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Abstract The rapidly increasing demand for miniature
components machining processes has drawn more attention
to micro-machining research. Flow stress has always been a
significant base for analyzing plastic deformation in ma-
chining processes. However, few studies have been con-
ducted to predict accurately the material flow stress in the
micro-cutting processes. In order to describe size effect in
micro-cutting, this paper discusses the development of a
circular primary deformation zone model, calculates the
strain gradient in the primary zone, and presents a new flow
stress model based on the theory of strain gradient plasticity.
First, a series of orthogonal cutting experiments are
performed and flow stress is calculated from the experiment
data. Results from the proposed model have been success-
fully validated with experimentally determined results. It
shows that the flow stress in micro-cutting is influenced
greatly by the feed rate and the cutting edge radius.
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1 Introduction

The marked increase in demand for miniaturized products
in various fields such as medical, telecommunication,
avionics, biotechnology, and electronics demands that the

micro-machining processes develop rapidly. Micro-cutting
allows the creation of miniaturized products that are more
compact, reliable, efficient, safe, environmentally friendly,
and cost competitive, which has become an important
enabling technology comparing to lithographic, etching,
and laser techniques. Many studies of micro-cutting
mechanics have received increased emphasis.

Both the finite element method (FEM) and analytical
modeling require flow stress data of the workpiece material
to analyze the deformation during the metal cutting process.
Flow stress is always a significant baseline for analyzing
cutting processes. Many research studies have been done on
macro-cutting using the flow stress model. Merchant
assumed that the shear flow stress in metal cutting was
equal to that obtained from conventional tensile tests [1].
However, the intense circumstance in metal cutting results
in the mechanical material behavior is far beyond from that
encountered in conventional material tests.

Several classic plasticity models including the early
power law model, the Johnson–Cook (JC) model, the Usui
model mechanical threshold stress model, the Zerilli model,
etc. have been developed to relate flow stress to plastic
strain, strain rate, and/or temperature. These models have
been widely employed in macro-cutting processes [2].

Researchers have tried to demonstrate that the flow stress
models in macro scale referred to above could be applied to
the micro-cutting processes. Sathyan used the Johnson–
Cook model to simulate ductile fracture in micro-cutting of
Al2024-T3 [3]. Woon used the Johnson–Cook model to
investigate the effect of tool edge radius and chip formation
behavior in micro-machining of AISI 4340 steel using finite
microelement analysis. Simoneau illustrated the effect of
material microstructure on chip formation during micro-
scale cutting using the strain rate-dependent Johnson–Cook
model [5].
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Classical theories of plasticity possess no internal length
scale. As a result, they have at least two major drawbacks:

They cannot model the well-known size effect ob-
served in micro-cutting processes where the specific
cutting energy/force increases non-linearly with a
decrease in uncut chip thickness.
They cannot model materials undergoing inhomoge-
neous plastic flow in micro-cutting processes or model
the occurrence of strains localization in the primary
deformation zone and chips.

These drawbacks have initiated the application of strain
gradient plasticity theory in micro-cutting. Laheurte quantified
energy parameters involved in the cutting process based on the
strain gradient theory with couple stresses [6]. Joshi modeled
size effect in the parallel-sided primary deformation zone by
using a sharp cutting tool in machining utilizing the strain
gradient plasticity theory [7] without considering the effect of
cutting edge radius. However, the cutting edge radius should
not be neglected when the undeformed chip thickness is
comparable in size to the cutting edge radius. Liu developed
a coupled thermo-mechanical finite element model capable
of accurately predicting the size effect in specific cutting
energy formulation incorporating strain gradient plasticity to
simulate orthogonal micro-cutting processes [8].

Because the FEM method is complicated and tedious, few
researches are engaged in an accurate analysis model of
material flow stress in the micro-cutting processes until now.

The objective of this paper is to model the flow stress
that emerges in the deformation phenomena in micro-
cutting based on the strain gradient plasticity theory.
Orthogonal cutting experiments are performed to validate
the proposed flow stress model.

2 Flow stress modeling based on strain gradient
plasticity theory

2.1 Taylor dislocation model

The Taylor dislocation model defines the shear flow stress τ
in terms of the dislocation density.

t ¼ acGb
ffiffiffiffiffiffiffiffiffi
rtotal

p ð1Þ
where αc is constant to be taken as 0.5 [9], G is the material
shear modulus, b is the magnitude of Burgers vector, and
ρtotal is total dislocation density.

