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Modeling of LWIR Hyperspectral System Performance for

Surface Object and Effluent Detection Applications∗

John P. Kerekes#, Michael K. Griffin, Jerrold E. Baum, Kristine E. Farrar

Lincoln Laboratory, Massachusetts Institute of Technology

ABSTRACT

In support of hyperspectral sensor system design and parameter tradeoff investigations, an analytical end-to-end remote
sensing system performance forecasting model has been extended to the longwave infrared (LWIR).  The model uses
statistical descriptions of surface emissivities and temperature variations in a scene and propagates them through the effects
of the atmosphere, the sensor, and processing transformations.  A resultant system performance metric is then calculated
based on these propagated statistics.

This paper presents the theory and operation of extensions made to the model to cover the LWIR.  Theory is presented on
combining both surface spectral emissivity variation with surface temperature variation on the upwelling radiance measured
by a downward-looking LWIR hyperspectral sensor.  Comparisons of the model predictions with measurements from an
airborne LWIR hyperspectral sensor at the DoE ARM site are presented.  Also discussed is the implementation of a plume
model and radiative transfer equations used to incorporate a thin man-made effluent plume in the upwelling radiance.
Example parameter trades are included to show the utility of the model for sensor design and operation applications.

Keywords:  LWIR hyperspectral system modeling, sensor parameter tradeoffs, effluent detection

1.  INTRODUCTION

Hyperspectral imaging (HSI) systems operating in the reflective solar portion of the optical spectrum (0.4 to 2.5 µm) have
demonstrated utility in a variety of applications ranging from environmental monitoring to subpixel object detection1,2.  The
limiting requirement of solar illumination for these systems has motivated development of thermal infrared hyperspectral
systems with the hope of achieving similar utility but with a day/night capability.  Also, since some materials (particularly
man-made effluents) have stronger and more distinct spectral features in the longwave infrared, LWIR systems offer the
possibility of additional applications for which hyperspectral sensing can be used.

Previously, an end-to-end reflective solar hyperspectral remote sensing system model had been developed using an analytical
framework3.  This model, known as Forecasting and Analysis of Spectroradiometric System Performance (FASSP), has been
used for sensitivity studies and requirements analysis for systems operating in the VNIR/SWIR portion of the spectrum.  This
paper presents several enhancements to the model, which extend its capability to systems operating in the longwave infrared.

2.  FASSP MODEL STRUCTURE

The fundamental underlying premise of the FASSP model is that the various classes of materials in a scene can be adequately
represented in a statistical fashion by their first- and second-order spectral statistics.  The model uses as an input the mean
vectors and covariance matrices of the spectral reflectance (1 – emittance) of each material class.  These means and
covariances are propagated through the imaging and processing chain to provide an estimate of system performance. Figure 1
provides a conceptual block diagram for this process.

In Figure 1, the surface spectral (reflectance or emittance) statistics are transformed to spectral radiance statistics through
linear functions of atmospheric radiative transfer functions.  These radiance statistics are then further transformed by linear
operations of the sensor including channel spectral response functions, and fixed and random sensor errors. The sensor output
statistics are then transformed through user-selectable processing functions to result in a performance metric such as spectral
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characterization accuracy, or a probability of detection vs. false alarm curve (PD/PFA). Our previous work
3 described in detail

the equations used to propagate the statistics to obtain a performance metric for the reflective solar part of the spectrum.
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Figure 1. Block diagram of the FASSP model structure.

3.  LWIR ENHANCEMENTS

Enhancements to the FASSP model to extend its operation into the LWIR have been made in three general areas.  The first
was in developing the equations to combine the surface emissivity and temperature effects with the radiative transfer
equations to obtain the scene spectral radiance mean and covariance.  Another was the incorporation of a plume model and
the radiative transfer modeling to predict radiances for man-made effluents.  The third was to implement models for LWIR
sensors including additional noise effects in detectors operating in that spectral region. The following subsections describe
these enhancements.

