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ABSTRACT

While magnetic fields have long been considered significant for the evolution of magnetic non-degenerate stars and compact stars,
it has become clear in recent years that, in fact, all stars are deeply affected by their effects. This is particularly true regarding their
internal angular momentum distribution, but magnetic fields may also influence internal mixing processes and even the fate of the star.
We propose a new framework for stellar evolution simulations in which the interplay between magnetic field, rotation, mass loss, and
changes in the stellar density and temperature distributions are treated self-consistently. For average large-scale stellar magnetic fields
that are symmetric to the axis of the rotation of the star, we derive 1D evolution equations for the toroidal and poloidal components
from the mean-field magnetohydrodynamic equation by applying Alfvén’s theorem; and, hence, a conservative form of the angular
momentum transfer due to the Lorentz force is formulated. We implement our formalism into a numerical stellar evolution code and
simulate the magneto-rotational evolution of 1.5 M⊙ stars. The Lorentz force aided by the Ω effect imposes torsional Alfvén waves
propagating through the magnetized medium, leading to near-rigid rotation within the Alfvén timescale. Our models, with different
initial spins and B-fields, can reproduce the main observed properties of Ap/Bp stars. Calculations that are extended to the red-giant
regime show a pronounced core-envelope coupling, which are capable of reproducing the core and surface rotation periods already
determined by asteroseismic observations.
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1. Introduction

Magnetic fields are visible for many different types of stars. As
the most evident example, the Sun exhibits magnetic activity in
the form of spots, prominences, flares, and mass ejections (e.g.,
Solanki et al. 2006). The Sun is considered to be prototypical of
FGK-type main-sequence stars that are known to have convec-
tive envelopes and most of these cool stars are known to host
magnetic fields (Landstreet 1992; Donati & Landstreet 2009).
These magnetic fields are thought to have a “dynamo origin”,
meaning that the field is continuously amplified through hydro-
dynamic induction and would otherwise decay within the Alfvén
timescale. This understanding is supported by observed corre-
lations of the field strengths detected in these main-sequence
stars with their fundamental parameters, such as their mass, age,
and rotation periods (Vidotto et al. 2014; See et al. 2015, 2016;
Folsom et al. 2016, 2018).

In the upper main sequence, where stars have radiative
envelopes, about 10% of the stars are magnetic (Landstreet
1992; Wade et al. 2014). Their strong (typically ∼1 kG) fields
are characterized by a large scale (∼dipole) structure and since
neither convection nor rotation could currently produce these
fields, it is believed that they are stable over a significant part
of the stellar lifetime (Wade et al. 2000; Silvester et al. 2014).
In contrast to stars with convective envelopes, clear correla-

⋆ Movie associated to Fig. 3 is available at
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tions between the field strength and major stellar parameters
have not been found thus far. Such properties indicate the “fos-
sil” origin of the field, namely: the strong magnetic field was
somehow amplified in the past and ultimately reached a sta-
ble configuration through magneto-hydrodynamical relaxation
(Braithwaite & Spruit 2017).

Magnetic fields are also found among evolved stars; GK-
giants (Aurière et al. 2015) as well as asymptotic-giant-branch
(AGB) and post-AGB stars (Vlemmings 2014, 2019, and
references therein), AFGK-yellow supergiants (Grunhut et al.
2010), and M-supergiants including α Ori (Aurière et al. 2010;
Tessore et al. 2017) – despite the fact that field strengths in
evolved stars are often small because of the large radii and slow
rotation rates involved (Aurière et al. 2008). Furthermore, ∼10%
of the white dwarfs show magnetic fields and while all neutron
stars appear to have magnetic fields, some 10% of them (known
as magnetars) possess extremely strong surface magnetic fields
(Chanmugam 1992; Ferrario et al. 2015).

Magnetic fields can have significant effects on stellar evolu-
tion. It has been known for a long time that the spin evolution
of solar-like stars is essentially coupled with the magnetic field
evolution. The slow rotation rate of the Sun has been understood
as the result of the magnetic braking (Weber & Davis 1967) and
the solar wind itself is largely driven by the surface magnetic
activities (e.g., Parker 1958; Ofman 2010). The magnetic stress
of the amplified field inside the convective envelope contributes
to the angular momentum transfer together with the turbulent
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viscosity and the mean meridional flow to determine the rota-
tion profile in the envelope (Brandenburg 2018). Moreover, the
convective dynamo is the result of the symmetry breaking due to
stellar rotation (Brun & Browning 2017).

The evolution of main-sequence stars with radiative
envelopes can also be significantly affected by magnetic fields.
Because of the intrinsically strong stellar wind, magnetic brak-
ing for massive OB-type stars can be strong enough to become
directly observable (e.g., σ Ori E; Townsend et al. 2010). A
strong surface field can trap the wind material into a corotat-
ing magnetosphere, which provides an extensive explanation for
the X-ray emission of, for instance, IQ Aur (Babel & Montmerle
1997) and the phase variations of Balmer-line emissions ofσOri
E (Townsend & Owocki 2005).

Theoretical works have also revealed the importance of
the magnetic field in stellar evolution. For instance, magnetic
stress furnished by internal fields may account for the effi-
cient angular momentum transfer in radiatively stratified regions
(Spruit 1999). Many stellar evolution simulations take mag-
netic angular momentum transfer into account, following a
model originally proposed by Spruit (2002) and reassessed
by other authors (Maeder & Meynet 2003; Heger et al. 2005;
Suijs et al. 2008; Denissenkov & Pinsonneault 2007; Fuller et al.
2019; Ma & Fuller 2019). The effect of magnetic braking, as well
as magnetic wind confinement, have been evaluated in the context
of massive star evolution (Meynet et al. 2011; Petit et al. 2017;
Georgy et al. 2017; Keszthelyi et al. 2019). Sufficiently strong
internal fields can modify the stellar structure via magnetic pres-
sure and tension and, more importantly, by affecting the adiabatic
indices, which, in turn, modifies the efficiency of convec-
tive energy transport. Such effects have been considered in
Feiden & Chaboyer (2012, 2013, 2014) for low-mass star evolu-
tion, following prescriptions developed by Lydon & Sofia (1995).

The majority of theoretical works have modeled magnetic
stars by considering the specific magnetic effects individually.
However, all effects, in reality, must relate to each other because
they are governed fundamentally by precisely the same field. To
consider the integrated effect, the global structure of the mag-
netic field must be modeled. In addition, since the magnetic field
ought to evolve over time along with other physical quantities,
the time-dependent treatment is most desirable. Such a treatment
was recently derived by Potter et al. (2012). In their framework,
the global field structure is significantly simplified to have axial
symmetry and dipole-like structure. Furthermore, they formu-
lated the evolution equation of the global magnetic field based on
a mean-field MHD equation. As a consequence, important pro-
cesses are effectively incorporated, such as the α- and η-effects,
which express the interaction between turbulence and magnetic
field, as well as the Ω effect, in which differential rotation
winds up poloidal magnetic component to enhance the toroidal
component.

Meanwhile, the prescription in Potter et al. (2012) still dis-
plays some incompleteness. For example, it is likely that their
evolution equations for magnetic fields do not reproduce the
magnetic flux conservation, which is one of the most funda-
mental outcomes of the ideal magnetohydrodynamic (MHD)
assumptions. Similarly, their expression of the angular momen-
tum transport by the Lorentz force does not reproduce the angu-
lar momentum conservation. These problems arise because of
the ambiguity that exists in the averaging process for formulat-
ing 1D evolution equations starting from the more general 3D
MHD equation.

In this work, we present a new framework in which a mutual
interaction of the magnetic field and the rotation during the

evolution of the star is treated in a physically consistent man-
ner. In the next section, equations that describe the evolution of
the stellar magnetic field and stellar rotation, assumptions and
approximations made for the formulation, and a brief descrip-
tion of the numerical construction are provided. In Sect. 3, we
show that our formulation, including theΩ effect and the Lorentz
force, naturally leads to a torsional Alfvén wave, in which dif-
ferential rotation and toroidal magnetic field propagate together
inside the star. We further discuss that the Alfvén wave accounts
for a highly efficient mechanism of angular momentum redis-
tribution when realistic dissipation is taken into account. While
we plan to apply this new formulation to general-purpose stel-
lar evolution simulations in the future, here we provide results
of magneto-rotational evolution calculations for stars of 1.5 M⊙
to demonstrate the capabilities and limitations of our formula-
tion. The corresponding main-sequence evolution is analyzed
in Sect. 4, and the red-giant phase is presented in Sect. 5. In
Sect. 5, we discuss comparisons between our simulation results
and other theoretical models (Sect. 6), and relevant observations
(Sect. 7). We present our conclusions in Sect. 8.

2. Methods

To compute the time evolution of stellar models, we use the
1D stellar evolution code HOSHI (Takahashi et al. 2016, 2018).
The code iteratively solves the four structure equations of mass
conservation, the momentum balance equation in hydrostatic or
hydrodynamic form, the equation of energy conservation in the
form of an entropy equation, and the energy transport equa-
tion by the so-called Henyey method. The equation of state
in the code consists of a mixture of ideal gases of photon,
averaged nuclei, electron, and positron. An analytical treatment
of Blinnikov et al. (1996) is applied for the electron-positron
gas. The free energy of the Coulomb interaction for degener-
ate states is included (Salpeter & van Horn 1969; Slattery et al.
1982). The ionization of hydrogen, helium, carbon, nitrogen,
and oxygen is also treated by solving the Saha equation. For
the opacity, the Rosseland mean opacity of the OPAL project
(Iglesias & Rogers 1996) is used together with the conductive
opacity by Potekhin et al. (2006) and the molecular opacity by
Ferguson et al. (2005).

In addition to the structure equations, the evolution of the
abundances of the chemical species is solved through a reaction–
diffusion equation as

∂Yi

∂t
= Ẏi,reac +

∂

∂M

(

(4πρr2)2Deff
∂Yi

∂M

)

, (1)

where Yi, Ẏi,reac, and Deff are the mole fraction of ith isotope,
the rate of change of Yi due to nuclear reactions, and the effec-
tive chemical diffusivity, respectively. 49 isotopes1 are con-
sidered in this work, and the reaction rates are taken from
the current version of JINA REACLIB (Cyburt et al. 2010),
except for the 12C(α,γ)16O-rate, for which we use the rate from
Caughlan & Fowler (1988) multiplied by a factor of 1.2. The
Ledoux criterion is used to evaluate convective instability. The
standard mixing-length-theory (Böhm-Vitense 1958) is applied
to compute the amount of energy transported by convection.

The mixing-length theory also provides the diffusion coef-
ficient for chemical mixing in convection zones as Dcv =
1
3 vcvlcv, where vcv is the velocity of convective eddies, lcv =

αMLTmin(HP, r) is the length scale of the convective flow, and

1 The list of the 49 isotopes can be found in Takahashi et al. (2019).
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αMLT and HP are the mixing-length parameter and the pressure
scale height, respectively. To consider the effect of convective
overshooting, the eddy velocity for regions surrounding the con-
vective region is calculated as

vcv = vcv,0 exp
(

−2
∆r

fovhP,0

)

, (2)

where fov is an adjustable parameter determining the e-folding
length scale, vcv,0 and hP,0 are the eddy velocity and the pres-
sure scale height at the edge of the convective region, and ∆r is
the distance from the edge. This treatment yields a similar dif-
fusion coefficient distribution to the exponential diffusive over-
shoot described in Herwig (2000).

In semiconvective layers, we apply a diffusion coefficient of
the form

Dcv = fscDtherm
∇rad − ∇ad

(φ/δ)∇µ
,

and thermohaline convection is treated with

Dcv = fthhDtherm
−(φ/δ)∇µ
∇ad − ∇rad

(Kippenhahn et al. 1980; Wellstein et al. 2001; Siess
2009). Here Dtherm ≡ (1/CPρ)(4acT 3/3κρ), ∇rad ≡
(3κ/16πacG)(PL/T 4M), ∇ad ≡ (∂ ln T/∂ ln P)|s=const., ∇µ ≡
d log µ/d log P, δ ≡ −(∂ ln ρ/∂ ln T )P,µ, φ ≡ (∂ ln ρ/∂ ln µ)PT,
are the thermal diffusivity, the radiative temperature gradient,
the adiabatic temperature gradient, the µ-gradient, and relevant
thermodynamic derivatives, respectively, with κ being the
Rosseland mean opacity. For the two control parameters, we use
fsc = 0.3 and fthh = 1.0.

The HOSHI-code includes stellar wind induced mass and
angular momentum loss. For models presented in this work
with low effective temperatures of log Teff[K] < 3.9, an empiri-
cal mass-loss formula by de Jager et al. (1988) is applied. Con-
sequently, 1.5 M⊙ nonrotating model experiences wind mass
loss of ∼3 × 10−12 M⊙ yr−1 and ∼10−11−10−8 M⊙ yr−1 during the
main-sequence and red-giant phases, respectively.

2.1. Stellar rotation

The effects of stellar rotation are similarly taken into account
as described in Takahashi et al. (2014). To describe a rotating
star in a 1D formulation we assume shellular rotation, where all
material on an isobaric surface shares the same angular veloc-
ity (Zahn 1992). We define the volume and mass enclosed by
an isobar as either VP and MP. Accordingly, the mean radius is
defined as 4πr3

P/3 = VP. Thus the angular velocity Ω is defined
as a function of the mass coordinate, MP, in our simulation. The
derivation of the evolution equation of Ω is shown in Sect. 2.3,
following a description of our treatment of the stellar magnetic
field.

