Introduction
\square koy-Vanikoy section comprising a length of approxi-
mately 2.5 km with the narrowest section of about 500 m (Fig. lb).
The sill, sit

The sill, situated to the south of the constricted redepth of about 28 m between two narrow and deeper channels located on both sides (Fig. 2). On the Ana-

 sill towards the south and eventually joins the sub-
marine canyon found in the junction region of the marine canyon found in the junction region of the
Bosphorus and the Marmara Sea. The northern sill has a minimum depth of about 59 m and a length of about

 bathymetrical characteristics of the region surrounding the Bosphorus-Black Sea junction have been estab-
lished by recent field studies (Latif et al. 1990).

 small tidal oscillations of the order of 10 cm (Gun-
nerson and Özturgut 1974; De Filippi et al. 1986; Bü-
 and the Dardanelles Strait (Figs. 1a,b). It is essentially km length. The width varies between 0.7 and 3.5 km with an average value of 1.3 km at the surface. The
width reduces gradually towards the bottom of the channel to a typical average value of 500 m at a depth

 An approximate value of 50 m may, however, be considered a representative average depth along the central

The Bosphorus Strait exhibits distinguished geo-
metrical features associated with its width and depth variations. The constricted region found at about $10-$
12 km from its Marmara extremity, two sills located to the south of the constriction and immediately outside its northern exit to the Black Sea as well as the
abrupt termination of the channel at the southern end are the elements of the Bosphorus morphological structure influencing the ultimate form of the flow.
The constricted region starts at the Emirgan-Kanlica

946
reservoirs. The best known example of controlled flow conditions is the Strait of Gibraltar as described recently by Armi and Farmer (1988) or Farmer and Armi (1988), and La Violette and Arnone (1988). Further
examples of flows subjected to the internal hydraulic examples of flows subjected to the internal hydraulic conditions have been dealt with Farmer and Denton
(1985), Stacey and Zedel (1986), Wang (1987), Stigebrant (1981). The presence of internal hydraulic adjustment of the flow are inferred in the hydrographic transects by prominent asymmetries and rapid transitions of the interface depth as well as the locations of intense vertical mixing associated with the internal
hydraulic jumps.

A theoretical analysis of internal hydraulics for a steady, frictionless, immiscible, two-layer flow through a channel between two deep and homogeneous basins has been given by Farmer and Armi (1986), Armi and
Farmer (1987). Specifically, Farmer and Armi (1986) Farmer (1987). Specifically, Farmer and Armi (1986) describe how a sill and contraction (or abrupt expan-
sion of the channel width) found at its two ends act sion of the channel width) found at its two ends act
together to constrain the exchange flow and consequently lead to the conditions of maximal exchange quently lead to the conditions of maximal exchange
between the basins. In this way, the supercritical conditions on either side of the control sections isolate the two-layer exchange in the channel from the conditions in the adjacent basins. Depending on the average densities of the layers, the channel geometry and the magchannel, the critical controls determine the magnitudes of flows in the layers and the shape of the interface. yükay 1989). The northward baroclinic flow, on the other hand, is driven by the difference in density (which is predominantly governed by the salinity) between
the Marmara and the Black seas. Consequently, relatively fresh water of the Black Sea flows towards the Sea of Marmara on top of the oppositely flowing more saline and denser water of the Mediterranean Sea origin. On the basis of historical data, salient aspects of earlier by Únlüata and Og̈uz (1983) and Tolmazin (1985) and the references cited therein. In conjunction with a program for establishing the state of health and oceanography of the Turkish straits, mixing, stratifiliens snioudsog oul Jo sonsıIəวeieyo mol pue uoneo as well as its junction regions with the Marmara and black seas have recently been studied extensively in
the hydrographic surveys with a closely spaced station network (see Figs. 1b,c for the Bosphorus stations). The results of these investigations related with the regional physical oceanographic characteristics have been described in a series of reports (Özsoy et al. 1986, 1988;
Latif et al. 1988) and reviewed by Ünlüata et al. (1990). One of the interesting characteristics of the Bosphorus Strait, emerging from the hydrographic surveys, is the presence of some persistent features which may apparently be related with multiple hydraulic controls on the flow (see section 2). It is known that the horizontal and vertical constrictions as well as abrupt expansions in channel bathymetries may exert efficient controls on the flow in a channel between two deep

Fig. Ic. Plan view of the Marmara exit region of the Bosphorus
Strait and locations of the hydrographic stations referred to in the
The two-layer models reported by Assaf and Hecht (1974) and Sümer and Bakiogglu (1981) also deal with
steady, immiscible flows possessing critical controls at
the exit sections of an idealized channel. They addi-
tionally include frictional processes at the interface and
the bottom, and may therefore be regarded as the exFig. 2. Bathymetry of the southern exit region
of the Bosphorus Strait.

tension of the maximal exchange concept given in variations. The seasonal variations depend particularly號 changes (on the order of few days) occurring in reponse to prevailing wind conditions. The two-layer table density stratification is controlled by the salinity, and the temperature stratification is relatively unim-
 erized by cooler waters of Black Sea origin (minimum of about $4^{\circ}-5^{\circ} \mathrm{C}$) above relatively warmer Mediteranean waters $\left(14^{\circ}-15^{\circ} \mathrm{C}\right)$. A different temperature
 atively warmer surface layer waters and cold subsurface waters located above the transitional layer, overlying he lower-layer Mediterranean waters. The temperature
 by radiational heating, attains typical temperatures of by radiational heating, attains typical temperatures of

 eas жэe|g pasernu aqu a

 aking place in the Bosphorus Strait are delineated by the salinity transects shown in Figs. 3a-e. In these tran-

 (reduced) lower (upper) layer flow as a result of south(reduced) lower (upper) layer flow as a result of south3d,e. The strait and its adjacent junction regions are 3d,e. The strait and its adjacent junction regions are covered by fine resolution CTD daca boh in) vatained
 The stations shown in the transects correspond to deepest locations of the cross sections and are com-
pleted in approximately 6 h (see Figs. 1b,c for the locations of stations).

