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Modeling of Flexible-Link
Manipulators with Prismatic Joints

Rex J. Theodore and Ashitava Ghosal

Abstract—The axially translating flexible link in flexible manipulators
with a prismatic joint can be modeled using the Euler–Bernoulli beam
equation together with the convective terms. In general, the method of
separation of variables cannot be applied to solve this partial differen-
tial equation. In this paper, we present a nondimensional form of the
Euler–Bernoulli beam equation using the concept of group velocity and
present conditions under which separation of variables and assumed
modes method can be used. The use of clamped-mass boundary conditions
lead to a time-dependent frequency equation for the translating flexible
beam. We present a novel method to solve this time-dependent frequency
equation by using a differential form of the frequency equation. We then
present a systematic modeling procedure for spatial multi-link flexible
manipulators having both revolute and prismatic joints. The assumed
mode/Lagrangian formulation of dynamics is employed to derive closed
form equations of motion. We show, using a model-based control law, that
the closed-loop dynamic response of modal variables become unstable
during retraction of a flexible link, compared to the stable dynamic
response during extension of the link. Numerical simulation results are
presented for a flexible spatial RRP configuration robot arm. We show
that the numerical results compare favorably with those obtained by using
a finite element-based model.

I. INTRODUCTION

Modeling and control of manipulators with flexible links having
only revolute joints have been discussed extensively in the literature
[1]–[6], while the research on modeling prismatic jointed flexible-
link manipulators is limited [7]–[11]. When a link with the prismatic
joint is modeled as flexible, the system becomes a moving boundary
value problem. Moving boundary value problems have been con-
sidered in other context such as axially moving beam problems
[12]–[14], and deployment dynamics of flexible spacecraft [15],
[16].

Tabarroket al. [13] studied the dynamics of an axially moving
beam. They presented certain properties of the mode shapes of
clamped-free beams inflexure, as the beam length varies with time.
They also derived the equations of motion of a simple cantilever
beam having an axial motion on a stationary rigid base by using
Newton’s second law. Buffinton and Kane [12] studied the dynamics
of a beam moving at a prescribed rate over two bilateral supports.
Regarding the supports as kinematical constraints imposed on an
unrestrained beam, equations of motion were formulated by applying
an alternative form of Kane’s method [17] and using assumed modes
technique to discretize the beam. Buffinton [7] later extended this
formulation to investigate the motion characteristics of a planar RP
elastic manipulator considering the translational member as a slender
beam. Tsuchiya [16] studied the dynamics of a spacecraft during
extension of flexible appendages under the assumption of small
extension velocity. Extensive discussions about this assumption were
madeby Jankovic [18].

In case of flexible-link manipulators with prismatic joints, the
complexity ofthe dynamic model increases many fold as the length
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of the vibrating link that translates, changes with time. Chalhoub and
Ulsoy [8] investigated the interrelationship between the arm structural
flexibility and a linear controller design of a spherical coordinate
(RRP) robot arm. The equations of motion were derived by the
assumed mode/Lagrangian approach with the last link considered
as flexible. Wang and Wei [10] studied the vibration problem of a
moving slender prismatic beam using a Galerkin approximation with
time-dependent basis functions and by applying Newton’s second
law. Yuh and Young [11] presented the experimental results to
validate the approximated dynamic model derived using assumed
modes method for a flexible beam which has a rotational and
translational motion.

In all the aforementioned works, it is invariably assumed that the
translating flexible links can be modeled as beams in flexure with
clamped-free boundary conditions, leading to a time-independent
frequency equation [7], [12], [14]. The “free” boundary condition
however may lead to inaccurate mode shapes and over-estimated
eigen frequencies which may have destabilizing effect when the
translating flexible robot link carries a payloador when a wrist is
attached at distal end of the axially moving elastic beam [19].
In such cases the “clamped-mass” boundary conditions are more
appropriate. Moreover, use of assumed modes method to discretize
flexibility of a translating elastic link may not be valid, as the
principle of separation of space-dependent eigenfunctions and time-
dependent modal amplitudes is not valid under the general condi-
tions.

