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Abstract

In process industry, liquid flow rate is one of the important variables which need to be controlled to obtain the better 
quality and reduce the cost of production. The liquid flow rate depends upon number of parameters like sensor output 
voltage, pipe diameter etc. Conventional approach involves manual tuning of these variables so that optimal flow rate can 
be achieved which is time consuming and costly. However, estimation of an accurate computational model for liquid flow 
control process can serve as alternative approach. It is nothing but a non-linear optimization problem. In this work, three 
different improved versions of original elephant swarm water search algorithm (ESWSA) is proposed and tested against 
the present problem of liquid flow control. Equations for response surface methodology and analysis of variance are 
being used as non-linear models and these models are optimized using those newly proposed optimization techniques. 
The statistical analysis of the obtained results shows that the proposed MESWSA has highest overall efficiency (i.e. 45%) 
and it outperformed the others techniques for the most of the cases of modeling for liquid flow control process. But one 
of the major disadvantages of MESWSA is its slow convergence speed. On the other hand, ESWSA is better for finding 
the best fitness and LESWSA has better stability in output. Moreover, LMESWSA is found to be best efficient algorithm 
with respect to success rate and computational time. However, all algorithms and models can predict the liquid flow 
rate with satisfactory accuracy.

Keywords Liquid flow control process · Parametric optimization · Elephant swarm water search algorithm (ESWSA) · 
Response surface methodology (RSM) · Analysis of variance (ANOVA)

1 Introduction

In most of the process industries like refinery process, 
sugar cane, oil etc. liquid flow rate is one of the crucial 
factors which need to always control during the process to 
obtain the better quality and reduction in production cost 
[1, 2]. As the liquid flow rate in a process industry depends 
upon a number of parameters, the process can give the 
unexpected and inefficient output if settings of param-
eters are improper.

Most of the industrial process controls are multi-
variable and to optimize a system performance through 
the classical method is unreliable time-consuming 
and costly. In classical optimization approach, when a 
response is measured with respect to the influence of a 
particular variable, then other variables are to be kept 
constant. So, interactiveness between the variables are 
absent here. Hence, there is always a chance of get-
ting response, influenced by individual independent 
variables. The total number experimental trials should 
be increased increased that can help to overcome this 
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disadvantage. But, it also increase the cost of the pro-
duction and time requirement. Another alternative 
approach is computational optimization of the process 
i.e. mathematical modeling of the process to establish 
the relationship between input and output using differ-
ent computational intelligence techniques. The model is 
based on experimental or available input–output data. 
Once the data are obtained, computational techniques 
are applied on the data to establish the model that can 
predict the outputs of the process with satisfactory accu-
racy. Normally, in a liquid flow control process, flow rate 
depends on several important factors like sensor output, 
pipe diameter, liquid conductivity, liquid viscosity etc. 
In this present investigation, mathematical models are 
developed and optimized (for above mentioned varia-
bles) computationally such that it can describe the liquid 
flow control process in efficient manner.

Conventionally, flow rate is calculated by using ane-
mometer type flow sensor [3], ultrasonic flow sensor [4], 
thermal flow sensor [5] etc. Due to high measuring accu-
racy and very short response time, anemometer type 
thermal flow sensor has been widely used in aerospace, 
oil refinery, natural gas etc. for standard measurement. It 
has been challenge to improve the performance of flow 
sensor in the field of flow measurement when issues like 
pipe diameter and the other liquid properties changed. As 
input parameters estimation of a liquid flow rate system is 
a typical example of non-linear optimization problem, so 
an efficient optimization technique is required to optimize 
the model parameters such that experimental curve fits 
best with the experimental flow rate. The accuracy of the 
extracted input parameters depends on the selection of 
suitable optimization technique. A number of literature 
surveys are conducted on the different types of optimiza-
tion techniques applied in flow rate control system.

Salaymeh et al. [5] proposed an optimized artificial neu-
ral network model to determine the velocity of the gas in a 
pipe for known experimental data inputs thermal flow sen-
sor voltage and the fluid temperature. Bera et al. [6] have 
given a comparative study done between the matched 
pair transistors flow meter and platinum resistance tem-
perature detector. The results showed a linear relationship 
between the sensor output and flow rate; whereas for the 
turbulent flow the relation was found to be nonlinear in 
nature. Bera et al. [7] investigated the characteristics of a 
semiconductor based Anemometer type flow meter from 
liquid flow rate. To eliminate the nonlinearity relation 
between the flow rate and sensor output a signal condi-
tioning circuit along with the instrumentation amplifier is 
utilized. Santhosh et al. [8] proposed an optimized neural 
network model for ultrasonic sensor which was adaptive 
to the variations in pipe diameter, liquid density, and liquid 
temperature.

Dutta et  al. [4] designed an intelligent fuzzy logic 
model for ultrasonic flow sensor to determine the flow 
rate known for experimental inputs namely pipe diam-
eter, liquid density and temperature. This model not 
only produce a full scale linearity between sensor output 
and flow rate but the minimum root mean squared error 
(RMSE) adjusted by the model is up to 7.72%. Application 
of intelligent fuzzy logic controller is proposed by Dutta 
et al. [9] to predict the flow rate in anemometer flow sen-
sor in liquid flow process system. They applied the differ-
ent number and different nature of membership function 
to optimize the flow rate. From the experimental result 
analysis, it was seen that least RMSE is 7.98%. Dutta et al. 
[10] used artificial neural network (ANN) for prediction of 
liquid flow rate passing through the anemometer sensor 
in a liquid flow process. A feed forward neural network 
model was developed exploiting experimental measure-
ments. The neural network model was trained and tested 
using MATLAB toolbox. The results predicted from ANN 
model was compared with experimental measurements. 
Investigation shows that the maximum RMSE is 2.94% for 
learngdm adaptive learning function and trainlm training 
function with a good correlation. Dutta et al. [11] proposed 
SVM and KNN algorithm to classify data and get prediction 
(find hidden patterns) for target. Here they used nominal 
data to classify in liquid flow process control system and 
discover the data pattern to predict future data sets.