To consider the effect of deformation due to the centrifugal
force, the isobar is assumed to have a shape described by

r(θ) = a[1 − ǫP2(cos θ)], (3)

where P2 is the second-degree Legendre polynomial. Here, ǫ ≡
(Ω2r3

P/2GMP)(a/rP)3 indicates the degree of rotation compared
with the local gravity, and the length scale, a, satisfies the rela-
tion (Denissenkov & VandenBerg 2003),

rP = a

(

1 +
3
5
ǫ2 − 2

35
ǫ3

)1/3

· (4)

The centrifugal force not only deforms the isobars but also
affects the pressure balance and temperature gradient in the star.
Following Endal & Sofia (1976), these effects are taken into
account in the structure equations by introducing the parameters
of fP and fT as

∂P

∂MP
= −GMP

4πr4
P

fP −
1

4πr2
P

(

∂2rP

∂t2

)

(5)

∂ log T

∂ log P
=



















∇rad
fT
fp

[

1 +
r2

P
GMP fP

(

∂2rP
∂t2

)

]−1
(in radiative layers),

∇MLT (in convective layers),
(6)

where ∇MLT is the convective temperature gradient determined
by the mixing-length theory. The parameters fP and fT are cal-
culated as

fP =
4πr4

P

GMPS P

1
〈g−1〉 , (7)

fT =













4πr2
P

S P













2
1

〈g〉〈g−1〉 , (8)

where g is the local effective gravity, in which the centrifugal
force is taken into account. The pointy brackets imply an average
over the isobaric surface S P as 〈q〉 ≡ 1

S P

∫

qdσ.
The wind mass-loss rate is enhanced when the stellar rotation

is considered and the surface condition approaches the ΩΓ limit
(Langer 1998; Maeder & Meynet 2000). We apply an enhance-
ment according to Yoon et al. (2010, 2012) as

Ṁ = −min
[

|Ṁ(vrot = 0)| ×
(

1 − vrot

vcrit

)

, 0.3
M

τKH

]

, (9)

where |Ṁ(vrot = 0)| is the mass loss rate of a nonrotating coun-
terpart having the same luminosity and effective temperature,
vrot and vcrit ≡ vK

√
1 − (L/LEdd) ≡

√
GM/R

√
1 − (L/LEdd) are

the rotation velocity and the critical rotation velocity at the stel-
lar equator, τKH is the Kelvin–Helmholtz timescale, and LEdd ≡
4πcGM/κ is the Eddington luminosity.

Even without the help of a magnetic field, the angular
momentum loss by stellar winds may be one order of magni-
tude more efficient than the accompanying mass loss when effi-
cient angular momentum transport takes place at the subsurface
region of the star (Langer 1998). The rate of angular momentum
loss for a non-magnetic star is calculated as

J̇ = jsurf Ṁ, (10)

where jsurf is the specific angular momentum at the surface of the
star. In our current models, jsurf is treated as a constant during the
mass change, which implies the angular momentum is quickly
redistributed throughout the subsurface region.

2.2. Stellar magnetism

As the most fundamental assumption, we assume that a large-
scale stable magnetic field is embedded inside a star. Here,
“stable” means that the magnetic field is in a magneto-
hydrostatic quasi-equilibrium and maintains its structure, par-
ticularly the geometry, for a considerably longer timescale
than the Alfvén time. From a theoretical point of view, the
structure, or even the existence, of such a stable magnetic
field is far from trivial, which has been shown both, ana-
lytically and numerically (e.g., Tayler 1973; Wright 1973;
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Markey & Tayler 1973, 1974; Braithwaite & Spruit 2004, 2017;
Duez & Mathis 2010; Akgün et al. 2013 and references therein).
Nonetheless, our assumption may be reasonable at least for the
radiative stellar envelopes close to the surface because obser-
vations have shown that the surface magnetic field of radiative
main-sequence stars displays a large scale structure and long-
time stability (more than decades, i.e., longer than the Alfvén
timescale of ∼10 yr; e.g., Landstreet 1992). Indeed, 3D MHD
simulations have shown that initially random fields can relax into
a stable hydrostatic equilibrium in radiative stellar envelopes,
following a magneto-hydrodynamical adjustment with an Alfvén
time. The equilibrium states obtained in this way often have axial
symmetry and a comparable or stronger toroidal component
as compared to the poloidal component (Braithwaite & Spruit
2004; Braithwaite & Nordlund 2006; Braithwaite 2009). Justifi-
cations are more scarce for the convective layers since the fields
are expected to vary on the convective timescale and to show
a small-scale structure. However, even in this case, our method
may still allow us to follow the time-averaged evolution of the
mean magnetic field strength in the convective layers.

Although the large-scale stellar fields are assumed to be in
a magneto-hydrostatic equilibrium, they can evolve over time
responding to environmental changes. The most evident example
is the density evolution due to the background thermal or ele-
mental change, which leads to the field-strength evolution com-
ing about as a consequence of the magnetic flux conservation.
The next such mechanism is the Ω effect, in which differential
rotation inside the star winds up the poloidal magnetic compo-
nent to induce the additional toroidal component. We note that
differential rotation can exist in a hydrostatic object since rota-
tion does not require any driving force. Finally, we also treat
the effects of turbulence on the magnetic fields as such a back-
ground effect. More specifically, any turbulence in our model
is regarded as a perturbation that does not affect the hydrostatic
pressure balance and its effects on thermal, elemental, rotational,
and magnetic transports are expressed through simple effective
theories. For the turbulent effects on the magnetic field, we take
into account the α effect, which expresses the turbulent induction
of the magnetic field, and the η effect, which shows the turbulent
magnetic diffusivity, according to the mean-field MHD-dynamo
equation (Brandenburg 2018).

Although deformation effects due to rotation are included in
the stellar structure equations as described above, those are small
unless the star rotates close to critical. Therefore, spherical sym-
metry is assumed when deriving the governing equations of the
magnetic field. This treatment makes the derivation much eas-
ier. Generalization of the derivations to the case of a star with a
deformed structure is beyond the scope of the current work.

2.2.1. Simplification of the magnetic field

The stellar magnetic field is assumed to be axially symmetric
with respect to the rotation axis of the star. The field is divided
into a poloidal and a toroidal component:

B(r, θ) ≡ Bpol(r, θ) + Btor(r, θ), (11)

Bpol = Br(r, θ)er + Bθ(r, θ)eθ, (12)

Btor = Bφ(r, θ)eφ, (13)

where Br, Bθ, and Bφ are the r, θ, and φ components of the mag-
netic fields, respectively, and they are functions of the radius, r,
and the colatitude, θ.

Because the magnetic field satisfies the solenoidal (the
divergence-free) condition, we can find a vector potential A that
satisfies

B = ∇ × A. (14)

To express the poloidal magnetic field, we utilize the toroidal
component of the vector potential, Ator = Aφeφ, as

Bpol = ∇ × Ator, (15)

so that not only Btor but also Bpol naturally satisfies the
solenoidal condition. Because of the axial symmetry, the
poloidal components of the magnetic field can be related to Aφ
as

Br(r, θ) =
1

r sin θ
∂

∂θ
(Aφ sin θ), (16)

Bθ(r, θ) = −
1
r

∂

∂r
(Aφr). (17)

To express the magnetic field evolution by a 1D method, the
latitudinal dependence of the magnetic field has to be somehow
determined. As for the simplest case, we approximate that the
poloidal field has the same latitudinal dependence as a dipolar
field, thus

Aφ(r, θ) ≡ A(r) sin θ, (18)

which yields

Br(r, θ) =
2A

r
cos θ (19)

Bθ(r, θ) = −
sin θ

r

∂(Ar)
∂r
· (20)

To achieve a magneto-hydrostatic state, this poloidal field
will be accompanied by a toroidal component, with a com-
parable or stronger field strength than the poloidal field
(Braithwaite & Nordlund 2006; Braithwaite 2009); otherwise,
the poloidal field is unstable (Wright 1973; Markey & Tayler
1973, 1974). We may assume that this toroidal component has
the polarity of sin θ. Besides, we take a toroidal field into account
that is additionally induced by the Ω effect. Such a toroidal com-
ponent should have the same polarity as the original poloidal
field and we take one of the simplest latitudinal dependencies as
sin 2θ. Thus, we write

Bφ(r, θ) = Bstb(r) sin θ + B(r) sin 2θ. (21)

However, we show below (Sect. 2.2.2) that only the toroidal
component induced by the Ω effect is capable of transferring
angular momentum. Therefore, we only discuss the evolution of
B(r) in the subsequent sections (Sects. 3–5).

2.2.2. Evolution equations for the magnetic field

We start by considering a surface, S , that is embedded in a star
and moves with time with velocity field, V(r, t). We let P be the
time-dependent vector field, which will be later regarded as the
magnetic field or the electric current field. Then the flux of P on
S is defined as Φ ≡

∫

S
P · ndS =

∫

S
P · dS, where n is the normal

vector of S . In this situation, Alfvén’s theorem tells that the total
time derivative of Φ is written as

DΦ

Dt
=

∫

S

(

∂P

∂t
− ∇ × (V × P)

)

· dS (22)
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rotational axis

equatorial plane

S

C

poloidal 
component 
of B (or j)

θ

r

n

Fig. 1. Schematic illustration of the geometry used to define fluxes ΦB

and Φ j. S , which is the surface of a polar cap with a radius r and the
opening angle θ, is shown by the red shaded area. Fluxes are defined as
ΦB ≡

∫

S
B · ndS and Φ j ≡

∫

S
j · ndS .

if and only if ∇ · P = 0 is satisfied. For interested readers, an
elementary proof is given in Appendix A.

The macroscopic evolution of the magnetic field may be
described by the mean-field MHD-dynamo equation:

∂B

∂t
= ∇ × (u × B + α · B) − ∇ × ((η + ηt)∇ × B) , (23)

where u is the fluid velocity, η is the magnetic diffusivity, and
α and ηt are the pseudo-tensors indicating the α-effect and the
turbulent magnetic diffusivity (Brandenburg 2018). Because of
the large magnetic Reynolds number in a stellar environment,
η is almost dominated by the turbulent magnetic diffusivity.
Hence, going forward, we rename the total magnetic diffusivity
as η + ηt → η.

Since ∇ · B = 0, Eq. (22) can be applied to the magnetic
field. Substituting Eq. (23) for the ∂P/∂t term in Eq. (22), the
evolution equation of the magnetic flux is obtained as

DΦB

Dt
=

∮

C

(U × B + α · B − η∇ × B) · dl, (24)

in which Stokes’ theorem is applied, and ΦB ≡
∫

S
B · dS and

U ≡ u − V.
For practical purposes, the surface, S , together with the

boundary, C, have to be defined. Here, we take S as a polar cap
with radius, r, and opening angle θ, and accordingly, the bound-
ary, C, is taken to be a conic section that is located at the angle
θ (Fig. 1). Considering the axial symmetry of the magnetic field,
magnetic flux penetrating the surface is written as

ΦB = 2πr sin θAφ. (25)

Similarly, the right hand side of Eq. (24) becomes
∮

C

(U × B + α · B − η∇ × B) · dl

= 2πr sin θ (U × B + α · B − η∇ × B)φ . (26)

We take the Lagrangian expansion velocity, vm, as the veloc-
ity of the polar cap, thus V = vmer. The vector field, U ≡ u − V,
now indicates a flow other than that which is due to stellar expan-
sion or contraction. For the sake of simplicity, we consider that

only the rotational flow contributes to U. In other words, we ten-
tatively neglect the advection of the magnetic field by the merid-
ional flow. Ultimately, the evolution equation of Aφ is obtained
as

d(Aφr)

dt
= r(α · B)φ

+ η

[

∂2

∂r2
(Aφr) +

1
r

∂

∂θ

(

1
sin θ

∂

∂θ
(Aφ sin θ)

)]

. (27)

Here and hereafter, a time derivative at constant radius is shown
by ∂/∂t, while a time derivative at constant mass coordinate is
shown by d/dt. As we assume Aφ = A(r) sin θ, we obtain the
evolution equation of A(r) as

d(Ar)
dt
= r

(α · B)φ
sin θ

+ ηr
∂

∂r

(

1
r2

∂

∂r

(

Ar2
)

)

· (28)

Equation (22) can also be applied to the electric current field
j(r, t) since j is proportional to the curl of B and thus divergence-
free assuming MHD. Using the evolution equation of the electric
current, the evolution equation of the electric current flux,

DΦ j

Dt
=

c

4π

∮

C

{

∇ × (u × B + α · B)

− ∇ × (η∇ × B) − V × (∇ × B)
}

· dl, (29)

is obtained. Owing to the axial symmetry, the electric current
flux can be written as

Φ j ≡
∫

S
j · dS (30)

=

(

c

4π

)

2πr sin θBφ. (31)

The right-hand side of Eq. (29) is reduced to

c

4π

∮

C

{

∇ × (u × B + α · B) − ∇ × (η∇ × B) − V × (∇ × B)
}

· dl

=

(

c

4π

)

2π sin θ sin 2θ
{

Ar
∂Ω

∂r
+ Br

d ln(ρr2)
dt

+ ηr2 ∂

∂r

(

1
r4

∂

∂r
(Br3)

)

+
∂η

∂r

∂Br

∂r
+ r

(∇ × (α · B))φ
sin 2θ

}

+

(

c

4π

)

2π sin2 θ

{

Bstbr
d ln(ρr2)

dt

+ ηr
∂

∂r

(

1
r2

∂

∂r
(Bstbr2)

)

+
∂η

∂r

∂Bstbr

∂r

}

, (32)

in which the latitudinal dependencies of the magnetic field
described above are used, and a relation ∂vm

∂r
= − 1

ρr2
d(ρr2)

dt
, which

is valid for a spherically symmetric flow, is assumed. By taking
the terms with sin 2θ dependence, the evolution equation of B(r)
is obtained as

ρr2 d
dt

(

B

ρr

)

= Ar
∂Ω

∂r
+ ηr2 ∂

∂r

(

1
r4

∂

∂r
(Br3)

)

+
∂η

∂r

∂Br

∂r
+ r

(∇ × (α · B))φ
sin 2θ

· (33)

The remaining terms with sin θ dependence may be used to
describe the evolution of Bstb as

ρr2 d
dt

(

Bstb

ρr

)

= ηr
∂

∂r

(

1
r2

∂

∂r
(Bstbr2)

)

+
∂η

∂r

∂Bstbr

∂r
· (34)
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However, considering the function of stabilizing the poloidal
component, a simpler relation,

Bstb = ftp
2A

r
, (35)

with ftp & O(1) as the ratio between poloidal and toroidal field
strengths, might also provide a reasonable estimate.

We have not yet determined the functional form of the elec-
tromotive force induced by the α effect, namely, (α · B)/c. In
this work, we keep this issue open and thus, our results omit the
α-effect. This is because α is a pseudo-tensor, which can be
a function of the magnetic field strength, the rotation fre-
quency and the local thermodynamic quantities as well, so
that it will be complex in the general case. Nevertheless,
the α effect accounts for the induction of the poloidal field
from the toroidal field, which is not provided by other means
considered in this work. Such a term is therefore indispens-
able for obtaining magnetic amplification especially in con-
vective regions (Featherstone et al. 2009; Augustson et al. 2016;
Hotta et al. 2016). Thus, we will include this term in a future
work.

