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Abstract
In the present study, multilayer perceptron (MLP) neural network and support vector regression (SVR) models were developed 
to assess the suitability of groundwater for drinking purposes in the northern Khartoum area, Sudan. The groundwater quality 
was evaluated by predicting the groundwater quality index (GWQI). GWQI is a statistical model that uses sub-indices and 
accumulation functions to reduce the dimensionality of groundwater quality data. In the first stage, GWQI was calculated 
using 11 physiochemical parameters collected from 20 groundwater wells. These parameters include pH, EC, TDS, TH, 
 Cl−,  SO4

−2,  NO3
−,  Ca+2,  Mg+2,  Na+, and  HCO3

−. The primary investigation confirmed that all parameters except for EC 
and  NO3

− are beyond the standard limits of the World Health Organization (WHO). The measured GWQI ranged from 21 to 
396. As a result, groundwater samples were classified into three classes. The majority of the samples, roughly 75%, projected 
into the excellent water category; 20% were considered good water and 5% were classified as unsuitable. GWQI models are 
powerful tools in groundwater quality assessment; however, the computation is lengthy, time-consuming, and often associated 
with calculation errors. To overcome these limitations, this study applied artificial intelligence (AI) techniques to develop 
a reliable model for the prediction of GWQI by employing MLP neural network and SVR models. In this stage, the input 
data were the detected physiochemical parameters, and the output was the computed GWQI. The dataset was divided into 
two groups with a ratio of 80% to 20% for models training and validation. The predicted (AI) and actual (calculated GWQI) 
models were compared using four statistical criteria, namely, mean square error (MSE), root mean squared error (RMSE), 
mean absolute error (MAE), and coefficient of determination (R2). Based on the obtained values of the performance measures, 
the results revealed the robustness and efficiency of MLP and SVR models in modeling GWQI. Consequently, groundwater 
quality in the north Khartoum area is evaluated as suitable for human consumption except for BH 18, where highly mineral-
ized water is observed. The developed approach is advantageous in groundwater quality evaluation and is recommended to 
be incorporated in groundwater quality modeling.
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Introduction

The primary source of water supply in dry and sub-dry areas 
is groundwater (Kayemah et al. 2021). Groundwater quality 
has deteriorated worldwide due to population growth, heavy 
use of chemical fertilizers, climate change, and improper 
management of groundwater resources (Singh et al. 2015). 
Groundwater in Sudan is a fundamental source of water sup-
ply. It is essential to community settlement and the develop-
ment of sustainable social activities (Hassan et al. 2017). 
Khartoum State is the capital of Sudan, and therefore it is 
the most vibrant and populous city, with nearly 15 million 
population. The percentage of the population is constantly 
increasing as a result of the permanent migration from rural 
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areas to the capital city. As a result,  groundwater demand 
has rapidly increased to fulfill the strategic plans. How-
ever, this has resulted in a variety of challenges, including 
decreased production and groundwater quality degradation 
(Abdo and Salih 2012). Groundwater quality degradation 
leads to an increase in groundwater salinity, caused mainly 
by natural and anthropogenic activities (Mohammed et al. 
2022). In Khartoum, groundwater contributes to more 
than 52% of the total demand, primarily for agriculture. 
Since north Khartoum is agricultural land, the communities 
have maintained stable life due to the efficiency of irriga-
tion and chemical fertilizers. However, their extensive use 
harmed the quality of the groundwater. Water quality evalua-
tion and management are issues profoundly affecting human 
health. According to the World Health Organization (WHO) 
(Edition 2011), 80% of all diseases are water-borne. There-
fore, it is critical to periodically assess groundwater quality 
with appropriate and effective methods to ensure its suit-
ability for human consumption (Ram et al. 2021).

Groundwater quality evaluation necessitates collect-
ing massive physical and chemical data, which can be 
challenging to analyze and synthesize. The traditional 
approach of laboratory analysis is time-consuming and 
requires intensive  efforts. Water quality index (WQI) 
models are one of the techniques that have been created 
to analyze water quality data. WQI models rely upon an 
aggregating mechanism that allows the analysis of huge 
datasets to yield a single value, i.e., the water quality 
index. Horton (1965) introduced the first WQI. Subse-
quently, many experts have developed several WQI and 
groundwater quality index (GWQI) to assess the suitabil-
ity of surface and groundwater for drinking and irriga-
tion purposes (Gitau et al. 2016; Tian et al. 2019; Asadi 
et al. 2020; Kanga et al. 2020). GWQI is a complex index 
that integrates physical, chemical, and biological param-
eters to provide an easy-to-understand index for policy 
and decision-makers (Brown et al. 1970). However, assess-
ing groundwater quality using GWQI is time-consuming 
and costly (Tung et al. 2020). To overcome the limitations 
of GWQI, some researchers have turned to non-physical 
methods using artificial intelligence (AI) models (Imneisi 
2019; Kadam et al. 2019; Gaya et al. 2020; Agrawal et al. 
2021; Asadollah et al. 2021; Elbeltagi et al. 2021). This 
approach is based on the idea that any system can learn 
from datasets, create models, and then make decisions 
with the least amount of manual intervention (Azrour 
et al. 2022). For modeling GWQI, AI-based models have 
minimized sub-index calculations and generated GWQI 
value efficiently. The benefits of AI approaches include 
solving complex nonlinear problems and the capacity 