3.1 LWIR Spectral Radiance Modeling

The FASSP scene radiance model considers a scene to consist of one or more background classes and one target class.  Each
class is defined by the fraction of the scene occupied by that class and a set of statistics.  The target class is considered to be
subpixel or at most occupy a single pixel.  The LWIR statistics for each class include the mean temperature T , the

temperature variance σT
2 , the mean spectral emissivity ελ , and the full spectral emissivity covariance matrix Σε .  The

following sections describe how these surface statistics are transformed into at-sensor radiance statistics.  Note:  in this initial
LWIR model, only a single background is assumed.

3.1.1 Mean Spectral Radiance

The at-sensor spectral radiance has three terms in the LWIR as shown in equation (1). The first represents the surface emitted
radiance, the second is the reflected downwelling radiance, and the third is the atmospheric emitted upwelling radiance.

L B T L LSensor Down Upλ λ λ λ λ λ λ λτ ε τ ε, , ,( ) ( )= + − +1 (1)

Where,
τ λ = atmospheric transmittance from the surface to the sensor,

ελ = surface spectral emissivity,

B Tλ ( ) = Planck radiance function for temperature T ,

L Downλ , = atmospheric emitted downwelling radiance, and

L Upλ , = atmospheric emitted upwelling radiance.

The various components are computed using the Air Force Research Laboratory’s MODTRAN4 radiative transfer code, or
simply through the Planck radiance equation.  The spectral radiances for the target and background are computed using
separate MODTRAN runs with the appropriate mean surface emissivity and mean temperature.  For subpixel targets with
subpixel fraction f, these components are linearly combined as in equation (2).

L fL f LSensor Total Sensor Target Sensor Backgroundλ λ λ, , , , , ,( )= + −1 (2)

Proc. SPIE Vol. 4381 349



3.1.2 Spectral Radiance Covariance

The at-sensor spectral radiance covariance matrix was derived by computing the expectation of the scene radiance defined in
equation (1) with the mean subtracted times the transpose of that quantity as shown in equation (3).

Σλ λ λ λ λ, , ,{[ ][ ] }Sensor Sensor Sensor Sensor Sensor
T

E L L L L= − − (3)

In the derivation, an assumption was made that the surface temperature of the object is uncorrelated with its spectral
emissivity.  This is not strictly true, as thermal cooling is dependent upon emissivity (among other parameters) and emissivity
is often related to the solar albedo which can govern the object’s temperature during the day.  However, these assumptions
make the computations tractable and are not seen as overly restrictive to adequately characterize the variability in the spectral
radiance. The resultant expression has six terms as shown in equation (4) for whole pixel objects.  All terms are NxN where N
is spectral dimensionality of the data.

Σ Τ Λ Σ Λ Λ Σ Λ Λ Σ ΛSensor L L LL S L S S S S S S
= + + +[ σ ε σ ε ε ε (4)

Λ Σ Λ Λ Σ Λ Λ Σ Λ ΤL L L L L LD S D D S S S S Dε ε ε− +( )]

Where,
Τ = diagonal matrix of surface-to-sensor atmospheric transmittance,
Λσ L

= diagonal matrix of surface emitted spectral radiance standard deviation with each entry

σL = σT∂B/∂T for T=T , where σT is the surface temperature standard deviation and ∂B/∂T is
the derivative of the Planck radiance function,

Σε S
= full spectral emissivity covariance matrix,

Λ
LS

= diagonal matrix of mean Planck radiance emitted by the surface (assumes black body

surface),
ΣLS

= spectral covariance of surface emitted radiance( = Λσ L
[1] Λσ L

, where [1] is a NxN matrix of

ones) ,
Λε S

= diagonal matrix of mean surface emissivity,

Λ LD
= diagonal matrix of downwelling radiance.

For subpixel targets, the whole pixel covariances are weighted by a function of the target subpixel fraction as in equation (5).

Σ Σ ΣSensor Total Sensor Target Sensor Backgroundf f, , ,( )= + −2 2
1 (5)

3.2 Effluent Modeling

The case of a layer in the atmosphere with an enhanced amount of trace, or man-made gas, is modeled in FASSP through a
two step process.  First, a column concentration is produced by a plume model which takes into account effluent emission
characteristics and meteorological parameters.  Second, this concentration is used in radiative transfer equations to modify
the scene radiance statistics to include the effects of the effluent.  The following two subsections describe these steps.  A
companion paper in this proceedings5 provides additional details and examples.