In summary, the evolution of the stellar magnetic field is
described by the two equations,

d(Ar)
dt
= 4πρηr3 ∂

∂M

(

4πρ
∂

∂M
(Ar2)

)

, (36)

d
dt

(

B

ρr

)

= 4πAr
∂Ω

∂M
+ 4πηr2 ∂

∂M

(

4πρ
r2

∂

∂M
(Br3)

)

+ (4π)2ρr2 ∂η

∂M

∂Br

∂M
· (37)

It is noteworthy that both Ar and B/ρr scale as |B|r2 if we
assume ρ ∝ r−3. Therefore, the terms on the left-hand side of
both Eqs. ((36) and (37)) show the magnetic flux conservation.
For Eq. (36), the rest term describes the magnetic diffusion. The
first, second, and third terms on the right-hand side of Eq. (37)
account for the Ω effect, the magnetic diffusion, and the mag-
netic advection caused by the gradient of the magnetic diffusiv-
ity, respectively.

2.2.3. Boundary conditions

We solve two diffusion–advection equations for the magnetic
field evolution. Hence, in total, four boundary conditions are
needed for closures.

At the center of the star, we set A = 0 and B = 0 such that the
magnetic field does not diverge. At the surface of the star, we set
1+ (1/A)(∂Ar/∂r) = 0 and B = 0. The first condition is obtained
by approximating that the poloidal magnetic field outside the star
coincides with the dipole field. The second condition is obtained
by assuming that there is no radial electric current that penetrates
the stellar surface to outer space.

2.3. Evolution equation of the angular velocity

The equation of fluid momentum conservation can be written as

∂

∂t
(ρu) + ∇ · (ρuu) = −∇P + ρg + ∇ ·Π + ∇ · M, (38)

where g, Π, and M ≡ 1
4πBB − 1

8π |B|2I are the gravity, the
Reynolds stress tensor, and the Maxwell stress tensor, respec-
tively. Here, we use a relation 1

c
j×B = ∇·M describing the bal-

ance between the Lorentz force and the magnetic stress, which

is satisfied for MHD. We note that the viscous stress owing to
the fluid viscosity is neglected because of the extremely large
Reynolds number of the stellar system.

Starting from the basic equation, one can write the evolution
equation of the specific angular momentum as

ρ
d
dt

(r sin θvφ) = r sin θ(∇ ·Π)φ +
1
r2

∂

∂r

(

r3 sin θ
BrBφ

4π

)

+
1

sin θ
∂

∂θ

(

sin2 θ
BθBφ

4π

)

, (39)

where axial symmetry is assumed. By averaging over a sphere,
we obtain

ρS
d
dt

(iΩ) =
(∫ π

0
2πr3 sin2 θ(∇ ·Π)φdθ

)

+
∂

∂r

(

r3
∫ π

0

BrBφ

2
sin2 θdθ

)

, (40)

where S ≡
∫

2πr2 sin θdθ is the surface area of the sphere and
i ≡

∫

2πr4 sin3 θdθ/S ∼ 2r2/3 is the specific moment of inertia
of the sphere.

Finally, by assuming the latitudinal dependencies of the mag-
netic field and by applying an empirical formula of the viscous
force due to shear, the evolution equation of the angular velocity
is obtained;

d
dt

(iΩ) =
∂

∂M

(

(4πρr2)2νcvir−ncv
∂(Ωrncv )
∂M

)

+
∂

∂M

(

(4πρr2)2νeff i
∂Ω

∂M

)

+
∂

∂M

(

8r2AB

15

)

, (41)

where νcv and νeff are the effective viscosities due to convective
turbulence and turbulence induced by other instabilities. Here, it
is noteworthy that Bφ in the magnetic tensor should omit Bstb,
the toroidal component that would exist for stabilization of the
poloidal field, but only account for the toroidal component that is
induced by the Ω effect. This is done for the purposes of consis-
tency with the assumption on the dynamical equilibrium of the
original field; otherwise nonzero Lorentz forces would disrupt
the original configuration. This requirement is naturally satisfied
if we assume that Bstb has ∼ sin θ polarity, such that the effect on
the Lorentz force is canceled out after averaging over the sphere.

The first term on the right-hand side of Eq. (41) describes the
angular momentum transfer owing to the Reynolds stress due to
convective turbulence. In general, angular momentum distribu-
tion in a convective region is affected by the interplay between
the convective advection and turbulence and rotation. How-
ever, the theoretical treatment is uncertain (e.g., Tassoul 2000).
Thus, our model incorporates the parameter, ncv, which indicates
which kind of angular velocity structure forms in a convective
region in equilibrium. Two extreme cases are either ncv = 0
(favoring rigid body rotation) or ncv = 2 (favoring isotropic spe-
cific angular momentum). We apply ncv = 0 for our calculations
unless otherwise noted. For the second term, we assume that a
region reaches rigid rotation in equilibrium because shear rota-
tion is the source of the energy that drives instability in most
of the considered cases. The third term accounts for the angular
momentum transfer due to the Maxwell stress.

It is noteworthy that all of these stress terms have a conser-
vative form, that is, only the surface term appears after integrat-
ing over the whole star. For the magnetic stress, this property
originates from the fact that the electromagnetic field, assuming
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MHD, only possesses a negligible amount of momentum com-
pared to the matter. We also note that even in the case of ncv = 2,
the rotation law does not necessarily reach the case of isotropic
specific angular momentum because the second term counter-
balances towards a rigid rotation. In our code, the most efficient
rotation induced viscosity in a convective region is the dynami-
cal shear instability. Considering the huge uncertainty involved
in the efficiency estimates, we assume that νDS = νMLT in case
of ncv = 2. This yields Ω(r) ∝ r−1, which can be checked by
applying νcv = νeff to Eq. (41).

2.4. Input physics

2.4.1. Diffusion coefficients

We assume that several hydrodynamical instabilities may
develop in the rotating stellar interior and that turbulence driven
by such instabilities accounts for the Reynolds stress. The con-
vective viscosity is estimated as νcv = Dcv and νeff consists of six
terms, namely:

νeff = νES + νDS + νSS + νSH + νGSF + νPT, (42)

where each term stands for the viscosity corresponding to the
Eddington–Sweet circulation (νES), the dynamical shear instabil-
ity (νDS), the secular shear instability (νSS), the Solberg–Høiland
instability (νSH), the Goldreich–Schubert–Fricke (GSF) instabil-
ity (νGSF), and the Pitts–Tayler instability (νPT), respectively.

The viscosity coefficients νES, νDS, νSH, and νGSF are cal-
culated according to Pinsonneault et al. (1989) and Heger et al.
(2000), with the modification that we use the minimum of the
pressure scale height, HP, and the radius to estimate the typ-
ical length scale for each instability. In the original works,
they use the velocity scale height of the respective flow, which
is further limited by the radius or the width of the unstable
region, as the typical length instead. We find that this modi-
fication has only a limited effect on the overall stellar evolu-
tion. To compute νSS, we follow the prescription by Maeder
(1997). An m = 1 instability is assumed to grow in a region
with a strong toroidal magnetic field. The effective viscosity
owing to this Pitts–Tayler instability, νPT, is estimated accord-
ing to Spruit (2002) and Maeder & Meynet (2004). For clar-
ity, we give the corresponding equations in Appendix B. We
note that these prescriptions involve a control parameter, fµ,
which is multiplied to the µ-gradient. This is an influential
parameter of the stellar simulation, as it affects the stability
conditions.

We assume that turbulence driven by (magneto-)hydro-
dynamical instabilities accounts for the chemical mixing as well.
Another control parameter fc is set, which indicates the ratio
between the chemical diffusivity and the viscosity. Thus,

Deff = Dcv + fc × νeff (43)

is used for rotating models. Similarly, the effective magnetic vis-
cosity is estimated as

η = Dcv + fm × νeff , (44)

however, fm = 1 is set in the current work.
We note that the Eddington–Sweet circulation accounts for

the most efficient “turbulent” diffusivity in the radiative enve-
lope in the present models. The Eddington–Sweet circulation,
which is also referred to as the Eddington–Vogt circulation, was
first postulated as a laminar meridional flow driven by a ther-
mal imbalance that results from the difference of temperature

gradient in a latitudinal direction in a rotating star (von Zeipel
1924a,b; Eddington 1925; Vogt 1925; Sweet 1950). As the effect
on the angular momentum transport could be modeled as an
advection (cf. Maeder & Zahn 1998), magnetic advection due to
the Eddington-Sweet circulation would be formulated by more
stringent consideration of the U × B term in Eq. (24). However,
considering the existence of the baroclinic instability, which will
operate with a dynamical timescale in a radiative zone even with
a very small differential rotation (Fujimoto 1988; Kitchatinov
2014), it will also be natural to assume that the Eddington-Sweet
circulation in an actual star would typically be accompanied by
turbulence. Bearing the uncertainties involved in the theoretical
modeling in mind, we leave this discussion open in the current
work.

2.4.2. Wind-magnetic field interaction

With a strong surface magnetic field, part of the stellar wind
blowing from a closed field region will be trapped to form a mag-
netosphere surrounding the star (Donati et al. 2002). Indeed, the
time variation and the Balmer-line emission profiles observed
in a well-known magnetic Bp star, σ Ori E, have been repro-
duced by considering such a rigidly rotating magnetosphere
(Townsend & Owocki 2005; Townsend et al. 2005). Because the
net mass loss rate can be significantly reduced due to the mag-
netic confinement, we take this effect into account in our simula-
tions according to the work of Ud-Doula et al. (2008). The mag-
netic confinement parameter, η∗, is estimated first and then used
to derive the confinement efficiency fconf(η∗) ≡ Ṁ/Ṁ(B = 0),
where Ṁ(B = 0) is the mass loss rate of a non-magnetic star.
The detailed procedure is explained in Appendix C.

While the strong surface field reduces the mass-loss rate,
it can enhance the rate of the angular momentum loss in con-
trast. This is because the stellar angular momentum is not only
reduced by the material flow but also by the Maxwell stress
(Weber & Davis 1967; Ud-Doula et al. 2009). The braking effi-
ciency fbreak(η∗) ≡ J̇/J̇(B = 0), where J̇(B = 0) is the angular
momentum loss rate of a non-magnetic star, is estimated in this
case. We account for the effect of the magnetic braking accord-
ing to Ud-Doula et al. (2009). The interaction of wind material
with a dipole magnetic field is assumed in their analysis, while a
simple monopole geometry is assumed in the classic analysis by
Weber & Davis (1967), which is often used to model the evolu-
tion of solar-like stars. We give further details of our treatment
in Appendix C.

2.5. Numerical settings and code test

Equations (36), (37), and (41), and the diffusion part of Eq. (1)
are numerically solved with a finite-difference method. We use
a first-order backward difference for the time derivative and a
second-order central difference for the space derivative. Together
with the boundary conditions, these difference equations are
iteratively solved at the same time and while they are decou-
pled from the equations of stellar structure. One time step for
the structure equations is further divided into numerous (typi-
cally ∼1000) time steps for the evolution equations of the mag-
netic field and the angular momentum. The latter time step is
controlled such that the relative differences in A, B, and Ω are
restricted to be smaller than λ in each step, where λ is an arbi-
trarily chosen control parameter of about 10%. The basic fea-
tures of the numerical code such as magnetic flux conservation
and magnetic dissipation are confirmed, and details of the code
tests are described in Appendix D.

A19, page 7 of 28



A&A 646, A19 (2021)

2.6. Other possible magnetic effects

Several other magnetic effects are not considered in the present
work. Even though they do not significantly affect the interplay
between the evolution of the magnetic field and the stellar rota-
tion, they can have a significant effect on the stellar structure in
some cases. Here, we briefly review these effects, which we plan
to implement on top of the present formulation in forthcoming
papers.

For strong magnetic fields, the stellar structure can be
modified by the magnetic pressure and the magnetic ten-
sion. Feiden & Chaboyer (2012, 2013, 2014) take these effects
into account for low-mass stellar evolution calculations using
a geometry parameter introduced by Lydon & Sofia (1995).
Duez et al. (2010) develop a more rigorous and general treat-
ment and apply their formulation to model the young Sun.

Lydon & Sofia (1995) also showed how large-scale magnetic
fields can affect the equation of state, especially the adiabatic
index, and the equations in the mixing length theory for con-
vection. When the local magnetic field is strong enough, the
pressure change during an adiabatic motion can differ from the
non-magnetic case since part of the work goes into the form of
magnetic energy. The modification of the adiabatic index fur-
ther affects the criterion for convective instability. In addition, it
changes the specific heat and thus the efficiency of the convective
energy transport.

The internal energy equation is in principle also modified
when considering the magnetic effects of Jule heating and the
Poynting flux. Because our formulation includes magnetic dissi-
pation due to turbulent magnetic diffusivity (the η effect), a cor-
responding Jule heating term may be taken into account in the
internal energy equation for consistency in the future.

Strong and stable magnetic fields inside the star might sup-
press hydrodynamical flows such as convection and meridional
circulations. The stabilization effect may be included in stellar
evolution models by modifying the convective criterion (e.g.,
Lydon & Sofia 1995; Petermann et al. 2015).

3. Angular momentum transport via dissipating

torsional Alfvén wave

Differential rotation winds up the poloidal magnetic field to
enhance the toroidal component, which is the Ω effect. As the
toroidal component gets strong, the magnetic stress increases as
well, which counteracts to reduce the differential rotation. Here,
we consider what would happen in a stellar model when these
two effects are incorporated.

We can simplify our set of equations such that the Ω effect
and the magnetic stress are resolved by two linear differential
equations as

∂(Br3)
∂t

=
Brr

4

2
∂Ω

∂r

∂Ω

∂t
=

Br

10πρr4

∂(Br3)
∂r
,

where the effects of magnetic diffusion and viscous angular
momentum transport are neglected, the rates of change of Ar,
radius, density, and specific moment of inertia i are assumed to
be small, and the relations i ∼ 2r2/3 and A ∼ rBr/2 are used.
This hyperbolic system may be analyzed with methods used in
fluid dynamics. By diagonalizing the matrix
(

0 Brr
4/2

Br/10πρr4 0

)

,

we are able to obtain a set of eigenvalues and eigenvectors as
±c ≡ 1√

5
vA and r± = (1 1/

√

5πρr4)t. The corresponding invari-

ant dw± = dΩ ∓ d(Br3)/
√

5πρr4 becomes constant along the
characteristic dr/dt = ±c. Here, vA ≡ Br/

√

4πρ is the Alfvén
velocity of the radial magnetic field. Therefore, we expect that
a wave that propagates with the Alfvén velocity forms in this
system.