Moreover, Dutta et  al. [12] investigated a hybrid 
Genetic Algorithm-Neural network (GA-ANN) model. 
It was employed for the prediction and optimization of 
liquid parameter, Anemometer sensor output and pipe 
diameter. From the numerical results, it was observed 
that among the three different selection process, rank 
selected hybrid GA-ANN model is better than the other 
two selections Tournament and Roulette wheel with accu-
racy 98.42% of final solutions. Next, Dutta et al. [13] exam-
ined anemometer thermal sensor based process model 
for optimizing the flow rate. Results were in good agree-
ment with the experimental results and can be applied 
to predict the performance of mass flow sensor. For the 
best ANFIS structure RMSE and MAE were calculated as 
2.143 and 0.504% respectively. Next, Dutta et al. [14] also 
designed a model of liquid flow processes using ANN and 
optimized it using a flower pollination algorithm (FPA) to 
improve the accuracy and convergence speed. In the first 
phase, the NN model was trained by the dataset obtained 
from the experiments and model response was cross-
verified with the experimental results and found to be 
satisfactory. In the second phase of work, minimum flow 
rate was found for the optimized conditions of sensor 
output voltages, pipe diameter and liquid conductivity. 
Accuracy after cross-validation and testing sub datasets 
was nearly 94.17% and 99.25% respectively. Simulation 
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results showed satisfactory accuracy of the proposed 
technique. However, there is still scope of improving the 
results. Therefore, estimation of a highly accurate model 
for describing a liquid flow control process is still an open 
problem to us.

For a liquid flow control process, the relationship 
between output (i.e. liquid flow rate) with the input vari-
ables (i.e. sensor output voltage, pipe diameter, liquid 
conductivity, liquid viscosity etc.) are assumed to be 
non-linear in nature [1]. Several nonlinear models [15] 
like regression analysis, response surface methods, analy-
sis of variance (ANOVA) [16] etc. are very popular where 
polynomial, logistic, quadratic, exponential, logarithmic, 
power etc. equations can be used to represent behavior 
of a system [17]. During numerical extraction method, an 
efficient optimization technique is required to optimize 
the model parameters such that experimental output fits 
best with the simulated output. Therefore, accurate mod-
eling of liquid flow control process is a typical example of 
nonlinear optimization problem where we need to identify 
optimal values of the model parameters. The accuracy of 
the extracted parameters depends on the selection of suit-
able optimization technique.

Metaheuristic [18, 19] is one of the most popular sub-
class optimization techniques where optimization pro-
cesses are typically inspired by physical phenomena, 
animals’ behaviors or evolutionary concepts. Most popu-
lar and efficient subclass of metaheuristics is the Swarm 
Intelligence (SI) based methods. These algorithms mostly 
mimic the social behavior of swarms, herds, flocks, or 
schools of insects and animals in nature where the search 
agents navigate using the simulated collective and social 
intelligence of creatures [20]. Simplicity, flexibility, deriva-
tion-free mechanism and local optima avoidance capabil-
ity are the main reasons behind popularity of metaheuris-
tics. These characteristics make metaheuristics greatly 
appropriate for real-life optimization problems. Most pop-
ular SI based metaheuristics are as follows: Particle swarm 
optimization (PSO) [21], Bat Algorithm (BA) [22], Cuckoo 
Search (CS) [23], Flower Pollination Algorithm (FPA) [24], 
Firefly Algorithm (FA) [25], Ant Colony Optimization (ACO) 
[26], Artificial Bee Colony (ABC) [27] etc. However, No Free 
Lunch theorem [28] stated that no single metaheuristics 
is suitable for solving all kinds of optimization problems. 
Therefore, proposing new metaheuristics or modification 
of existing one (with better convergence speed, better 
accuracy, lesser computational time, lesser number of 
parameters to be tuned, better exploration and exploita-
tion capability) is still very fascinating field of study to the 
computer science researchers to solve a real-life optimiza-
tion problem like modeling of liquid flow control process.

Elephant swarm water search algorithm (ESWSA) 
[29–31] was recently proposed metaheuristic which 

was inspired by water resource search strategy of intel-
ligent and social elephant swarm during drought. The 
metaheuristic was very simple in nature. As there were 
only a few parameters needed to be set in ESWSA, the 
metaheuristic can be applied easily and less concen-
tration can be given to the parameters tuning. So far, 
ESWSA was applied on many problems in different 
disciplines successfully, such as three-bar truss design 
problem [30], spring design problem [30], reverse engi-
neering of gene regulatory network [29] and modeling 
of welding process [31].

The main objective of this work is to propose or develop 
some efficient optimization techniques such that we can 
model (computationally) the liquid flow control pro-
cess accurately and reliably. In this study, three different 
improved versions of original ESWSA metaheuristic have 
been proposed (by introducing the varying Switching 
Probability along with iteration and Lévy based global 
search). These improved versions of ESWSA are tested 
against the problem of modeling of liquid flow control 
process. Here, response surface methods (RSM) and analy-
sis of variance (ANOVA) are used as the mathematical mod-
els for modeling of liquid flow control process. The details 
of the ANOVA and RSM based are discussed in next sec-
tion. The models parameters are needed to be optimized 
using improved versions of ESWSA. The rest of this paper 
is organized as follows. Section 2 describes the problem 
formulation of this research work for modeling of liquid 
flow control process. In this section, the experimental 
setup of liquid flow control is described in order to obtain 
the experimental data. Different nonlinear mathematical 
models for liquid flow control process are also elaborated 
here. Next, the proposed improved versions of ESWSA 
metaheuristic are discussed in methodology section. In 
Sect. 4, simulated results, discussions and comparisons are 
given. Advantages and disadvantages of these improved 
versions of ESWSA are also discussed. Finally, Sect. 5 con-
cludes this paper followed by the references.

2  Problem formulation

In this section, present research problem has been elabo-
rated. Initially, laboratory experimentation on liquid flow 
control process is described from where experimental 
dataset has been obtained. This experimental dataset has 
been used as training data for the computational optimi-
zation of nonlinear models for the liquid flow control pro-
cess using suitable metaheuristics. Next, two popular non-
linear model have been discussed in brief those are used 
in this present investigation. Metaheuristics are needed 
to be used for parametric optimization of these models.
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2.1  Experimentation in laboratory

Initially experimentation on liquid flow control process 
has been performed on laboratory to generate the experi-
mental data. Liquid Flow and Level Measurement and Con-

trol Unit has been used for this purpose which is shown 
in Fig. 1. This unit (Model No. WFT-20-I) consists of pump, 
water reservoir, flow rate indicator, control valve, water 
tank and Anemometer type flow sensor.

The experimental set up for the liquid flow control pro-
cess is given in Table 1 where different machine or tools 
and their corresponding specification or descriptions are 
shown.