In this paper, we present a discussion on the applicability of using
separation of variables for a translating flexible beam. We present
the notion of group velocity for dispersive waves and a nondi-
mensionalized Euler–Bernoulli beam equation based on this group
velocity. We show that if the beam is translating at a constant, slow
(compared to the group velocity) speed, the assumed modes method
can be used. The use of clamped-mass boundary conditions lead to a
time-dependent frequency equation for the translating flexible beam.
We present a novel method to solve this time-dependent frequency
equation by using a differential form of the transcendental frequency
equation. We then present a systematic modeling procedure for spatial
multi-link flexible manipulator shaving both revolute and prismatic
joints. The flexibility of links is approximated by using the assumed
modes method. The Lagrangian formulation of dynamics is employed
to derive closed form equations of motion. We show that the closed-
loop dynamic response of modal variables become unstable during
retraction of a flexible link, compared to the stable dynamic response
during extension of the link by using a model-based control law.
We present dynamic simulation results for a spatial RRP (Stanford
Arm) configuration robot with prismatic jointed link modeled as a
flexible link, and show that the results compare favorably with a
finite element-based model.

II. M ODELING OF A TRANSLATING FLEXIBLE BEAM

Fig. 1 shows a uniform flexible beam, of lengthl(t); vibrating in
the Z-X plane and moving axially at a velocityU(t) along theZ
direction. The portion of the beam to the left of origin of the fixed
coordinate system is assumed not to be vibrating and any point along
the neutral axis of the beam is located bys: We assume that the beam
is inextensible along its neutral axis and hence the axial velocity is
independent ofs [13]. The free vibration equation of such a beam can
be obtained by using the Euler–Bernoulli beam theory (neglecting the
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Fig. 1. A schematic of the prismatic jointed flexible link with clamped and end-mass conditions.

shear deformation and rotary inertia effects), and is given by
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wheres 2 (0; l(t)); u(s; t) is the lateral deflection,EI is the flexural
rigidity, � is the density of the material, andA is the cross-sectional
area of the link. The boundary conditions for the above partial
differential equation (1), for the clamped-mass case, are given as
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whereML; JL are the mass and rotary inertia of the load atend of
the link (see Fig. 1).

Equation (1) contains the convective terms
2U(@2u(s; t)=@s@t); U2(@2u(s; t)=@s2); and(dU=dt) (@u(s; t)=@s);
and if the axial velocity(U) is zero, it reduces to the standard
Euler–Bernoulli beam equation with clamped-mass boundary
conditions. The above equation also represents a moving boundary
value problem as the domain governed by this equation changes
with time. In this most general form, the above partial differential
equation cannot be solved using the separation of variables method,
as this method requires the general shape of the beam displacement
not to change with time, while only the amplitude of this shape to
change with time [20]. Therefore, it is required that the numerical
solution to the partial differential equation (1) will have to be
determined by using either finite difference or finite element-based
schemes. It should be noted that these numerical schemes are
however computationally very expensive for a specified numerical
accuracy and special programming considerations are necessary.
Moreover, as the finite element model uses polynomial mode shape
functions which do not belong to the class ofcomplete set of
functions, monotonic convergence to actual solution cannot always
be guaranteed [19]. However, convergence can be improved by
considering large number of elements in the model. In the rest of
the section, we present conditions under which the separation of
variables and the assumed modes method can be used to solve
the above problem.

Let us introduce the nondimensional variables:� = s=l0; and
� = t=(l0=Ug) with Ug = (1=l0) EI=�A: Note that�; �; and
Ug are based on the fully extended length of the beaml0; as this
would give the worst case. The quantityUg is the “group velocity”
of the dispersive waves of the Euler–Bernoulli beam equation [21]
and l0=Ug denotes the time taken for any disturbance to travel a
distance ofl0: We observe that for a rigid body(EI !1); the time
(l0=Ug) taken for the disturbance to travel over the entire domain
(l0) approaches zero. On the other hand, for a highly flexible beam
(EI is small) or for a very long beam(l0 is large), the time for
the disturbance to travel the entire domain will be large. It may be
mentioned that for times smaller thanl0=Ug the vibratory motion
of the beam isnot governed by (1) and the boundary conditions in
(2). For times much greater thanl0=Ug however, one can assume a
“quasi-steady” state, i.e., one can use the instantaneous mode shapes
of the cantilever beam.