to manage big datasets (Bui et  al. 2020). Researchers 
have been able to utilize a variety of AI models due to 
the continual advancement of computational capabilities. 
Approaches such as artificial neural networks (ANN) and 
support vector regression (SVR) have been effectively 
applied by many researchers to predict the quality of water 
worldwide. For example, Sakizadeh (2016) used ANN to 
predict GWQI in Andimeshk City. The study indicated the 
excellent generalization ability of ANN in the modeling of 
GWQI. Kadam et al. (2019) confirmed the robustness of 
multi-linear regression (MLR) and ANN in the prediction 
of WQI. For WQI modeling in Nainital Lake, Koranga 
et al. (2022) used multiple machine learning techniques 
such as random forest, support vector regression, and sto-
chastic gradient descent. Wang et al. (2020) combined par-
ticle swarm optimization (PSO), wavelet analysis (WA), 
and support vector regression (SVR) for modeling WQI in 
China. Their study indicated the robustness of these mod-
els in modeling parameter fluctuation. Singha et al. (2021) 
developed and compared a deep learning model to other 
conventional methods for modeling WQI. Their research 
indicated that deep learning is more effective than the tra-
ditional GWQI models in groundwater quality assessment. 
Gholami et al. (2021) operated an AI-based model using 
a co-active neuro-fuzzy inference system (CANFIS) and 
ANN, to assess the quality of groundwater in Iran. The 
study revealed that the fuzzy neural network has the high-
est performance in simulating water quality parameters 
over the other techniques. Elbeltagi et al. (2021) applied 
four AI models including random subspace (RSS), sup-
port vector machine (SVM), M5 pruning tree, and addi-
tive regression to predict WQI. The research carried out 
by Sillberg et al. (2021) demonstrated the possibility of 
applying machine learning tools such as attribute realiza-
tion (AR) and SVM algorithms to classify WQI. Ahmed 
et al. (2019) explored a series of machine learning algo-
rithms, including gradient boosting and multilayer percep-
tron (MLP), to estimate the WQI. The study conducted by 
Nathan et al. (2017) revealed that ANN models could be 
considered a powerful and dependable tool for simulat-
ing GWQI. The inspiration from previous works demon-
strates the great applicability of AI approaches for GWQI 
simulation. In general, it was found that every study in 
the reviewed literature had improved upon earlier ones 
regarding the effectiveness and reliability of observations.

From the prementioned reviews, artificial intelligence 
techniques have successfully and accurately predicted water 
quality indices. Thus, this study aims to investigate the accu-
racy and performance of two models, including support vec-
tor regression (SVR) and multilayered perceptron neural 
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network (MLP-ANN), in the modeling of GWQI in north-
ern Khartoum State, Sudan. The modeling results will help 
evaluate groundwater quality, thereby contributing to water 
supply sustainability. To the best of the authors’ knowledge, 
this is the first study to evaluate the groundwater quality in 
the central Sudan hydrogeologic system using AI methods.

Study area

The area is located in north Khartoum State, Sudan, and it 
covers about 350  km2 (Fig. 1). The study area is situated 
in the Savanna belt, with an average annual precipitation 
range of 100–200 mm/year. The Savanna belt is associated 
with a hot climate and low humidity. The research area is 
associated with flat topography, which progressively rises 
from 300 m above the sea level in the west to more than 
600 m in the east. Figure 2 shows the geological map of 
the study area. The geological succession is composed of 

three main units as basement rocks, Nubian formation, and 
recent deposits. The Precambrian basement rocks are the 
oldest rocks in the study area. They consist of gneisses, 
schists, and granites, which crop at the surface mainly to 
the north and eastern sides of the area. The Precambrian 
rocks underlie the Cretaceous Nubian formation (Khei-
ralla 1966; Whiteman 1971; Saeed 1974; Awad 1994). 
This formation consists of conglomerates, sandstone, and 
mudstone. The recent deposits are found in the vicinity of 
the Nile River and are composed of unconsolidated sand, 
silt, and gravel. In the study area, groundwater is stored 
in the Nubian sandstone formation under semiconfined to 
confined conditions due to the occurrence of clay, clayey 
sand, and mudstone layers above the groundwater aquifers 
(Abdelsalam et al. 2016). Two aquifers have been recog-
nized in the Nubian formation (Farah et al. 1997): an upper 
aquifer of variable thickness (10–300 m) and a lower one 
more than 400 m thick with higher transmissivity val-
ues. The water levels vary from15 to 20 m near the Nile 
River. However, it attains 45 m in the eastern part of the 
study area. The flow in the Nubian aquifer, as illustrated 

Fig. 1  Location map of the study area, including Khartoum State showing the location of the collected groundwater samples
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in Fig. 3, shows diverse directions, but the main direc-
tion for groundwater flow is from the west to the south-
eastern parts. The primary source of groundwater recharge 
in Khartoum State is the Nile River (Farah et al. 2000). 
In the areas outside the Nile influence, the groundwater 
aquifers recharged from the wadies and ephemeral streams.