As may be noted in Fig. 3c, the interface may generally be identified by a transitional layer between the sharper at the northern part of the strait with an average thickness of about 5 m located at the depths of $40-50$
 part where significant changes take place with respect
to its position and stratification characteristics. The reto its position and stratification characteristics. The re-
gion to the south of the constricted region is characterized by intense vertical mixing, pronounced nonlin.
0
0
0
0
 in a total increase of about 3 ppt in the upper layer
 phorus exchange flow by a two-layer, steady, frictional, nonimear model. It incorporates the realistic wals of alongchannel salinity variations as well as the entrainment mechanism across the interface. The model is based on numerical iterative solutions of the continuity, ho the layers. The calculations start with prescribed critical condition at a known control section specified at of the Strait, and progress towards the Marmara and Black Sea extremities of the strait to determine the ayer-averaged currents and salinities as well as the tayer
thicknesses. In this respect, the model is similar to the imulation of a salinity intrusion in the Mississipp
 exit of the Strait into the Black Sea. It therefore can

 The present paper describes a numerical model to change mechanism in the Bosphorus Strait. A two-layer model appears to be adequate for this purpose and

 determining the locations of the internal hydraulic rameters, such as the densities at the adjacent basins, cation of the along-channel depth and width variations. The model incorporates mixing, frictional effects and
 of the maximal exchange.

The paper is organized as follows: a brief description with its internal hydraulics is described in section 2.
 carried out with the model are discussed in sections 3 and 4 , respectively. The summary and conclusions are presented in section 5

2. Hydrographic characteristics related with the in-

ternal hydraulics

salinity between the two ends of the strait. Towards Except for the extreme case presented in Fig. 3 e , all of the transects reveal some common features that may
 region, rapid changes are indicated at the position of the interface. The maximum changes occur exactly between stations B6 and B7 located close to each other. Here the interface slopes sharply upwards by about
$10-25 \mathrm{~m}$, suggesting possibly that the flow adjusts itself to the critical hydraulic condition and becomes supercritical immediately to the south of the control section.
 abrupt end, and the interface depth deepens to a po-
sition which would be normally attained in the absence sition which would be normally attained in the absence

 halines both within each layer and at the interfacial zone observed to the south of the control section im-
plies increased vertical mixing in the supercritical regime of the upper layer flow and the subsequent internal hydraulic jump.

Following the controlled flow conditions at the constriction region, rapid changes occur again in the shape of isohalines suggesting the presence of a second controlled flow situation near the southern end of the strait. The region between the southern sill and the Besiktas coast actually consists of a clockwise recirculation zone
in the surface layer extending farther south up to the
 in Fig. 2). The southerly flowing mainstream is therefore confined primarily into a narrow channel having depths of about 40 m on the opposite (Üsküdar) side
of the sill. Consequently, the upper layer flow accel-
 to internal hydraulic adjustment at this section of the strait as well as in the subsequent abruptly widening exit section into the Marmara Sea. These potential
controls are, in fact, so close to each other that if the
 percritical to the south, it may continue to be in the supercritical regime up to the Marmara exit region of

 tween stations B0 and M2). It may therefore be inferred

 the Mediterranean origin, it is seen that the dense water having salinities of about 38 ppt flows towards the north
in a progressively thinner layer. After it passes over the in a progressively thinner layer. After it passes over the
southern sill, it appears that a hydraulic jump or finite the southern end, the interfacial layer becomes much the surface layer flow eventually joins the Marmara exit region in the form of a shallow, turbulent buoyant jet. The surface layer has a thickness of $10-15 \mathrm{~m}$ and
salinities of 21-22 ppt at the southern exit region. The
 about 25 m , and proceed northward by flowing over
 B7). Thereafter, the rate of vertical mixing is insignif cant and the Mediterranean effluent joins the pre-Bos-
 Figure 3 b displays simila stronger flows entering into the strait from both ends. Consequently, the interface is relatively thinner and
sharper and therefore the interfacial mixing is less pronounced as compared to the previous case. The underflow passes over the northern sill with a salinity of
 helf as a dense gravity flow.
Figure 3a reflects an extre layer inflow from the Black Sea due to high northerly winds prevailing over the region in the last few days preceeding the survey. In this distinctly different case, mixed layer reaching depths of $60-65 \mathrm{~m}$ at the Black
 to the constricted region. As compared to the cases shown in Figs. 3b,c, where the outflow of Mediterrahigh rate of surface-layer inflow caused almost complete blocking of the underflow below the northern sill level. The maximum salinity measured just above the sill is about 25 ppt whereas it attains values of 36 ppt at the deepest level immediately upstream of the sill. In the southern half, the conditions are, however, quite
different as characterized by considerable vertical mixdifferent as characterized by considerable vertical mix-
ing of lower layer waters with the upper layer. The shape of isohalines implies that the lower layer inflow may only be advected partially towards north and returns partially back to the Marmara Sea. It is noted
that the underflow with salinity greater than 33 ppt is

Figures 3d,e denote to cases with higher rate of vertical mixing due to the intensified lower layer inflow, and weakened upper layer flow caused by the southery winds. The transitional layer becomes relatively thick
throughout the strait as compared with the much stronger interfacial contrast observed in the case of in-
 August 1989 survey (Fig. 3e) carried out one day after a strong southerly wind episode, the two layer straticarlier transects have changed substantially.

FIG. 3c. Salinity transect in the Bosphorus Strait for March 1989.