Rewriting the partial differential equation in terms of the nondi-
mensional variables,�; � and the ratioU=Ug; we get
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with the clamped-mass boundary conditions
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We can make some observations from (3) and (4) (see below).

1) The coefficients of the first two terms are unity and the third,
fourth and fifth terms are in terms ofU=Ug and the derivative
of U=Ug with respect to�: For a constant axial velocity, the
term containing the derivative ofU=Ug with respect to� is
zero. For the third and fourth terms to be dominantU=Ug

should be large.
2) The ratioU=Ug; for a givenU; is largest for the smallestUg:

The smallestUg is obtained when the beam is fully extended,
i.e., whenl = l0:

3) If U=Ug � 1; then by dimensional analysis we can drop the
third and fourth terms. In typical simulations and experiments
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[11], U is approximately 0.1 m/s, andUg is approximately
3.03 m/s givingU=Ug � 0:033 � 1: Hence the convective
terms can be easily neglected. We have run simulations with
various axial speedsU; up to 1 m/s withUg = 59:34 m/s, and
have observed that the contribution of the convective terms are
much smaller compared to the first two terms. In particular, the
tip deflections obtained after neglecting the convective terms
match quite accurately with those obtained from a FEM-based
model derived from the complete partial differential equation
[19]. In this paper, we present numerical simulations, with
U � 0:778 m/s and smallestUg = 59:34 m/s

4) Once the convective terms are dropped, we are left with the
standard Euler–Bernoulli beam equation for a clamped-mass
cantilever. Separation of variables or the assumed modes
method can then be used with the eigen-frequencies based on
the fully extended lengthl0: Even if the lengthis changing
continuously with time (slowly compared toUg) we can still
assume that the “eigen-modes” can be used, i.e., the mode
shape of the translating beam at every instant of time can
be approximated by that of a cantilever beam [11]. However,
we have to solve for the slowly and continuously changing
“eigen-frequencies” (often called “quasi-frequencies” [18]) at
each instant of time. This procedure is illustrated below.

Let the lateral deflection be described asu(�; � ) =

   (�)T ���(�); where spatial admissible functions   (�) �

[ 1(�);  2(�); � � � ;  n(�)]
T are the complete eigen func-

tions (in the sense that for arbitrary square-integrable
u(�; � ): min ku(�; � )�    (�)T���(�)k2 = 0): Then, following
the standard procedure of assumed modes method, we can write
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i and are called the “eigen-frequencies”
of the system (5). These eigen-frequencies are related to the
roots (�i) of the frequency equation (also called the “wave
number” of system (5)) by the dispersion relation [21],!i =

Ug=l�
2

i : It can be seen that when length of the vibrating beam
(l) changes continuously with time, these eigen-frequencies
will also change continuously with time irrespective of�i
which are determined by the end-conditions.

5) We observe from the boundary conditions (4) that it is rea-
sonable to use “free” end-conditions for the choice of eigen
functions( i(�)) only if JL=�Al3 � 1 andML=�Al � 1;

when the beam is fully extended (i.e.,l = l0): On the
other hand, if the rotary inertia(JL) and mass(ML) of
the load are comparable to that of the vibrating beam, it is
more appropriate and correct to use the “mass” end-conditions.
However, this mass end-conditions lead to time-dependent
frequency equations as shown below.

The eigen functions   (�) satisfying the “clamped-mass”
boundary conditions are given by

 i(�) =Ci[cos(�i�)�cosh(�i�) + �i(sin(�i�)�sinh(�i�))]

(6)
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whereM = ML=�Al; J = JL=�Al
3: The Ci are constants

which normalizes the eigen functions. It can be seen from (8)
that when “clamped-free” end-conditions are used the roots
(�i) of the equation will be constants, however with the
“clamped-mass” end-conditions they will change with time,
albeit slowly. The slowly changing nature of�i is shown in
our numerical simulations (see Section V).

6) The time-dependent frequency equation can be solved by either
using a root finding algorithm at each instant of time or by using
a “table look-up” approach [22]. The former approach may
lead to considerable increase in computational time, while the
latter requires a large storage space for the specified accuracy.
In the following, we present a novel method to solve time-
dependent frequency equation using differential form of the
equation, which then can be solved together with the dynamic
equations of motion.