In this section, we analyze how this wave propagation man-
ifests itself in our numerical models. Furthermore, we demon-
strate that with the help of viscosity and magnetic dissipation,
this torsional Alfvén wave serves as a highly efficient mecha-
nism for the redistribution of angular momentum.

3.1. Formation and propagation of torsional Alfvén wave

We explore the wave propagation using a 1.5 M⊙ main-sequence
model which has a radius of ∼1.5 R⊙. We calculated the coupled
evolution of the toroidal field and the stellar rotation, includ-
ing the Ω effect and the magnetic stress, but we set the vis-
cosity and magnetic diffusivity to zero. A uniform radial field
as Br(=2A(r)/r) = 1 kG is set in the beginning, so that the
wave velocity becomes c ∼ 80 cm s−1, and correspondingly, the
estimated wave-crossing time from the center to the surface is
∼1.3×109 s. A step-function distribution of Ω = 10−4 rad s−1 for
M ≤ 1 M⊙, and Ω = −10−4 rad s−1 otherwise, is imposed as the
initial angular velocity distribution. The toroidal magnetic field
Bφ(=B(r)) is set to be zero everywhere.

Figure 2 shows how the rotation and the magnetic field
evolve with time. In the beginning, two wavefronts launch from
the discontinuity and start propagating towards the stellar sur-
face and the center. A wave, which is similar to a rarefaction
wave in fluid dynamics, is formed in between the two wave-
fronts. The up-going front reaches the surface at ∼3 × 108 s, and
is then reflected to follow the down-going wavefront. The down-
going front reaches the stellar center at ∼1.4 × 109 s and then
is also reflected. At ∼1.8 × 109 s, the two wavefronts cross and
penetrate each other.

Although the wavefronts have a diffuse structure, especially
in the central region, Fig. 1 shows that their propagation agrees
well with the prediction, which is shown as black dashed and
dotted lines. The positions of the two lines are directly calculated
by the time integral of

rf(t) = rf,ini ±
∫ t

0
c(rf)dt. (45)

The wave-crossing time in the simulation is estimated to be
1.71 × 109 s, as the two wavefronts meet again at this time after
traveling either through the stellar surface or the center. This
agrees well with the simple estimate of ∼1.3×109 s given above.
The timescale of shear rotation does not appear in the propaga-
tion timescale because the efficiency of the winding-up of the
poloidal magnetic field is proportional to the required torque to
affect the angular momentum of the material, and therefore they
cancel each other out.

However, the timescale of theΩ effect relates to the time that
the wave passes the width of the wavefront, λ/c, and therefore,
the strength of the toroidal magnetic component at the wavefront
can be estimated as

Bφ ∼ Brr
∆Ω

λ

λ

c
=

√

20πρr∆Ω. (46)

This is proportional to the angular velocity difference at the
wavefront, ∆Ω, but is independent of the strength of the poloidal
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Fig. 2. Angular velocity, Ω (red lines), and
strength of the φ-component of the mag-
netic field, Bφ (blue lines), for ten differ-
ent times during the evolution of a 1.5 M⊙
main-sequence stellar model, illustrating
the propagation of torsional Alfvén waves
in the stellar interior. Here, the Ω effect and
the Maxwell stress are taken into account,
but the η effect is not. The x-axis for the
left panels, showing times up to 8×108 s, is
the Lagrangian mass coordinate, the right
panels, depicting later times, use the radius
coordinate. On the y-axis, The logarithm
of Ω divided by Ωmin (or log Bφ,min/Bφ,min)
is plotted with the normalization values of
Ωmin = 1 × 10−6 rad s−1 and Bφ,min = 1 ×
103 G. Prograde rotation and positive B-
field polarity are plotted in the upper half
of the panels, retrograde rotation and neg-
ative polarity are plotted in the lower half.
Small structure with −Ωmin < Ω < Ωmin

and −Bφ,min < Bφ < Bφ,min is omitted from
this plot. The black dashed and black dotted
lines show the positions of the wavefronts,
rf , which are estimated by Eq. (45). Arrows
indicate the direction of the wave propaga-
tion.

magnetic component. This is because the stronger the seed
poloidal magnetic field is, the shorter is the wave-crossing time
of the width of the wavefront, and therefore they cancel each
other out. This relation yields Bφ ∼ 7× 107 G at Mr = 1 M⊙ with
∆Ω = 2 × 10−4 rad s−1 and explains the simulation result.

In another test calculation with a ten-times stronger initial
poloidal magnetic field, the wave velocity increases by a factor
of 10, but the toroidal magnetic component does not change. On
the other hand, in a calculation with a ten-times smaller initial
angular velocity, the toroidal magnetic component decreases by
a factor of 10, but the wave velocity stays constant.

The standard Alfvén wave and the Ω-B wave discussed here
are essentially identical, as they share the same driving force
and a similar propagation velocity. Hence, we refer to the wave
solution in our simulation as a torsional Alfvén wave. While a
small fluctuation propagates along the magnetic field in the for-

mer case, a large number of windings are required to launch the
wave in the latter. This difference arises from the weak magnetic
field considered in the present case. We compute ∼1015 erg g−1

for the gravitational and thermal energies, ∼1012 erg g−1 for the
rotational kinetic energy, but only ∼104 erg g−1 for the magnetic
energy of the poloidal component. With such a weak magnetic
field, a strong magnetic amplification due to the Ω effect is
required for the magnetic stress to affect the dynamics of the
rotating flow. The toroidal component induced in the Alfvén
wave always has comparable specific energy to the rotational
kinetic energy; see Eq. (46). The required number of windings
decreases for higher initial poloidal field strengths. The torsional
Alfvén wave will converge to the standard Alfvén wave if the
poloidal component is so strong that a small number of wind-
ings is sufficient to drive the wave.
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Fig. 3. Angular velocity Ω (red), toroidal magnetic component Bφ (blue), and magnetic viscosity η (green) as a function of the Lagrangian
mass coordinate at eight different moments in time in test calculations of a 1.5 M⊙ main-sequence stellar model, using different assumptions for
magnetic and viscous dissipation. Left panel: results for no dissipation, results with dissipation only due to hydrodynamic instabilities are shown
in the middle, and results with hydrodynamic dissipation and Pitts–Tayler instabilities are shown in the right panel. For this stellar model the
wave-crossing time is twc = 1.71 × 109 s. The top seven plots of each panel cover about two wave-crossing times (3.4 × 109 s) with five snapshots
per plot, one every 108 s, for the period given in the top right corner of each plot. In the bottom row of plots, results after about six wave-crossing
times are shown, i.e., from 9.9 × 109 s to 10.3 × 109 s. The temporal evolution is available as an online movie.

3.2. Torsional Alfvén wave with dissipation

Here, we discuss the wave propagation for calculations where
dissipation effects are included, using the same stellar model and
initial conditions as in the previous section. Figure 3 shows the
resulting evolution of angular velocity, toroidal magnetic, and
magnetic viscosity. The cases of neglecting dissipation effects
(left) can be compared with results including dissipation due to
hydrodynamic instabilities only (middle), and considering both
hydrodynamic and magneto-hydrodynamic dissipation (right).

As shown above, without dissipation, the waves travel freely
through the star, and the wave-fronts meet each other once per
wave-crossing time. Due to numerical diffusion, the angular
velocity distribution after two wave-crossing times (seventh plot
in the first column), which should coincide with the initial dis-
tribution, has become somewhat more diffuse. Nevertheless, we
can follow the back-and-forth sloshing of the wave for more than
30 crossing times.

The middle column of Fig. 3 shows that turbulent dissipa-
tion due to hydrodynamic instabilities affects wave propagation.
Whereas turbulence due to secular shear and GSF instabili-
ties accounts for some viscosity in the radiative envelope, this
is too small to matter here. However, our 1.5 M⊙ model has
a hydrogen-burning convective core, in which rigid rotation is
established by the large convective viscosity (we note that we
apply ncv = 0 in this calculation). This has a big impact on
the angular momentum redistribution. Since waves with shorter
wavelengths have shorter dissipation time, the convective region
effectively filters out waves with shorter wavelengths, which
originally compose the step function used for the initial condi-
tion. As a result, a standing wave is quickly formed in the model,
with a wavelength of twice the stellar radius. Hence, the stand-
ing wave corresponds to the n = 1 fundamental mode oscillation,
which has one node at ∼1.1 M⊙ (see the online movie of Fig. 3).

In the calculation including hydrodynamic and magneto-
hydrodynamic dissipation, the latter works effectively only
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Fig. 4. Surface angular velocity as a function of time in test calcula-
tions of our 1.5 M⊙ magneto-rotational main-sequence model, in which
constant radial magnetic field of Br = 1 kG and a step function with
an arbitrary amplitude for the initial angular momentum distribution
are imposed as initial conditions. The star starts to oscillate on the
Alfvén time scale. Lines correspond to the case without dissipation
(red, solid), including only hydrodynamic instabilities (green, dashed),
and the case with hydrodynamic and magneto-hydrodynamic instabili-
ties (blue, dash-dotted), respectively. The wave-crossing time of twc =

1.71×109 s is referenced by the thick black bar at the bottom left corner.

during the first one or two wave-crossing times. First, shear rota-
tion propagates inside the star with the velocity of ∼vA/

√
5. In

regions passed by this shear wave, a toroidal field is induced by
the Ω effect, which soon triggers the Pitts–Tayler instability. As
a result, the large diffusivity due to the Pitts–Tayler instability
covers the entire star at t ∼ twc, which diffuses the angular veloc-
ity very effectively, together with the convective diffusivity. At
later times, however, the diffusivity due to the Pitts–Tayler insta-
bility becomes weak since there is no more strong shear rotation
amplifying the toroidal field component. Thus, the overall evo-
lution becomes comparable to the case that only considers the
hydrodynamic instabilities.

Figure 4 shows the first 500 yr evolution of the surface angu-
lar velocity of our model. The damped, quasi-sinusoidal varia-
tion for the models including dissipation is due to the torsional
oscillation. The period is comparable to the wave-crossing time
twc, which is given by

twc =

∫ R

0















1
√

5

Br
√

4πρ















−1

dr

with the stellar radius, R. If such waves were excited, such oscil-
lations could exist in real stars. Because the oscillation timescale
relates to the internal density and poloidal magnetic field dis-
tributions, observations of the changing surface rotation fre-
quency may allow deriving the internal magnetic field strength
by observing the change in the surface rotation frequency. We
discuss the comparison between our model and relevant obser-
vations in Sect. 7.2.

The torsional Alfvén wave oscillation gradually decreases its
amplitude. The model including only hydrodynamic instabili-
ties approaches a trivial stationary state of ∂Ω/∂r = Bφ = 0
with a decay timescale of t ∼ 10 twc. This means that the angu-
lar momentum in the star is effectively redistributed to achieve
rigid rotation, as torsional Alfvén wave propagates and dissipates
throughout the star.

It is noteworthy that an integrated evolution of the toroidal
magnetic field and the rotational flow in a radiative region of

the Sun has been modeled by 2D axisymmetric simulations in
Charbonneau & MacGregor (1992, 1993). In their simulations,
the phase shift across poloidal field lines can be followed. This
leads to efficient wave dissipation because large gradients in
the toroidal field are formed (Charbonneau & MacGregor 1992).
Although there is a difference in the detailed mechanism of the
dissipation, their results show that the radiative region in the sun
approaches rigid rotation as the dissipative Alfvén wave propa-
gates, which is consistent with our model.

The onset of Pitts–Tayler instability could affect the wave
propagation if the turbulent dissipation modifies the wavefront
structure. Therefore, we consider a differentially rotating region
in a star, where considerable strength of the poloidal field exists
but initially zero toroidal component. The condition for the
Pitts–Tayler instability to grow within a propagation time of
the Alfvén wave is τPT < τwc, where τPT is the growth time of the
Pitts–Tayler instability and τwc is the wave-crossing time. When
the toroidal component is induced by the Ω effect with a differ-
ential rotation parameter q ≡ ∂ lnΩ/∂ ln r, the growth time of the
Pitts–Tayler instability can be estimated as τPT =

√
3τ2

wc/(Ωq).
Hence, the condition above can be expressed as

√
3Ωτwcq > 1.

Our simulation with a strong poloidal field of Br ∼ 1 kG has
τwc ∼ 109 s. Therefore, the condition can be satisfied with a
canonical value of Ω ∼ 10−5 s−1, although q can have a variety
of value of .1.

Nonetheless, the condition for the wavefront to be disturbed
by the growing turbulence is normally not satisfied in a radia-
tive stellar envelope. For the turbulence driven by the Pitts–
Tayler instability to affect the wavefront, lv > vAτPT may be
required. The vertical length scale of the turbulence, lv, is esti-
mated as r(ωA/N), using the toroidal Alfvén angular frequency,
ωA ≡ Btor/

√

4πρr, and the Brunt–Väisälä frequency, N (Spruit
2002). Thus, the condition becomes Ωq/N > 1. For our 1.5 M⊙
model, we find N ∼ 10−2 s−1 in the radiative envelope, which
implies that in most of the case this condition will not be satis-
fied. Also, this condition does not depend on the poloidal field
strength. Therefore, in our simplified 1D picture, although the
Pitts–Tayler instability is expected to grow at the wavefront, the
wave propagation will not be affected by the turbulence induced
by the instability because the unstable region will be too thin.

4. Main-sequence evolution of 1.5 M⊙ stars

To explore the capabilities of our new modeling approach, we
calculate the evolution of solar metallicity 1.5 M⊙ models with
the full framework as described in Sect. 2. We set αMLT = 1.8,
fov = 0.01, fµ = 0.1, and fc = 0.125, for the mixing-length
parameter, the overshoot parameter, the µ-barrier parameter, and
the chemical diffusion/viscosity ratio parameter, respectively.
Initially, rigid rotation is applied, and the initial rotation period
is chosen from Prot,ini = 1, 10, 100, and 1000 d. For the magnetic
field, we apply the simplest possible functions as

A(r) =
Bp,inir

2
, (47)

B(r) = 0. (48)

This type of vector potential yields a uniform poloidal magnetic
field along the rotation axis inside the star. The strength of the
surface magnetic field at the pole, Bp,ini, is chosen as 10, 100,
1000, or 10 000 G. The model characteristics are summarized in
Table 1.

