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This paper presents three types of magnetostatic models of ironless planar actuators with moving magnets. The models predict the
force and torque exerted on the translator of the actuator, which can be positioned in six degrees-of-freedom with respect to the stator
coils. The force and torque are calculated with the Lorentz force law. The analytical and numerical models can be used for the design of
large planar actuators, for the fast comparison of actuator topologies, and in the decoupling and commutation algorithm. The models
have been verified with experiments.
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I. INTRODUCTION

I
N recent years, magnetically levitated ac synchronous planar

actuators have been developed as an alternative to -drives

constructed of stacked linear actuators in demanding applica-

tions such as semiconductor lithography systems. Although the

translator of these ironless planar actuators can move over rela-

tively large distances in the -plane only, it has to be controlled

in six degrees-of-freedom (6-DOF) because of the active mag-

netic bearing. These actuators have either moving magnets and

stationary coils [1], [2] or moving coils and stationary magnets

[3]. The coils in the actuator are simultaneously used for propul-

sion in the -plane as well as for the 4-DOF active magnetic

bearing. In [7], [11], and [12], planar actuators with mechanical

bearings also are described.

In this research, a long-stroke moving-magnet planar ac-

tuator is investigated. Fig. 1 shows an overview of such an

actuator [13]. The advantage of a moving-magnet actuator

over a moving-coil actuator is that no cable to the translator

of the actuator is necessary. Because only the coils below and

near the periphery of the magnet array can produce force and

torque, switching between different sets of coils is required

during the movement of the translator. Although the actuator

has certain similarities with synchronous machines, DQ0-

decomposition cannot be used for the decoupling of the force

and the torque. Therefore, new decoupling and commutation

methods have been developed and every coil is excited with

a single-phase power amplifier [4]. To design and simulate

moving-magnet planar actuators, to investigate the influence of

the new commutation algorithm, and to compare topologies,

fast and accurate models are needed in which the full planar

motor can be simulated.
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Fig. 1. Moving-magnet planar actuator.

In literature, several electromechanical models for planar

motors can be found. In [5], a method is briefly described to

model the force and torque in a moving-coil planar actuator.

This approach uses magnetic surface charges to model the

permanent magnets. However, [5] does not give details about

the method and its implementation. Reference [6] presents

a model of an ironless linear actuator. This two-dimensional

model uses Fourier analysis for the calculation of the force in

the actuator. In [7], Fourier analysis of a three-dimensional

(3-D) infinitely large magnet array is used to calculate the

magnetic flux density distribution and the propulsion force in a

coreless planar actuator. In both [6] and [7], no expressions for

the torque are derived.

This paper presents a complete magnetostatic analysis

framework for moving-magnet planar actuators. Three methods

which calculate both the force and torque in moving-magnet

planar actuators, based upon the Lorentz force law, are pre-

sented in detail. Contrary to finite-element methods, these

models are capable of simulating large planar actuators. The

first method is based on magnetic surface charges. This numer-

ical model allows to position the translator, which contains the

permanent magnets, in 6-DOF with respect to the coil array.

The second method uses Fourier series to model the magnetic

flux density distribution of the magnet array. The method is

0018-9464/$25.00 © 2006 IEEE



16 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 1, JANUARY 2007

Fig. 2. Bottom and side view of the components of a moving-magnet planar ac-
tuator: a Halbach magnet array and a coil. Definition of the coordinate systems.

implemented for the most part analytically and, consequently,

planar actuators can be evaluated in a very short time. The last

method is a fully analytical method which can be evaluated in

real-time. This model can be used in the decoupling algorithm

of planar actuators. All models are validated with experiments

on a 3-DOF magnetically levitated linear actuator.

II. FORCE AND TORQUE PRODUCTION

The moving-magnet planar actuators, which can be analyzed

with the presented methods, are constructed of a permanent-

magnet array with cuboidal magnets and coreless coils. Fig. 2

shows these elements of the planar actuator. The magnet array

is a Halbach array to increase the magnetic flux density near the

coil. The coil is placed at an angle of 45 with respect to the

magnets [3]. As a result, the size of the coil is not limited to the

pole pitch as in [2], and coils can be optimized to produce only

force in the - and -directions or the - and -directions.