Let us rewrite the clamped-mass frequency equation (8) as
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Since the frequency equation is continuous in�i and the roots of
the frequency equation are all distinct, we can differentiate (9) with
respect to time
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This ordinary differential equation (11) on�i; which is now a function
of the generalized variables(l anddl=dt); can then be solved together
with the dynamic equations of motion of the system, with the initial
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Fig. 2. Coordinate systems for the flexible linkj:

condition �i(t = 0) solved from the frequency equation (9) for
l(t = 0):

In summary, we can conclude that although the eigenfunctions
 i(�) [see (6)] does not strictly satisfy the partial differential equation
(3), the translating flexible beam can be quite accurately modeled as
an instantaneous clamped-mass cantilever beam if the axial velocity
U is constant and small compared to the group velocityUg: We
can assume that the separation of variables method can still be used,
however, we need to take into account the slowly changing “eigen-
frequencies”. The time-dependent frequency equation due to the
clamped-mass boundary conditions can be solved using a differential
form of the equation together with the equations of motion.

III. M ODELING OF FLEXIBLE-LINK MANIPULATORS

The dynamics of rigid-arm manipulators is characterized by a
system of nonlinear, coupled, ordinary differential equations [23],
but manipulators with flexible links being continuous (distributed)
dynamical systems, are governed by nonlinear, coupled, ordinary,
and partial differential equations [1]. In this section, we use the
assumed modes model to approximate the flexibility of links (see
previous section). We consider only the bending vibrations of flexible
links1. The link deflections with reference to its rigid configuration
are, however, assumed to be small.

A. Flexible-Arm Kinematics

By convention, the links of a flexible manipulator are numbered
consecutively from 0 ton starting from base of the manipulator to tip
of the end-effector, wheren is the total number of links. We define the
coordinate system(Xj ; Yj ; Zj) on link j with origin Oj at the distal
end (farthest from the base), oriented so that theZj axis is along the
axis of jointj+1: We also define the coordinate system(X̂j ; Ŷj ; Ẑj)
on link j with origin Ôj in such a way that when the link is in
its undeformed configuration, the coordinate system(Xj ; Yj ; Zj) is
exactly coincident on the coordinate system(X̂j ; Ŷj ; Ẑj) (see Fig. 2).

1For most robotic manipulators in general, we can neglect the axial and
torsional vibration components of the links because of their much greater
rigidity in the axial direction and due to the structural design of robotic
systems.

Fig. 3. Flexible spherical (RRP) manipulator.

The 4 � 4 homogeneous transformation matrix from coordinate
system (X̂j ; Ŷj ; Ẑj) to coordinate system(Xj�1; Yj�1; Zj�1) is
given by

AAA
j�1
j

=

cos �j � sin �j cos�j sin �j sin�j aj cos �j
sin �j cos �j cos�j � cos �j sin�j aj sin �j
0 sin�j cos�j dj
0 0 0 1

(14)

where�j ; �j ; dj ; andaj are the Denavit–Hartenberg parameters [23]
representing relationship between coordinate systems(X̂j ; Ŷj ; Ẑj)
and (Xj�1; Yj�1; Zj�1): Throughout this paper,qr (t) denotes the
joint variable: it is �j if joint j is revolute, anddj if the joint is
prismatic. Note that for the link with prismatic joint,aj = 0: The
4 � 4 homogeneous transformation matrix from coordinate system



300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 27, NO. 2, APRIL 1997

(Xj ; Yj ; Zj) to (X̂j ; Ŷj ; Ẑj); caused by the deformation of link
j—assuming small elasticde formations [1] is given by
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(15)

where�j = (�x ; �y ; �z )T and�j = (�x ; �y ; �z )T describe the
rotation and translation between the coordinate systems(X̂j ; Ŷj ; Ẑj)

and(Xj; Yj ; Zj); respectively. Let̂TTT
0

j andTTT 0j be the4�4 homoge-
neous transformation matrices from coordinate systems(X̂j ; Ŷj ; Ẑj)
and (Xj ; Yj ; Zj) to the base coordinate system(X0; Y0; Z0); re-
spectively, then
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whereR̂RR
0

j (RRR
0

j ) is the3�3 rotation matrix,̂ppp0j (ppp
0

j ) is the3�1 position
vector, and0 is the 1 � 3 zero vector.