Methodology

Groundwater sampling

Twenty groundwater samples were collected during the post-
monsoon season to assess the groundwater quality and its 
suitability for domestic purposes in the north Khartoum area, 
Sudan. The groundwater samples were taken from bore wells 
installed in the study area and ranged in depth from 100 to 
150 m. The locations of groundwater samples are selected 
randomly, aiming at covering vast spaces in the study area. 
The spatial distribution of groundwater samples is illustrated 
in Fig. 1. Groundwater samples were also collected based 
on the accessibility to groundwater boreholes. The collected 
samples were kept in previously cleaned plastic bottles to 

Fig. 2  Geological map of the study area and the surroundings modified after Hussein and Awad (2006)

Fig. 3  Potentiometric map showing the diverse direction of ground-
water flow in the studied area
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avoid interacting with the atmospheric gases and ions. The 
location of samples is tracked using the global positioning 
system (GPS) and subsequently supplied to the geographic 
information system (GIS) to design base and geographic 
distribution maps.

Eleven physicochemical parameters for 20 groundwa-
ter samples are analyzed in the groundwater and wadies 
directorate (GWD) laboratory. The analyzed parameters 
are total hardness (TH), calcium  (Ca+2), sodium  (Na+), 
magnesium  (Mg+2), chloride  (Cl−), nitrate  (NO3

−), sulfate 
 (SO4

−2), and bicarbonate  (HCO3
−). Electrical conductiv-

ity (EC), total dissolved solids (TDS), and hydrogen ion 
activity (pH) were measured using a portable multi-param-
eter instrument immediately after the sample collection. 
Appelo and Postma (2005) equation (Eq. 1) is applied 
to reveal the reliability of the conducted hydrochemical 
analysis. This formula measures the electrical balance 
(EB%) between the total of all cations (Σ cations) and 
anions (Σ anions) in milliequivalents per liter (meq/L). 
If the calculated EB is within + 10 and − 10, the accu-
racy of the measurement is indicated as reliable and can 
be considered for further interpretation. Otherwise, the 
hydrochemical must be repeated to fulfill the suggested 
range. Fortunately, in this research, the measured EB for 
all groundwater samples was within ± 5, indicating high 
accuracy. The EB formula is as

Groundwater quality index (GWQI)

GWQI is a widely used model in determining the potabil-
ity of groundwater, considering management strategies. 
GWQI results from a rating method that uses water quality 
parameters to create an overall depiction of groundwater 
quality. This approach is utilized to reduce the dimension-
ality of the groundwater quality data into a single depend-
ent numerical value. In general, GWQI is created in three 
steps: assigning weights, computing the rating scale, and 
aggregating the sub-indices. In this study, 11 physiochemi-
cal parameters (i.e., pH, EC, TDS, TH,  Cl−,  SO4

−2,  NO3
−, 

 Ca+2,  Mg+2,  Na+,  HCO3
−) for 20 groundwater samples 

were incorporated in GWQI computation. The lack of 
microbiological contamination measurements in the study 
area constrains the definition of the groundwater quality 
index. However, the routinely analyzed physiochemical 
parameters can effectively determine the suitability of the 
groundwater for drinking purposes in the Khartoum area 
since biological contamination is rare.

(1)(EB%) =

∑
cations −

∑
anions∑

cations +
∑

anions
× 100.

Weights are loaded to the selected parameters depend-
ing on their influence on the overall groundwater qual-
ity. In this study, the weights area was assigned with the 
aid of correlation analysis to reveal the influence rate of 
each physiochemical parameter in the overall groundwa-
ter quality. A weight of 5 is given to the most significant 
parameter, while the least significant parameter is given 
a weight of 2. Consequently, the relative weight (Wi) for 
the parameters is calculated using Eq. 2 (Singh 1992) as

where Wi denotes the relative weight of each parameter, 
wi is the weight allocated to each parameter, and n denotes 
the number of variables used in the GWQI calculation. The 
assigned weights and the relative weights applied in this 
study are illustrated in Table 1.

The rating scale is calculated in the second phase. Since 
the measured hydrochemical parameters have different units 
and ranges, the goal of scaling is to convert all the selected 
parameters into a common scale. The rating scale in this 
study was generated using the standard limits prescribed 
by WHO (Edition 2011). Equation 3 is applied to create the 
rating scale as

where Ri is the rating scale value, Xi is the actual parameter 
value, and Xs is the prescribed standard value.