The force on the translator of the moving-magnet planar ac-

tuator is opposite to the force on the stator coil and can be calcu-

lated with the Lorentz force equation, as the coils are coreless.

To calculate the torque on the translator, the force distribution in

the coil has to be taken into account. The force on the translator

can be modeled to act in the volume of the coil itself. Therefore,

the force arm is defined from the mass center point of the trans-

lator to within the volume of the coil. Consequently, the force

arm varies with the position of the translator. On the contrary,

the force arm in a moving-coil planar actuator is independent

of the position of the translator, as the coils are located on the

moving part of the actuator itself.

The planar actuator has an active magnetic bearing, which can

only be stabilized in 6-DOF with feedback control. At least six

individually energized coils are necessary to control the trans-

lator. If the translator can be modeled as a rigid body, the total

force and torque is the sum of the individual contributions of the

coils. For that reason, the models are derived for one coil only.

The synthesis and the optimization of topologies with multiple

coils are outside the scope of this paper.

III. COORDINATE SYSTEM DEFINITIONS

Two coordinate systems are defined in the 3-D Euclidian

space to model the actuator. These coordinate systems are

shown in Fig. 2. The global coordinate system is defined at

the stationary part of the actuator. In this coordinate system

the coils are defined. For that reason it is denoted with the

superscript

T (1)

A local coordinate system is defined in the mass center point of

the translator. In this coordinate system the magnets are defined.

For that reason, it is denoted with the superscript

T (2)

The vector

T (3)

defines the position of the local coordinate system, i.e., the

mass center point of the translator, expressed in the global

coordinates.

Coordinates are transformed from one system to the other

with an orientation transformation and afterwards a translation.

The transformation matrix for a position from the local to

the global coordinate system is equal to [8]

(4)

For convenience, the orientation transformation matrix is de-

fined as

(5)

where

(6)

(7)

(8)

and where , , and are the rotations about the - , -,

and -axes, respectively. All rotations are defined with respect

to the reference frame. Thus, the position of the translator can

be described in 6-DOF. The transformation matrix for a
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position from the global to the local coordinate system is equal

to

T T

(9)

because is orthonormal.

Applying the appropriate transformation matrix, a position

can be transferred between the coordinate systems, according

to

(10)

and a free vector as defined in [8], e.g., the current density, ac-

cording to

(11)

IV. MAGNETIC SURFACE CHARGE MODEL

The full analysis of this type of planar actuators cannot be

carried out with finite-element simulations. As the flux is not

confined in iron, a large and dense mesh is required for accurate

force and torque calculations in finite-element analyses. There-

fore, only small parts of a planar actuator topology can be sim-

ulated. A model which has similarities with boundary-element

methods has been developed to simulate large planar actuator

topologies in a relatively short time. The permanent magnets are

modeled with magnetic surface charges and the force and torque

are calculated with the Lorentz force equation. The size of the

actuator is unlimited. Because the field of the permanent mag-

nets can be solved analytically, only the volume integral over

the coils has to be solved numerically to calculate the force and

torque.

A. Magnetic Flux Density

The magnetic field of a cuboidal magnet in three dimensions

can be derived from Maxwell’s equations. The solution of the

Maxwell’s equations for the permanent magnet, using a scalar

potential, results in a model of the permanent magnet with two

surface charges. The surface charges are on the sides of the per-

manent magnet, which are perpendicular to the magnetization

direction. The surface charges are equal to , the rema-

nent magnetization of the permanent magnet. The only assump-

tion made is that the relative permeability in and out-

side the permanent magnet. Fig. 3 shows the model of a magnet,

magnetized in the positive -direction. The sizes of the magnet

are , and in the -, -, and -direction, respectively. The

center of the magnet is located at

T (12)

Fig. 3. Charge model of a magnet magnetized in the positive z-direction.