OĞUZ, ÖZSOY, LATIF, SUR AND ÜNLÜATA

Fig. 3d. Salinity transect in the Bosphorus Strait for December 1988.
amplitude lee wave forms at the downstream side of situated at levels deeper than the sill depth ($\sim 100 \mathrm{~m}$)
 and the thickness of the layer (Farmer and Freeland hydraulic adjustment of the underflow as mathemat-
1983). This feature is identified by the diffusive forms
ically shown by Pratt (1986).
 phorus internal hydraulics is only qualitative and solely based on the hydrographic measurements. Unfortunately, velocity measurements are not available at the
present to support the CTD measurements for establishing definitely the nature of the exchange taking place in the Bosphorus. From the foregoing discussion, it is seen that the
basic mechanism of the hypothetical internal hydraulics in some generality satisfies the requirement of the maximal exchange in the Bosphorus by the controls
imposed at the northern sill and the constriction, which

Fig. 3e. Salinity transect in the Bosphorus Strait for August 1989.
vertical axis, z, is directed upwards from the equilibrium level of the free surface. The initial reference positions of the interface and the impermeable channel
floor are respectively situated at $z=-h_{1}(x)$ and z floor are respectively situated at $z=-h_{1}(x)$ and z
$=-h(x)$. Displacements of the free surface and the $=-h(x)$. Displacements of the free surface and the
interface from their reference levels, as a response to a interface from their reference levels, as a response to a $\eta_{1}(x, t)$ and $\eta_{2}(x, t)$, respectively. The model incor-
 account for the width variations in the vertical. Invoking the hydrostatic, incompressibility and Boussinesq approximations, the governing equations can then be written as
$\partial\left(H_{1} B_{1}\right) / \partial t+\partial q_{1} / \partial x=B_{i}\left(w_{e 1}-w_{e 2}\right) \quad$ (1a) $\partial\left(H_{2} B_{2}\right) / \partial t+\partial q_{2} / \partial x=B_{i}\left(w_{e 2}-w_{e 1}\right) \quad(1 \mathrm{~b})$ $\partial q_{1} / \partial t+\partial\left(u_{1} q_{1}\right) / \partial x$
$\begin{aligned} & =-g B_{1} H_{1}\left[\partial P_{1} / \partial x\right]+B_{1}\left(\tau_{s}-\tau_{i}\right) / \rho_{0}\end{aligned}$
$+B_{1}\left(u_{2} w_{e 1}-u_{1} w_{e 2}\right)+\partial\left[N_{1} \partial q_{1} / \partial x\right] / \partial x \quad$ (2a) $\partial q_{2} / \partial t+\partial\left(u_{2} q_{2}\right) / \partial x$
$+B_{2}\left(u_{1} w_{e 2}-u_{2} w_{e 1}\right)+\partial\left[N_{2} \partial q_{2} / \partial x\right] / \partial x \quad$ (2b)
$\partial\left(H_{1} B_{1} S_{1}\right) / \partial t+\partial\left(q_{1} S_{1}\right) / \partial x=B_{i}\left(S_{2} w_{e 1}-S_{1} w_{e 2}\right)$ $+\partial\left[A_{1} \partial\left(H_{1} B_{1} S_{1}\right) / \partial x\right] / \partial x \quad$ (3a)
$\partial\left(H_{2} B_{2} S_{2}\right) / \partial t+\partial\left(q_{2} S_{2}\right) / \partial x=B_{i}\left(S_{1} w_{e 2}-S_{2} w_{e 1}\right)$ (ac) $x \rho /\left[x \rho /\left({ }^{\tau} S^{\tau} g^{\tau} H\right) e^{\tau} V\right] e+$
0
0.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 in the upper and lower layers, respectively. Here u_{k} is
 volume transport, S_{k} is the salinity, P_{k} is the pressure
in each of the layers; $B_{i}(x)$ signifies the width of the
 the entrainment velocities for the convective and tur-
bulent transfers between the layers in the upward and bulent transfers between the layers in the upward and
downward directions, respectively. ∂ signifies the partial

 thicknesses, H_{k}, the volume flow rates, q_{k}, and the shear stresses at the free surface, τ_{s}, at the interface, τ_{i}, at
the bottom, τ_{b} are defined respectively by
$4 a, b)$
(5) だ) ${ }^{(60)}$ are connected by a subcritical flow. The supercritical
condition downstream of the narrowest section would isolate the maximal exchange from the processes taking place farther south in the exit region, similar to the supercritical condition downstream of the northern sil isolating the exchange from the processes occurring in
the western Black Sea. The critical flow conditions takthe western Black Sea. The critical flow conditions tak therefore not influence the maximal exchange.
This form of the flow structure however reveals, as pointed out above, pronounced wind induced variations on time scales of a few days. Accordingly, the anticipated maximal exchange might continuously be in the process of time-dependent adjustment in response to the changing flow conditions. For example, in the case of sufficiently strong upper layer inflow caused by intense northerly winds from the Black Sea
 trol exerted by the northern sill is then apparently shifted farther south. On the contrary, during the weakening of the northerlies and relaxation of the blockage event, the control moves back to its regular
place at the sill crest. The other control which takes place at the constriction, in this case, continues to prevail and isolates the exchange from conditions farther

 - џппоs pue [i! ләло дsịisəd sә! the region and the upper layer flow is slowed down, the maximal exchange appears to be maintained by changing the position of the control at the constriction
 erlies lead to the flow reversals in the surface layer, the
whole water column moves in the northern direction

 of the effect of southerlies in the flow structure. The been reported in Latif et al. (1990).

3. Description of the model

 sentially similar to the two-layer model of Dardanelles model, however, incorporates additionally the salt transport equations and associated baroclinic pressure gradient terms in the momentum equations for the channel of variable depth and width. The channel is assumed to be sufficiently narrow so that a one-dimensional treatment is appropriate. All quantities in

The two layer formulation presented here is standard rameterization schemes of differing complexities have been proposed; e.g., for the mixed layer deepening due to the wind-generated turbulence in the upper ocean
(Krauss 1977 and references cited therein), or for var(Krauss 1977 and references cited therein), or for var-
ious classes of motions including dense bottom currents, free penetrative convection, horizontal and vertical buoyant flows (Pedersen 1980). Models dealing with turbulence in both layers and thereby incorporating entrainment in both directions are given by Thompson (1974), Abbott et al. (1978), Christodou-
lou and Connor (1980), Moller and Pedersen (1983), lou and Connor (1980), Moller and Pedersen (1983),
Kranenburg (1987). Following the work given by PeKranenburg (1987). Following the work given by Pe-
dersen (1980), a general formulation of the two way entrainment mechanism was recently presented by Sur (1988) and employed in the modeling of water exchange across the Dardanelles Strait (Oğuz and Sur
The transport equations for the turbulent kinetic energy (TKE) integrated across the layers are written
by following Pedersen (1980) and Sur (1988)
(10a)

$$
\left(\mathrm{PRD}_{1}-q_{1} \partial e_{1} / \partial x\right)-\mathrm{DIS}_{1}=\frac{1}{2} g^{\prime} H_{1} w_{e 1}
$$