In the present investigation, the liquid velocities meas-
ured are in the range of 0–600 lpm. Flow sensor voltages 
are calibrated against liquid flow a velocity which is deter-
mined by a special mass flow control unit. Overall tem-
perature variation of the liquid is typically less than ± 0.5 °C 
from the room temperature during the course of the entire 
experiment. The purpose of water flow control process is 
to keep the water flow in the tube at a desired rate and 
track the reference trajectory. Here, water is considered as 
the experimental liquid to check the non-linearity of the 
cylindrical tank. Reservoir tank collects the water which 
is pumped to the cylindrical tank through a PVC pipe. DC 

motor is connected in reservoir to drive the system. The 
rate of change of the water flow is measured in Rota-meter 
indicator or anemometer type flow sensor. A nonlinear 
electrical signal is achieved across the non-contact type 
liquid flow sensor connected at the end of the PVC pipe. 
Transistor based flow sensor is used where four transistors 
connected in a diametrical plane of the PVC pipe to form a 
bridge type full wave rectifier. Change in water flow affects 
the output of the sensor signal. Water from the sensor falls 
into the cylindrical tank, which is again connected to the 
main water reservoir through a pipe so that cyclic process 
is formed. Pneumatic control valve allows water flow into 
the tube from the tank and causes flow rate change in the 
tube. The operation is repeated throughout the control 
process till the water flow rate in the tube is set to refer-
ence. A reference trajectory or flow rate is first set to be 
followed by the system. From the above experimental pro-
cedure, different water flow rate are obtained with respect 
to the variation of sensor output voltage under the differ-
ent combination of pipe diameter.

For this work, total 36 sample data has been observed. 
The data consist of two inputs or independent variables 
i.e. sensor output voltage and pipe diameter. During the 
experimentation, three different set of pipe diameter i.e. 
20 mm, 25 mm and 30 mm are considered. For each of the 
cases of diameter, 12 different flow rate are observed as 
experimental output data for 12 different sensor output 
voltage. The liquid viscosity and conductivity are assumed 
to be constant as overall temperature variation of the liq-
uid was typically less than ± 0.5 °C from room temperature 
during the course of the entire experiment. The experi-
mental data are shown in Table 2. This dataset can be used 
as the training dataset during computational optimization.

2.2  Theoretical background: mathematical 
description of the problem

Due to nonlinear characteristics of the semiconductor 
based Anemometer flow sensor, variation of sensor out-
put voltage has been observed with the change in liq-
uid flow rate [32]. Moreover, sensor output voltage also 
depends on the pipe diameter (partially depends upon Fig. 1  Liquid flow and level measurement and control unit

Table 1  Experimental Setup for 
liquid flow control process

Machine/tools Specification/description

Process control setup flow and level measurement and 
control

Model no. WFT-20-I

Anemometer flow sensor Designed by the SL 100 transistor

PVC pipe Diameter with 20 mm, 25 mm and 30 mm

Digital multimeter 3 1/2

Rota meter Taking the reading of the flow rate rang-
ing 0–600 lpm
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the density and conductivity of liquid which are ignored in 
this work for their less significance). So, it is very difficult to 
recalibrate the conventional controller circuit each time if 
change in pipe diameter and the process is also very time 
consuming.

To overcome such type of drawbacks (i.e. manual recali-
bration), some mathematical models for liquid flow control 
process are needed to developed using some computa-
tional intelligence tools. These mathematical models are 
based on nonlinear relationship between liquid flow rate, 
sensor voltage and pipe diameter. These models will help 

to find out the optimal operating condition and to pre-
dict the flow rate under particular condition (i.e. for differ-
ent values of pipe diameter and sensor voltage) without 
recalibration. In this work, we have considered two widely 
popular nonlinear models namely response surface meth-
odology (RSM) [33, 34] and analysis of variance (ANOVA) 
[35] to describe the relationship between variables of liq-
uid flow control process.

RSM [31] is a statistical model, generally used for empir-
ical model building and analyzing a problem. The most 
extensive applications of RSM are in the particular situa-
tions where several input variables potentially influence 
performance or response of the process. In RSM, higher 
order polynomial equation is used to describe the rela-
tionships amongst variables. The second order models are 
flexible and can take on wide variety of functional forms. 
Therefore, in this present problem of RSM based modeling, 
the liquid flow rate ( F ) can be expressed in term of sensor 
output (E), pipe diameter (D) using RSM based model as 
follows:

where �
0
 , �

1
 , �

2
 , �

11
 , �

22
 and �

12
 are the regression coef-

ficients. Values of the coefficients are needed to be esti-
mated using some computational intelligence techniques 
from the experimental dataset.

ANOVA [35] is used to test for significant differences 
among sample without assuming any parametric rela-
tionships. In ANOVA, the relationship between the vari-
ables can be expressed in term of nonlinear power equa-
tions. In this present case, the liquid flow rate (F) can be 
expressed in term of sensor output (E), pipe diameter (D) 
using ANOVA based model as follows:

where �
1
 , �

2
 and �

3
 are the coefficients for this ANOVA 

based model. These values are needed to be estimated 
using some computational intelligence techniques from 
the experimental dataset.

2.3  Theoretical background: optimization 
of the mathematical model

Finding out the accurate values of coefficients of nonlinear 
model (i.e. Eqs. 1 and 2) of liquid flow rate is essentially a 
nonlinear optimization process. Normally, metaheuristics 
can be used for this type of optimization such that calcu-
lated characteristic of liquid flow control process fit with 
the experimental one. The estimation task aims to seek 
the most optimal values of the model parameters so that 
the difference between measured and simulated flow rate 
is minimized. In this work, root mean square of the error 

(1)

F = �
0
+ �
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⋅ E + �

2
⋅ D + �

11
⋅ E
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+ �

22
⋅ D

2
+ �

12
⋅ E ⋅ D

(2)F = �
1
⋅ E

�2
⋅ D

�3

Table 2  Experimental dataset for liquid flow control process

Sl. no. Sensor output 
( E ) in V

Diameter ( D ) 
in m

Experimental 
flow ( F ) in lpm

1 0.216 0.025 0.0008

2 0.218 0.025 0.0016

3 0.219 0.025 0.0024

4 0.225 0.025 0.0032

5 0.229 0.025 0.0040

6 0.233 0.025 0.0048

7 0.234 0.025 0.0056

8 0.237 0.025 0.0064

9 0.241 0.025 0.0072

10 0.244 0.025 0.0080

11 0.245 0.025 0.0088

12 0.247 0.025 0.0096

13 0.207 0.020 0.0008

14 0.208 0.020 0.0016

15 0.209 0.020 0.0024

16 0.211 0.020 0.0032

17 0.212 0.020 0.0040

18 0.214 0.020 0.0048

19 0.215 0.020 0.0056

20 0.218 0.020 0.0064

21 0.219 0.020 0.0072

22 0.223 0.020 0.0080

23 0.225 0.020 0.0088

24 0.227 0.020 0.0096

25 0.226 0.030 0.0008

26 0.228 0.030 0.0016

27 0.230 0.030 0.0024

28 0.234 0.030 0.0032

29 0.237 0.030 0.0040

30 0.239 0.030 0.0048

31 0.243 0.030 0.0056

32 0.246 0.030 0.0064

33 0.248 0.030 0.0072

34 0.252 0.030 0.0080

35 0.255 0.030 0.0088

36 0.256 0.030 0.0096
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(RMSE) is used for this purpose which is shown in Eq. (3). 
This RMSE is the objective function for the metaheuristic 
which is needed to be minimized.

where N is the number of the experimental data, X is the 
set of the estimated parameters.