The magnetic flux density in the local coordinate system

T (13)

of a cuboidal magnet magnetized in the positive -direction is

equal to [9]

(14)

(15)

(16)

where is a four-quadrant arctangent function and

(17)

(18)

(19)

(20)

The magnetic field of an array of permanent magnets is equal to

the sum of the contributions of the individual magnets.

B. Force and Torque

The force and torque can be calculated according to the

Lorentz force principle. The force on the translator is opposite

to the force on the coils. By applying the coordinate transfor-

mations, the translator can be positioned in 6-DOF with respect

to the stator. The force on the permanent-magnet array in the

local coordinate system is

(21)

The torque in the local coordinate system is equal to

(22)
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Fig. 4. Mesh of a coil in the magnetic surface charge model.

The volume integral is solved numerically using a cuboidal

mesh as shown in Fig. 4. In every mesh element the integral is

solved with the 3-D trapezoidal rule.

The calculation time of the model, which is implemented in

C++, reduces the calculation time from 40 min in a finite-el-

ement analysis to approximately 20–30 s for a partial planar

actuator model with a Halbach magnet array with 5 5 poles

(85 permanent magnets) and three coils. Although the presented

model has no size limit, the calculation time is proportional to

the number and the size of the coils and the number of perma-

nent magnets.

V. HARMONIC MODEL

The magnetic surface charge model takes into account all

the individual magnets in the magnet-array of the planar actu-

ator. Consequently, the simulation time for large planar actu-

ator topologies is relatively long. For the comparison of a large

number of topologies and the development and verification of

decoupling algorithms, a further reduction of the calculation

time is important because the force and torque have to be calcu-

lated for many positions of the translator in the -plane.

The reduction of the calculation time can be achieved by mod-

eling the permanent magnets as an infinitely large magnet array

with Fourier series and by reducing the DOF in the model. This

results in two model limitations. First, the edge effects of the

magnet array are not included. However, the edge effects are of

minor importance in many design steps, such as the optimiza-

tion of the sizes of the magnets and the coils. Second, the model

cannot be used for simulation of the planar actuator system with

a controller for all 6-DOF, because the rotational degrees of

freedom are fixed.

A. Magnetic Flux Density

The expression of the magnetic flux density of an infinitely

large magnet array is derived in the coordinate system of the

translator. The magnetization vector function describing the

Halbach array which is shown in Fig. 2 can be expressed as

Fourier series

(23)

Fig. 5. Problem divided into three regions.

where and are the harmonic numbers for the - and -direc-

tion, respectively, and

(24)

(25)

where is the pole pitch and is the length of the side of

the magnets which are magnetized in the -direction (see also

Fig. 2).

To solve the field equations, the problem is split into three

regions. The regions are shown in Fig. 5. Regions 1 and 3 are

in air and region 2 contains the permanent magnets. The empty

spaces in the magnet array are assumed to consist of material

with the same relative permeability as the permanent magnets.

Although in reality these empty spaces will be filled with air

or an epoxy resin, the error is small because modern NdFeB

permanent magnets have a relative permeability of 1.03–1.05.

In regions 1 and 3, the next equations apply (only the equa-

tions for region 1 are shown)

(26)

(27)

(28)

where is the magnetic flux density, is the magnetic

field strength, and the subscript denotes the region. A scalar po-

tential is introduced accordingly:

(29)

After substitution of the scalar potential in (26)–(28), the fol-

lowing three-dimensional Laplace equation is obtained:

(30)

Region 2 is the area with the magnets. In the magnets

(31)

(32)

(33)

where is the relative permeability of the magnets. A scalar

potential is introduced accordingly:

(34)
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After substitution of the scalar potential in (31)–(33), the fol-

lowing equation is obtained:

(35)

At infinite distance from the magnet array

(36)

(37)

The following boundary conditions apply on the interface be-

tween the magnets and the air:

(38)

(39)

(40)

(41)

(42)

(43)

where is the height of the magnet array.