(10b) where the terms on the left-hand sides represent re-
spectively the total productions of TKE by the vertical
shears in the mean flow, gain or loss due to the con-
vective transports by the mean flow and the rates of
TKE dissipation. These equations describe utilization
of the net energy transferred to turbulence from the
mean flow in the entrainment process. Neglecting rel-
atively insignificant increase in the TKE itself of the
entrained mass (Pedersen 1980), this entrainment is
associated with an increase in the level of potential
energy of the entrained water parcels represented by
the right hand sides of equations (10a,b). The efficiency
of this process is defined as the bulk flux Richardson
number, R_{f}, by Pedersen (1980) The explicit form of the production term in Eq. (11)
 Pedersen (1980), Oğuz and Sur (1989)
 $+\frac{1}{2}\left(u_{1}-u_{2}\right)^{2} w_{e 1} \quad(12 \mathrm{a})$
$\mathrm{PRD}_{2}=\left\{\left[\frac{1}{2}\left(u_{1}-u_{2}\right) \tau_{i}+\beta u_{2} \tau_{b}\right] / \rho_{0}\right\}$ (9ZI)

 Sounds by Abbott et al. (1978) on the basis of its two
dimensional formulation given by Grubert and Abbott dimensional formulation given by Grubert and Aboott (1972), in the coastal upwelling study described by
Thompson (1974), and in the Albeni Inlet circulation by Hodgins (1979).
In Eqs. ($2 \mathrm{a}, \mathrm{b}$), the integrated pressure gradient terms,
which include both barotropic and baroclinic contriwhich include both barotropic and baroclinic contri-
butions, are expressed by (Hodgins 1979)

$$
\left[\partial P_{1} / \partial x\right]=\partial \eta_{1} / \partial x+\frac{1}{2} H_{1} \beta_{S} \partial S_{1} / \partial x
$$

$\left.\partial P_{2} / \partial x\right]=\partial \eta_{1} / \partial x-(1-r) \partial \eta_{2} / \partial x$

where $r=\rho_{1} / \rho_{2}$ represents the ratio of the upper layer to lower layer density with ρ_{1} and ρ_{2} being related to
the salinities by the linear equation of state
(8)
The horizontal diffusion terms introduced in the momentum equations ($2 a, b$) are effectively used to smooth out any developing discontinuity in the form of a hydraulic jump and therefore to avoid invoking
jump conditions in order to continue the solutions bejump conditions in order to continue the solutions be ally have negligible contribution to the momentum budget of the layers except in the regions of internal hydraulic jumps where they make the numerical solution stable. The horizontal eddy viscosity, N_{k}, are 1986)
with α representing a disposable parameter chosen arbitrarily, and Δx being the horizontal grid increment.
The criterion adopted for setting the value of α is to choose its smallest possible value which provides a stable numerical solution. In order to avoid extra empricism in the model, the horizontal diffusion coefficients in Eqs. $(3 \mathrm{a}, \mathrm{b}), A_{k}$, are assumed to be same with the
horizontal eddy viscosities, and therefore we let $A_{k}=N_{k}$ $k=1,2)$. However, in the final discretization procedure of the salt transport equations, since the onesided scheme employed for the horizontal advection terms include some numerical diffusion, the physical diffusion is dropped from the formulation.

Formulation of the entrainment process for simu-
lating exchanges of mass and momentum between the lating exchanges of mass and momentum between the
layers is based on the analysis of turbulent and mean low energy interactions in the layers. For the case of

where Q_{L} and Q_{0} are the prescribed volume transports used to force the two-layer flow system at the Black h_{2} define the equilibrium depths of the upper and lower h_{2} define the equilibrium depths of the upper and lower
layers, respectively, with $h=h_{1}+h_{2}$ signifying the total undisturbed depth (see Fig. 4a). Application of similar conditions with somewhat different formulations have been given by Pearson and Winter (1984) and Kantha (1985).

Equations $(3 a, b)$ are complemented by the boundary
conditions which involve prescription of a salinity value conditions which involve prescription of a salinity value
of the inflowing water in a layer whereas the salinity of outflowing water is determined by the model by the use of Eqs. (3a,b). Therefore, we apply
$S_{1}=S_{1 L} \quad$ at $\quad x=L, \quad S_{2}=S_{20} \quad$ at $\quad x=0 \quad$ (15) where $S_{1 L}$ and S_{20} signify the prescribed salinities at the upper layer of the Black Sea end and at the lower layer of the Marmara exit, respectively.

The set of equations governing the model is discretized by the forward-in-time and centered-in-space explicit finite-differencing method. The horizontal advection terms in Eqs. ($3 \mathrm{a}, \mathrm{b}$) are treated by the one-
sided scheme referencing only to the upstream values sided scheme referencing only to the upstream values
of the salinities and transports. The implied numerical of the salinities and transports. The implied numerical
diffusion introduced by the one-sided scheme does

 the staggered grid so that the thicknesses and transports
in the layers are determined at consecutive grid points.
 the layer thicknesses are currently evaluated. әчt 'ว.npəooId uo!̣ez!

 and u_{2} are specified explicitly in terms of their known

 ume transports Q_{L} and Q_{0} as well as the interior response of the model (defined by the first terms on the

The model region is divided into a total of 85 sections separated from each other by a distance of 500 m . The the characteristic features of the Bosphorus morphology, are specified at each of these sections from navi-
gational charts. The representative bottom topography stresses and the third terms are related to the loss of he interface