3.2.1 Plume Modeling

The plume model used in FASSP is a Gaussian-plume dispersion model that calculates short-term pollutant concentrations
from a single point source at a user-specified receptor grid in level or gently rolling terrain6. It is applicable to locations
where a single wind vector for each hour is a reasonable approximation of the flow over the source area considered. Briggs'
plume-rise equations7 are used to estimate the effective height of the point source. Concentrations are determined using
distance crosswind and distance upwind from the receptor to the source. Inputs to the model are a set of user-specified
options, source parameters, meteorological data, and receptor information.

For model execution, the user specifies parameters and options needed for the application. Options are included for the
treatment of stack-tip downwash, gradual plume rise, and buoyancy-induced dispersion8.  The user also specifies the
characteristics of emission sources and meteorological inputs. Plume model inputs include stack information such as
emission rate and stack height, diameter, gas temperature and gas exit velocity. Meteorological parameters (anemometer
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height, stability class, wind speed and direction, air temperature and mixing height) must be present for each simulation hour.
The increase of wind speed with height is included, based upon a power-law wind profile. The power-law exponent is
dependent upon the stability classification and surface roughness9. There is no inclusion of directional shear with height. This
means that the direction of flow is assumed to be the same at all levels over the region.

On output, the model produces vertically integrated gas concentrations C (g m-2) at each receptor grid location. The model
assumes a steady state condition and can be used for short-term (one hour to one day) determination of urban air quality
resulting from pollutants released from a single source. This version of the plume model is most applicable for pollutants that
are quite stable chemically and physically. Selective removal or reaction at the plume-ground interface or dependence upon
concentration levels may not be well handled by the model.

The concentrations C are converted to units of molecules cm-2 (values easily incorporated into the radiative transfer model
described in the next subsection) using the following equation,

C molecules cm
A

M
C g m

− − −( ) = ( ) × ( )2 4 2
10 , (6)

where A is Avogadro’s number (6.02297x1023 molecules mole-1) and M is the gas molecular weight (g mole-1). Figure 2
shows a plot of the two dimensional effluent concentration for locations downwind of a source, approximately 1 hour after
the first emission from the stack. The plot is limited to a 100m x 60m area and is for an SO2 gas emission rate of 3.85 g sec

-1.

As the effluent dissipates downwind from the source, the temperature of the gas also changes as it mixes with the ambient air.
Eventually, the temperature of the gas reaches the ambient temperature, presumably when the local concentration of the gas
reaches the ambient or background concentration value. Therefore, an assumption is made that the ratio of the effluent
temperature at some location downwind of the stack to the effluent temperature at the stack is proportional to the ratio of the
effluent concentration at that location to the maximum concentration. Using this relationship, it is simple to derive a grid of
effluent temperatures. Since vertically-integrated concentration values are computed, it is assumed that the temperature
corresponds to a layer representative of the peak concentration (possibly at or near the height of the stack).

For the current implementation of FASSP, only a single value representative of the maximum concentration of effluent and
the associated effluent temperature (usually the effluent temperature at the stack) is used. These are the only values that are
passed from the plume model to the radiative transfer code at this time.
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Figure 2.  Plot of the effluent concentration after one hour as a function of distance (m) east and north of the source. Values are shown as
log10 of the concentration in molecules cm

-2. Ambient concentration is 1015 molecules cm-2.
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3.2.2 Effluent Radiative Transfer

The technique used to model the spectral radiance from a scene containing a plume layer consists of the following steps: 1)
obtain the peak vertically-integrated concentration from the Gaussian-plume model;  2) compute layer optical depths using a
line-by-line model such as FASE10 for atmospheric conditions approximating the plume-free scene conditions; 3) merge the
spectral absorptivity of the selected effluents into the model plume layer; and 4) compute the atmospheric at-sensor radiance
components. Step 1 was described above; a brief description of steps 2 - 4 follows.

Using atmospheric properties appropriate to the desired model parameters, FASE is run to produce optical depths at user-
defined layers. Since only atmospheric parameters were calculated, no input surface information was needed. This approach
allowed the definition of surface parameters at the time of the final radiance component calculation, without the need to rerun
the line-by-line model. The full resolution layered optical depths were then degraded to a resolution of 0.1 cm-1.