The final stage in GWQI calculation is aggregating the 
sub-indices with their weights. In this study, the mean arith-
metic with unequal weights approach has been used for sub-
index aggregation, and the final index value was calculated 
by Eqs. 4 and 5 (Tiwari and Mishra 1985). Based on the final 

(2)Wi =
wi∑n

i=1
wi

,

(3)Ri =
Xi

Xs

× 100,

Table 1  The weights and the relative weights of the physiochemical 
parameters

Parameters/units Weight (wi) Relative 
weight 
(Wi)

pH 2 0.05
EC µS/cm 3 0.08
TDS mg/L 5 0.13
TH mg/L 4 0.10
Ca2+ mg/L 4 0.10
Mg2+ mg/L 4 0.10
Na+ mg/L 4 0.10
Cl‾ mg/L 4 0.10
SO4 mg/L 4 0.10
HCO3 mg/L 3 0.08
NO3 mg/L 3 0.08
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GWQI, groundwater is categorized into five classes. Table 2 
shows the classification of groundwater samples based on 
GWQI values as given by Ramakrishniah et al. (2009).

where SI is the sub-index values for each parameter.

Artificial intelligence methods

Multilayer perceptron neural networks (MLP-ANN) and 
support vector regression (SVR) are employed to predict 
GWQI in this research. The experiment was performed using 
Python 3.7 environment with Keras as a high-level appli-
cation programming interface (API) based on TensorFlow 
module. A detailed description of MLP and SVR is given in 
the following sections.

Multilayer perceptron (MLP)

ANNs are computer programs that use a large number 
of interlinked neurons to replicate the functioning of the 

(4)SI = Wi × Ri,

(5)GWQI =
∑

SI,

biological nervous system (Akbari and Jalali 2007). They 
serve as a representation for the nervous system, where 
neurons act as operating units. Their wide scope of uses 
comes from the capacity of the networks to simulate the 
human brain (Tom et al. 2020). The ANN is a decentral-
ized, parallel data processing system with unique opera-
tional characteristics similar to the human brain (Momen-
zadeh et al. 2011). The popular type of ANN applied for 
environmental problems is multilayer perceptron (MLP) 
neural networks (Heddam 2016). MLP is the most realistic 
neural network architecture applied for classification or 
regression problems (Gholami et al. 2015). MLP neural 
networks are basic types of feed-forward neural networks 
(FFNN), which are parallel layered structure networks. A 
one-layer perception is transformed into an MLP model 
by adding one or more hidden layers. This suggested the 
topology is capable of resolving challenging and complex 
linear and nonlinear problems (Tokar and Markus 2000). 
In most cases, an MLP network has three layers: the input 
layer, hidden layers, and output layer (Fig. 4). In this work, 
the inputs were the physiochemical variables (i.e., pH, EC, 
TDS, TH,  Cl−,  SO4

−2,  NO3
−,  Ca+2,  Mg+2,  Na+,  HCO3

−), 
and the output is the groundwater quality index (GWQI). 
The hidden layers consist of neurons for transforming the 
input data. The neurons in the first layer transmit the sig-
nal to the neurons in the following layer until the optimal 
output is reached. The degree of association between every 
two neurons in two layers is called weight, and the modi-
fication of this weight is called model training (Schaid 
et al. 1999). In other words, the resulting output is the 
total of the weighted inputs. In the modeling procedure, 
the data is divided for model training and validation. The 
network training aims to evaluate the network capacity to 
replicate the relationship between inputs and output. The 
first stage in MLP neural network operation is to link the 

Table 2  Classification of groundwater based on GWQI as given by 
Ramakrishniah et al. (2009)

GWQI range Class Type of water

< 50 I Excellent water
50.1–100 II Good water
100.1–200 III Poor water
200.1–300 IV Very poor water
> 300 V Unsuitable water

Fig. 4  The architecture of MLP 
neural network applied in this 
study
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input variables to the hidden layers and weights. For train-
ing, MLP employs Bayesian regularization, which adjusts 
the weight values by optimization (Toprak and Cigizoglu 
2008). The weighted parameters are added to the bias of 
the layer and changed from the jth to the jth+1 layer. The 
layer weights and biases are adjusted iteratively through-
out the training process to achieve good performance and 
provide an acceptable correlation coefficient (Nasir et al. 
2022). The following equation (Eq. 6) is used to predict 
the output (GWQI):

where fk and fj are the transfer functions of the output and 
hidden layer neurons k and j, accordingly, n is the features 
number, m is the hidden layer neuron number, and the bias 
is W0. The weight between the jth neuron and the kth target 
neuron is Wjk, whereas the weight between the ith and jth 
neurons is Wij.