The Laplace equations can be solved with the method of sep-

aration of variables, i.e., the solution of the scalar potential is a

product of functions which involve only one variable. For this

particular problem, a solution of the form

(44)

is substituted. In regions 1 and 3, substitution of (44) in (30)

results in

(45)

where

(46)

The general solution of this equation is

(47)

where and are constants. Because of the boundary con-

ditions (zero scalar potential for )

(48)

and

(49)

In region 2, a nonhomogeneous differential equation is obtained

(50)

The solution is

(51)

where and are constants.

The constants and can be calculated with

the boundary conditions. The resulting expression for the mag-

netic flux density distribution in the area of interest, region 3, is

expressed in the local coordinate system

(52)

where for

(53)

B. Force and Torque

The obtained magnetic flux density distribution can be sub-

stituted in (21) and (22). In that case, the calculation speed is in-

creased because it is no longer dependent on the number of mag-

nets in the magnet array. However, the calculation speed can be

increased further by reducing the rotational degrees-of-freedom

in the model. i.e., rad, rad and rad or

rad.

For convenience, (52) is rewritten as

(54)

where

(55)
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Fig. 6. Coil split into four straight (light gray) and four corner (dark gray)
segments.

Fig. 7. Effective force arm in the z-direction.

The Lorentz force volume integral can be split into an integral

over and a surface integral over and

(56)

The integral over can be solved analytically. The surface in-

tegral over and can be solved analytically in the straight

segments of the coil and numerically in the corner segments of

the coil. The segments are shown in Fig. 6.

The same approach is applied to the torque. The distribution

of the force in the volume of the coil has to be taken into ac-

count, when the torque is calculated. If the volume integral for

the torque is also split, then this information might be lost in

the -direction. Because the magnetic flux density decays with

an exponential function in the -direction, an effective attaching

point of the force in the coil in the -direction , can be cal-

culated, accordingly:

(57)

The effective arm is then equal to

(58)

This is also illustrated in Fig. 7. In the cross section of the coil,

the magnetic flux density distribution is shown. The highest

values of the magnetic flux density and the force (dark gray)

Fig. 8. Mesh of the coil in the harmonic model.

are near the magnet array. The arm for the first harmonic,

, is shown with the bold arrow and the effective at-

taching point of the force is indicated with the line in the coil

segment.

With the introduction of , the volume integral to calculate

the torque can also be split into an integral over and a surface

integral over and

(59)

Also in this case, the integral over can be solved analytically

in all coil segments. The surface integral over and can

be solved analytically in the straight segments of the coil and

numerically in the corner segments of the coil.

The force and torque exerted by a coil on the magnet array

of the planar actuator can be calculated for the most part ana-

lytically when the rotation angles rad, rad

and rad, or rad. Only a surface integral

has to be solved numerically in the corner segments of the coil

as shown in Fig. 8. The calculation time for a planar actuator

as shown in Fig. 1 can be reduced to 0.1–1 s, depending on the

number of harmonics which are taken into account. This cal-

culation time is convenient to predict the force and torque in a

planar actuator at a large number of translator locations, to com-

pare topologies and to test decoupling algorithms.

VI. ANALYTICAL MODEL

The commutation algorithm of the planar actuator has to de-

couple the force and torque and the coil currents [4]. Therefore,

the algorithm needs a model of the force and torque in the ac-

tuator as function of all 6-DOF. Although such a model can be

calculated with the magnetic surface charge model and stored in

a large look-up table, a model-based control and commutation

algorithm is preferred. Moreover, an analytical model gives in-

sight in the force and torque production in the actuator.
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Fig. 9. Coil model with filaments (left) and with surfaces (right).