In the left panel of Fig. 5, evolution in the HR diagram are
compared for rapidly rotating (Prot,ini = 1 d) 1.5 M⊙ models with

A19, page 11 of 28

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202039253&pdf_id=4


A&A 646, A19 (2021)

Table 1. Characteristics of 1.5 M⊙ magneto-rotational models.

Prot,ini Bp,ini τMS ∆MMS 〈Ṁ〉MS τbreak,ZAMS η∗,ZAMS Prot,TAMS Bp,TAMS JTAMS/JZAMS

(d) (G) (Gyr) (M⊙) (M⊙ yr−1) (Gyr) – (d) (G) –

1.00 10.00 2.73 −1.33e−02 −4.86e−12 20.12 0.24 2.24 0.05 0.82
1.00 100.00 2.67 −8.26e−03 −3.09e−12 3.90 23.74 2.59 0.62 0.73
1.00 1.00e+03 2.58 −1.78e−03 −6.91e−13 0.45 2.64e+03 55.68 23.93 0.04
1.00 1.00e+04 2.88 −3.43e−04 −1.19e−13 0.03 7.51e+05 Inf. 9.76e+02 0.

10.00 10.00 2.70 −8.30e−03 −3.07e−12 9.44 2.89 22.91 0.56 0.80
10.00 100.00 2.63 −2.87e−03 −1.09e−12 1.45 2.81e+02 69.81 8.35 0.28
10.00 1.00e+03 2.49 −6.47e−04 −2.60e−13 0.15 3.54e+04 1.22e+10 182.46 2.18e−09
10.00 1.00e+04 2.94 −2.18e−04 −7.41e−14 1.02e−02 6.41e+06 Inf. 2.40e+03 0.

100.00 10.00 2.71 −6.04e−03 −2.23e−12 6.72 7.74 2.63e+02 1.40 0.70
100.00 100.00 2.59 −1.87e−03 −7.23e−13 0.87 8.68e+02 3.30e+03 18.41 0.06
100.00 1.00e+03 2.44 −5.31e−04 −2.18e−13 0.09 1.11e+05 8.47e+14 2.30e+02 3.73e−13
100.00 1.00e+04 2.95 −2.07e−04 −7.01e−14 7.26e−03 1.31e+07 Inf. 2.50e+03 0.

1.00e+03 10.00 2.71 −5.85e−03 −2.16e−12 6.47 8.97 2.68e+03 1.48 0.69
1.00e+03 100.00 2.58 −1.83e−03 −7.08e−13 0.81 1.02e+03 3.72e+04 19.33 0.05
1.00e+03 1.00e+03 2.44 −5.30e−04 −2.17e−13 0.08 1.34e+05 1.07e+16 2.30e+02 3.10e−13
1.00e+03 1.00e+04 2.96 −2.09e−04 −7.05e−14 7.09e−03 1.38e+07 Inf. 2.48e+03 0.

Notes. τMS is the main-sequence lifetime, ∆MMS is the total mass lost during the MS phase, 〈Ṁ〉MS = ∆MMS/τMS is the averaged mass loss rate for
the MS phase, τbreak,ZAMS = −JZAMS/J̇ZAMS is the braking timescale measured at ZAMS, η∗,ZAMS is the magnetic confinement parameter at ZAMS,
and Prot,TAMS, Bp,TAMS, and JTAMS are the rotation period, the field strength at the pole, and the total angular momentum at TAMS.
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Fig. 5. Left panel: main-sequence evolution of 1.5 M⊙ models in the HR diagram, computed with ncv = 0 and Prot,ini = 1 d. The result of magnetic
models with an initial magnetic field strength of Bp,ini = 10 G and 10 kG are shown by the red solid and blue dashed lines, while the result of the
nonmagnetic model is shown by the green dash-dotted line. Epochs for which the central hydrogen become Xc = 0.1 (and 0.7 for the Bp,ini = 10 G
model) are indicated by dots. Right panels: profiles of internal angular velocity (top left), radial and toroidal magnetic field strength (top right),
hydrogen mass fraction (bottom left), and the ratio between the magnetic pressure and the pressure (bottom right) at Xc = 0.1 as a function of
Lagrangian mass coordinate. Again, profiles of the Bp,ini = 10 G and 10 kG models are shown by the red solid and the blue dashed lines, while that
of the nonmagnetic model are by the green dash-dotted lines. Top right panel: radial and toroidal field strength are shown by the thick and thin
lines, respectively, and the radial component for the Bp,ini = 10 kG model is multiplied with a factor of 10−3. The surface values are highlighted by
dots in the right-top and right-bottom panels.

Bp,ini = 10 G and 10 kG and without magnetic effects. In the right
panels, internal profiles of angular velocity, hydrogen mass frac-
tion, radial and toroidal magnetic field strength, and the ratio

between the magnetic pressure and the pressure for the same
models at central hydrogen mass fractions of Xc = 0.1 are shown.
In Fig. 6, the reconstructed 2D magnetic field structures for the
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Fig. 6. Reconstructed 2D magnetic field structures at core hydrogen mass fractions of Xc = 0.7 (left) and 0.1 (right), for our 1.5 M⊙ model with an
initial magnetic field strength of Bp,ini = 10 G and an initial rotation period of Prot,ini = 1 d. The x-axis goes through the equatorial plane, while
the z-axis corresponds to the stellar rotation axis. Thick purple lines show the stellar surface, while thin purple lines designate the convective core
boundary. Green lines indicate magnetic field lines, the interval of which is taken such that 1 line in 1 R⊙ corresponds to the field strength of
0.2 G. The field lines outside of the star are constructed assuming a dipole structure. The color indicates the strength of the toroidal field. Note that
deformation due to centrifugal forces and structure change of the circumstellar magnetic field due to wind interaction are not taken into account
here.

weakly magnetic (Bp,ini = 10 G) model at Xc = 0.7 and 0.1 are
shown as well.

The fast rotation with Prot,ini = 1 d, which accounts for
∼20% of the Keplerian rotation at the surface, supports the stel-
lar surface, reducing the effective temperature. However, the sur-
face velocity of the strongly magnetic (Bp,ini = 10 kG) model
quickly decreases because of the efficient magnetic braking. This
explains the offset in the HR diagram in the early main sequence,
in which the strongly magnetic model shows a slightly higher
effective temperature than the others.

During the main-sequence evolution, the stellar envelope
expands, whereas the convective core shrinks. As a result, in
the model without magnetic fields, significant differential rota-
tion develops in the radiative envelope. The hydrogen-burning
core is slightly extended by rotation induced mixing due to the
secular shear instability. On the other hand, magnetic models
evolve remaining close to rigidly rotating due to the highly effi-
cient angular momentum redistribution by the dissipating tor-
sional Alfvén wave. Even in the weakly magnetic model with
Bp,ini = 10 G, which develops a toroidal field of only ∼−10 G in
its radiative envelope, only a tiny amount of differential rotation
of ∂Ω/∂ ln r ∼ 10−10 s−1 develops at the core-envelope boundary.
This behavior appears consistent with the results from asteroseis-
mology which finds only a small deviation from rigid rotation
in main-sequence stars (e.g. Aerts et al. 2017). Consequently,
no rotation induced mixing develops close to the hydrogen-
burning core in the magnetic model. This explains the ∼5%
fainter terminal-age main-sequence (TAMS) luminosity of the
weakly magnetic model. The difference in the TAMS luminosi-
ties between Bp,ini = 10 G and 10 kG models will be explained
by the slight difference of the total TAMS masses.

The poloidal magnetic field strength in the magnetic model
decreases over time, partly due to the envelope expansion, but

more importantly, as a result of magnetic dissipation due to
rotation induced turbulence. Here, turbulence triggered by the
Eddington-Sweet circulation, the efficiency of which is roughly
proportional to the square of the rotation frequency but not to
the shear rotation, accounts for the magnetic dissipation. The
ratio between the magnetic pressure, Bmag = (B2

r + B2
θ
+ B2

φ)/8π,
and the pressure (or the inverse of the plasma-β) is shown in
the right-bottom panel of Fig. 5. This ratio will also indicate the
significance of the influence of the magnetic pressure and ten-
sion and magnetic modification of the adiabaticity to the stel-
lar structure, which are not currently treated in our magnetic
models (Sect. 2.6). This figure shows this ratio is fairly small
in particular in the inner region of the star, justifying the cur-
rent treatment. Meanwhile, a strong magnetic field may influ-
ence the surface structure, which will indirectly affect the stellar
evolution by changing the mass-loss and angular-momentum-
loss histories. Also, it is noteworthy that material mixing due
to the magnetic Pitts–Tayler instability does not take place dur-
ing the main-sequence evolution in magnetic models because it
requires differential rotation. Therefore, in our current prescrip-
tion, magnetic fields with different strength affect the evolution
only in that they change the rotation velocity and, thus, the rota-
tion induced mixing.

The evolution of the surface rotation periods for our models
with different initial spins and magnetic field strengths is shown
in Fig. 7. Models without wind mass loss (black solid lines) con-
serve their initial angular momenta. This figure shows that the
stronger the surface magnetic field, the stronger the magnetic
braking takes place. With the adopted mass loss rate, a B-field
of ∼100 G is strong enough to spin down the stars by an order of
magnitude within their main-sequence lifetime, except for our
fastest rotating model. The efficiency of the magnetic braking
scales with the strength of the surface magnetic field. Thus, the
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Fig. 7. Evolution of the surface rotation periods as a function of time during core hydrogen burning for our 1.5 M⊙ models. Models with Bp,ini = 10,
100, 1000, and 10 000 G are shown by red solid, dashed, dotted, and dash-dotted lines, respectively. Models with Prot,ini = 1000, 100, 10, and 1 d
are shown in the top-left, top-right, bottom-left, and bottom-right panels, respectively. The solid black lines correspond to models without stellar
wind mass loss and with Bp,ini = 10 G for each initial rotation period.

spin-down of the models with Bp,ini = 1000, and 10 000 G is ∼10
and 100 times faster than that of the models with Bp,ini = 100 G.
However, the magnetic braking gets weaker in our fastest rotat-
ing models (Prot,ini = 1 d). This is because the surface magnetic
fields are dissipated due to the efficient η effect.

Figure 8 shows the time evolution of the polar surface mag-
netic strength Bp. For comparison, the results of models without
the η effect, which have Prot,ini = 1000 d, are also shown (black
solid lines). In these, the surface magnetic field decreases due
to mass loss. When a mass is lost, the layers below the surface
expand, and magnetic flux conservation leads to weaker fields.
A much more significant drop in magnetic field strength takes
place in models with the η effect. We see that the field strengths
decrease faster for more swiftly rotating models, which argues
for dissipation driven by rotation induced turbulence. For exam-
ple, for Bp,ini = 10 G (top-left panel), the strongest dissipation
takes place in the model with Prot,ini = 1 d, but for models with
Prot,ini = 1000 and 10 000 d, the surface magnetic field evolves
as it would in a model without an η effect. A similar behavior is
obtained for models with Bp,ini = 100 G.

Our most highly magnetic models (Bp,ini = 1000 and
10 000 G) follow a more complicated evolution. The two slowly
rotating models maintain stronger surface fields than the model
without the η effect. This is so because the strong surface mag-

netic fields suppress stellar wind mass loss by the magnetic
confinement. This also takes place in the model with Prot,ini =

10 d, but not in the fastest rotating one (Prot,ini = 1 d). Here, the
surface magnetic field is quickly dissipated by rotation induced
turbulence. We conclude that the surface magnetic field strength
is affected by wind mass loss and by rotation induced dissipa-
tion. However, at the same time, these two effects are influenced
by a strong surface magnetic field, that is, the wind mass loss
is suppressed by magnetic confinement and the rotation is also
slowed down by magnetic braking.

The evolutionary paths of Bp and Prot are shown together
in Fig. 9. As dots are placed on the tracks after a constant
elapsed time, the density of dots in this figure is somewhat rep-
resentative of the likelihood of observing a star at a given loca-
tion. The very low density in the lower right corner of Fig. 9
implies that the likelihood of finding a strongly magnetized star
(Bp > 1000 G) with a rotation period below ∼1000 d is very
small. This is the case given that for the considered field strength,
the magnetic spin-down timescale becomes shorter than ∼1% of
the main-sequence lifetime. At the same time, the likelihood of
finding a rapidly rotating (Prot < 1 d), strongly magnetized star
(Bp > 100 G) is also low because fast rotation results in efficient
magnetic dissipation.
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Fig. 9. Surface rotation period (Prot) as
function of the polar surface field strength
(Bp) during the main-sequence evolution
of our 1.5 M⊙ models. The corresponding
ZAMS values are shown by gray squares
with Bp = 10, 100, 1000, and 10 000 G and
Prot = 1, 10, 100, and 1000 d. As evolu-
tion progresses, the models increase their
rotation periods and decrease their mag-
netic field strengths as indicated by the gray
dashed lines. Colored dots are placed on
these evolutionary tracks every 200 Myr,
with the color indicating the total amount of
mass lost during the previous evolution (see
color bar to the left). Kinks close to the last
points in models with Bp,ini ≤ 100 G indi-
cate the TAMS turnoff.
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Figure 9 also indicates the evolution of the total amount of
mass lost by the models due to stellar winds. The model with
Bp,ini = 10 G and Prot,ini = 1000 d is best understood, as it
has the most modest magnetic confinement and negligible rota-
tional mass-loss enhancement. This model loses 5.9 × 10−3 M⊙
during its main-sequence phase. Comparably, the models with
Bp,ini = 10 000 G lose only 2.1 × 10−4 to 3.4 × 10−4 M⊙ thanks
to efficient magnetic confinement. On the other hand, the model
with Bp,ini = 10 G and Prot,ini = 1 d experiences magnetic dis-
sipation and, therefore, the magnetic confinement on the model
is minimal. Its wind mass loss is enhanced by the fast rotation
and it loses 1.33 × 10−2 M⊙. The rotational enhancement also
takes place for other models with Prot,ini = 1 d, but with the
stronger initial surface fields of Bp,ini = 100 and 1000 G, the lost
amounts are reduced because either the magnetic confinement or
the reduction of the rotational enhancement due to the magnetic
braking also taking place. The lost masses are 8.3 × 10−3 M⊙ for
the model with Bp,ini = 100 G and Prot,ini = 1 d and 1.8×10−3 M⊙
for the model with Bp,ini = 1000 G and Prot,ini = 1 d. We con-
clude that by considering a surface magnetic field, the total wind
mass loss displays a complex behavior because of the inter-
play between wind mass-loss rate, rotation, magnetic confine-
ment, and magnetic spin-down, even for a fixed stellar mass and
metallicity.