For RSM based modeling, the error function f
(

Ei ,Di , X
)

 
and set of parameters X can be written as

For ANOVA based modeling, the error function 

f
(

Ei ,Di , X
)

 and set of parameters X can be expressed as

F is the experimental data.
Obviously, smaller value of the objective function 

gives better solution which corresponds to superior set of 
estimated coefficients of RSM and ANOVA based model. 
The main objective of this work is to develop an efficient 
metaheuristic such that we can predict the liquid flow rate 
more accurately (by estimating the optimal or best set of 
values for the model parameters). In this research work, 
we have used basic elephant swarm water search algo-
rithm (ESWSA) optimization technique [30] and its three 
improved versions of ESWSA for optimization or modeling 
of liquid flow control problem.

3  Proposed methodology

Before elaborating the proposed methodology, basic 
ESWSA metaheuristic is elaborated initially. Then, the pro-
posed improved versions of ESWSA are elaborated later 
accordingly.

3.1  Basic elephant swarm water search algorithm 
(ESWSA)

Elephant swarm water search algorithm (ESWSA) optimiza-
tion technique was proposed by Mandal et al. [30]. It was 
typically inspired by the intelligent and social behavior of 
social elephants. This algorithm was mainly based on the 
water search strategy of elephant swarm during drought 
with the help of different communication techniques. For 

(3)RMSE(X ) =

√

√

√

√
1

N

N
∑

i=1

f
(

Ei ,Di , X
)2

(4)
f
(
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)

= �0 + �1 ⋅ E + �2 ⋅ D + �11

⋅ E
2
+ �22 ⋅ D

2
+ �12 ⋅ E ⋅ D − F

(5)X = {�0, �1,�2, �11, �22, �12}

(6)f
(

Ei ,Di , X
)

= �1 ⋅ E
�2
⋅ D

�3
− F

(7)X =

{

�1,�2,�3

}

simplicity, following four simplified and idealized rules 
were used to develop ESWSA.

1. During drought, elephants are used to move from one 
place to another in search of water in several groups 
(known as elephant swarm). For an optimization prob-
lem, each elephant swarm is analogous to a solution 
of the corresponding problem. Each elephant group 
is recognized by its particular velocity and position.

2. The leader is responsible to communicate with the 
other swarm about the quantity and quality of the 
water resource which is found during search. For a 
maximization problem, the fitness value is directly 
proportional to the quantity and quality of the water 
resource.

3. Each elephant group memorizes the best location 
of water source which was discovered by own group 
itself (known as local best solution). They also remem-
ber best location of water source discovered by all 
groups (known as global best solution) so far. Ele-
phant group moves (i.e. velocity and position of each 
elephant group are updated gradually) from one point 
to next location based on these memories.

4. Search of water in nearby and far area (local and global 
search) is controlled by a probabilistic constant called 
Switching Probability p ∈ [0, 1]. The leader of the ele-
phant group takes probabilistic decision to switch 
between local search and global search.

Suppose, for d-dimensional optimization problem, the 
position of i-th elephant group of a swarm (consist of N 
number of elephant group) at t-th iteration is given as 

X t

i,d
=

(

xi1, xi2,… , xid

)

 and the corresponding velocity is 
represented by V t

i,d
=

(

vi1, vi2,… , vid

)

 . Locally best solu-
tion by i-th elephant group at current iteration is given 
as Pt

best,i,d
=

(

Pi1, Pi2,… , Pid

)

 and global best solution is 
denoted by Gt

best,d
=

(

G1,G2,… ,Gd

)

 . Initially, the elephant 
group are randomly placed throughout the search space 
i.e. position and velocity are randomly initialized. These 
values served as the initial population of the metaheuris-
tic. As iteration proceeds, the velocities of the elephants 
groups are updated according to following equations 
depending on the switching probability (p)

where � is a d-dimensional array of random values within 
[0, 1]. ⊙ denotes element wise multiplication and rand is 

(8)
V t+1
i,d

= V t
i,d

∗ 𝜔
t
+ 𝜖 ⊙

(

Gt
best,d

− X t
i,d

)

if rand > p
[

for global search
]

(9)
V t+1

i,d
= V t

i,d
∗ 𝜔

t
+ 𝜖 ⊙

(

Pt
best,i,d

− X t
i,d

)

if rand ≤ p
[

for local search
]
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a random value that generated during the iteration. �t is 
the inertia weight at current iteration to balance between 
exploration and exploitation. It changes according to the 
following equation:

where t
max

,�
max

,�
min

 denote the values of maximum itera-
tion number, upper boundary and lower boundary of the 
inertia weight respectively. Values of �

max
 and �

min
 are set 

to 0.6 and 0.4 respectively [30]. The next position of an ele-
phant group is modified according to following equation:

After completion of all iteration, the elephant groups 
gradually update their position and will reach to the best 
water resource position which is found by all swarm. The 
best position denotes the best solution for the optimiza-
tion problem. It has been found from literature [30] that 
p = 0.6 give superior performance for ESWSA. So, we have 
also used this value for our present problem.

In next subsections, we shall discuss about the pro-
posed three improved versions of ESWSA.

3.2  Modified elephant swarm water search 
algorithm (MESWSA)

In case of basic ESWSA, the value of switching probabil-
ity is fixed and constant. Selection of value of p is an 
important task as it helps to balance between local and 
global search. Depending on the value of p, results may 
vary and the metaheuristic may stick into local optima.

