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Modeling of Flux Switching Permanent Magnet Machines
With Fourier Analysis
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For applications demanding a high torque density and high speed capability, the flux switching permanent magnet machine is an
excellent candidate. However, the double salient structure and nonlinear behavior increases the challenge to model the magnetic field
distribution and torque output. To date, only the magnetic equivalent circuit (MEC) is employed to model the magnetic field in an an-
alytical manner. However, the MEC method suffers from a coarse discretization and the need for a relative complex adjustment when
rotor movement or a parametric sweep is considered. Therefore this paper discusses an alternative technique based on the harmonic or
Fourier model which solves these difficulties.

Index Terms—Boundary value problem, flux switching, Fourier analysis, permanent magnet machine.

I. INTRODUCTION

T HERE is an increasing demand for electromechanical ma-
chines with a high toque density together with high and

variable speed capability in, for example, the automotive in-
dustry [1]. The flux switching permanent magnet (FSPM) ma-
chine is a good candidate since it combines the advantages of a
switched reluctance machine (high speed and robust rotor struc-
ture) and a brushless permanent magnet machine (high torque
density) [2]. This combination is achieved by placing the per-
manent magnets on the stator side, see Fig. 1, together with the
three phase windings, hereby pre-biasing the magnetic field in
the soft-magnetic material. This leads to an increased variation
in the magnetic energy, resulting in a higher torque density. Fur-
thermore, since the permanent magnets are placed on the stator
side, very high speeds can be reached and the rotor is robust and
suitable to work in harsh environments.

Due to the nonlinear behavior and double salient structure,
modeling, and analysis becomes difficult and it is in the liter-
ature particularly done with finite-element analysis (FEA) [3]
or with the magnetic equivalent circuit (MEC) model [2]. The
FEA has the disadvantage of a long computational time whereas
the MEC model suffers from coarse discretization of the re-
sulting field solution, leading to inaccurate prediction of the
output torque. Furthermore, the MEC model is dependent on
the definition of flux paths which changes during rotation of the
machine or varying the geometrical parameters. Therefore, the
total MEC model consists of a combination of different MEC
models [2]. This indicates the necessity of investigating alterna-
tive modeling tools in order to analyze the behavior of this ma-
chine. Therefore, this paper deals with an alternative modeling
technique by means of Fourier analysis [4], [5], which solves the
disadvantages of the MEC model. Although one of the main as-
sumptions in this modeling technique is that the iron is infinitely
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Fig. 1. Flux switching permanent magnet machine.

permeable, it still allows for investigation of various topologies,
characteristic behavior and parameter sweep. Furthermore, this
model could be suitable as a coarse model in a space-mapping
optimization routine [6].

II. ASSUMPTIONS

The main assumption of the analytical model is that the per-
meability of the soft-magnetic material is considered to be infi-
nite and only a Neumann boundary condition (tangential mag-
netic field is zero) is applied at the boundary of the soft-mag-
netic material. The permanent magnets are considered to have a
linear second quadrant characteristic with remanence and
relative permeability . The first geometrical assumption is the
neglection of the finite axial length, hence the end effects are ex-
cluded and only the 2-D polar coordinate system is used.
An FSPM with 10 rotor teeth and 12 stator segments is consid-
ered, hence the machine inhibits 180 periodicity and only half
of the machine has to be modeled. Half of the geometry is di-
vided into several regions, . Every region is defined by their
angular width and radial height . As a result, the sides of
every region should be in radial or angular direction. Therefore
the geometry should be adjusted as indicated in Fig. 2. In order
to correctly predict the cogging torque, the width of the teeth are
kept equal at the airgap side. This changes the effective magnet
and coil area, hence the current density and remanent flux den-
sity are adjusted in order to obtain equal magnetic and electrical
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Fig. 2. Modified geometry with parameters.

loading. Since the soft-magnetic material is not considered, the
various regions can be distinguished as follows:

• five rotor slot opening regions ( for index
);

• one airgap region ;
• six permanent magnet regions ( for index

);
• six coil regions ( for index );
• one surrounding air region .

Furthermore, every region is considered to have its own local
coordinate system , where is given by

for regions (1)

for regions and (2)

where is the offset of region in the -direction and is
the rotor displacement, Fig. 1.

III. FIELD SOLUTION

A. Source Terms

The magnetization vector of the permanent magnet regions
can be described as

(3)

The current density vector in the stator slot opening can be
described using Fourier series as

(4)

(5)

(6)

with and the current densities of the corresponding coil
region (see Fig. 2) and .