5. Red-giant branch evolution of 1.5 M⊙ stars

Here, we describe the results of our model calculation of a
1.5 M⊙ star of solar metallicity from the zero-age main sequence
(ZAMS) up to core helium ignition at the tip of the red-giant
branch, where the model experiences a violent helium flash and
the calculation is concluded. We include the same physics as that
used in the models of the previous section. Here, we use an ini-
tial rotation period of Prot = 1.4 d, a zero toroidal field, and a
uniform poloidal field with Bp,ini = 10 G. These values may be
representative of normal A-type stars. Our fiducial model is com-
puted using ncv = 0, and later we will discuss results obtained
with ncv = 2 for an otherwise identical model.

The evolution of the fiducial model in the HR diagram
is shown in the left panel of Fig. 10. We divide the evo-
lution into five phases, which are indicated by lines with
different colors (red, orange, yellow, green, and blue, from
the beginning) in the figure. Representatives, including the
model at helium ignition are selected from each phase and
shown as dots on the HR diagram. Corresponding internal pro-
files of physical key properties are shown in the right panels
using the same line color (dark-blue for the model at helium
ignition).

The top-left figure shows the increasing density contrast
between the core and the envelope. The angular velocity pro-
files demonstrate that rigid rotation is maintained even after
the core contraction (yellow and green) until the core growth
phase (blue) due to the efficient magnetic angular momentum
transfer. This efficiency can be estimated through the crossing
time of the torsional Alfvén wave, which is defined as τwc =

r
√

20πρ/Br (middle-right panel). Profiles of the radial magnetic
field strength are shown in the top-right panel. The radial com-
ponent keeps &0.1 G until envelope convection develops and,
consequently, the local wave-crossing time remains to be shorter
than .104 yr.

The magnetic diffusivity is significantly enhanced in the con-
vective envelope. Hence, it decreases the radial component after
the development of envelope convection, increasing the local

wave-crossing time (green and blue). Finally, it becomes longer
than the evolutionary timescale of ∼10 Myr. Consequently, the
model starts to develop differential rotation during the core
growth phase (blue).

The rotation of the red-giant core significantly accelerates
during this phase. The acceleration (of more than two orders
of magnitude) can be evaluated as follows: at first, the matter
accreted by the helium core has a large specific angular momen-
tum of

jacc ∼ 3.3 × 1013

(

Rbase

1 R⊙

)2 (

Ωbase

10−8 rad s−1

)

cm2 s−1,

where Rbase and Ωbase are the radius and the angular velocity of
the base of the convective envelope, respectively. Then, the total
accreted angular momentum can be estimated as

Jacc = 9.2 × 1045
(

jacc

3.3 × 1013 cm2 s−1

)

(

Macc

0.14 M⊙

)

g cm2 s−1,

where Macc ∼ 0.14 M⊙ is the accreted amount of mass. This
accreted amount of angular momentum largely exceeds the ori-
ginal core angular momentum of ∼1043 g cm2 s−1. Since the
magnetic field maintains rigid rotation in the helium core, the
saccreted angular momentum is quickly redistributed through-
out the core. Assuming that the accreted amount of angu-
lar momentum is redistributed within a core of Mcore =

0.43 M⊙ and Rcore = 1.6 × 10−2 R⊙, we expect a core angular
velocity of

Ωcore ∼ 2.2 × 10−5

(

Jacc

9.2 × 1045 g cm2 s−1

)

×
(

4.2 × 1050 g cm2

(2/5)McoreR2
core

)

rad s−1,

which corresponds well to the simulation result. As a con-
sequence of the accelerated core rotation, strong differential
rotation occurs at the core-envelope boundary. Consequently, a
strong toroidal field of ∼106 G is induced.

6. Comparison with previous results

6.1. Models including the Tayler–Spruit dynamo

As the significant impact of magnetic fields on the inter-
nal angular momentum distribution of stars has become
more and more evident during the last two decades (cf.,
Sects. 1 and 7 below), many stellar evolution models have
attempted to account for this by incorporating magnetic angular
momentum diffusion as proposed by Spruit (1999, 2002) in
various versions (Maeder & Meynet 2003, 2004; Heger et al.
2005; Yoon & Langer 2005; Denissenkov & Pinsonneault
2007; Suijs et al. 2008; Brott et al. 2011a; Yoon et al. 2012;
Fuller et al. 2019). This model relies on a dynamo picture, the
so-called Tayler–Spruit dynamo, which is assumed to operate in
differentially rotating, radiative layers in stars.

The original picture of the Tayler–Spruit dynamo consists
of three steps. First, due to the Ω effect, a strong toroidal mag-
netic field develops in a radiative layer due to differential rota-
tion. Second, the Pitts–Tayler instability induces turbulence in
this region. Finally, a radial magnetic field with considerable
strength is induced by the turbulent stretching of the toroidal
field. The induced radial component plays a role as the next
seed field of the Ω effect such that it closes the dynamo loop.
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Fig. 10. Left panel: evolution of a 1.5 M⊙ magneto-rotating model in the HR diagram, computed with ncv = 0. The line colors indicate the different
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Following this picture, we may estimate the strength of local
magnetic components of Br and Bφ as well as the magnetic
stress S TS = BrBφ/4π. The magnetic stress is further rewrit-
ten in terms of the viscosity, νTS, by equating ρνTSr∂rΩ = S TS.
This magnetic viscosity is then used in evolutionary calcula-
tions in the form of a diffusion coefficient for angular momentum
transport.

The Tayler–Spruit picture is incompatible with our mod-
eling in two aspects. First, the time evolution of the toroidal
component Bφ is significantly simplified such that Bφ is directly
proportional to ∂rΩ. This simplification leads to a diffusion
approximation of the magnetic stress, so that angular momentum
redistribution takes place locally as a form of diffusion, while the
most natural consequence of the Lorentz force and theΩ effect is
the formation of the torsional Alfvén wave (Sect. 3). Second, the
Tayler–Spruit dynamo relies on the α effect of the Pitts–Tayler
instability, such that the “radial” component that contributes
to the Lorentz force is dominated by the secondary generated
field. In contrast, the poloidal component that contributes to the
wave propagation in our case is the original field and a hydro-
dynamic induction to reproduce the poloidal component is not
assumed.

It is evident that when a star has a structured poloidal mag-
netic field, the dominant phenomenon occurring after the Ω

effect will be wave propagation, at least for the simplified 1D
geometry adopted here. For a structured but weak poloidal field,
the field strength only affects the timescale, and the torsional
Alfvén wave will still form. This is because the vertical length
scale of the Pitts–Tayler instability is always smaller than the
wave-crossing length scale (see Sect. 3.2).

Therefore, the important question is bound to consider what
happens in a star that has a very weak and unstructured ini-
tial poloidal field (as a strong and unstructured poloidal field
would be unstable and does not exist). Also, in this case, a
strong toroidal component may develop due to the Ω effect in
a region with a differential rotation. Because the initial poloidal
is weak and unstructured, the torsional Alfvén wave launched
by the Ω effect will be locally trapped. Then the region will
be predominantly affected by the Pitts–Tayler instability. Turbu-
lence may affect the magnetic field through both the α and the η
effect.

If the η effect wins, then the initially weak poloidal com-
ponent will soon dissipate, so that the region will have a pure
toroidal magnetic field. Because purely toroidal fields are unsta-
ble (leading to the development of such instabilities as the Pitts–
Tayler instability; e.g., Tayler 1973), eventually, all the magnetic
energy will dissipate into heat. Thus, the magnetic field does not
affect the differential rotation in the region. If the α effect wins,
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the poloidal field is amplified to have a complicated 3D structure
that is embedded within the instability region. Characterized by
a short crossing time, torsional Alfvén waves will now propa-
gate along the amplified poloidal field, and non-linear interaction
(e.g., phase mixing) may efficiently dissipate the waves. Since
there will be no preferred direction for the induced poloidal field,
the dissipation will take place nearly chaotically. This might
result in a similar outcome to what is discussed in the Tayler–
Spruit dynamo.

Therefore, the balance between the η and α effects is of
particular importance. Whether the α effect works in this situ-
ation as assumed in the Spruit–Taylor picture is debatable since
contradictory results based on multi-dimensional MHD simula-
tions have been reported (Braithwaite 2006; Zahn et al. 2007).
Unfortunately, multi-dimensional simulations with realistic ther-
mal and magnetic diffusivities, which are desirable for testing the
dynamo picture, remain a challenge given the current computa-
tional resources (see discussion in Braithwaite & Spruit 2017).
The question of whether the Tayler–Spruit dynamo works in a
star remains unclear at this time. We compare both the results
obtained with the Taylor–Spruit dynamo and our results with the
relevant observations in Sect. 7.

6.2. Other approaches

Several works have incorporated other magnetic effects than
the magnetic viscosity based on the Tayler–Spruit dynamo
into stellar evolution simulations. The interaction between a
surface magnetic field and the stellar wind has been con-
sidered in the context of modeling the evolution of massive
stars (Meynet et al. 2011; Petit et al. 2017; Georgy et al. 2017;
Keszthelyi et al. 2019); in particular, for studying the expected
spin-down due to their intrinsically large mass loss rate. While
these works have revealed the significance of the effects of mag-
netic braking or magnetic confinement, they do not account
for the evolution of the surface magnetic field but, rather, they
assume either a constant magnetic field strength or constant mag-
netic flux during the evolution. Our simulation implies that nei-
ther assumption can be realistic because the surface magnetic
field may change due to other mechanisms in addition to the flux
conservation. In particular, the mass loss will affect the surface
magnetic field for massive stars, as it replaces the surface mate-
rial with a matter that originally stayed below the surface, which
has a different magnetic flux compared to the original surface.
The Ohmic decay of the field can also be significant. Therefore,
a self-consistent global simulation for the stellar magnetism may
improve the current estimate of the field interaction with the stel-
lar wind in massive stars.

Furthermore, in some of the above-quoted calculations, the
assumptions for the internal magnetic fields are unrelated to the
assumptions for the surface field. For example, Meynet et al.
(2011) present massive star models with a strong surface field
and spin-down but while assuming that no B-field is present
inside the star, with the consequence of introducing strong inter-
nal differential rotation. Such inconsistencies are avoided with
the present approach.

The models of Feiden & Chaboyer (2012, 2013, 2014), and
Feiden (2016) take into account several magnetic field effects,
such as the magnetic pressure and the magnetic tension, and
especially the efficiency change of the convective energy trans-
port. The stellar structure of low mass stars with convective
envelopes is shown to be sensitive to these effects. However,
these models also lack a detailed theory of the evolution of the
stellar magnetic field. Instead, they assume a constant surface

magnetic field with a simple radial profile for the internal field
strength. The substantial effects on the stellar structure shown by
their models argue in favor of the importance of incorporating
an appropriate evolution theory for the stellar magnetic field in
stellar evolution calculations, which satisfies the essential MHD
conditions, such as flux conservation and divergence-free mag-
netic field configurations.

Such global simulations were performed for the first time by
Potter et al. (2012) and their formalism has also been used in
their later works (Quentin & Tout 2018). Although the physics
included in the modeling is similar to ours, their formulation
has two fundamental shortcomings. Their evolution equations
for the magnetic field do not reproduce the magnetic flux con-
servation and, similarly, the angular momentum conservation
is not guaranteed with their expression of the Lorentz force.
This could be because their choice of the surface-averaging
of the original 3D expressions is too simple: it is likely that sim-
ple weighted surface-averaging is applied for both the mean-field
MHD-dynamo equation and the 3D Lorentz force.

Interestingly, Potter’s models successively reproduce the
observed population of slowly rotating but nitrogen-enhanced
massive stars (Hunter et al. 2008). These stars cannot be
obtained by standard rotating single stars models (Brott et al.
2011b), whereas binary evolution can produce such stars
(Langer et al. 2008; Marchant 2016). Their magnetically braked
models not only slows down the surface rotation but also allows
for strong differential rotation to develop inside the star. Further-
more, the Pitts–Tayler instability aided by the Ω effect devel-
ops, which allows for efficient chemical diffusion to account for
the surface nitrogen enhancement. The assumptions in Potter’s
work are comparable to those in the Tayler–Spruit dynamo,
thus drawing a common picture with other evolutionary mod-
els (e.g., Meynet et al. 2011). In contrast, our model predicts a
nearly rigid rotation inside a magnetic star and there is no effi-
cient matter-mixing resulting from any instabilities powered by
differential rotation. Considering the large impact of chemical
mixing on stellar evolution, we will investigate the relationship
between nitrogen enhancement, rotation, and the magnetic field
in a future work.

Another effect that is omitted from our present study is
the magnetic suppression of hydrodynamic flows. Its relevance
in accounting for the stability of atmospheres of Ap/Bp stars,
which has been required for atmospheric diffusion processes
to take place, was discussed by Michaud (1970). Similarly,
a small macroturbulence of only ∼ a few km s−1 was mea-
sured in the O-type star NGC 1624-2, which has a strong
dipolar surface field of ∼20 kG. Usually, the macroturbulent
velocities, which are thought to be caused by pressure waves
emitted by sub-photospheric convection zones (Grassitelli et al.
2015), are at least one order of magnitude larger in such stars
(Simón-Díaz et al. 2017), however, Sundqvist et al. (2013) show
quantitatively that the magnetic pressure in this star is strong
enough to suppress the sub-surface convection. The impact of
the magnetic inhibition of the core convection on blue super-
giant evolution has been investigated by Petermann et al. (2015),
where convectively unstable regions in a star are artificially
reduced by modifying the convective criterion. They have indeed
shown that this modification significantly affects the stellar
structure to reproduce the enigmatic surface temperature of the
progenitor of supernova 1987A, which otherwise will require
a stellar merger during the evolution (Menon & Heger 2017;
Urushibata et al. 2018).