The characterization of the plume layer was done following the FASE calculations of the layered atmospheric optical depths.
The effluent concentration was derived from the Gaussian-plume model. The effluent library contains the absorptivity as a
function of wavelength and integrated gas amount (in PPM-m) for each effluent. Using the known effluent emission rate (in g
s-1) and the estimated gas amount from the plume model, it is relatively easy to determine the corresponding spectral
absorptivity of the gas to place into the plume layer. In fact, multiple gases can be merged together using individual emission
rates and spectral absorptivities to obtain a plume layer representative of a simultaneous release of many gases. For these
cases, it is assumed that a single temperature was representative of all gases in the plume for a specific location away from
the stack. Also, the spectral resolution of the effluent absorbances differs from the FASSP LWIR model spectral resolution.
A cubic spline interpolation scheme was employed to convert the absorbances to the FASSP model resolution.

A simple radiative transfer code was developed to utilize the computed layered transmittance information along with known
atmospheric temperature profiles and modeled surface temperature and emissivities to compute the upwelling, downwelling,
and surface emission components of the atmospheric radiative transfer. These components are computed for cases with and
without a plume.  The assumption of a non-scattering (emission and absorption only) plane-parallel atmosphere was used to
simplify the computations.

3.3 LWIR Sensor Modeling

The sensor model in FASSP describes the effects of an imaging spectrometer on the spectral radiance mean L  and
covariance ΣL  statistics of a scene.  For each target and background(s) class, the input radiance statistics of every spectral

channel are modified by electronic gain, radiometric noise sources, and relative calibration error to produce radiance signal

statistics S  and ΣS .  These signal statistics represent the scene as imaged by the spectrometer.  The current FASSP model

includes radiometric effects, but not spatial or spectral sources of error.

The mean scene radiance is affected only by a gain parameter.  All other noise processes modify the diagonal elements of the
spectral covariance matrix.  The off-diagonal elements remain unchanged because it is assumed there is no channel-to-
channel correlation among the noise sources.

Sensor models have been developed for both a prism spectrometer and a Fourier Transform Spectrometer (FTS).  The
following provides details on those models.

3.3.1 Prism Spectrometer

The generic prism spectrometer model covers the LWIR with typically a few hundred spectral channels and includes
approximations for the spectral response functions and radiometric noise sources.
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The radiometric noise processes occur in the detector and in the electronics (see Figure 3).  Noise sources arising from the
detector include photon (or shot) noise, excess low frequency noise (ELFN), and thermal noise.  The noise processes
originating in the electronics include quantization noise, bit errors (in recording or transmitting the data), and noise arising
within the detector itself.

Figure 3. Block diagram of the FASSP LWIR prism spectrometer sensor model.

All of these sources are treated as independent of the input radiance, except the shot noise and ELFN.  This latter type is
characteristic of Si:As BIB detectors used in a number of LWIR sensors.  It was recognized in the mid-1980’s that, under
certain conditions, BIB detectors exhibit a noise level higher than that expected just from shot noise.  This ‘excess’ noise
occurs at low frequencies and intermediate infrared backgrounds.  The excess low-frequency noise does not have 1/f
characteristics and is caused by processes internal to the detector.  This noise mechanism limits the amount by which signal-
to-noise (SNR) can be improved by co-adding frames.  ELFN can be modeled as a multiplier, called the ‘excess noise factor,’
K, of the photon noise.  Thus, ELFN increases as photon irradiance increases.

The photon, or shot, noise is a function of, among other variables, the optical transmittance and quantum efficiency.  The
particular values used in the model for these variables vary from sensor to sensor and are often spectrally varying as well.

There is some amount of thermal self-radiation from a typical instrument, which can not be shielded from the detector.  The
noise due to this radiation is combined with other fixed detector noise sources into a single value.

The noise levels predicted by the model depend upon the scene and collection parameters, but typically are in the 0.3 to 0.6
µW/cm2-sr-µm range, which is consistent with observed noise characteristics11.