Using this notation, the position vector of any point(s) along the
neutral axis of linkj can be expressed with reference to the base
coordinate system(X0; Y0; Z0) as
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0

j�1 + R̂RR
0

jrrrj (18)
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(19)

anduj(s; t); vj(s; t); wj(s; t) are displacements with reference to the
neutral axis of flexible linkj at a distances and at timet; due to
flexibility in the respective directions. Note that the dependence of
uj ; vj ; wj on the spatial coordinate(s); makes the system infinite
dimensional, leading to coupled ordinary and partial differential
equations of motion.

The velocity of the point(s) on link j can be obtained from the
time derivative of the position vector in the inertial base framef0g;
and is given by

_rrr0j = _ppp0j�1 +
_̂
RRR
0
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0

j _rrrj (20)

where an overdot indicates the time derivative operator.
Assuming that the flexible displacements,uj(s; t); vj(s; t);

wj(s; t) can be discretized by assumed modes method (see Section
II), we can write

uj(�; t) =

n

i=1

 
u

i (�)�
u

i (t)

vj(�; t) =

n

i=1

 
v

i (�)�
v

i (t)

wj(�; t) =

n

i=1

 
w

i (�)�
w

i (t) (21)

where � = s=lj ; lj is the length of flexible linkj; and nj is the
number of modes used to describe the deflection of linkj: It should
be noted that when we consider the flexible link with a revolute
joint, the length of the vibrating linklj � aj ; remains constant. On
the other hand, if for a flexible link with a prismatic joint, the length
of the vibrating linklj � dj would vary with time(t) as the length
dj of the translating beam is the joint variable.

We choose “clamped-mass” eigen functions for flexible links
of the manipulator system. The clamped-mass end-conditions lead
to time-dependent frequency equation as shown in Section II, for
the translating flexible link, and for revolute jointed flexible-link
manipulators with more than onelink [4], [19].

The4�4 homogeneous transformation matrix,EEE
j�1
j that describes

the link deformations for linkj; can now be written as
if joint j is revolute, (see (22) at the bottom of the page)
if joint j is prismatic, (see (23) at the bottom of the page) where

III is the 4 � 4 identity matrix and note that all variables in the
transformation matrix are evaluated at� = 1; tip of the link j: The
generalized flexible deformation variables in this case are therefore,
qqqf = (�
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locity of any point on flexible linkj expressed in undeformed local
link coordinate system is given by (see (24) at the bottom of the
next page).
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B. Dynamic Equations of Motion

The dynamic equations of motion are obtained using the La-
grange’s formulation of dynamics. It may be noted that the gen-
eralized force corresponding to joint variableqr is the joint input�j
(torque�j for a revolute joint, or forceFj for a prismatic joint). For
the flexible deformation variables(qqq

f
) the corresponding generalized

force will be “zero”, if the corresponding elastic deflections or rota-
tions have no displacement at those locations where external forces
are applied, and note that this corresponds to the case when “clamped”
condition is used for controlled end of the link [1]. It should be noted
that other conditions for controlled end of the link, such as “pinned”
condition, or “free” condition will have “nonzero” generalized forces
corresponding to the generalized flexible deformation variables.

The general form of Lagrange’s equations (for clamped condition)
are then, for joint variableqr

d

dt

@T

@ _qr
�

@T

@qr
+

@V

@qr
= �j (25)

for flexible deformation variableqf

d

dt

@T

@ _qf
�

@T

@qf
+

@V

@qf
= 0 (26)

whereT is the total kinetic energy of the flexible manipulator system,
andV is the total potential energy due to elastic deformations and
gravity.