The total dislocation density ρtotal is composed of the
density of statistically stored dislocations and the density of
geometrically necessary dislocations.

rtotal ¼ rSSD þ rGND ð2Þ

ρSSD is the density of statistically stored dislocations
which accumulate by trapping each other in a random way,
and ρGND is the density of geometrically necessary
dislocations, which are required for compatible deformation
of various parts of the non-uniformly deformed material.

The tensile flow stress σ is related to shear flow stress τ by:

s ¼ Mt ð3Þ
where M is constant and M ¼ ffiffiffi

3
p

for isotropic materials.
The density of statistically stored dislocation rSSD can be

determined from the uniaxial stress–strain law in the
absence of strain gradient effects as,

s0 ¼ MacGb
ffiffiffiffiffiffiffiffiffi
rSSD

p ð4Þ
where σ0 is the reference stress in uniaxial tension.

Based on Eqs. (1)–(4), a flow stress equation accounting
for the effect of geometrically necessary dislocations can be
written as,

s ¼ MacGb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rSSD þ rGND

p ¼ MacGb
ffiffiffiffiffiffiffiffiffi
rSSD

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rGND

rSSD

r

¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ rGND

rSSD

r
ð5Þ

The density of geometrically necessary dislocations, can
be related to the effective strain gradient η as,

rGND ¼ rh
b

ð6Þ

where r is Nye factor to reflect the effect of crystallography
on the distribution of GNDs, which is around 2 for the
polycrystalline material [10].

Substituting Eq. (6) into Eq. (5) and is rearranged as:

s ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lh

p
ð7Þ

where l is the intrinsic material length scale so as to balance
the dimensions of strains and strain gradients and can be
given as,

l ¼ M 2ra2G2b

s2
0

ð8Þ

The intrinsic material length l represents a natural combi-
nation of the effect of elasticity, plasticity, and dislocation
structure in terms of the shear modulus, Burgers vector b, and
coefficient αc in the Taylor model. The material length scale
of AISI 1045 is 27.6 μm reported by Kopalinsky [11].

2.2 Evaluation strain gradient in micro-cutting

The strain gradient η should be obtained in order to
determine the flow stress model according to Eq. (7).
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Procedures of modeling of flow stress in micro-cutting
involves: (1) determination of the geometry of the primary
zone; (2) evaluation of the strain gradient and density of
dislocations; and (3) evaluation of flow stress.

2.2.1 Determination of geometry of the primary zone

Many geometrical shapes have been proposed to describe
the deformation zone in macro-cutting such as shear plane
[1], parallel-sided shear zone [12], or curved shear zone
[13]. Cutting tools commonly used in machining operations
are never ideally sharp but always have some bluntness.
The bluntness can often be approximated as a circular
radius between the flank and the rake faces of the tool.
Recently, many researchers have found that the shape of the
primary shear zone within micro-cutting processes was
circular vicinity ahead of the circular edge by FEM method
[4, 14]. Assuming no material elastic recovery of machined
surface, the circular primary deformation zone parallel to
the cutting edge model is therefore proposed.

2.2.2 Evaluation of the strain gradient in the primary
deformation zone

Researchers assume that macro orthogonal cutting is similar
to wedge indentation for the reason that the flow lines
formed by indentation in experiments look like a conse-
quence of the shear deformation occurring along the
primary shear zone, as is shown in Fig. 1 [15].

Therefore, one can use the micro-indentation model of
GNDs developed by Nix [9], Qu [16], and Al-Rub [17] to
determine the density of GNDs evolved under spherical
indenter in micro-indentation . If a hard transverse cylinder
slides on a soft surface, the scenario would more closely
represent machining with a rounded tool edge. The cutting
width w is the height of the cylinder and the cutting edge
radius re is the cylindrical radius. Non-uniform plastic
deformation occurs in the circular primary deformation
zone and elastic deformation occurs outside of the
deformation zone. One can assume that the density of
GNDs is integrated along the circular cutting edge, and the

cutting edge is accommodated by rectangle dislocation
loops of GNDs with Burgers vector normal to the plane of
the machined surface as shown in Figs. 2 and 3.