A. Magnetic Flux Density

The analytical model is derived from the harmonic model by

taking into account the first harmonic of the magnetic flux den-

sity distribution of the permanent magnet array. The magnetic

flux density expression is simplified to

(60)

where and and are the effective am-

plitudes of the first harmonic of the flux density distribution at

. Transformation of this expression into the global co-

ordinate system of the coils

(61)

results (for rad and rad) in

(62)

Because the mechanical clearance between the translator and

the stator will be small, the rotation angles are limited. The ro-

tation angles can be taken into account with Taylor-expansion

for the angles and . Because , a new

pole pitch can be introduced:

(63)

B. Force and Torque

Because the real-time commutation algorithm is evaluated

every sample time, simple expressions for the force and torque

are required to reduce the computation time of the model and to

reduce the load on the DSP in the control hardware of the actu-

ator. Therefore, the coil is modeled with four straight filaments,

as shown in Fig. 9. The filaments are located in the middle of

the conductors. In the -direction, they are located at the ef-

fective attaching point of the force. The Lorentz force can be

calculated by solving a line integral. The force exerted on the

translator T, expressed in the global coor-

dinate system, by one coil, which center is located at ,

is

T

T

T

T

(64)

where and are the sizes of the filament coil along the -

and -directions, respectively, and is the current through the

coil in Ampere-turns.

The torque exerted on the translator
T, expressed in the global coordinate

system, is

T

T

T

T

T

T

T

T (65)
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Fig. 10. Bottom (a) and side view (b) of the 3-DOF actuator.

If the width of the coil , where is an integer,

and if rad and rad, the coil only

produces force in the - and -directions. The force and torque

expressions for such a coil with and are

(66)

(67)

The force components in the - and -directions are 90 out of

phase as expected in this type of actuator. Equation (67) shows

that the torque, i.e., component , cannot be expressed as an

arm multiplied by a force. Therefore, a single attaching point of

the force cannot be defined and the distribution of the force over

the coil should indeed be taken into account.

The accuracy of the analytical model can be improved by

modeling the coil by four surfaces instead of four filaments, as

shown in Fig. 9. Modeling the coil with four surfaces results

in a similar model comparable to (66) and (67), except for the

term. has a small extra term which is proportional to

. The use of the model with the four surfaces instead of the

four filaments in the commutation algorithm of planar actuators

reduces the cross-talk of the force and torque, especially for

6-DOF planar actuators with a low mass center point.

VII. EXPERIMENTS

The magnetic surface charge model, the harmonic model, and

the analytical model have been verified on a 3-DOF linear ac-

tuator with moving magnets. This coreless actuator [10], is a

pre-prototype for a 6-DOF planar actuator and was manufac-

tured for the verification of the electromechanical models and

the commutation method [4]. An overview of the 3-DOF actu-

ator is shown in Fig. 10. The degrees of freedom which can be

Fig. 11. Measurement setup. The 3-DOF actuator is put on its side and attached
to an xy-positioning system with three linear motors (x; y1, and y2).

actuated are levitation ( -direction), propulsion ( -direction),

and rotation ( -angle) of the translator. The other degrees of

freedom have to be supported with an external bearing system.

The stator of the actuator consists of 10 coils which are

connected to single-phase power amplifiers. The coils are dis-

placed 270 electrical degrees, according to a semi-four-phase

system. To reduce the damping force due to eddy currents in the

aluminum construction, the coils are attached to an aluminum

nitrite (AlN) plate. This ceramic material has a low electrical

conductivity but a high thermal conductivity.

The translator of the actuator is a Halbach magnet array,

which is glued to an aluminum plate. The rectangular magnets,

which are magnetized in the -plane, are half the size of the

square magnets, i.e., . As a result, the magnetic

flux distribution does not contain a third harmonic component,

which can be derived with the harmonic model. This results in

a strong reduction of the force ripples.

The presented models were verified by measuring the force

and torque on the translator. To position the translator of the

3-DOF actuator with respect to its stator, the translator was

attached to an -positioning system with three linear mo-

tors. This positioning system or H-drive is shown in Fig. 11.