B. Flux Density Solution

For every region, the magnetic field equations are written in
terms of the magnetic vector potential leading to
the Poisson equation

(7)

The differential equation is solved using separation of variables
and the flux density of region can be written as

(8)

(9)

(10)

note that for regions , , and is used instead of .
The spatial frequencies for every region are given by

(11)
The functions dependent on the radial direction vary with the
considered region. For the rotor slot opening regions
the functions are given by

(12)

(13)

, , and are zero since the tangential field at the
sides of the region is zero. For the airgap region the
functions are given by

(14)

(15)

(16)

(17)

and is zero. The functions for the permanent magnet re-
gions are given by

(18)

(19)

(20)

and are zero for the same reason as for the slot
openings. In the coil regions , the functions are

(21)

(22)

(23)

again and are zero for the same reason as for
the slot openings. Finally, the functions for the surrounding air
region are described as

(24)

(25)

(26)

(27)
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Fig. 3. Division in regions and applied boundary conditions.

and is zero.

IV. BOUNDARY CONDITIONS

In order to solve for the various unknown coefficients of the
flux density solution, a set of boundary conditions need to be
solved as indicated in Fig. 3. The magnetic field strength should
be zero at the inner radius of the rotor and outer radius of the
stator slots, hence

(28)

The boundary conditions at the outer radius of the rotor and
inner and outer radius of the stator are obtained by means of
modal analysis, as for example discussed in [5]. The normal
magnetic field between the rotor slots and the airgap should be
continuous

(29)

where the correlation functions and are given in the
Appendix. The tangential magnetic field between the rotor slots
and the airgap should be continuous and zero at the rotor teeth

(30)

(31)

where the correlation functions and are given in the
Appendix. In a similar manner, the normal magnetic field
between the airgap, permanent magnets and stator slots should
be continuous and using modal analysis this gives

(32)

(33)

The tangential magnetic field between the airgap, permanent
magnets and stator slots should be continuous and zero at the
stator teeth giving

(34)

(35)

where the correlation functions , , , and are given
in the Appendix. The normal magnetic field between the sur-
rounding air region and permanent magnets should be contin-
uous

(36)

Finally, the tangential magnetic field between the surrounding
air region and permanent magnets should be continuous and
zero at the stator back iron giving

(37)

(38)

The aforementioned boundary conditions solve the set of un-
known variables for the flux density expressions. However addi-
tional boundary conditions are necessary to solve the unknown
coefficients of region III. These can be obtained from set-
ting the divergence of the magnetic flux density around the stator
segment (see Fig. 3) to zero. These 6 equations can
be written as

V. FINITE-ELEMENT VERIFICATION

The magnetic field is calculated for the machine parameters
given in Table I and verified with 2-D linear finite element anal-
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TABLE I
PARAMETERS OF THE FSPM

ysis. The solution in the centre of the airgap is shown in Fig. 4
where excellent agreement is obtained. A mesh-free descrip-
tion of the flux density waveform is obtained, giving a better
accuracy for the linear case than the coarse solution of the MEC
model, which is limited by the number of included permeances.
Furthermore, for the MEC model, only the radial component of
the flux density is obtained. However, it can be observed that
very high flux density levels upto 6 T are obtained. This indi-
cates that the soft-magnetic material will be saturated and in
general the flux density in the airgap will be lower as well as
the generated output torque. Therefore, this modeling technique
needs an additional model in the form of an hybrid model to
account for this effect. The output torque can be calculated by
means of integrating the Maxwell stress tensor over the rotor
surface giving

(39)

(40)

The coils can be commutated in order to produce electromag-
netic and reluctance torque. However, since the latter is rela-
tively small [2], only the electromagnetic torque is considered in
both the analytical and FE model. The FE verification is shown
in Fig. 5 where a very good agreement is obtained. The small
discrepancy is caused by the limitation in the number of har-
monics that can be included.

VI. CONCLUSION

An alternative analytical technique for modeling an FSPM
machine is discussed, based on Fourier analysis, where the pe-
riodic geometry is divided into regions. The Maxwell equations
are solved in terms of the magnetic vector potential for the re-
sulting boundary value problem. The output torque can be calcu-
lated analytically by means of the Maxwell stress tensor method.
The results are verified with 2-D linear FEA and very good
agreement is obtained. The model accuracy is significantly less
dependent on parameter variation than the MEC method. Al-

Fig. 4. Radial and tangential components of the flux density distribution at
centre of the airgap.

Fig. 5. Electromagnetic torque profile.

though the nonlinear behavior cannot be included, this model is
still valuable in combination with the FE or MEC method in a
space-mapping or hybrid design algorithm.

APPENDIX
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