Utilizing the TKE equations given by ($10 \mathrm{a}, \mathrm{b}$) and
he form of vertical production terms expressed by $(12 \mathrm{a}, \mathrm{b})$, the entrainment velocities in the upward and downward directions across the interface may be $o b$ ained from the definition of R_{f} in (11) as

$$
\left[\gamma W \tau_{s}+\frac{1}{2}\left(u_{1}-u_{2}\right) \tau_{i}\right] / \rho_{0}
$$

(13b)

 plies different weighting factors for each production
 R_{f}, used for the contribution of each production term

 Pedersen (1980). Utilizing an extensive set of laboratory and field data, Pedersen (1980) states the order of magnitude of the bulk flux Richardson number as $0.04<\mathrm{O}\left(R_{f}\right)<0.18$. This range of values is also in
accord with those given by Kullenberg (1977) and Bush (1981).

a. Boundary conditions

The strait is extended partially on both sides into the adjacent basins to locate the open boundaries further away from the actual exit sections so that the con-
tribution of northern sill region and the abruptly widening Marmara exit region in the formation of anticpated internal hydraulic adjustments of the flow can be simulated properly. Subcritical flow conditions are ing use of the radiation conditions similar to those prescribed in Ogguz and Sur (1989). At the Black Sea end of the model channel $(x=L)$, the radiation conditions take the forms
$\eta_{1}=(g h)^{-1 / 2}\left[h_{1} u_{1}+h_{2} u_{2}+2 Q_{1 L} / B\right] \quad(14 \mathrm{a})$ $=\left(h_{2} / h\right) \eta_{1}-\left(h_{1} h_{2} / g^{\prime} h\right)^{1 / 2}$
(qロI) $\cdot\left[\left(2_{y}^{l} y g\right) / y^{\tau 2} \bar{O}+\imath_{n}-i_{n}\right] \times$ Similarly, at the Marmara end of the channel $(x=0)$,
the conditions are
$\eta_{1}=-(g h)^{-1 / 2}\left[h_{1} u_{1}+h_{2} u_{2}+2 Q_{10} / B\right] \quad(14 \mathrm{c})$ $=\left(h_{2} / h\right) \eta_{1}+\left(h_{1} h_{2} / g^{\prime} h\right)^{1 / 2}$ period of the time integration. The eventual steady state
fields are established after typically $60-70$ hours of time fields are established after typically 60-70 hours of time
integration. In the steady state, all quantities (e.g., the layer thicknesses, volume and salt transports) show negligible differences between consecutive time steps. The model results are found to be independent from the initial conditions. The ultimate steady fields are developed within the strait as a response to the forcings through the boundary conditions. In particular, the
initial position of the interface which has been taken to be a linearly sloping interface within the channel is adjusted gradually to its final position in response to the prescribed boundary forcings. Furthermore, the any source/sink of salt, and the total salt flux through
 at the end of the time integration of about 60-70 hours.

4. Results of the model experiments

General features of the quasi-steady two-way ex-
change flow structure, resulting from steady forcings
prescribed at the Black Sea boundary of the upper layer
and at the Marmara Sea boundary of the lower layer,
are described in this section. The primary purpose of
the numerical experiments is to be able to identify the
general internal hydraulic features and their depen-
dence on the changing volume transports in the layers.
The volume transports specified in the numerical ex-
periments corresponds to their moderate range of val-
ues and therefore exclude cases with extremely high
upper and lower layer flows leading to the blockage of
either layer. The time dependent adjustment mecha-
nisms associated with short-term increases in the pre-
vailing wind conditions have also not been studied.
These will be covered separately in future studies.
The values of external parameters specified in the
model experiments are obtained on the basis of various

ncorporated into the model is given in Fig. 5b. The average widths for the layers are calculated from the
 ervals at each grid point. Subsequently, $B_{1}(x, t)$ and $B_{2}(x, t)$ are obtained by averaging through the layer epths specified according to the position of the interace at each grid point and at each time step. A repesentative width variations for a particular steady state position of interface is shown in Fig. 4b. The values of
various parameters used in the model are shown in วч1 u! tad 81 jo sat!u!es upper and 38 ppt in the lower layer are specified along the channel. These values correspond to their boundary
 ahead in time from an initial state of rest until all transients are dissipated at all grid points by the friction in the system and are radiated away through the open boundaries by the boundary conditions. The stability of the numerical scheme is secured by taking $\Delta t=10$ sec . It should be noted that the radiation conditions specified at the open boundaries are found very efficient in eliminating the transient response and establishment

Volume 20

result in very small values of $F_{1}{ }^{2}$. But, as the underflow urmounts the sill, F_{2}^{2} approaches unity and the critical

 1 km downstream of the control section with the highest values of G^{2} taking place at grid point 80 . There-

 eductions in G^{2} profiles from the maximal supercritcal values to those of subcritical simulate the discontinuous process of internal hydraulic jump.
The displacement of the control section from the be associated with frictional effects. Using a reduced gravity model for an underflow beneath an infinitely deep and motionless upper layer, Pratt (1986) demonstrates that the bottom friction moves a control section from the sill crest to a downstream position whose