Support vector regression (SVR)

Support vector machine (SVM) is a machine learning tech-
nique that can provide satisfactory solutions to the nonlin-
ear problems of regression, prediction, classification, and 
function estimation (Haghiabi et al. 2017). An additional 
feature of support vector machines over the conventional 
artificial neural network is their capability to enhance the 
data network functionality (Manzar et al. 2022). The regres-
sion model of the SVM is divided into linear support vector 
regression (L-SVR) and nonlinear support vector regres-
sion (N-SVR) (Kaya et al. 2021). Support vector regres-
sion (SVR) was first introduced by Boser et al. (1992). It is 
a machine learning technique that was developed from the 
SVM. In this study, SVR is employed to predict GWQI. In 
order to improve the forecasting capability of the model, 
the primary goal of SVR is to simultaneously minimize 
the system complication and prediction error (Bagheripour 
et al. 2015). SVR is a supervised classifier that can quickly 
and accurately fit and predict samples. The approach effec-
tively finds a hyperplane in the data sets that fits the nearest 
plane distance. The optimal hyperplane is the line with the 
maximum margin, which defines the distance separating the 
hyperplane and the adjacent input variable (Aldhyani et al. 
2020). Figure 5 shows how hyperplanes fit the data points. 
In Fig. 5, the green and blue dots represent two types of data 
points. Three planes designated as P1, P2, and P3 are pro-
jected. The data points are not successfully categorized by 
P1. Although both P2 and P3 can categorize data points, P2 
provides a narrower margin than plane P3. This is the ration-
ale behind choosing P2 for prediction. There are three levels 

(6)Yk = fk

(
m∑
i=1

Wjkfj

(
n∑
i=1

XiWij

))
+W0,

in the SVR framework: inputs, kernel functions, and outputs. 
In this study, the input is the physiochemical parameters, and 
the output is the GWQI. The kernel function is employed 
to map the lower-dimension data into high-dimension data 
points and, thus, reduce the space between the points. The 
kernel function enables the separation of the nonlinear data 
points. There are different types of kernel functions such 
as sigmoid, polynomial, Gaussian kernel functions. In this 
analysis, Gaussian kernel function (RBF) was employed for 
its simplicity and reliability. Gaussian kernel function is an 
exponential function and expressed in Eq. 7 where K (x1, x2) 
is the kernel function.

Performance metrics

The functionality of MLP-ANN and SVR models is assessed 
using four statistical indicators: mean square error (MSE), 
root mean squared error (RMSE), mean absolute error 
(MAE), and coefficient of determination (R2). These statis-
tical indicators are referred to the variance explored by the 
predicted model compared to the actual. The performance 
metrics were calculated by Eqs. 8, 9, 10, and 11 as

(7)K
(
x1, x2

)
= exp

(
−x1 − x2

)
.

(8)MSE =
1

n

n∑
i=1

(x(i) − y(i))2,

Fig. 5  Data classification using different hyperplanes
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where n is the number of observations and x(i) and y(i) are 
the actual and predicted value for the ith observation, respec-
tively. y and –x  are the mean for the predicted and actual 
values, respectively.

Results and discussions

General hydrochemistry

Physicochemical parameters of the groundwater are con-
sidered prime principles in identifying the type and nature 
of groundwater (Selvakumar et al. 2017). In this study, 
the detected physiochemical parameters are pH, TDS, 
EC, TH,  Na+,  Ca+2,  Mg+2,  HCO3

−  Cl−  SO4
2−, and  NO3

−, 
and the result of the hydrochemical analysis is illustrated 
in Table 3. Table 4 shows the descriptive statistics of the 
analyzed physiochemical parameters (minimum, mean, and 
maximum) to reveal the deviation of the parameters from the 
prescribed standards. The pH of the groundwater samples 
ranged from 7.14 to 8.59, and the greatest pH value was 
reported in borehole 17. A pH above seven is considered 
acidic for groundwater, and lower than seven is considered 
alkaline. The acceptable pH values for groundwater sam-
ples range from 6 to 8.5 WHO (Edition 2011). Thus, the 
groundwater in the study area is neutral to alkaline in nature. 
TDS is one of the major parameters used to understand the 
amount of contaminant in the groundwater. Classifying 
groundwater according to TDS is crucial to assess its suit-
ability for all uses (Freeze and Cherry 1979). It ranges from 
190 to 6225 mg/L. WHO (Edition 2011) advises that a TDS 
level of 600 mg/L is ideal for drinking. In this study, 20% 
of the groundwater samples exceeded the prescribed limits. 
Groundwater with TDS concentration below 1000 mg/L is 
considered fresh, between 1000 and 10,000 mg/L is brack-
ish, and groundwater is considered saline when TDS con-
centration exceeds 10,000  mg/L WHO (Edition 2011). 
In this research, 90% of groundwater samples were clas-
sified as freshwater, while 10% were defined as brackish 
water. The EC varies between 317 and 1500 μS/cm. The 

(9)RMSE =
1

n

√√√√ n∑
i=1

(x(i) − y(i))2,

(10)MAE =
1

n

n∑
i=1

|y(i) − x(i)|,

(11)R2 =

⎛⎜⎜⎜⎝

�∑n

i=1

�
y(i) − y

�
(x(i) − –x)