In the convection criterion proposed by Lydon & Sofia
(1995), a magnetic field can both stabilize and destabilize
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the region, depending on the radial gradient of the field
strength. In a 3D radiation magneto-hydrodynamic simulation
by Tremblay et al. (2015), which has a cuboid-shaped compu-
tational domain embedded in an atmosphere of a white dwarf
(“box-in-a-star”), it has been shown that convective transport is
significantly impeded when the plasma-β (the ratio between the
thermal and the magnetic pressure) is less than the unity. How-
ever, it is unclear whether such a strong field can remain within
a convectively unstable layer because theoretical works strongly
indicate that there is no stable magnetic structure in a marginally
convective unstable barotropic region (e.g., Reisenegger 2009;
Mitchell et al. 2015). A subsequent investigation of convective
instability under a strong magnetic field will be required to
understand.

7. Comparison with observations

7.1. ApBp stars

Ap/Bp stars are main-sequence A- and B-type stars that show
enhancements in surface chemical abundances of elements such
as Si, Cr, Fe, and Eu. Observationally, there is a strong coinci-
dence of the peculiar surface abundance pattern and the strong
surface magnetic field (Babcock 1958). For example, a surface
magnetic field stronger than 100 G has been detected for 41 out
of 97 Ap/Bp stars, while no magnetic field was found in 138
normal AB-type stars (Bagnulo et al. 2006). The contemporary
understanding of this finding is that the strong surface magnetic
field stabilizes the stellar subsurface layers such that peculiar
chemical abundance at the surface can result from long-term
gravitational settling and radiative levitation (Michaud 1970).

Possibly, there are two different ways to improve the sta-
bility of stellar subsurface layers. The first possibility is that
strong enough magnetic fields will regulate the fluid flow
such that the flow that erases the subtle chemical imprints in
Ap/Bp stars is prevented. In particular, the quantitative assess-
ment in Sundqvist et al. (2013) indicates that a strong magnetic
field can indeed suppress sub-photospheric convection. In our
1.5 M⊙ models, this subsurface convective turbulence is esti-
mated to have the energy density of 1

2ρv
2
cv ∼ 6.3 × 103−1.6 ×

105 erg cm−3, which yields an equipartition field strength of
Beq ∼ 300−1400 G. Such strong fields are maintained during
the greater part of the main-sequence evolution in our magnetic
models with Bp,ini ≥ 1 kG and Prot,ini ≥ 10 d (Fig. 8). Similarly,
meridional flows that would exist in a rotating star have been
postulated to disrupt the chemical inhomogeneity. By applying
an estimate of Kippenhahn (1974), our nonmagnetic model with
rapid rotation of Prot,ini = 1 d is estimated to have vES ∼ 1 cm s−1

close to the surface. It is ∼10−4 times slower than the turbulence
velocity of the subsurface convection and, hence, it could be sig-
nificantly affected by very weak fields with strengths of .10−5 G.

The second possibility is more indirect: because magnetic
stars are also known to be slowly rotating stars, their subsurface
layers will be less affected by rotation induced flows than non-
magnetic stars. For instance, the flow velocity of the Eddington-
Sweet circulation is assumed to be proportional to the square
of the rotation frequency. Michaud (1970) has discussed that
the subsurface layers of Ap/Bp type stars need to lack flows
faster than ∼10−3 cm s−1. Considering that a model rotating with
a period of Prot ∼ 1 d forms meridional flow with vES ∼ 1 cm s−1,
long rotation periods with Prot & 30 d would be required to
achieve such slow flow velocities. With the help of magnetic
braking, this condition is again satisfied in our models with
Bp,ini ≥ 1 kG and Prot,ini ≥ 10 d (Fig. 7). Besides this, turbu-

lence powered by instabilities due to differential rotation, such
as dynamical and secular shear instabilities and the Pitts–Tayler
instability, may disrupt the chemical inhomogeneity. Our mag-
netic model is also compatible with that since our stellar mod-
els keep nearly rigidly rotating during the whole main-sequence
phase (Fig. 5).

Correlations among the stellar age (τ), mass (M), rotation
period (Prot), and surface magnetic field strength (Bz) of Ap/Bp
stars have been studied by several authors (Mathys et al. 1997;
Hubrig et al. 2000; Bagnulo et al. 2006; Kochukhov & Bagnulo
2006; Landstreet et al. 2007, 2008; Mathys 2017; Netopil et al.
2017). This showed that magnetic Ap/Bp stars are, at the same
time, slow rotators. The peak rotation velocity of ∼40 km s−1

(Netopil et al. 2017) is considerably slower than the major peak
at ∼200 km s−1 of the wide distribution of rotation velocities of
normal AB-type stars. Some of the Ap/Bp stars even show super-
long rotational periods of Prot > 1000 d (Kochukhov & Bagnulo
2006; Netopil et al. 2017; Mathys et al. 2019, 2020). Interest-
ingly, a similar tendency is also observed for pre-MS stars known
as Herbig Ae/Be stars: magnetic Herbig Ae/Be stars are concen-
trated to have slow rotation velocities of .50 km s−1, while nor-
mal Herbig Ae/Be stars obey a wide distribution with a typical
velocity of 50−250 km s−1 (Alecian et al. 2013).

Our results on the evolution of the surface rotation period
with magnetic braking and magnetic dissipation (Fig. 9) is qual-
itatively consistent with these observations. For strong-enough
initial surface fields of 100 G, the magnetic braking efficiently
reduces the stellar angular momentum to increase the rotation
period by a factor of 10 or even more, whereas the rotation
period stays nearly constant within a factor of ∼2 difference for
the whole main-sequence phase for models with weaker fields.
Moreover, models with the stronger initial field of 1000 G can
account for the super-slow rotators with Prot > 1000 d if they
have initial rotation periods of &10 d. Furthermore, since mag-
netic dissipation becomes more efficient with faster rotation,
surface fields of models with fast initial rotation velocities of
∼100 km s−1 with Prot,ini = 1 d rapidly decrease below ∼100 G,
thus contributing to the lack of fast-rotating magnetic stars.

Observational tests of the evolution of the surface magnetic
field are more complicated. An absence of young magnetic stars
has been reported by Hubrig et al. (2000). However, later studies
have not confirmed this conclusion but some did identify some
young magnetic stars in their sample (Landstreet et al. 2007).
The authors have attributed the inconsistency to the different
ways of bolometric and effective temperature corrections, which
implies a significant uncertainty in the age determination by fit-
ting the position on the HR diagram. Moreover, Landstreet et al.
(2007, 2008) have collected their stellar sample from open star
clusters, which allows an age determination by isochrone fit-
ting with a considerably improved accuracy. Landstreet et al.
(2008) suggested that a strongly magnetized star with root-
mean-square (rms) fields larger than 1 kG only appears close to
the ZAMS in the HR diagram. This is in line with the finding by
Fossati et al. (2016) for O-type stars that the fraction of magnetic
stars decreases for larger evolutionary age.

Our current simulations are not intended to explain any of the
observations. Also, our 1.5 M⊙ models are not completely con-
sistent with the mass range of the Ap stars of 2−3 M⊙ observed
by Landstreet et al. (2007, 2008). Nevertheless, as a demonstra-
tion of the capability of our magnetic stellar evolution code,
our results are compared with observational results in Fig. 11.
We note that here we multiply a factor of 3.3 to the observed
field strength of Brms, which is the median rms of the so-called
mean longitudinal field, Bl (Landstreet 1988, 1992), in order to
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1.5 M⊙ models and observational results for 2−3 M⊙ Ap stars analysed
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filled symbols show stars for which a field is detected, while gray open
symbols are probable magnetic stars. Numbers associated with several
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of Bth ∼ 300 G, below which essentially no Ap/Bp stars are found
(Aurière et al. 2007), is shown by the black dashed line. A numerical
factor of 3.3 is multiplied to the field strengths reported in the literature
to convert Brms into Bp.

compare it with our simulation results of the polar field strength
Bp. We refer to Aurière et al. (2007) for the factor of 3.32.

The majority of Ap stars appear to have a polar field strength
of ∼1 kG during the entirety of the main-sequence phase. This
may be compatible with our models assuming an initial field
strength of Bp,ini ∼ 1 kG. On the other hand, although it is not
(yet) statistically significant, the dearth of strongly magnetized
(Bp & 10 kG), evolved (fractional age &0.5) Ap stars is not
reproduced by our models. This implies that the magnetic flux
conservation is insufficient with regard to explaining the obser-
vation. However, since efficient magnetic braking stops rotations
for those strongly magnetized models, no efficient rotational
turbulence is expected from the current modeling (see models
with &1 kG in Fig. 9). Furthermore, several Ap stars, includ-
ing evolved ones (fractional age &0.5), still show certain surface
rotation velocities. This is inconsistent with our current models,
since our models with Bp,ini & 1 kG (except for the model with
the fastest initial rotation) essentially stop rotation during the
early main-sequence phase (see also Fig. 9 and Table 1). This
might imply an inaccuracy of our treatment of the wind mass
loss or the magnetic braking.

Due to its intrinsic weakness, the wind mass-loss rates of
AB-type stars are highly uncertain (see discussion in Krtička
2014). Using the finite rotational periods of magnetic stars, it
may be possible to constrain the unknown mass-loss rates in
the less massive stars. For example, by assuming the moment
of inertia and the mass loss rate are constant during the main-
sequence phase, it is expected that the surface angular velocity
of a magnetic star exponentially decreases with time as

Ω(t) = Ωinite
−t/τbreak ,

2 This simple conversion will still provide a reasonable comparison
with the theoretical results, although it is not Brms but, rather, Bmax

l that
is used in the original estimate, and this conversion will actually yield a
lower limit of the polar strength.

where Ωinit is the initial angular velocity and τbreak = J/J̇ is
the braking timescale. The angular momentum loss rate linearly
correlates with the wind mass-loss rate of a nonmagnetic star
and the magnetic braking efficiency, which also linearly corre-
lates with the surface field strength in a strong field limit (see
Appendix C). Under this simplified case, ∼97% reduction of
the currently applied value of ∼10−12 M⊙ yr−1, which is esti-
mated according to de Jager et al. (1988), will be required to stay
within the rotation period of HD 50169 of 10 600 d, the slowest
rotating Ap star with accurate magnetic field determinations so
far discovered, for a magnetic stellar model with Prot,ini = 100 d
and the field strength of HD 50169 of Bp ∼ 4300 G (Mathys et al.
2019, 2020). Where a magnetic star of Bp ∼ 100 G is assumed to
acquire 40 times slower rotation period at TAMS phase (Table 1)
with the mass loss rate from de Jager et al. (1988). We note
that such a reduction of the mass-loss rate would not signifi-
cantly change our present prediction for weakly magnetic mod-
els (Bp,ini . 10 G; Fig. 9).

Another important issue is to understand the threshold of
Bthr ∼ 300 G below which no Ap or Bp stars with definite field
detection have been found. According to Aurière et al. (2007),
the threshold does not result from the observational bias of
limiting the sample to Ap or Bp stars that satisfy the condi-
tion for stabilizing the surface layers. In this case, non-Ap stars
with large scale fields below 300 G should exist, which are,
however, not observed (e.g., Bagnulo et al. 2006). Aurière et al.
(2007) discuss the notion that differential rotation can form in
the subsurface region of weakly magnetized stars and, accord-
ingly, the field can decay through the Pitts–Tayler instability.
However, our model is incompatible with this hypothesis since
a magnetic model develops essentially no differential rotation
even for a case with a weak initial field strength of Bp,ini =

10 G (Fig. 5). Jermyn & Cantiello (2020) investigate the relation
between the surface magnetic field and the subsurface convec-
tion and propose a possible explanation of a bimodal distribution
of the field strength, which would be observed in O-type stars
(Grunhut et al. 2017). They consider the idea that strong fields
suppress subsurface convection; otherwise, the emergence of the
subsurface convection erases the magnetic field. Their critical
field strength to suppress the subsurface convection might cor-
respond to the 300 G threshold. As discussed earlier, our simple
estimate also shows that magnetic fields with &300 G may be
sufficiently strong to affect the subsurface convection.

On the other hand, the origin of this threshold could
relate to the formation of magnetic stars. For example, mag-
netic stars might be predominantly formed via stellar merg-
ers (Schneider et al. 2019) that yield magnetic fields stronger
than this threshold; otherwise, star formation could form only
non-magnetic stars. Indeed, for O-type stars, several magnetic
stars below the 300 G threshold have been found (Fossati et al.
2015), despite the detection limit of .600 G for this type of
star (Fossati et al. 2016). The threshold may be present and may
have lower values for massive stars (see also Jermyn & Cantiello
2020). However, it is also possible that a lower threshold is
the result of magnetic field decay during stellar evolution,
which could have different efficiencies depending on the stel-
lar mass, and does not relate to the stability of the stellar fields
(Fossati et al. 2016). If this is the case, it is not inconsistent with
our models when suitable birth probability distributions for mag-
netic field and rotation were adopted.

7.2. Rotation period changes in Bp stars

Some magnetic stars show the variability of their rotation
frequency on timescales of ∼10−100 yr, which is found
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spectroscopically, photometrically, or through magnetic field
measurements (Shultz et al. 2018; Pyper & Adelman 2020, and
references therein). The rotation period of the magnetic star can
be determined by analyzing the variations (e.g., Krticka et al.
2009, 2015), and in some cases, even a time evolution of the
rotational period can be measured. For instance, comparing the
long base-line photometric data, an increasing rotation period,
and thus a decreasing rotational rate, has been detected for a
magnetic B type star, σOri E, which has been explained by mag-
netic braking (Townsend et al. 2010).

For other B type stars of CU Vir, HD 37776, HD 142990
(Pyper et al. 1998; Mikulášek et al. 2008; Mikulášek 2016;
Shultz et al. 2019), and, more recently, 13 And and V913 Sco
(Pyper & Adelman 2020) – decreasing rotational periods have
even been found, indicating that these stars accelerate their sur-
face rotation. Obviously, this is inconsistent with the prediction
of the magnetic braking theory. Considering the high occurrence
rate of spin-up, it is possible that the period derivative in σ Ori
E may also change its sign in the future (Shultz et al. 2019).