3.3.2 Fourier Transform Spectrometer

A Fourier Transform Spectrometer has a number of noise sources that are the same as those found in grating or prism
spectrometers: photon, detector, and quantization noise, for example.  Because the FTS is a fundamentally different
instrument, however, it also has a number of unique sources of noise, such as mirror velocity errors, sampling errors, and
optical jitter.  Thus, a new noise model is required, which at this point only includes the dominant noise source of a well-
designed instrument, detector noise.  This mechanism includes interference caused both by statistical fluctuations in the
conversion of photons to electrons (‘photon noise’) and generated by the physical characteristics of the detector material
(‘detector noise’).

The initial version of this new noise model12 specifies the instrument performance in terms of noise equivalent spectral
radiance, or NENν.  This value represents that radiance which would produce an output signal equivalent to the instrument
noise, at each wavenumber, or equivalently, the input radiance that would produce an output signal-to-noise ratio of one.  The
detector NENν  is given by
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(7)

where,  
Ad  = Detector area (cm

2) T = Integration time (sec)
Ao  = Optical aperture area (cm

2) ηs  = Beamsplitter efficiency

D* = Detectivity (cm - √Hz – watt-1) Ω  = Solid angle field-of-view (sr)
L    = Maximum optical path τox  = Transmittance of optics
          difference (cm) (=1/2 δν) (excluding beamsplitter)

D*, the specific detectivity, is the reciprocal of the noise equivalent power, normalized to unit detector area and temporal
bandwidth.  It is a common figure-of-merit for describing detector performance.  Because the interferometer has a finite
mirror stroke, the optical path difference between the two arms of the FTS has some maximum value, L.  This finite value
limits the spectral resolution δν of the instrument to be

δν = 1 / 2L (8)

ηs, the beamsplitter efficiency, has values between 0 and 1 and is equal to 4RT, where R and T are the reflectance and

transmission, respectively, of the beamsplitter.  For an ideal beamsplitter, R = T =0.5 and  ηs = 1.

4.  MODEL COMPARISON TO AIRBORNE LWIR HSI DATA

The model predictions of spectral radiance were compared to airborne LWIR hyperspectral. The airborne data were collected
by the SEBASS11 instrument on 27 June 1997 at the Department of Energy Atmospheric Radiation Measurements (ARM)
site near Lamont, Oklahoma.  The scene consisted of wheat fields, pasture, and an area where several test panels were
deployed.

The model and data were compared in two ways.  First, the average spectral radiance was computed from the data for one of
the test panels and compared to the model prediction using ground truth emissivity spectra and estimates of the scene
parameters.  Second, the variability (standard deviation) of the spectral radiance over a region of the pasture was compared to
the model predicted variability.  Table 1 shows some of the scene parameters used in the modeling obtained from the
experimental ground truth or estimated from the data characteristics.

Table 1.  Scene conditions during SEBASS overflight on 27 June 1997.  The surface temperature and standard deviation apply to both the
calibration panel and the pasture field.

Parameter Value
Surface mean temperature 22°C
Surface temperature σ 0.1°C

Atmospheric model 1976 US Standard
Sensor altitude 2500 ft.

4.1 Mean Spectral Radiance Comparisons

The mean spectral radiance was calculated from nine pixels centered on the “16%” calibration panel (the 16% percent refers
to the visible reflectance of the panel; its LWIR emissivity varied from 0.95 to 0.98).  Ground measurements of the
emissivity were used in the model along with parameters shown in Table 1 above to predict the mean spectral radiance.  The
comparison is shown in Figure 4.  The match between model prediction and data is within 5%, and differences may be
explained by errors in the absolute radiometric calibration of the sensor and by differences between the model atmosphere
and the real atmosphere at the time of the collect.
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Figure 4. Comparison of the mean spectral radiance for a test panel.

4.2 Spectral Radiance Variability Comparisons

The standard deviation of the calibrated spectral radiance was calculated using one hundred pixels of the hyperspectral data
over a relatively homogenous area of pasture.  Since no accurate emissivity spectra of the pasture were available, a greybody
mean spectrum with 0.99 emissivity was assumed, along with a standard deviation of 0.001 to represent the variability of the
pasture emissivity.  The pasture mean temperature and variability was as shown in Table 1. Figure 5 presents the comparison.
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Figure 5. Comparison of the spectral radiance standard deviation for an area over the pasture.
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The comparison of the variability in the sensor data to that predicted by the model shows similar overall shape and
magnitude, but differences of up to 30-40% are seen.  Many of the same atmospheric features are present in both the data and
the model prediction, but there are some shifts seen in their peaks which may be due to spectral calibration errors in the data.