Therefore, in case of Modified ESWSA, we have slightly 
modified the basic ESWSA optimization technique. Here, 
instead of using a fixed value of p, the value of p has 
been gradually decreasing from pmax (i.e. 1 for this study) 
to pmin (i.e. 0 or this study) along with iteration number 
according to following formula.

where t
max

 is maximum iteration number and t is the cur-
rent iteration number. Such type of pre-assignment of 
switching probability along with iteration helps to achieve 
a suitable balance between local and global search. More-
over, we need not to worry about the selection of value 
of p. It also helps to minimize the chance of sticking at 
local optima for the metaheuristics can be reduced. So, the 
velocities of elephant swarm are updated according to the 
following modified equations for MESWSA:
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(12)p(t) = pmax −
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)

∗ t

3.3  Lévy based elephant swarm water search 
algorithm (LESWSA)

In case of Lévy based elephant swarm water search 
algorithm (LESWSA), as iteration proceeds, the velocity 
and position of the elephants (for the global search) are 
updated according to Lévy flight distribution [36] rather 
than simple randomization. Lévy flight is defined as a ran-
dom movement done by the birds with a step value of 
distributed probability. In fact, studies show that Lévy walk 
is far more efficient than simple random-walk exploration 
[37]. So, global search or exploration is performed more 
efficiently for LESWSA. Lévy flights essentially provide a 
random walk while their random steps are drawn from a 
Lévy distribution as follows

Here Γ(�) is the standard gamma function, and this dis-
tribution is valid for large steps s > 0. In all our simulations 
below, we have used � = 1.5 [38]. In case of LESWSA, the 
velocity of elephant swarm is updated according to the 
following Lévy flight based equations depending on the 
switching probability p.

Levy(1, d) generates a d-dimensional distribution. More-
over, value of switching probability is constant i.e. p = 0.6 
is used for LESWSA.

3.4  Lévy based modified elephant swarm water 
search algorithm (LMESWSA)

In case of Lévy based modified elephant swarm water 
search algorithm (LMESWSA), characteristics of both 
MESWSA and LESWSA are utilized to observe further 
improvements in results. Here, switching probability varies 
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(15)Lévy(𝜆) ∼

𝜆Γ(𝜆)Sin
(

𝜋𝜆

2

)

𝜋

1

s1+𝜆

(16)
V t+1
i,d

= V t
i,d

∗ 𝜔
t + Levy(1, d)⊙

(

Gt
best,d

− X t
i,d

)

if rand > p
[

for global search
]

(17)
V t+1

i,d
= V t

i,d
∗ 𝜔

t
+ 𝜖 ⊙

(

Pt
best,i,d

− X t
i,d

)

if rand ≤ p
[

for local search
]



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:886 | https://doi.org/10.1007/s42452-019-0914-5

along with iterations (decrease from 1 to 0) and velocities 
(for global search) are also updated according to Lévy dis-
tribution. Therefore, in case of LMESWSA, the velocities of 
elephant swarm are updated according to the following 
equations.

(18)
V t+1
i,d

= V t
i,d

∗ 𝜔
t + Levy(1, d)⊙

(

Gt
best,d

− X t
i,d

)

if rand > p(t)
[

for global search
]

The pseudo code of ESWSA or their improved versions 
is shown below.

(19)
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It is worth to mention that for ESWSA and LESWSA p(t) 
is constant (i.e. 0.6) throughout iteration. For MESWSA and 
LMESWSA, the value of p(t) is changed according to the 
Eq. (12). For ESWSA, MESWSA, LESWSA and LMESWSA, the 
global search is followed according to Eqs. (8), (13), (16) and 
(18) respectively. On the other hand, for ESWSA, MESWSA, 
LESWSA and LMESWSA, the local search is followed accord-
ing to Eqs. (9), (14), (17) and (19) respectively.

3.5  Methodology

To verify the performances of proposed improved versions 
of elephant swarm water search algorithm (i.e. MESWSA, 
LESWSA and LMESWSA), the algorithms are tested 
against parameters or coefficients estimation problems 
for modeling of liquid flow control process. Here, these 
three algorithms are tested against both cases of RSM or 
ANOVA based model as described earlier Sect. 2.2. The 
experimental dataset has been obtained from the labora-
tory experimentation as mentioned in earlier Sect. 2.1. The 
dataset consists of 36 data points of sensor output voltage 
(E), pipe diameter (D) and liquid flow rate (F). This experi-
mental dataset has been used as training dataset for the 
parametric optimization of RSM and ANOVA based model 
of liquid flow control process such that difference between 
experimental and predicted value is minimized. Objective 
functions for these two cases are RMSE which are already 
discussed in earlier Sect. 2.3. After optimization, best set 
of coefficients can be obtained so that RMSE is minimized.

4  Results and discussion

In this section, the numerical simulation results for mode-
ling of liquid flow control process problem using improved 
versions of ESWSA have been elaborated. In addition, com-
parisons among the performance of the proposed algo-
rithms and statistical analysis of the evaluated results have 
been carried out.

For all cases, initial population and maximum itera-
tion number are set to 100 and 5000 respectively. For 
RSM based model, search space is restricted to six i.e. 
we have considered six dimensional function optimiza-
tion problem to search optimal values of the coefficients 
{�0, �1,�2, �11, �22, �12} . For ANOVA based model, the search 
space is limited to three i.e. we have considered 3 dimen-
sional function optimization problem in search of optimal 
values of coefficients {�1,�2,�3} . The search range has 
been set to [− 75, 75] for all coefficients of both types of 
modeling.

All the techniques are simulated using Matlab 2013b 
in a computer with 2 GB RAM, Dual Core processor and 
Windows7 operating System. Due to stochastic nature 
of metaheuristics, different output may be obtained 
depending on different random initialization. Therefore, 
each algorithm is executed for 20 times for each case 
and the statistical analysis has been carried out from the 
obtained results. During these numerical simulations, we 
have tested and compared the efficiency of the proposed 
algorithms on the basis of some criterions such fitness test, 
reliability test, computational efficiency test, convergence 
test and accuracy test which are described in following 
subsections one by one. At the end, overall performance 
has been discussed.

4.1  Fitness test

Final fitness value of an optimization algorithm is the 
most important criterion to prove its efficiency. Here, 
three important criterions are considered for fitness test 
namely worst (maximum) fitness, best (minimum) fitness 
and mean (average) fitness values which are calculated 
after 20 times program execution. If a metaheuristic give 
smaller values of maximum, minimum and mean of fit-
ness, we can tell that the metaheuristic has superior per-
formances. In this work, the fitness is calculated from the 
RMSE (as final output) of the algorithms. Using previously 
mentioned parameters settings, we have optimized each 
of the models i.e. RSM and ANOVA based model of liq-
uid flow control process. Comparative studies based on 
these criterions are shown in Table 3 where best values are 
shown in bold and italic letters.