�2
�∑n

i=1

�
y(i) − y

�2 ∑n

i=1
(x(i) − –x)2

⎞⎟⎟⎟⎠

2

,

permissible limit for the EC of groundwater is 1500 μS/
cm WHO (Edition 2011). Thus, all the groundwater sam-
ples are suitable for human consumption based on EC. TH 
concentrations range from 124 to 1172 mg/L.  Na+ is the 
major ion in groundwater chemistry. The maximum con-
centration (1844 mg/L) is recorded at borehole 18 in the 
eastern part of the study area, and the minimum (14 mg/L) 
is at location 19. Temporary hardness is mainly caused 
by calcium or magnesium carbonates, while calcium and 
magnesium sulfate or chloride contributes to the TH. Con-
sumption of hard water for drinking purposes may stimulate 
kidney stones and cardiovascular diseases (Sengupta 2013). 
According to Sawyer and McCarty (1967), groundwater 
with TH concentration less than 75 mg/L is regarded as soft 
water, 75–100 mg/L is considered to be moderately hard 
water, 150–300 mg/L is hard water, and groundwater with 
TH higher than 300 mg/L is considered to be very hard. In 
this analysis, 90% of groundwater samples are hard, whereas 
10% of the samples are very hard water.  Na+ concentration 
in groundwater samples ranges from 14 to 1844 mg/L with 
an average value of 161.5 mg/L. Consumption of ground-
water with  Na+ concentration higher than 200 mg/L may 
induce congenital disorders and nervous system problems 
according to WHO (Edition 2011). Higher  Na+ might indi-
cate weathering of silicate minerals or the dissolution of 
halite (Hem 1985).  Ca+2 content of the groundwater samples 
varies from 16 to 132.8 mg/L. Calcium is an essential con-
stituent of many igneous-rock minerals such as pyroxenes, 
amphiboles, and feldspars. The most common forms of  Ca+2 
in sedimentary rocks are calcite, aragonite, and dolomite 
gypsum. The maximum concentration of  Ca+2 is recorded 
in borehole 18. In the case of  Mg+2, the concentration var-
ies from 5.8 to 201 mg/L. Water hardness is mainly affected 
by cations such as  Ca+2 and  Mg+2. Generally, the sources 
of  Mg+2 are the ferromagnesian minerals, especially pyrox-
ene, amphiboles, and biotite. Common forms in sedimentary 
rocks include carbonates such as magnesite and dolomite. 
The concentration of the  HCO3

− varies between 130 and 
620 mg/L.  HCO3

− is the dominant anion present in the study 
area. The maximum concentration is found in borehole 18. 
As the mineral content increases, the  HCO3

− content also 
increases.  SO4

2− content in groundwater varies from 3 to 
1500 mg/L. The permissible limit prescribed by WHO (Edi-
tion 2011) for  SO4

2− concentration is exceeded in 10% of 
groundwater samples. The presence of  SO4

2− ions in water 
can affect the taste, and too much sulfate concentration can 
negatively impact consumers (Rishi et al. 2020).  Cl− concen-
trations range from 4 to 2120 mg/L. The highest concentra-
tion is detected in sample location 18, while the lowest is 
recorded in borehole 19. 95% of the groundwater samples 
are below the limit of WHO (Edition 2011). The concentra-
tion of  NO3

− ranges from 0.07 to 13.6 mg/L. The maximum 
concentration is recorded in borehole 2, while the minimum 
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concentration is recorded in borehole 5. The essential source 
of  NO3

− is agricultural activities. High  NO3
− concentrations 

in drinking water can result in goiter, stomach cancer, and 
hypertension, in addition to methemoglobinemia in children 
(Majumdar and Gupta 2000). Figure 6 shows the geographi-
cal dispersion of the physical and chemical parameters used 
in this study.  Na+,  Mg+2,  Cl−,  SO4

2−, TH, and TDS exhibit 
similar trend with their concentrations increasing from the 
western to the eastern part of the study area. This suggests 
the high contribution of these ions on the groundwater qual-
ity. The other parameters show diverse trend which suggests 
different origination source.

Groundwater quality index (GWQI)

The input variable selection and weight assignment are 
the most crucial part of developing the GWQI model. the 
highest weights are assigned to the parameter with the most 
substantial influence on the overall groundwater quality. 
In this study, the selection of the relevant weights for each 
parameter is based on the degree of correlation between the 
measured physiochemical parameters. Pearson correlation 
analysis is applied to detect the linearity between ground-
water quality parameters. Correlation analysis measures 
the degree of the association between the selected vari-
ables; if the correlation coefficient is nearer to + 1 or − 1, 
the relationship between the two variables, either propor-
tion or inversely proportion, is perfected and vice versa. In 
this study, the highest weight is assigned to TDS since its 
concentration determines the suitability of groundwater for 
domestic purposes (Freeze and Cherry 1979). The high link-
age of the dominant ions and TDS reflects the role of mineral 
dissolution in groundwater chemistry (Singh et al. 2008). 
The Pearson correlation analysis is illustrated in Fig. 7. It is 
observed that TDS has a high correlation with TH (r = 0.99), 

 Na+ (r = 1),  Cl− (r = 1),  SO4
−2 (r = 0.99),  Ca+2 (r = 0.84), 

 Mg+2 (r = 0.96), and  HCO3
− (r = 0.74), which indicates the 

great influence of these parameters on the overall ground-
water chemistry, medium correlation with EC (r = 0.53) 
and  NO3

− (r = 0.34), and low association with pH (r = 0.1), 
which reflect the least effect of these variables on ground-
water quality. Accordingly, the highest weight was assigned 
to TDS, while the lowest one was given to pH, EC, and 
 NO3

−. Accordingly, the total weights are used to calculate 
the relative weights.