In the model developed by Nix [9], the density of GNDs
is derived from the total line length 1 of dislocation loops
necessary to form the shape of tool edge. The schematic
diagram of the circular primary zone is shown in Fig. 4.
The total length of the dislocation loops is then divided by
the part of column V by the contact length a. The cylinder
volume V of the contact length a is given by:

V ¼ pr2e 90þ g þ að Þ
180

� are 1� cos
p
4
þ g þ a

2

� �� �� �
w

ð9Þ
where γ is the effective rake angle of the tool and α is the
clearance angle. When machining at very low values of
undeformed chip thickness, the effective rake angle as
shown in Fig. 5 changes and can be given by Eq. (10):

g ¼ sin�1 t
re
� 1

� �
t � re

gn t > re

(
ð10Þ

where γn is the nominal rake angle of the tool and t is the
undeformed chip thickness.

The contact length a can be calculated by:

a ¼ re sin
p
4
þ g þ a

2

� �
ð11Þ

Fig. 2 Micro-cutting model based on dislocation mechanics

(a) Indentation (b) Machining

Fig. 1 Flow lines observed in
experiments
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We assume that the individual dislocation loops of GNDs
are spaced equally along the cutting tool edge surface.

b

LG
¼ h

a
ð12Þ

where LG is the mean spacing between individual slip steps
on the edge surface corresponding to the GND loops. h is
the ploughing depth, which can be given by:

h ¼ re 1� cos
p
4
þ a þ g

2

� �� �
ð13Þ

If 1 is the total length of the injected loops, then the
length of the injected loops between the x and x+Δx as
shown in Fig. 3 can be written by:

dl ¼ 2wþ 4yð Þ dx
LG

ð14Þ

Integrating from 0 to the contact length a gives the total
length of GND loops as follows:

l ¼
Z a

0
2wþ 4yð Þ dx

LG
¼ h

ba

Z a

0
2wþ 4yð Þdx ð15Þ

where y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e � x2

p
.

So one can calculate the total length of the GND loops as
follows:

l ¼ re 1� cos
p
4
þ a þ g

2

� �� �
2w

b
þ re p

4 þ gþa
2

� �
b sin p

4 þ gþa
2

� � � re cos p
4 þ gþa

2

� �
2b

 ! ð16Þ

Therefore, the density of GNDs becomes,

rGND ¼ l
V

¼
1� cos p

4 þ aþg
2

� �� �
2w
b þ re p

4þgþa
2ð Þ

b sin p
4þgþa

2ð Þ �
re cos p

4þgþa
2ð Þ

2b

� �
pre 90þgþað Þ

180 � re sin p
4 þ gþa

2

� �
1� cos p

4 þ gþa
2

� �� �� �
w

ð17Þ

And the effective strain gradient can be calculated using
Eq. (6).

h ¼ brGND
2

¼ b

2

1� cos p
4 þ aþg

2

� �� �
2w
b þ re p

4þgþa
2ð Þ

b sin p
4þgþa

2ð Þ �
re cos p

4þgþa
2ð Þ

2b

� �
pre 90þgþað Þ

180 � re sin p
4 þ gþa

2

� �
1� cos p

4 þ gþa
2

� �� �� �
w

ð18Þ

Substituting Eq. (18) into Eq. (7), one can calculate the
flow stress in micro-cutting.

Liu [8] and Woon [4] revealed that the plastic zone
ahead of tool tip region increased with the reduction of t/re.
Johnson [18] estimated the size of the plastic zone from
contact radius and the radius re of spherical indenter based
on the strain gradient plasticity theory. According to
Johnson’s model, the radius of circular plastic zone ahead
of tool tip region rz is calculated by:

rz ¼ reh2

2a2
þ re ¼ re 1þ h2

2a2

� �

¼ re 1þ 1� cos p
4 þ gþa

2

� �� �2
2 sin2 p

4 þ gþa
2

� �
 !

ð19Þ
Fig. 3 Schematic diagram of circular primary zone
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3 Experimental verification

The experimental investigation was undertaken on a ACE-
V500 milling machine. The tool was mounted directly on
Kistler Type 9275A, three-component piezoelectric force
dynamometer whose resolution is 1 mN. The cutting edge
was orthogonal to the workpiece. The cutting forces Fc and
thrust forces Ft in the orthogonal cutting were measured.
The configuration details of the experimental setup were
shown in Fig. 6. AISI 1045 was chosen as the workpiece
material. The workpiece was in the form of tube of 1-mm
wall thickness; the geometry of the workpiece is shown in
Fig. 7. The experimental details were given in Table 1.