From following Table 3, it can be seen that ESWSA can 
reach best fitness value (minimum RMSE i.e. 1.0200E−05) 
for RSM based modeling (which are shown in bold letters); 
whereas ESWSA and MESWSA algorithms are able to reach 
each best fitness value (minimum RMSE i.e. 3.1266E−05) 
for ANOVA based modeling. For worst fitness, LESWSA is 
able to achieve lowest worst fitness value for RSM based 
modeling; whereas MESWSA is able to achieve to smallest 
value of worst fitness i.e. maximum RMSE for ANOVA based 
modeling. Mean RMSE is found by the LESWSA which is the 
best result for RSM based modeling. On the other hand, 
MESWSA has superior performance in term of mean of 
RMSE for ANOVA based modeling.

It is interesting to observe that minimum RMSE for RSM 
based modeling of liquid flow process (obtained by all 
algorithms) is far better than minimum RMSE for ANOVA 
based modeling. It indicates that RSM based modeling 
performs much better than ANOVA based modeling in 
this present investigation as RSM based modeling offers 
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lower value of training error (i.e. RMSE). RSM based model 
fits better for liquid flow control process modeling.

4.2  Reliability test

It is always expected that a metaheuristic must able to 
reach nearer to the global optimal point as close as pos-
sible in every single run. It indicates that the output of 
the metaheuristic must be reliable for every single run [29, 
30]. But, due to random initialization and stochastic nature 
of the metaheuristic, the final output of the optimization 
process may differ in different run. However, the variation 
in the output should be minimal. Therefore, in this sub-
section, we have tested the reliability of proposed algo-
rithms on the basis of some statistical parameters namely 
median, standard deviation and success rate. Comparisons 
amongst themselves have been also shown.

Central tendency of the sample or population is meas-
ured by median [39]. The standard deviation denotes varia-
bility or consistency of the data. Thus, a more reliable algo-
rithm should have less value of standard deviation in the 
output. On the other hand, a simulation or program run 
is called successful if the best-found or minimum fitness 
value is lesser than threshold fitness. This threshold value 
is decided by some trial and error method and it is prob-
lem specific. Therefore, the success rate of a metaheuristic 
is defined as the ratio of the number of successful runs to 
the total number of runs. Thus, a larger success rate implies 
a more reliable optimization technique. In our present 
problem, a program run is considered to be successful if 
best-found fitness value or RMSE goes below 1 × 10−4 for 
modeling of liquid flow control process. Table 4 shows the 
comparative study based on median, standard deviation 
and success rate.

It can be clearly shown that LMESWSA get smallest 
values of median (i.e. 4.5950E−05) for RSM based model; 
whereas ESWSA and MESWSA are able to reach small-
est values of median (i.e. 3.1266E−05) for ANOVA based 
model. It is interesting to note that the lowest value of 
median for ANOVA based model is superior than RSM 
based model.

LESWSA has least standard deviation in the output for 
RSM based model; whereas MESWSA has lowest standard 
deviation for ANOVA based model. However, standard 
deviations for ANOVA based modeling are better than RSM 
based model i.e. less fluctuation in result are observed for 
ANOVA based model or the results are more stable for 
ANOVA. The reason behind it is that metaheuristic search 
in lower dimensional space for ANOVA based model (3 
dimensional search space) compare to the RSM based 
model (6 dimensional search space). Therefore, RSM based 
model has greater chance of sticking at local optima.

LMESWSA is able to achieve highest success rate i.e. 
90% for RSM based modeling. On the hand, all algorithms 
are 100% successful for ANOVA based modeling i.e. the 
resultant fitness always goes below the threshold for all 
runs. It is also interesting to note that the success rate has 
been increased for ANOVA based modeling compared to 
the RSM based modeling. It is due to the same fact that 
higher dimensional search is required for RSM based mod-
eling of liquid flow control process.

4.3  Computational efficiency test

Besides the previous tests, the computational time is also 
another major factor for evaluating the efficiency of a 
metaheuristic. For this purpose, we have observed aver-
age execution time taken by each algorithm for each of 
case of liquid flow control process which in turn denotes 
the computational efficiency of the algorithm. Table 5 
shows a comparative study based on average execution 
time. It has been observed that LMESWSA required least 
computational time for RSM based modeling. In case of 
ANOVA based modeling, computational efficiency is also 
best for LMESWSA. It is fascinating to observe that ANOVA 
based modeling required more computational time than 
RSM based model though the dimension of search space is 
larger for RSM based model of liquid flow control process. 
It is due to the fact that RSM used polynomial equation for 
modeling whereas ANOVA used nonlinear power function 
for the modeling which require more time for calculation.

Table 3  Comparative study 
based on maximum, minimum 
and mean of fitness

Case Method Maximum RMSE Minimum RMSE Mean of RMSE

RSM based modeling ESWSA 9.8402E−03 1.0200E−05 1.8035E−03

MESWSA 7.5473E−04 1.5143E−05 2.0315E−04

LESWSA 1.1622E−04 1.5895E−05 5.3011E−05

LMESWSA 1.7304E−04 1.6168E−05 5.6920E−05

ANOVA based modeling ESWSA 7.1665E−05 3.1266E−05 3.3286E−05

MESWSA 3.1266E−05 3.1266E−05 3.1266E−05

LESWSA 3.9901E−05 3.1360E−05 3.3801E−05

LMESWSA 3.5353E−05 3.1280E−05 3.1842E−05
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4.4  Convergence test

The above mentioned result and comparisons cannot com-
pletely illustrate the efficiency of the proposed optimiza-
tion techniques. Therefore, a convergence test has been 
conducted on liquid flow control process modeling and 
where we observed the change of best-found fitness val-
ues along with the iteration number. For this purpose, we 
have chosen the output (i.e. fitness value) corresponding to 
the run where we found minimum or best fitness (RMSE) 
amongst all 20 times run and observe the fitness value at 
each iteration index. Then, we plot them for all algorithms 
for RSM and ANOVA based modeling. These are shown in 
following Figs. 2 and 3 respectively. In the figures, fitness 
values are shown up to 500 iterations only for better clarity 
and understanding.

It can be observed that LESWSA converges faster com-
pare to the other optimization techniques for RSM based 
modeling. For the cases of ANOVA based modeling of liquid 
flow control process, ESWSA has much better performance. 
On the other hand, MESWSA is comparatively slower to be 
found.

4.5  Accuracy test

Next, the accuracy test has been conducted to observe pre-
diction capability (liquid flow rate) under different experi-
mental conditions (i.e. sensor output voltage and pipe diam-
eter). Two indexes namely Individual Absolute Error (IAE ) and 
Relative Error ( RE ) are considered to indicate the error values 
between the experimental and the simulated data. IAE and 
RE are defined according to Eqs. (20) and (21).