It is important to note that the variability seen in these data come from at least three sources: surface temperature variations,
surface emissivity variations, and sensor noise.  Examination of the relative values of these three sources in the model
predictions shows the surface temperature variation dominates, with nearly the same shape and magnitude as the total
variability.  The sensor noise is the next largest contributor, with values around 0.5 µW/cm2-sr-µm.  The emissivity variation
contribution is negligible in this case.  These relative values are consistent with expectations and observed performance of the
instrument.  While the model seems reasonable in this case, further validation over other sites and materials will be pursued.

5.  SYSTEM PARAMETER SENSITIVITIES

As an example of how this model may be used to study system parameters, an example scenario of detecting the 16% panel
in a pasture field was defined.  In this case, the model scenario uses the mean radiance spectra from an occurrence of the
panel somewhere in the image to find it elsewhere in the image.  The target is assumed to be whole pixel in all cases.  Table 2
describes system parameters chosen for these sensitivity analyses.

Table 2.  Baseline system parameters defined for parameter sensitivity analyses.

Parameter Value
Target 16% calibration panel
Target mean emissivity spectrally varying, 0.95-0.98
Target emissivity σ 0.0

Target mean temperature 23.75°C
Target temperature σ 0.1°C

Background simulated pasture
Background mean emissivity spectrally constant, 0.99
Background emissivity σ 0.01

Background mean temperature 22.0°C
Background temperature σ 0.1°C

Atmospheric model 1976 US Standard
Sensor SEBASS
Sensor altitude 2500 ft.
Detection algorithm matched filter
Spectral channels used in filter 38 between 9.0 and 11.0 µm
Constant false alarm rate 10-5

Detection of the target is enabled by differences between the target and background, and is hindered by variability either in
the scene or due to sensor noise.  The sensitivity of detection performance was studied as a function of three different system
effects as examples of how the model can be applied.

5.1 Sensitivity to Target/Background Temperature Differences

To study the effect of target/background mean temperature differences on detection performance, the background mean
temperature was held constant while the target temperature was varied and detection performance recomputed.  Figure 6
presents the results which show a clear minimum at a temperature difference (target-background) of 1.4°C.  At this value, the
combination of a higher target temperature and a lower emissivity result in nearly equal mean spectral radiances for the target
and background, leading to a minimum in detection performance.  Temperature differences higher or lower lead to more
contrast, and thus greater detection probabilities.
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Figure 6. Detection performance sensitivity to target/background mean temperature difference for system defined in Table 2.

5.2 Sensitivity to Target Temperature Variability

To study the effect of target temperature variability, its standard deviation was varied from 0.0 to 1.0 °C while all other
parameters were held constant.  Figure 7 presents the results, which show the decrease in detection performance as the target
temperature variability increases.
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Figure 7. Detection performance sensitivity to target temperature variability for system defined in Table 2.
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5.2 Sensitivity to Sensor Noise

To study the effect of sensor noise, the standard deviation of the noise was scaled by multiples from 0 to 10 while all other
parameters were held constant.  Figure 8 presents the fall-off in detection performance as noise increases.  For the given
system defined in Table 2, this result shows only modest decreases in detection probability for noise 2 to 3 times the nominal
level, but significant effects when the noise is higher by an order of magnitude.
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Figure 8. Detection performance sensitivity to sensor noise scaling for system defined in Table 2.

6.  SUMMARY AND FUTURE WORK

Enhancements to an existing hyperspectral system performance model to extend its operation to the LWIR have been
presented.  The enhancements included combining the surface temperature variability with surface emissivity variability in
the upwelling radiance calculation.  Also included were an implementation of an effluent plume modeling capability and
additions to the sensor model to include LWIR prism spectrometers and FTIR interferometers.  While these enhancements
have enabled the LWIR modeling of the scene and sensor portions of a remote sensing system, additional work remains to
implement model representations of LWIR-specific processing algorithms.  These include algorithms for LWIR atmospheric
compensation to retrieve surface emissivity and temperature, and algorithms for gaseous effluent detection/identification.
Also, additional validation efforts should be conducted as appropriate data sets become available.
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