4 Results and discussion

4.1 Experiment data validation

The average flow stress can be obtained from the cutting
and thrust forces using Eq. (20).

s ¼ Fc sin fþ Ft cos fð Þ sin f
tw

ð20Þ

The prediction of shear angle ϕ by Merchant’s
equation can be obtained from Eq. (21) and friction angle

Fig. 6 Schematic of the experimental setup

Fig. 7 Geometry of workpiece

Fig. 4 Arrangement of GNDs in the x direction

Fig. 5 Effective rake angle in micro-cutting
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β can be obtained from Eq. (22) in force equilibrium
condition.

f ¼ p
4
þ a

2
� b

2
ð21Þ

b ¼ tan�1 Ft þ Fc tan a
Fc � Ft tan a

� �
ð22Þ

The errors between experimental measurement and
model prediction were calculated using Eq. (23) and can
be found in Table 2. It can be seen from Table 2 that an
absolute average percentage error of 11.72% for flow stress
at cutting speed of 15.8 m/min and an absolute average
percentage error of 25.2% at cutting speed of 141.3 m/min
are obtained from orthogonal cutting tests.

Error ¼ experimental value� simulated valuej j
experimental value

� 100% ð23Þ

4.2 Effect of feed rate

Figure 8 shows the effect of the undeformed chip thickness
(feed rate in orthogonal cutting) on the flow stresses at the
cutting speed of 15.8 m/min. As the feed rate decreases, the
flow stress increases, which is the so-called size effect.

Since strain gradients are very intense due to the storage of
GNDs in micro-cutting, in this research, we can attribute the
size effect to the appearance of plastic strain gradients.
According to Eq. (19), the relation of strain gradient and

effective rake angle calculated by the undeformed chip
thickness has been built quantifiably to represent the
influence of the feed rate on the flow stress in the micro-
cutting process. The strain gradient enhances the flow stress
with decrease of the feed rate.

4.3 Effect of cutting velocity

Figure 9 shows the effect of cutting velocity on the flow
stresses when the feed rate is 8 μm/r. It is seen that the
flow stress predicted from the proposed model agrees well
with the experimental data when the cutting velocity is
lower than 78.5 m/min. A significant error exists when the
cutting velocity exceeds the critical speed 78.5 m/min.
This phenomenon can be explained by the strain rate
effect. Eleiche [19] found that flow stress is very sensitive
to strain rate. Three regions with different deformation
mechanics are divided according to strain rate sensitivity.
In a low strain rate range, the flow stress is dominated by
dislocation density and hardly influenced by the strain

Table 2 Comparison between analytical and simulation values for
flow stresses

Effective normal
stress predicted
by model

Effective normal
stress experiment

Error (%)

15.8 m/min 358.96 406.60 11.72

141.3 m/min 951.45 761.16 25.2

Table 1 Cutting conditions and tool geometries

Tool

Tool material Kenna KC9315

Tool geometry CNMG120408UN 0° rake angle,
5° clearance angle

Tool edge radius (μm) 16

Workpiece material AISI 1045

Cutting conditions

Cutting speed (m/min) 15.7, 39.25, 62.8, 78.5, 117.75, 141.3

Undeformed chip
thickness(μm/r)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Cutting width (mm) 1.5

Fig. 8 Effect of the undeformed chip thickness on the flow stresses

cutting speed (m/min)
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Fig. 9 Effect of the cutting velocity on the flow stress
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rate. However, during high speed ranges, the flow stress
will be mainly influenced by the strain rate. The strain
gradient plasticity theory does not work in such high
speed ranges. So when the velocity exceeds a critical
value, the strain gradient plasticity theory cannot predict
the flow stress well.

5 Conclusion

In this paper, a flow stress model based on strain
gradient plasticity theory has been proposed for the
process of micro-cutting. The proposed model relates the
flow stress in micro-cutting to tool geometry (edge
radius, rake angle, and clearance angle) and cutting
condition (undeformed chip thickness, cutting width). It
is available to predict the size effect and size of the
primary deformation zone.

A series of orthogonal cutting experiments were
performed and flow stresses were calculated with
experimental data. An absolute average percentage error
of 11.72% for flow stress at cutting speed of 15.8 m/min
and an absolute average percentage error of 25.2% at
cutting speed of 141.3 m/min were obtained for orthog-
onal cutting tests.

The following conclusions can be drawn:

1. As the feed rate decreases, the flow stress increases.
2. The flow stresses are sensitive to strain rate. In a low

strain rate range, the flow stress is dominated by
dislocation density and hardly influenced by the
strain rate. While the cutting velocity exceeds a
critical value, the strain gradient plasticity cannot
predict the flow stress well.
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