Weighted arithmetic GWQI is calculated to appraise the 
groundwater quality in the north Khartoum area. The quan-
titative results of GWQI are evaluated to determine the suit-
ability of groundwater for domestic purposes based on WHO 
(Edition 2011) guidelines for drinking water. GWQI aided in 
comprehending the combined overall effect of the analyzed 
physiochemical parameters on groundwater quality (Srivas-
tava 2019). The calculated values of GWQI range from 21 
to 396 (Table 3); hence, the water samples were classified 
into three categories. The majority of the samples, around 
75%, fall under the excellent water class, 20% are projected 
in the good water class, and 5% of groundwater samples are 
considered unsuitable for human consumption. The areal 
distribution of WQI, represented in Fig. 8, shows that most 
of the area is occupied by excellent water types and water 
quality characteristics change gradually from the western 
to the eastern part of the study area. The lowest value is 
observed in BH 14, while the highest GWQI is indicated 
in BH 18. The high WQI at BH 18 is impacted by TDS, 
TH,  Ca+2,  Mg+2,  Na+,  Cl−,  HCO3

− and  SO4
−2. As Sharma 

et al. (2022) suggested, the abundance of these parameters 
is likely to be influenced by rock–water interaction. The 
remaining water samples represent an excellent water type. 
However, some samples are highly influenced by individual 
physiochemical parameters. For example, borehole two (2) is 
associated with high  NO3

− concentration, while in borehole 
5, high EC is observed. Therefore, caution must be taken 
when using groundwater samples with a high concentration 
of individual physiochemical parameters.

According to the measured GWQI, the groundwater in the 
study area is suitable for drinking purposes Except for the 
BH 18 sample. The unsuitability of groundwater in BH 18 
may significantly influence the present scenario of ground-
water quality in the study area since advection and disper-
sion processes may spread pollution along the groundwater 
flow paths. Therefore, the concerned authorities should plan 
proper steps for maintaining and improving the current situ-
ation of the groundwater quality in the study area.

Artificial intelligence models

In this research, 11 routinely analyzed physiochemi-
cal parameters were chosen to model GWQI using the 

Table 4  The descriptive statistics of the parameters and their permis-
sible limits prescribed by WHO

Parameter Unit Minimum Mean Maximum WHO standard 
(Edition 2011)

pH – 7.1 7.6 8.6 8.5
EC (µS/cm) 317 689.4 1500 1500
TDS (mg/L) 190 718.6 6225 1000
TH (mg/L) 124 263.3 1172 500
Cl− (mg/L) 4 148.5 2120 250
SO4

−2 (mg/L) 3 133.7 1500 250
NO3

− (mg/L) 0.07 4.5 13.6 50
Ca+2 (mg/L) 16 44.3 132.8 200
Mg+2 (mg/L) 5.8 36.6 201 150
Na+ (mg/L) 14 161.5 1844 200
HCO3

− (mg/L) 130 299.6 620 350
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multiLayer perceptron (MLP) of ANN and support vector 
regression (SVR). These methods are applied to overcome 
the limitation of the conventional GWQI. The analyzed 
parameters are considered the input, while the calcu-
lated GWQI using a statistical (conventional) approach is 

considered the output. Experimental data were categorized 
into training and testing. The training set was employed to 
generate the ANN and SVR model; validating sets were used 
to confirm the model’s generalization competencies. The 

Fig. 6  The areal distribution of the physiochemical parameters used in the calculation and prediction of the water quality indices
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measured water samples are divided into 80% for training 
and 20% for validation.

MLP exhibits the best performance by applying two hid-
den layers with 126 and 64 neurons by a trial-and-error pro-
cedure in each layer, respectively (Belayneh et al. 2016). So, 
the most appropriate model structure is 11-128-64-1, and 
the trial-and-error process led to the selection of learning 
rates of 0.1. The weights were also updated using RELU 
function. Providing the right choice in the selection of hid-
den neurons and the architecture of the network is crucial 

to prevent overlearning in the calibration stage. Table 5 
shows the effectiveness of the MLP model for predicting 
WQI during the training and validation stages. The values 
of MSE, RMSE, MAE, and R2 obtained for MLP training 
are 1.4436, 1.2015, 0.8999, and 0.9998, respectively, while 
the performance measures for validation are 0.2594, 0.5093, 
0.4663, and 0.9976 respectively. The statistical results of the 
MLP model for predicting GWQI during the training and 
validation stages are presented in Fig. 9, which indicates the 
projected points generally correlated close to the 1:1 line.