 јо ләqшии әрполы эبиәш! the upper layer starts increasing and becomes unity between grid points 33 and 32, corresponding to the narrowest section of the channel. The upper layer flow then proceeds supercritically up to grid point 29 and
returns abruptly to the subcritical regime immediately returns abruptly to the subcritical regime immediately
south of grid point 28 . Towards the Marmara extremity of the strait, the subcritical values of G^{2} increase gradually from its typical values of 0.3 attaining just downstream of the hydraulic jump. A third internal hydraulic of the upper layer becomes unity between grid points 6 and 18 depending on the particular value of q_{0}. This region is approximately 3 km away from the Mar-
 section of the strait (cf. Fig. 1b and Fig. 2). The region
 2) and the southerly flowing mainstream is therefore confined into the narrow channel at the opposite
Üsküdar side (Özsoy et al. 1986). This recirculation
 this area as we approximate the upper-layer width structure (cf. Fig. 4b). Consequently, the shallower interface depth together with the strong currents, typically
in excess of $2.0 \mathrm{~m} \mathrm{~s}^{-1}$, flowing primarily through a in excess of $2.0 \mathrm{~m} \mathrm{~s}^{-1}$, flowing primarily through a critical control of the upper layer flow. The region of supercritical flow regime extends up to the Marmara about 5 km . Transition to the subcritical regime of the

sensitivity studies. It turns out that the typical values

 unaffected appreciably by the excessive horizontal friction. The values with $\alpha \gg 10$, introducing relatively stronger horizontal friction into the system, lead to in the regions of controlled flow interface and curre nu merical experiments, we set $\alpha=5$. The bottom friction coefficient appears not to be a sensitive parameter for literature, between 0.0010 and 0.0030 , the internal hydraulic characteristics of the flow remain unchanged

 value of C_{i} should be on the order of $\mathrm{O}\left(10^{-4}\right)$ for the Bosphorus. This is somewhat smaller than the values generally employed in numerical model studies, but

 estuaries and fjords. The basic parametric setting for The details of the model dependence on the external

peated.
For various values of the net barotropic flow, q_{0}, hrough the strait, the steady-state along-channel vari-

 the densimetric Froude number for each layer.

Figure 5a reveals the presence of three distinct re-
ions of supercritical $\left(G^{2}>1\right)$ flow along the strait. The lower layer water of Mediterranean origin flows subcritically $\left(F_{2}{ }^{2}<1\right)$ towards the northern exit region.

the other hand, when the width of the upper layer is supercritical values. Subsequently, the interface depths taken without excluding the recirculation zone, this rise in the region of the internal hydraulic jump. The region then no longer exhibits the internal hydraulic interface height profiles then show smooth variations in the subcritical region at the Black Sea extremity of the channel.

As the upper layer flow passes through the constricted region and the composite Froude number exceeds critical value, the interface profiles display con-
siderable upward tilting towards the free surface. Their shallowest positions ($\sim 15 \mathrm{~m}$) occur at grid point 29 corresponding to the region of maximal supercritical values of G^{2}. Farther south, in the adjustment region
of the upper layer flow to the subsequent subcritical of the upper layer flow to the subsequent subcritical m . As the upper layer flow reaches the southern exit region where G^{2} profiles have their most pronounced variations, the interface depths start rising towards the
free surface and the upper layer becomes shallower tofree surface and the upper layer becomes shallower to-
wards the exit section. Transition of the upper layer wards the exit section. Transition of the upper layer

 be in close agreement with the form of isohalines shown
in Fig. 3a-e

The corresponding distributions of the free surface along the strait, displayed in Fig. 5c, also show linear variations between the northern sill and the constricted region. This is followed by a region of considerable reduction in the free surface position with minimum values occurring at the point of the shallowest interface depth. Farther southward, the free surface is elevated
upwards in the transition region to the subcritical flow regime and then becomes shallower towards the Marmara exit of the strait. The difference in the free surface elevation between the northern sill and the constricted region varies considerably with the magnitude of net
barotropic flow and could be as much as about 40 cm .
 consistent with the internal hydraulic features described controis still preser layer flow. The contro, to the case, is still present but shifted

The model computations show that the northern sill and the southern exit regions always possess the critical
controls regardless of the value of q_{0}. The presence of internal hydraulic adjustment of the flow at the constricted region is however found to depend on the magnitude of the net barotropic flow. For example, for
the case $q_{0}=4380 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ shown in Fig. 5a, the composite Froude number at the constricted region does not exceed unity. In this case, the maximal exchange northern sill and the southern exit regions.

This feature of the numerical experiments supports he observational evidence that the hydraulic control at the narrowest section may disappear duning sunding generally to the calm periods of the late spring and winter months when the Black Sea inflow into the strait decreases substantially (Ozsoy et al. 1986). Depenficients is further shown in Fig. 6. Figure 5 b represents corresponding variations of the possesses almost linear variations along most part of the strait except strongly nonlinear, asymmetrical variations in the regions where G^{2} profiles yield critical ransitions. The interfaces are typically located about channel and tilt linearly upwards in the southern dichannel and tilt linearly upwards in the southern di-
 sill, as the lower layer flow undergoes critical transition,
 15әч

FIG. 6. Composite Froude number versus the net barotropic flow at grid point 32 for different
values of friction coefficients with $C_{b}=0.0023$ and (a): $C_{i}=0.0005(\mathrm{O}),(\mathrm{b}): C_{i}=0.0003(\square)$,
(c): $C_{i}=0.0001(\square)$ and with (d): $C_{b}=0.0010, C_{i}=0.0001(\nabla)$
These results may also give an indication for the Thost appropriate choice of the value of internal fric－
 control at the contraction occurs most of the time dur－ ing the year for a wide range of net barotropic flow conditions except for its sufficiently small values． Therefore，the choice of internal friction coefficient with $C_{i} \geqslant 0.0003$ would probably be unrealistic since the corresponding values of $q_{0}{ }^{c}\left(\geqslant 14000 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ would require unrealistically high values of the surface flow to give rise to controlled flow condition at the constricted region．
The internal hydraulic characteristics of the flow
have notable contributions to the vertical exchange have notable contributions to the vertical exchange

 critical controls．The upper layer flow is partially trans－ ferred into the lower layer in the supercritical region downstream of the northern sill control．The underflow
 si！of yoeq iəfen eas Yoelg jo lunowe awos solliea

 in this junction region．The upper－layer average salin－
ity，which has a prescribed value of 18 ppt at the Black