Moreover, total absolute error TAE (can be defined as:

where n is the number of measurements in the experimen-
tal dataset, Fmeasured is the experimental value of liquid flow 
rate and Fcalculated s the estimated value of liquid flow rate 
for a pipe diameter and sensor output voltage. However, to 
calculate or estimate the values of liquid flow rate of liquid 
flow control process at different experimental conditions, 

(20)IAE =
|
|Fmeasured − Fcalculated

|
|

(21)RE =

Fmeasured − Fcalculated

Fmeasured

(22)TAE =

n
∑

i=1

IAE
i

Table 4  Comparative study 
based on median, standard 
deviation and success rate

Case Method Median of RMSE Standard deviation 
of RMSE

Success 
rate (%)

RSM based modeling ESWSA 2.2706E−04 3.1869E−03 25

MESWSA 1.6699E−04 1.7922E−04 30

LESWSA 4.6689E−05 3.1824E−05 85

LMESWSA 4.5950E−05 3.5986E−05 90

ANOVA based modeling ESWSA 3.1266E−05 9.0334E−06 100

MESWSA 3.1266E−05 3.8079E−21 100

LESWSA 3.2657E−05 2.4933E−06 100

LMESWSA 3.1505E−05 9.5998E−07 100

Table 5  Comparative study based on computational time

Bold value signifies the best results among the algorithms

Case Method Average compu-
tational time (s)

RSM based modeling ESWSA 8.8106

MESWSA 8.6998

LESWSA 8.7779

LMESWSA 8.6130

ANOVA based modeling ESWSA 18.9708

MESWSA 18.8906

LESWSA 18.3391

LMESWSA 18.2188 Fig. 2  Convergence speed for RSM based modeling of liquid flow 
control process
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the best output case of metaheuristics has been consid-
ered where output i.e. RMSE is found to be smallest among 
all different runs.

Tables  6 and 7 describe the different best optimal 
parameters values for RSM and ANOVA based modeling 
of liquid flow control process respectively. Using these 
parameters, values of liquid flow rate of the liquid flow and 
level measurement and control unit can be estimated for 
different cases or conditions. Table 8 describes a compara-
tive study based on total absolute error. From Table 8, it 
can be clearly seen that ESWSA has the best performances 
in term of total absolute error for RSM based modeling, 
whereas ESWSA and MESWSA have superior performances 
for ANOVA based modeling. However, total absolute error 
for RSM based modeling (using all metaheuristics) is much 
lower than ANOVA based model. It signifies that the RSM 
based method can predict the values of liquid flow rate 
more accurately for all cases compare to the ANOVA based 
model.

Figures 4 and 5 show the relative errors versus differ-
ent liquid flow rate measurement instances for RSM and 
ANOVA based modeling respectively. It can be clearly seen 
that the RSM based model has less relative error com-
pare to the ANOVA based model. MESWSA and LESWSA 
show less relative error using RSM based model. In case 
of ANOVA based modeling, the relative error for ESWSA, 
MESWSA, LESWSA and LMESWSA are almost same. There-
fore, the graphs are overlapped with each other in Fig. 5.

4.6  Overall efficiency test

Now, we summarize the performances of all algorithms 
based on above mentioned statistical criterions (which 
are minimum RMSE, maximum RMSE, mean RMSE, median 
RMSE, standard deviation of RMSE, success rate, compu-
tational time, convergence speed, absolute error and rela-
tive error) and compare among themselves. Therefore, we 
have assigned a performance score against each algorithm 
for each of the criterions. The value of this score is calcu-
lated as the ratio of number of cases (functions) where 
an algorithm achieves best result (criterion) to the total 
number of cases (i.e. RSM and ANOVA based modeling of 
liquid flow control process). Table 9 shows the comparative 
study based on these scores to evaluate overall efficiency 
of the proposed algorithms. The maximum score obtained 
by any algorithm for each of the performance criterions is 
highlighted in bold letter.

It can be clearly noticed from following table that 
MESWSA performed best or better than others metaheuris-
tics for all criterions except convergence speed and 

Fig. 3  Convergence speed for ANOVA based modeling of liquid 
flow control process

Table 6  Estimated optimal 
parameters for RSM based 
modeling of liquid flow control 
process

Method �
0

�
1

�
2

�
11

�
22

�
12

ESWSA − 0.1525 1.5357 − 3.6266 − 2.4366 75.0000 − 4.0618

MESWSA − 0.2512 2.5558 − 5.1305 − 5.0932 66.9756 4.2059

LESWSA − 0.0491 0.5891 − 2.8577 − 0.4448 66.9993 − 5.0091

LMESWSA − 0.1337 1.4101 − 4.2278 − 2.2658 74.4309 − 1.2221

Table 7  Estimated optimal parameters for ANOVA based modeling 
of liquid flow control process

Method �
1

�
2

�
3

ESWSA 0.4542 12.0370 − 3.5533

MESWSA 0.4542 12.0370 − 3.5533

LESWSA 0.5733 12.0899 − 3.5109

LMESWSA 0.4649 12.1368 − 3.5858

Table 8  Comparative study based on total absolute error

Bold value signifies the best results among the algorithms

Case Method Total absolute error

RSM based modeling ESWSA 0.01485

MESWSA 0.01840

LESWSA 0.01843

LMESWSA 0.01944

ANOVA based modeling ESWSA 0.029128

MESWSA 0.029128

LESWSA 0.029066

LMESWSA 0.029075
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computational time. ESWSA is better for finding the best 
fitness. Another important observation is observed that 
MESWSA is better for ANOVA modeling, whereas LESWSA 
is very much suitable for the RSM based modeling of liquid 
flow control process. Moreover, LMESWSA is found to be 
best efficient algorithm with respect to success rate and 
computational time. On the other hand, LESWSA has bet-
ter stability in output.

In summary, all the proposed algorithms have satis-
factory performance for the modeling of liquid flow con-
trol process. However, some of them performed slightly 
better at few performance criterion and others are also 
performed better for others criterions. Overall, MESWSA 
achieved highest performance score (i.e. 9) which indicate 
that it is most efficient and suitable optimization tech-
nique among the improved version of ESWSA.

Now, overall efficiency is defined as the ratio of total 
performance score with number of performance criterion 
multiplied number of used models (Table 10). 

It is clear that MESWSA has highest efficiency (i.e. 45%) 
and is most suitable technique for modeling of liquid flow 
control process.