The H-drive consists of three linear motors. Between the -

and -motors, a third linear motor is mounted. Because

the coupling between the - and -motors is not rigid, the

-motor can slightly rotate. By attaching the 3-DOF actuator on

its side, the degrees-of-freedom of both the 3-DOF actuator and

the H-drive match. A 6-DOF load cell (JR3 45E15A4-I63-S

100N10) was mounted between the 3-DOF actuator and the

-motor of the H-drive to measure the force and the torque

exerted on the translator. This is shown in Fig. 12.

The force and torque were measured while one coil was sup-

plied with a direct current of 1 A and the translator was moved

along the coil at a speed of 0.02 m/s. Because the bandwidth

of the sensor was much higher than the bandwidth of the con-

trollers of the H-drive, the measurement data was filtered off-

line with a high order anti-causal low-pass filter with a cut-off
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Fig. 12. Detail of the measurement setup.

Fig. 13. Measurement and prediction of F . Mechanical clearance: 1 mm.

frequency of 25 Hz. Consequently, high frequency disturbances

of the H-drive are removed from the measurement signals. Be-

cause of the low measurement speed in comparison with the pole

pitch ( mm), the higher harmonics of the force and

torque are not suppressed by the filter.

Figs. 13, 14, and 15 show the predicted and measured force

and , and torque , respectively. The mechanical

clearance between the stator and translator was 1 mm and

rad. Because the harmonic model assumes an infinitely

long translator, the end-effects of the magnet array are only

predicted by the surface charge model. Fig. 16 shows a detail of

the waveform. The surface charge model predicts a larger

force than the harmonic model because the permanent magnets

are modeled with a relative permeability equal to 1, while the

permeability of the used permanent magnets was equal to 1.03.

The predictions are in good agreement with the measurements.

The figures do not show the predictions of the analytical

model because the differences between the predictions of the

harmonic model and the analytical model are very small. These

differences are shown in Fig. 17. For this actuator, the analytical

Fig. 14. Measurement and prediction of F . Mechanical clearance: 1 mm.

Fig. 15. Measurement and prediction of T . Mechanical clearance: 1 mm.

Fig. 16. Detail of the measurement and prediction of F .
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Fig. 17. Difference of the predictions of the harmonic and the analytical model.

Fig. 18. Measurement and prediction of F . Minimal mechanical clearance:
0.9 mm and � = 5 mrad.

Fig. 19. Measurement and prediction of T . Mechanical clearance: 2 mm and
p � y = � =2.

model is an accurate and a computational inexpensive substitute

for the harmonic model.

The force component is shown in Fig. 18 when the trans-

lator is rotated 5 mrad. The force can be accurately predicted

with the surface charge model and with the analytical model

with Taylor expansion for the angle.

The analytical model predicts a term in the torque component

which cannot be expressed in the derived force components.

In the 3-DOF actuator this term is absent because .

However, to validate the model was measured with

. The mechanical clearance between the stator

and translator was 2 mm and rad. Fig. 19 shows the

measured and predicted torque offset clearly and confirms that

the distribution of the force over the coil should be taken into

account in the torque calculation in planar actuators.

VIII. CONCLUSION

Three methods to predict the force and torque in a 6-DOF

moving-magnet planar actuator are presented. Because of the

absence of iron, the force and torque are calculated with the

Lorentz force law. The magnetic surface charge method is the

most computational expensive model because it models all per-

manent magnets on the translator separately. By neglecting the

end-effects of the permanent-magnet array and reducing the de-

grees-of-freedom in the model, the force and torque can be cal-

culated for the most part analytically with the harmonic model.

Because only four surfaces in the corners of the coil are meshed,

the computation time is low. Finally, a fully analytical model is

presented which can be evaluated in real-time by the controller

of a planar actuator. The predicted force and torque are in good

agreement with the measurements on a 3-DOF moving-magnet

actuator. All models can be easily modified for moving-coil

planar actuators and coreless linear actuators.
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