1) Kinetic Energy: The total kinetic energy of flexible-link manip-
ulator system is due to the motions of joints and links, and kinetic
energy due to the payload. The kinetic energy for a revolute jointj;

if considered as mass with rotary inertia about the axis of revolution
is given by

Tjoint =
1

2


0

j IIIj

0

j +
1

2
mj

dppp0
j�1

dt

T

dppp0
j�1

dt
(27)

wheremj is the mass of the joint hubj; ppp0
j�1

is position vector of
the joint j; IIIj ; and
0

j are the joint inertia matrix, and the angular
velocity vector of jointj; respectively. In the case of prismatic joint
j; at any instant of time, a part of the translating beam is outside
the joint hub and is free to vibrate, while the remaining part of the
beam is inside the joint hub and is restrained from vibrating [11]. The
kinetic energy due to part of the beam inside the joint hub is given by

Tjoint =
1

2

0

(l (t)�l )

�jAj

dr̂rr0j

dt

T

dr̂rr0j

dt
ds (28)

where

r̂rr
0

j = ppp
0

j�1
+ sẑzz

0

j

and ẑzz0j is the third column vector of the rotation matrix̂RRR
0

j ; and
l0j ; lj(t) are the total length of the translating beam, and length of the
beam outside the joint hub at timet; respectively.

Under the assumption that the links are slender beams [20], the
kinetic energy of the flexible linkj can be obtained as

Tlink =
1

2

l

0

�jAj

drrr0j

dt

T

drrr0j

dt
ds (29)

where�j is the density of the material,Aj is the cross-sectional area,
and lj is the length of flexible linkj:

The kinetic energy due to the payload is given by

Tpayload =
1

2
mp

dppp0
n

dt

T

dppp0
n

dt
(30)

whereppp0
n

is position vector of tip of the end-effector [see (17)], and
mp is mass of the payload.

2) Potential EnergyThe potential energy of the flexible manip-
ulator system arises from two sources—due to the deformation of
links and due to gravity. Assuming slender beam type of links and
neglecting the axial and torsional vibration of links, the potential
energy due to bending deformations of linkj about the transversêYj
and Ẑj axes, is given by [20]

Vfj =
1

2

l

0

EjIjy
@2vj(s; t)

@s2

2

+ EjIjz
@2wj(s; t)

@s2

2

ds (31)

whereEj is the Young’s modulus,Ijy; Ijz are the area moments of
inertia about respective axes, of linkj: Note that for flexible link
j with prismatic joint, the bending deformations of the link in the
transverseX̂j and Ŷj axes have to be considered as opposed to the
above equation.

The gravitational potential energy due to the mass of joint hub and
due to the elastic linkj is of the form

Vgj = mjggg
T
ppp
0

j�1
+

l

0

�jAjggg
T
rrr
0

j ds (32)

whereggg is the gravity vector in the inertial coordinate systemf0g:
The gravitational potential energy due to the payload mass is given by

Vg = mpggg
T
ppp
0

n
: (33)

The system’s total potential energy(V ) is then, sum of potential
energies [(31) and (32)] over all the links, and due to the payload
(33).

The closed form dynamic equations of motion for flexible-link
manipulators can be derived using symbolic manipulation software

_rrrj =

0
n

i=1

 
v

i
(�)

d�
v

i
(t)

dt
n

i=1

 
w

i
(�)

d�
w

i
(t)

dt

if joint j is revolute

n

i=1

 
u

i
(�)

d�
u

i
(t)

dt
�
@ 

u

i
(�)

@�

�
u

i
(t)�

lj(t)

dlj(t)

dt
n

i=1

 
v

i
(�)

d�
v

i
(t)

dt
�
@ 

v

i
(�)

@�

�
v

i
(t)�

lj(t)

dlj(t)

dt

dlj(t)

dt

if joint j is prismatic

(24)
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Fig. 4. Desired joint positions and velocities.

Fig. 5. Time history of the vibration mode amplitudes during extension and retraction of the link 3 (——: in-plane vibration, - - -: out-of-plane vibration).

such as REDUCE or MACSYMA. The resulting equations of motion

in the matrix form can be written as

MMM rr MMMrf

MMMT
rf MMMff

�qqqr
�qqqf

+
hhhr(qqq; _qqq)

hhhf(qqq; _qqq)
+

cccr(qqq)

cccf(qqq)

+
0 0

0 KKK

qqqr
qqqf

=
���

0
(34)

where qqq = (qqqTr ; qqq
T
f )

T ; is the n-vector of generalized joint(qqqr);

and N -vector of flexible deformation(qqqf) variables,MMM is the
(n+N)�(n+N) configuration dependent generalized mass matrix,
hhh is the (n + N)-vector of Coriolis, and centrifugal terms and the
terms accounting for the interaction of joint variables and their rates
with flexible variables and their rates,ccc is the (n + N)-vector of
gravitational terms,KKK is the N � N flexural structure stiffness
matrix of the system,��� is then-vector of input torques (or forces)
applied at the joints, and0 is the zero matrix/vector with appropriate
dimensions.
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Fig. 6. Time history of the closed-loop eigenvalues of flexible variables during extension of link 3 (——: in-plane vibration, - - -: out-of-plane vibration).