 － 7 ！⿺𠃊

 net barotropic flow in the strait，we present in Fig． 9

above．Figure 5d displays variations for two somewhat
extreme values of q_{0} corresponding to 4380 and 16600 $\mathrm{m}^{3} \mathrm{~s}^{-1}$ ．In the northern part of the strait where $F_{1}^{2} \ll 1$ and the interface attains almost linear variations（ex－ upper layer currents generally do not differ from each other and do not exceed $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ ．However，as the upper layer water of Black Sea origin passes through the control sections at the constricted region and the southern exit region，the upper layer currents accelerate and become much stronger，typically exceeding the values of about 2.0 m s ．Even in the absence of the
hydraulic control for the case of $q_{0}=4380 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ ，the

 regimes to the south of the critical controls． The currents in the lower layer are generally smaller than $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ and do not reflect much changes up to increase over the southern sill region．Significant changes are noted，however，in the northern sill region where the internal hydraulic control gives rise to ac－ celeration of the flow and thereby increase of the cur－ rents to the values about 1.5 m s ．The lower layer
currents decrease sharply to values less than $0.5 \mathrm{~m} \mathrm{~s}^{-1}$ as the flow decelerates and joins subcritically to the Black Sea shelf region．

山о
 of the friction coefficients．It essentially shows how the

 In the figure，the points with $G^{2}>1$ represent the su－

 value to give rise the hydraulic control．
Four different cases，designated by（a）－

Four different cases，designated by（a）－（d），are pre－
sented in Fig． 6 corresponding to four different set of

 cases and therefore imply that $q_{0}{ }^{c}$ increases with the

$(5 / \mathrm{E})_{\mathrm{E}} \mathrm{Ol} \times^{2} \mathrm{~b}$

$(0 \%)^{\circ}$'s

$\bar{\sigma}$

July 1990

Volume 20
$\frac{1}{2}\left(u_{1 s}^{2}-u_{2 s}^{2}\right)+g H_{1 s}=\frac{1}{2}\left(u_{1 c}^{2}-u_{2 c}^{2}\right)+g^{\prime} H_{1 c} . \quad$（20）

Therefore，given the geometry of the strait at the control

 sections（i．e．，$h_{s}, h_{c}, B_{1 s}, B_{2 s}, B_{1 c}, B_{2 c}$ ），the densities of the layers leading to the specification of the reduced gravity $g^{\prime}=g\left(1-\rho_{1} / \rho_{2}\right)$ ，and the net barotropic flowq_{0}, the internal hydraulic theory of FA provides the interface positions at the control sections（ $H_{1 s}, H_{2 s}$ ， $H_{1 c}, H_{2 c}$ ）and the currents in the layers（ $u_{1 s}, u_{2 s}$ ， $u_{1 c}, u_{2 c}$ c．

For the given values of the input parameters specified
in Table 2，the computed layer transports as a function of q_{0} for different set of the width values are shown in Fig．10．The q_{1} and $-q_{2}$ curves numbered 1 correspond to the case having similar width values employed in
the numerical model computations．Comparing the the numerical model computations．Comparing the әчұ ๆ！

 diction of higher flow rates by the analytical model is to be expected．However，the difference between nu－

 the net barotropic flow．For example，the blockage of
the lower layer，in which $q_{2}=0$ at the sill crest，occurs
 whereas the FA analysis provides the same condition

As also pointed out by Farmer and Armi（1986），
the model results are quite sensitive to the width vari－

¢วદ	¢てE	S
¢LE	SLE	¢
SZち	Sで	ε
SZb	S \angle ¢	τ
¢で	OSS	1
（w）${ }^{\prime} g$	（w）${ }^{1} \mathrm{~g}$	Ose3
	$z^{\text {s }} \mathrm{s}$ u $2100=8$	

$\stackrel{6}{6}$ （LI）$\quad{ }^{v^{\prime}} \mathcal{Y}={ }^{{ }^{n}} \quad H+{ }^{{ }^{n}} H$ where the subscript a denotes either s for the sill or c for the contraction where these conditions are both

（18a）
（19）

$u_{1 c} H_{1 c} B_{1 c}=u_{1 s} H_{1 s} B_{1 s}$

 ${ }^{s} \boldsymbol{g}^{s \tau} \boldsymbol{H}^{s \tau_{n}}={ }^{\nu} \boldsymbol{g}^{\nu} \boldsymbol{H}^{\tau_{n}}$ ${ }^{0 b}={ }^{s z} g^{s z^{2}} H^{s z} n+{ }^{s_{1}} g^{s l} H^{s I} n$
 specifications at the narrowest section. It is clear that the layers depending on the net barotropic transport through the strait. The form of exchange may, therefore, be fully governed by conditions within the strait Depending on the average densities of the layers, the

 termine the magnitudes of flows in the layers and the
shape of the interface established in the channel. shape of the interface established in the channel. controls at the northern sill and the abruptly widening Marmara exit regions. Presence of a control at the constricted region, however, depends on the magnitude of
the net barotropic flow passing through the strait. It is

 of controls exercised at the northern sill and the south-灾灾

The computed distributions of layer-average salin-
ties show how the mixing and stratification characities show how the mixing and stratification charac-
teristics along the strait may be influenced by the in-

 of the northern control, some of the upper layer water of the Black Sea is entrained into the lower layer and
carried back to the sea of origin. In the constricted
 when there exists sufficiently large net barotropic flow

 region where the channel expands abruptly to the Marmara Sea. The model computations show that almost

 the upper layer. Consequently, the upper layer salinity
 ern exit region. The lower layer salinity of 38 ppt at

 that the Mediterranean effluent is diluted to a consid-

 on the values of friction coefficients adopted in the suoisnjauos pue Kiruums © \subseteq

Recent hydrographic observations obtained in the that may be related to the internal hydraulics. The asymmetric forms of the interface depth, indicated by the distribution of isohalines in the salinity transects, imply a series of internal hydraulic adjustments of the
flow by features such as sills, the bottom topography, and contraction and abrupt expansion of the channel width.