4.7  Validation of the proposed methodology

However, to validate the proposed methodology for mod-
eling of liquid flow control process two types of valida-
tion have been considered. First one is ‘cross validation’ 
where optimal models are applied against training or 
initial experimental data. Second one is ‘test new case’ 
where optimized models are applied against new set 
of input data which are not used during the training or 
optimization.

For cross validation, the liquid flow rate are calculated 
using best output or optimal model parameters (where 
RMSE or fitness is smallest amongst all program run) for 
all algorithms for both RSM and ANOVA based model. For 
cross validation, the data is the experimental data that 
obtained from the laboratory (shown in Table 2). Figures 6 
and 7 shows of the experimental data and estimated liquid 
flow rate of liquid flow control process for RSM and ANOVA 
based model respectively using all proposed algorithms. 
It can be observed that the proposed MESWSA methodol-
ogy can predict the liquid flow rate with greater accuracy 
or satisfactorily for the cases of RSM based model. LESWSA 
has significantly more deviation for RSM based model. On 

(23)Overall Efficiency =
Total Performance Score

Number of performance criterion × Number of model used
× 100%

Fig. 4  Relative errors for RSM based modeling of liquid flow control 
process

Fig. 5  Relative errors for ANOVA based modeling of liquid flow 
control process

Table 9  Comparative study based on performance score of different performance criterions

Method Max RMSE Min RMSE Mean RMSE Median 
RMSE

SD Success rate time Conver-
gence

TAE RE Total score

ESWSA 0 2 0 1 0 1 0 1 2 1 8

MESWSA 1 1 1 1 1 1 0 0 1 2 9

LESWSA 1 0 1 0 1 1 0 1 0 1 6

LMESWSA 0 0 0 1 0 2 2 0 0 2 7



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:886 | https://doi.org/10.1007/s42452-019-0914-5

the other hand, all proposed improved versions of ESWSA 
perform same way for the prediction of liquid flow rate 
using ANOVA base modeling. It can be clearly seen that 
RSM based modeling has superior prediction capability 
compare to the ANOVA based model. Moreover, the pre-
diction capability helps to validate the efficiency of the 
proposed algorithms. In case of Fig. 7, estimated liquid 
flow rate using ANOVA based model for ESWSA, MESWSA, 
LESWSA and LMESWSA are almost same. Therefore, the 
graphs are overlapped with each other in Fig. 7.

For testing new cases, we have observed a single 
experimental output (liquid flow rate) for each case of 
one 20 mm, 25 mm and 30 mm pipe diameter. During 
these experimentation the sensor output voltage were 
0.221 V, 0.222 V and 0.232 V respectively. Next, optimal 
RSM and ANOVA based model (for all algorithms) were 
applied against these dataset to observe how the algo-
rithm perform against new data which were not used 
during training. Tables 11 and 12 show the output results 
(liquid flow rate) for testing new cases for RSM and ANOVA 
based modeling respectively. It has been observed that 
RSM based model predict the liquid flow rate better than 
ANOVA based model for 1st experiment. On the other 
hand, ANOVA performed better for last two new cases. 
Moreover, it can be clearly seen that MESWSA has the 
superior capability in predicting the liquid flow rate for 
unknown cases. This statement exactly matches with the 

overall efficiency test where MESWSA is found to be most 
efficient algorithms over others.

5  Conclusions

Modeling of liquid flow control in a process industry is an 
interesting task for the researchers. Generally, liquid flow 
rate of Liquid Flow and Level Measurement and Control 

Unit depends on voltage output of sensor (Anemometer), 
diameter of the pipe, liquid viscosity and liquid conduc-
tivity etc. Initially, 36 number of measurements (i.e. liquid 
flow rate) have been observed from laboratory at different 
experimental conditions (i.e. for different values of pipe 
diameter and sensor voltage) In this study, our aim is to 
model the liquid flow control process so that we can find 
a relationship between liquid flow rate, pipe diameter and 
sensor voltage output (by keeping the liquid viscosity and 
conductivity at constant level). For this modeling purpose, 
we have used response surface methodology (RSM) and 
analysis of variance (ANOVA) as nonlinear models to estab-
lish the relationship between variables of liquid flow con-
trol process.

Now, finding out the suitable values of the parameters 
of RSM and ANOVA based model is essentially a nonlinear 
optimization problem. We need to find out the optimal 
values of the coefficient or parameters of the models using 
some suitable metaheuristic so that estimated liquid flow 
rate fit best with the experimental results. For this pur-
pose, we have proposed three different improved version 
of elephant swarm water search algorithm (ESWSA) and 
observed their efficiency for the modeling of liquid flow 
control process. In cases of MESWSA, we have varied the 
Switching Probability along with iteration from 1 to 0. For 
LESWSA, global search is dominated according to the Lévy 
flight. On the other hand, LMESWSA utilized the character-
istic of both varying Switching Probability and Lévy flight.

Table 10  Comparative study 
based on performance score 
of different performance 
criterions

Method Overall 
efficiency 
(%)

ESWSA 40

MESWSA 45

LESWSA 30

LMESWSA 35

Fig. 6  Comparisons of the characteristics of the experimental data 
and estimated liquid flow rate using RSM based model

Fig. 7  Comparisons of the characteristics of the experimental data 
and estimated liquid flow rate using ANOVA based model
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Numerical simulations are performed and the statistical 
analysis of the results is also given. All the results indicate 
that the performances of the proposed MESWSA outper-
formed the others for the most of the cases of modeling 
for liquid flow control process. But one of the major disad-
vantages of MESWSA is its slow convergence speed. On the 
other hand, ESWSA is better for finding the best fitness and 
LESWSA has better stability in output. Moreover, LMESWSA 
is found to be best efficient algorithm with respect to suc-
cess rate and computational time. However, all algorithms 
can predict the liquid flow rate with satisfactory accuracy.

It is also found that RSM based model fits better than 
the ANOVA based model to characterize the liquid flow 
control process as RMSE  , TAE  and RE  are less for RSM 
based model. Moreover, average computational time 
for RSM based model is also lesser than ANOVA based 
model. However, due to requirement of higher dimen-
sional search for RSM based model, the stability and suc-
cess rate is slightly inferior than ANOVA based model. It 
has been found that MESWSA is better for ANOVA mod-
eling, whereas LESWSA is very much suitable for the RSM 
based modeling

More detailed and accurate modeling of the liquid flow 
control process (including liquid viscosity and conductiv-
ity as the input variable) is the future aspect of this work. 
Moreover, further tunings of the metaheuristics are nec-
essary to achieve more efficiency, accuracy, convergence 
speed, stability and success rate.
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