the time varying nature o ]
frequencies during motion of the prismatic jointed flexible link 3[10]
It can be observed that real part of the closed-loop eigenvalues of
the vibration mode amplitudes become positive, and move into the'l
right-half of the complex plane during retraction of the link 3. This
gives rise to unstable response of the flexible variables (see Fig. @k
During extension of the link 3, on the other hand, the real part of the
closed-loop eigenvalues of mode variables become negative and mB
into the left-half of the complex plane, giving rise to stable dynamifu]
response. The time evolution of solutio% ) of the clamped-mass
frequency equation are illustrated in Fig. 8.

(4]

[15]

VI. SUMMARY (16]

In this paper, we have presented a discussion on the applicability
of using separation of variables and the assumed modes methodl#@
discretize a translating flexible beam. We introduced the notion of
group velocity for dispersive waves and presented a nondimensiortzib]
ized Euler—Bernoulli beam equation based on this group velocity for
the translating beam. We showed that if the beam is translating at a
constant, slow (compared to the group velocity) speed, the princiﬂi’@]
of separation of variables can be applied. We showed that when the
mass and rotary inertia of the load are comparable to that of th)
flexible beam, the mass end-conditions are more accurate to use for
the choice of proper eigen-functions. The clamped-mass bound##}l
conditions, however, lead to a time-dependent frequency equati¢it:
We presented a novel method to solve this time-dependent freque
equation by using a differential form of the frequency equation. \/\Tgél1
then presented a systematic modeling procedure for spatial mul@4]
link flexible manipulators having both revolute and prismatic joints.
The assumed modes in conjunction with Lagrangian formulation of
dynamics is employed to derive closed form equations of motios)
We showed, using a model-based control law which decouples
the joint motion from the flexible dynamics, that the closed-loop
dynamic response of flexible modal variables become unstable during
retraction of a flexible link, compared to the stable dynamic response
during extension of the link. The above results were illustrated with
numerical simulations of a RRP flexible manipulator.
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