Fig. 7. Time history of the closed-loop eigenvalues of flexible variables during retraction of link 3 (——: in-plane vibration, - - -: out-of-plane vibration).

IV. STABILITY ANALYSIS

In this section, we discuss the stability properties of manipulators
with a prismatic jointed flexible link. We assume without loss of
generality that the manipulator operates in a gravity-free environment
(i.e.,ccc(qqq) � 0 in (34)). Let us suppose that the control input vector is
calculated using the nonlinear decoupling technique applied to joints
[3], [24], and is given by

��� =(MMMrr�MMM rfMMM
�1

ffMMM
T
rf)uuu+ (hhhr�MMMrfMMM

�1

ff (hhhf +KKKqqqf)):

(35)

The new control inputuuu can be chosen for a specified joint trajectory
as

uuu = �qqqdr(t)�GGGv _eee(t)�GGGpeee(t) (36)

so that the joint error satisfies

�eee(t) +GGGv _eee(t) +GGGpeee(t) = 0 (37)

whereeee(t) = qqqr(t) � qqqdr(t); is the vector of joint errors,GGGp and
GGGv are positive constant diagonal position and velocity gain matrices
for the joint variables, respectively. The model-based controller [(35)
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Fig. 8. Time history of the solutions(�i) of clamped-mass transcendental equation. (——: extension of link 3, - - -: retraction of link 3)

TABLE I
RRP CONFIGURATION ROBOT SYSTEM PARAMETERS

and (36)], thus results in the following set of closed-loop system of
equations [19], [24]

�qqqr(t) =uuu (38)

MMMff�qqqf + hhhf(qqq; _qqq) +KKKqqqf =�MMM
T
rfuuu: (39)

We observe from the closed-loop system of (38) and (39) that a twice
differentiable desired joint trajectoryqqqdr(t) will be asymptotically
tracked for the proper choices of gain matricesGGGp andGGGv: However,
the feasibility of this control law is based on the stability of (39)
[24]. Let us consider “uniform motion” of the joint variables (i.e.,
�qqqdr(t) = 0) with eee; _eee equal to zero att = 0: This results in the new
control inputuuu = 0; and we have

�qqqf = �MMM
�1

ff (hhhf(qqq; _qqq) +KKKqqqf ) (40)

where a factorization of the typehhhf(qqq; _qqq) = NNNff(qqq; _qqq)_qqqf exists,
with _MMMff � 2NNNff skew-symmetric [24]. Let us then consider the
following candidate Lyapunov function

V (t) =
1

2
(_qqq

T
fMMMff _qqqf + qqq

T
fKKKqqqf) (41)

vanishing only at the desired equilibrium state(qqqef ; _qqq
e
f ) = (0;0) of

system (40). The time derivative of the Lyapunov function (41) along
the trajectories of system (40) is given by

_V (t) =
1

2
qqq
T
f
_KKKqqqf (42)

where

_KKK =Diag �

EI

l4(t)

dl(t)

dt
3

1

0

d2 i

d�2

2

d�

+ 2
1

0

�
d2 i

d�2
d3 i

d�3
d� : (43)

It may be seen in (43) above that the flexural rigidity,EI; and the
length of the translating flexible beam,l(t); are always positive. The
terms inside the bracket are also positive. Hence the sign of_KKK and
_V (t) are determined by the sign ofdl(t)=dt: For extension of the
link dl(t)=dt> 0 which implies _KKK< 0 and therefore _V (t)< 0 for
all values of time(t): This implies that the dynamic response of
the flexible modal variables(qqqf ) is stable during extension of the
flexible link. For retraction of the link,dl(t)=dt< 0; which implies
_KKK> 0 and therefore_V (t)> 0 and this may lead to unstable dynamic

response of the flexible modal variables.
It should be mentioned that during extension of the flexible link,

the amplitude of modal variables(A) increases as the frequency
of vibration (!i) decreases so as to conserve the elastic energy
(proportional toA!2

i ): However the motion is stable, since_V (t)< 0:

This is observed in our simulations (see Section V) and we also
show that the closed-loop eigenvalues have negative real parts for
extension. On the other hand, during retraction of the link, the
frequency increases and the amplitude of modal variables decreases.
However the motion may become unstable since_V > 0: Again this is
observed in our numerical simulations and we show that the closed-
loop eigenvalues have positive real parts for retraction. The above
results are in contrast to those reported by Wang and Wei [10].
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V. NUMERICAL RESULTS

In this section, we present the dynamic response of a flexible,
spatial, RRP configuration robot (see Fig. 3). The manipulator is
assumed to operate in a gravity-free environment, and the prismatic
jointed link 3 is considered flexible in the numerical simulation.
The flexible link is discretized by two modes in the assumed modes
model. The numerical simulation was performed on a SUN-SPARC
10 Workstation. The first-order differential equations of motion (state-
space form) with the control input [see (35) and (36)] were solved by
a variable step, variable order (of interpolation), predictor-corrector
(PECE), Adams algorithm [25]. The desired trajectory for all the
joints were generated by using a linear segment with parabolic blends
type in time. The joint 1 is commanded to move from 0� to 180�

in 1.0 s, while the joint 2 is commanded to move from 0� to �90�

during the same time period. The prismatic jointed flexible link, on
the other hand, is extended from 0.3 m to 1.0 m in 1.0 s in one case,
while it is retracted from 1.0 m to 0.3 m in 1.0 s for the other. The
desired joint trajectories are shown in Fig. 4. Table I lists the physical
system parameters used for the simulation.

Fig. 5 shows the time history plot of the mode amplitudes of the in-
plane and out-of-plane bending vibration components of link 3 during
both the extension and retraction of the flexible link 3. We computed
the closed-loop eigenvalues of the RRP manipulator system using the
Jacobian of the closed-loop equations of motion in state-space form.
The closed-loop eigenvalues corresponding to the flexible variables
are shown in Figs. 6 and 7. It illustrates the time varying nature of
frequencies during motion of the prismatic jointed flexible link 3.
It can be observed that real part of the closed-loop eigenvalues of
the vibration mode amplitudes become positive, and move into the
right-half of the complex plane during retraction of the link 3. This
gives rise to unstable response of the flexible variables (see Fig. 5).
During extension of the link 3, on the other hand, the real part of the
closed-loop eigenvalues of mode variables become negative and move
into the left-half of the complex plane, giving rise to stable dynamic
response. The time evolution of solutions(�i) of the clamped-mass
frequency equation are illustrated in Fig. 8.

VI. SUMMARY

In this paper, we have presented a discussion on the applicability
of using separation of variables and the assumed modes method to
discretize a translating flexible beam. We introduced the notion of
group velocity for dispersive waves and presented a nondimensional-
ized Euler–Bernoulli beam equation based on this group velocity for
the translating beam. We showed that if the beam is translating at a
constant, slow (compared to the group velocity) speed, the principle
of separation of variables can be applied. We showed that when the
mass and rotary inertia of the load are comparable to that of the
flexible beam, the mass end-conditions are more accurate to use for
the choice of proper eigen-functions. The clamped-mass boundary
conditions, however, lead to a time-dependent frequency equation.
We presented a novel method to solve this time-dependent frequency
equation by using a differential form of the frequency equation. We
then presented a systematic modeling procedure for spatial multi-
link flexible manipulators having both revolute and prismatic joints.
The assumed modes in conjunction with Lagrangian formulation of
dynamics is employed to derive closed form equations of motion.
We showed, using a model-based control law which decouples
the joint motion from the flexible dynamics, that the closed-loop
dynamic response of flexible modal variables become unstable during
retraction of a flexible link, compared to the stable dynamic response
during extension of the link. The above results were illustrated with
numerical simulations of a RRP flexible manipulator.
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