SVR modeling was created by using the Gaussian kernel 
type. Both grid and pattern search and tenfold cross-vali-
dation re-sampling methods were employed to find optimal 
parameter values. The performance measures, including 
MSE, RMSE, MAE, and R2 for SVR training, as shown in 
Table 6 are 0.0083, 0.0911, 0.0874, and 0.9999 and 0.0113, 
0.1064, 0.0853, 0.9998 for validation, respectively. The rep-
resentation of the observed and optimal simulated GWQI by 
SVR model is presented in Fig. 10. It is evident from this 
figure that the predicted GWQI derived by SVR model is 
well-matched with the observed GWQI. Based on quantita-
tive performance assessment indicators, the SVR model per-
formed better than the MLP model. The comparison between 
the predicted and actual GWQI presents a good correlation 
between the GWQI of SVR model and the conventional 
GWQI with high values of statistical coefficient. The robust-
ness of SVR could be attributed to the great advantage of 
handling complex and nonlinear system, unlike that of the 
MLR models, which is based on the assumptions of linear 
input–output relationship.

The results of GWQI modeling using artificial intelli-
gence techniques showed a resealable match with the con-
ventional GWQI. Consequently, the quality of groundwater 
in the north Khartoum area can be evaluated solely with 
artificial intelligence techniques. It can be concluded that 
artificial intelligence techniques such as MLP neural net-
work and SVR can effectively simulate GWQI and other 
hydrochemical parameters in time and cost-effective way 
in regional assessment when large water quality data is 
recorded. In order to improve groundwater quality assess-
ments and management, the application of artificial intel-
ligence is recommended for groundwater resource modeling.

Conclusions

Management of groundwater resources requires a proper 
assessment of groundwater quality since it provides evidence 
of the influence of physical and anthropogenic activities on 
groundwater resources. In this research, the groundwater 
quality index (GWQI) model as a practical tool is developed 
to evaluate groundwater quality for domestic uses in the 
north Khartoum area. GWQI model is constructed by using 

Fig. 7  Pearson correlation analysis for the physiochemical parameters

Fig. 8  The spatial variation of GWQI in the study area

Table 5  MLP performance during training and validation stages for 
WQI prediction

Models MSE RMSE MAE R2 Support

MLP training 1.4436 1.2015 0.8999 0.9998 16
MLP validation 0.2594 0.5093 0.4663 0.9976 4
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11 physiochemical parameters measured in 20 groundwater 
boreholes scattered over the study area. These parameters 
are primarily investigated to reveal their deviation from the 
world health organization (WHO) standard. As a result, all 
the detected parameters are found to be beyond the applied 
standard except for EC and  NO3

−. The most challenging part 
of GWQI calculation is the assignment of the weights since 
there is no consensus on the weight that should be given to 
each physiochemical parameter. In this study, Pearson cor-
relation analysis is applied to aid in the weight assignment; 
consequently, GWQI is computed. The measured GQWI 
indicated that most of the groundwater samples fall in excel-
lent and good categories, and only one sample (BH 18) 
showed a GWQI of 396, projected in the unsuitable class.

The major limitation of the weighted arithmetic GWQI 
model is the calculation of the sub-indices since it is 

time-consuming and prone to calculation errors. Artifi-
cial intelligence (AI) techniques are introduced to cope 
with the limitations associated with conventional GWQI 
models. Soft computing models such as multilayer percep-
tron (MLP) neural network and support vector regression 
(SVR) are proposed to reduce the time for sub-indices cal-
culation. The architecture of MLP network involves inputs, 
hidden layers, and output. The inputs are the physiochemi-
cal parameters, (2) hidden layers are applied, and the out-
put is the GWQI. For SVR, the Gaussian kernel function is 
applied to find the optimal hyperplane in the data and thus 
predict the GWQI. In this research, the collected ground-
water samples are used for training and validation of the 
developed model in a ratio of 80% to 20%, respectively. 
The performance metrics revealed that AI models could be 
applied successfully for groundwater quality assessment as 
an alternative to conventional GWQI. Furthermore, they 
suggested that the prediction capabilities of SVR models 
are higher than MLP, mainly due to the high ability of 
SVR to process complex nonlinear data.

The results obtained from GWQI models helped to 
understand the groundwater’s overall quality. It is indi-
cated that groundwater quality in north Khartoum State 
is generally acceptable for human consumption except 

Fig. 9  Actual versus simulated WQI during training and validation for SVR model

Table 6  Performance measures for SVR model during training and 
validation stages for WQI prediction

Models MSE RMSE MAE R2 Support

SVR training 0.0113 0.1064 0.0853 0.9998 16
SVR validation 0.0083 0.0911 0.0874 0.9999 4



2514 Modeling Earth Systems and Environment (2023) 9:2501–2516

1 3

for some samples with high salinity. Consequently, for 
water supply sustainability, the present study suggested 
implementing a groundwater quality monitoring program 
in the study area since pollution spread may affect the 
suitability of groundwater. The general outcomes of the 
present research indicate the benefits of using AI tech-
niques in GWQI prediction with enhanced accuracies. The 
algorithms established in this research can be used for 
groundwater quality evaluation effectively.
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