The anticipated hydraulic conditions in the strait are analyzed by a two-layer, laterally averaged numer-
ical model. The computed profiles of the interface depth and the salinities in each layer are found to be in accord with the observed flow structure inferred by possesses three distinct regions of supercritical flow as anticipated in the hydrographic surveys. The lower a progressively thinning layer and is eventually controlled by the sill found immediately outside the Black Sea extremity of the strait. The upper layer water of
 controlled upon reaching the constricted region and near the abruptly widening southern extremity of the in the southern sill region and extends up to the Mar-
 The controls exerted by the northern sill and the con-
traction are separated by a subcritical region whereas the supercritical conditions downstream of these con-

Acknowledgments. This work was partially supported by the Greater City of Istanbul Water and Sewerage Administration

Abbott, M. B., H. Schroder and I. R. Warren, 1978: Modelling of the salinity intrusion in the Sound between Denmark and
Sweden. Proc. Int. Conf. on Water Resources Engineering Armi, L., and D. M. Farmer, 1987: A generalization of the concept

14680 . 1988. The flow of Mediterranean water through the , and - 1988: The flow of Mediterranean water through the

Assaf, G., and A. Hecht, 1974: Sea-straits: A dynamical model. DeepBalloffet, A., and D. Borah, 1985: Lower Mississippi salinity analysis. Bush, E., 1981: On the entrainment and vertical mixing in stably Büyükay, M., 1989: The surface and internal oscillations in the Bosphorus, related to meteorological forces. M.S. thesis, Inst. of
Mar. Sci., Middle East Technical University, 169 pp. ristodoulou, G. C., and J. J. Connor, 1980: Dispersion in two-
layer stratified water bodies. J. Hydraul. Div. ASCE, 106, $557-$
 Yüce, 1981: Oceanographic and hydraulic investigation of the
Bosphorus. Final Report, submitted to the Irrigation Unit of Bosphorus. Final Report, submitted to the Irrigation Unit of
the Turkish Scientific and Technical Research Council, Istanbul

De Filippi, G. L., L. Iovenitti and A. Akyarli, 1986: Current analysis
gress, Venice.
Farmer, D. M., and H. J. Freeland, 1983: The physical oceanography
of f jords. Progress in Oceanography, Vol. 12, Pergamon, 147-
220. -_, and W. A. Denton, 1985: Hydraulic control of flow over the computations. In general, the computed values of transport rates and elevation differences are consistent with those reported in earlier studies (cf. Tolmazin
1985; Özsoy et al. 1986).
 provided by the FA analytical approach. The difference tends to become larger for increasing values of the net barotropic flow. The analytical model results are also sensitive to the values of widths specified at the sill
 apparently yield substantial changes in the resulting flow rates. In the case of northerly flowing net baro-
tropic flow, the upper layer is arrested at the constrictropic flow, the upper layer is
tion siderably large values of the lower layer transport, cor-

The two-layer model described in this paper explains successfully the basic features of the quasi-steady flow structure and associated mixing and stratification characteristics in terms of internal hydraulics of the exchange flow. A summary of the main elements of the Bosphorus internal hydraulics, which emerge from both observations and the numerical model studies,
are schematically depicted in Fig. 11.

The two layer idealization of the flow structure has a deficiency that the hypothetical control over the
southern sill can not be resolved properly by the model. Near the southern end of the strait, due to the intense vertical mixing, the surface and bottom layers are separated by a relatively broad interfacial layer. A three layer extension of the present model, which incorporates the transitional layer separately and therefore eads to a better approximation of the bottom layer, is necessary to simulate the possible control at the south-

and through the combination of a sill and contraction with Özsoy, E., T. Oğuz, M. A. Latif and Ü. Ünlüata, 1986: Oceanography barotropic flow. J. Fluid Mech., 164, 53-76. of the Turkish Straits. First Annual Rep., Institute of Marine Sciences, Middle East Technical University, Vol. 1, 269 pp.
-
ography of the Turkish Straits. Second Annual Rep. Institute of Marine Sciences, Middle East Technical University, Vol. 2,
269 pp.
Pearson, C. E., and D. F. Winter, 1984: On tidal motion in a stratified inlet, with particular reference to boundary conditions. J. Phys.
Pedersen, F. B., 1980: A monograph on turbulent entrainment and friction in two-layer stratified flow. Inst. Hydrodynamics and Hydraulic Engineering, Technical University Denmark, Ser. Pap. No. 25, 397 pp.
Pratt, L. J., 1986: Hyd
Pratt, L. J., 1986: Hydraulic control of sill flow with bottom friction. J. Phys. Oceanogr., 16, 1970-1980.
Stacey, M. W., and L. J. Zedel, 1986: The
Stacey, M. W., and L. J. Zedel, 1986: The time-dependent hydraulic flow and dissipation over the sill of observatory inlet. J. Phys. Oceanogr., 16, 1062-1076.
Stigebrant, A., 1981: A mechanism
Stigebrant, A., 1981: A mechanism governing the estuarine circulation in deep, strongly stratified fjords. Estuarine Coastal Shelf Sci., 13, 197-211.
Sur, H. İ., 1988:
Sur, H. I., 1988: Numerical modelling studies of two-layer flows in the Dardanelles Strait and the Bay of Izmit. Ph.D. thesis, Institute
of Mar. Sci., Middle East Technical University, 245 pp . Sümer, M., and M. Bakioglu, 1981: Sea-strait flow with special reference to Bosphorus. Tech. Rep., Faculty of Civil Engineering,
Technical University of İstanbul, 25 pp .
Thompson, J. D., 1974: The coastal upwelling cycle on the betaplane hydrodynamics and thermodynamics. Techn. Rep., Flor-
ida State University, Mesoscale Air-Sea Interaction Group, 141 pp.
Tolmazin, D., 1985: Changing coastal oceanography of the Black Sea. Part II: Mediterranean effluent, Progress in Oceanography,
Vol. 15, 277-316.
Ünlüata, Ü., and T. Oğuz, 1983: A review of the dynamical aspects of the Bosphorus. On Atmospheric and Oceanographic Circulation of the Mediterranean, H. Charnok, Ed., in press.
-, ography of the Turkish Straits. The Physical Oceanography of Sea Straits, L. J. Pratt, Ed., NATO/ASI Series. Kluwer. Wang, D. P., 1987: Strait surface outflow. J. Geophy. Res., 92, $10807-$