Although the mechanism for the observed spin-up has not
yet been clarified, an interesting explanation has been proposed
by Krtička et al. (2017). They considered a star in magneto-
hydrostatic equilibrium and derived an incompressible wave
equation describing the propagation of a torsional magnetohy-
drodynamic wave. By assuming axial symmetry and applying a
simple poloidal field structure, they found that the periodic cycle
of 67.6(5) yr estimated for CU Vir can be reproduced well by the
basic resonant frequencies of 51 yr in their model. Hence, they
have shown that the torsional surface oscillation, which results
from the propagation of the torsional Alfvén wave, can provide
a possible explanation for the observed period decrease (see also
Stȩpień 1998). For other possible mechanisms, see discussions
in Shultz et al. (2019) and references therein.

Assuming similar physics parameters as done by Krticka et
al. leads us to quite similar magneto-hydrodynamical waves in
our model. As shown in Sect. 3.2, our model starts to oscillate
torsionally when an initial perturbation is added to the back-
ground equilibrium state (Fig. 4). In both models – Krticka’s and
our own – the propagation of the torsional Alfvén wave accounts
for the oscillation. The magnetic strength distribution assumed in
Krticka et al. is simpler than ours: they considered a field config-
uration of (BR, Bφ, Bz)= (B, 0, −zB/R) with constant B in cylin-
drical coordinates R, φ, and z. On the other hand, the poloidal
component in our model has a general radial dependency. In
addition, we consider the long term evolution of the magnetic
field. In fact, our model predicts that the field close to the sur-
face can evolve to have a different field strength than the internal
region. Although the models presented by Krtička et al. (2017)
cannot reproduce the period change of HD 37776, it might be
possible to explain the rapid rotational period by considering
more realistic radial distributions of the stellar magnetic field.
If this hypothesis is correct, then the period of the variation of
the rotation rate will roughly correlate with the strength of the
surface magnetic field.

This oscillation period, which has a similar timescale to the
wave-crossing time of the torsional Alfvén wave, depends on
the strength of the internal poloidal field component. There-
fore, it will be fundamentally possible to determine the internal
field strength distribution by observing the high-order rotational
period change at the surface of the star. The idea of determining
the internal magnetic field by observing the surface oscillations
is reminiscent of asteroseismology. However, instead of gravity
or pressure waves, here, it is the propagation of Alfvén waves
that produces the observable signal.

Estimates for the presence of an internal magnetic field are
provided indirectly, namely, by considering that a strong enough
magnetic field can reduce the amplitude of non-radial dipolar
(l = 1) mode oscillations (Fuller et al. 2015; Stello et al. 2016;
Cantiello et al. 2016). However, so far this method has only pro-
vided the information of fields close to red-giant cores that result
from long and complicated evolutionary histories. Perhaps, tor-
sional oscillation, if observed in reality, can reveal the field dis-
tribution in the radiative envelope of a main-sequence star, which
can be directly compared with corresponding stellar evolution
models.

Applying asteroseismology to a magnetic star still requ-
ires further developments of the theory (Kiefer et al. 2017;
Loi & Papaloizou 2017, 2018, 2020; Kiefer & Roth 2018). Also,
2D modeling of the background stellar structure will be impor-
tant in considering a realistic poloidal field configuration
(Rincon & Rieutord 2003; Reese et al. 2004; Prat et al. 2019).
Nonetheless, MHD-oscillations may play a crucial role in detect-
ing and analyzing internal stellar magnetic fields in the future.

7.3. Core-envelope decoupling in red-giant star

Without angular momentum transport, the spin periods of the
cores of red-giant stars would be expected to be very short,
∼10−2 d. Longer periods would result if an effective angu-
lar momentum transport is assumed, but the naive expecta-
tion has been that red-giant core rotation periods would be
much shorter than those of the surfaces. However, over the
last decade, asteroseismology has revealed rotation periods of
red-giant cores of ∼10 d (Beck et al. 2012; Mosser et al. 2012;
Deheuvels et al. 2014). This implies that even the most efficient
angular momentum transport mechanism proposed at that time
(the Tayler–Spruit dynamo) left a discrepancy of predicted and
observed core rotation periods of more than one order of magni-
tude (Cantiello et al. 2014; Spada et al. 2016; Eggenberger et al.
2017). Recently, Fuller et al. (2019) revised the diffusion coef-
ficient of the TS dynamo, suggesting that the saturation of the
dynamo cycle takes place much later than assumed in Spruit
(2002), such that a stronger toroidal component and magnetic
torque are obtained. The red-giant core periods have been well
reproduced in their simulation, however, the basic picture of the
TS dynamo theory still remains uncertain (Sect. 6.1). Although
other mechanisms such as angular momentum transfer by inter-
nal gravity waves (Fuller et al. 2014; Pinçon et al. 2017) have
been proposed, these are generally not efficient enough to over-
come the problem.

The rotation periods at the center and the surface of our mag-
netic models are compared with observations in Fig. 12. Central
spin periods of a model with ncv = 0 is shown by the red solid
line, and that with ncv = 2 is by the red dotted line. The sur-
face period of the ncv = 0 model is shown by the black dashed
line, while that of the ncv = 2 model is omitted since they are
nearly identical. In addition to the magnetic models, central spin
periods of a model with no internal angular momentum transfer
(labeled as “j cons.”, green) and a model with the Tayler–Spruit
dynamo (“TS dynamo”, blue) are shown as well.

The central period of our fiducial magnetic model with
ncv = 0 coincides with its surface period up to the point of
log R/R⊙ = 1.5. In other words, the model sustains near-rigid
rotation even after the formation of the red-giant envelope. While
this model is incompatible with the observations, we stress the
importance of this result: a stellar evolution calculation that
self-consistently accounts for the interaction between differen-
tial rotation and magnetic field obtains the enigmatically large
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son, the central rotation periods of mod-
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are also shown. Theoretical models are
compared with the results of asteroseis-
mic observations. Core rotation periods
obtained by asteroseismic observations
(Mosser et al. 2012; Gehan et al. 2018)
are shown by the magenta dashed line.
Surface and core periods obtained by
Deheuvels et al. (2014) are shown by
black and magenta pluses.

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6

H burning shell
convection base

Ω ∝ r-1

Ω 
[1
0
-6

 r
a
d

 s
-1
]

radius [R☉]

Fig. 13. Angular velocity as function of radius for our magnetic red-
giant model computed with ncv = 2, at log R/R⊙ = 0.75. The left dashed
line at a radius of ∼10−2 R⊙ indicates the location of the hydrogen-
burning shell, and the right dashed line at ∼1 R⊙ shows the location of
the base of the envelope convection.

efficiency of the angular momentum transfer needed to under-
stand the red-giant core periods.

Interestingly, in the magnetic model with ncv = 2, the
core develops a shorter rotation period than the surface after
the surface rotation period increases to ∼20 d and keeps its
period roughly constant up to the point when log R/R⊙ = 1.4.
Therefore, not only the core rotation period but also the surface
period agrees with the observations. This is because this model
develops an angular momentum distribution as Ω ∝ r−1 in the
convective envelope, while Ω is constant in the inner radiative
region (Fig. 13). The distribution, Ω ∝ r−1, results from the
approximation, νDS = νMLT (Sect. 1). On the other hand, the rigid
rotation in the inner radiative region is solely due to the magnetic
effect.

Our ncv = 2 result predicts that strong shear exists at the
base of the convective layer, at ∼1 R⊙, in a red-giant star. This
is in contrast to the result of Fuller et al. (2019) (Fig. 5), in
which the shear rotation mainly forms at the hydrogen-burning
shell, at ∼3 × 10−2 R⊙, much deeper within than ours. To reveal
the differential rotation inside the convective envelope in a red-
giant star by asteroseismology, the detection of quadrupole and
octopole pulsation modes may be required (Ahlborn et al. 2020).
We expect that future asteroseismic observations will discrimi-
nate among these two cases.

We have also noticed an interesting correspondence between
the very strong toroidal field of ∼106 G obtained in our sim-
ulation at the core-envelope boundary (Bφ at Mr ∼ 0.4 M⊙,
Fig. 10) and possible observational constraint for the internal
magnetic field for red-giant stars of .106.5 G (Fuller et al. 2015;
Stello et al. 2016; Cantiello et al. 2016). More stringent simula-
tions and discussions for the internal magnetic field of red-giant
stars will be done in the future.

We note that more than two orders of magnitude acceleration
takes place in the cores of magnetic models at log R/R⊙ = 1.4,
the mechanism of which has been discussed in Sect. 5, whereas it
does not take place in the model with the Tayler–Spruit dynamo.
This is because the core has already a larger specific angu-
lar momentum than the accreted material and, additionally, the
timescale of the angular momentum transfer inside the core at
this point is already too long to affect the rotation period at the
center of the core.

7.4. Rotation periods of white dwarfs

Finally, we discuss the rotation velocities of white dwarfs that
are expected from our simulations. The ∼2 orders of magnitude
acceleration of the core shown in Fig. 12 is due to the matter
accretion of the helium core, as explained in Sect. 5. Assuming
that the angular momentum of a white dwarf chiefly originates
from the accreting matter, the angular velocity of a white dwarf
will be estimated as

ΩWD =
Jacc

IWD
,

where Jacc and IWD are the angular momentum accreted onto the
central core after rotational decoupling and the moment of inertia
of the white dwarf, respectively. Here, IWD = 0.205 × R2

WDMWD

and the radius of RWD = 1.20 × 10−2 R⊙ and the mass of
MWD = 0.575 M⊙ are taken from a 1.5 M⊙ model of Suijs et al.
(2008). Furthermore, we have Jacc ∼ (2R2

baseΩbase/3)∆Macc,
where Rbase ∼ 1 R⊙ and Ωbase are the radius and the rotation rate
at the base of the convective envelope, and ∆Macc is the mass
that is accreted onto the core after the decoupling. Therefore,

ΩWD = 3.25×10−4

(

Ωbase

10−8 rad s−1

) (

0.01 Rbase

RWD

)2 (

∆Macc

MWD

)

rad s−1
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is obtained. Our fiducial model has Ωbase ∼ 10−8 rad s−1 and
∆Macc = 0.28 M⊙, hence a white dwarf angular velocity of
ΩWD ∼ 1.3 × 10−4 rad s−1, and correspondingly a rotation veloc-
ity of the white dwarf of vWD ∼ 1.1 km s−1 is expected. The
ncv = 2 model has a rotation rate at the base of the envelope
which is one order of magnitude faster, Ωbase ∼ 10−7 rad s−1, and
similar ∆Macc = 0.25 M⊙, and thusΩWD ∼ 1.2×10−3 rad s−1 and
vWD ∼ 9.9 km s−1 are expected. Both estimates are compatible
with the spectroscopic upper limit of ∼10 km s−1 (Berger et al.
2005).

For the present models, the α effect has not yet been taken
into account. A red-giant model with the α effect will show
stronger magnetic fields than the present models, and the mag-
netic braking will reduce the angular momentum of accreted
material and thus reduce the rotation rate of the white dwarf. This
reduction will improve the comparison to observations, since
rotation periods of both groups, non-magnetic white dwarfs
with P ∼ 1−169 h corresponding to Ω ∼ 1.7 × 10−3−1.03 ×
10−5 rad s−1, which are measured by asteroseismic observations,
and magnetic white dwarfs of P ∼ 0.2−429 h corresponding
to Ω ∼ 8.7 × 10−3−4.1 × 10−6 rad s−1, which are measured by
spectroscopic modulation, include slow rotators (Kawaler 2015;
Córsico et al. 2019, and references therein).

Another relevant question here is whether a large-scale
poloidal field linking the whole radiative mantle region, which
covers the central core and is covered by the convective enve-
lope, can form in a red-giant star. Because the magnetic fields
induced by the α effect will show a time variability or would
probably be dominated by small scale fields, the magnetic fields
could quickly cancel each other out after the material migrates
from the convective region into the radiative region. If the mag-
netic link is lost, the rotational decoupling happens no matter
how strong the field is formed in the convective envelope. The
rotation velocity of the white dwarf depends on when the rota-
tional decoupling takes place because the accreted mass on the
helium core after the decoupling determines the angular momen-
tum of the white dwarf.

8. Conclusion

In this work, we develop a new formalism for stellar evolution
calculations, which includes the interaction of stellar rotation
and stellar magnetic field as self-consistently as possible, in a
1D model. With this method, we computed evolutionary models
of 1.5 M⊙ stars, adopting various initial magnetic field strengths
and rotation rates. We compared the theoretical models with rel-
evant observations of (1) ages, rotation rates, and magnetic field
strengths of Ap stars; (2) surface rotation variations observed in
Bp stars; (3) core and surface rotation periods of red-giant stars;
and (4) rotation periods of white dwarfs. Even though we have
not manipulated the model to explain any of these observations,
we found a generally good agreement between our modeling and
observations.

This work demonstrates the first results in a series in which
we intend to develop and apply a new scheme to simulate the
evolution of magneto-rotating stars. In forthcoming papers, addi-
tional magnetic effects on the stellar evolution, such as the α
effect, magnetic pressure, and magnetic modification of convec-
tive criterion will be included and analyzed. There are plenty of
possible applications of the new scheme: the evolution of solar-
type stars, for which abundant works have been done; the evo-
lution of massive stars is an interesting target as well because
strong surface fields will significantly affect the evolution as they
have a relatively fast rotation and strong wind mass loss and,

of course, because they are the progenitors of (non-)magnetized
compact remnants; the evolution of binary systems, such as a
merger remnants (Beloborodov 2014; Schneider et al. 2019), as
well as tidally interacting binaries (Vidal et al. 2018, 2019), will
be interesting targets in our future explorations.
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Appendix A: Alfvén’s theorem

Theorem: We haveM as a 2d compact manifold with a boundary
C.M is embedded in a 3d manifold and moves with time with
a velocity field u(x, t). Consider a flux Φ of a time-dependent
vector field P(x, t) on M. If and only if P is divergence-free
then

dΦ
dt
=

∫

M

(

∂P

∂t
− ∇ × (u × P)

)

· dS. (A.1)

Proof: We express the position of the element of M at a given
time t in a parametric form by x = α(ξ, η; t), where ξ ∈ [ξi, ξ f ]
and η ∈ [ηi, η f ]. Then the velocity field is equated as u = ∂α/∂t.
The parameters (ξ, η) are concentrically defined: the center of
M at time t is specified as x = α(ξi, η; t) = xc(t), likewise the
boundary C as x = α(ξ f , η; t). The geometry defined here is illus-
trated in Fig. A.1.

In the parametric form, a flux Φ of P onM is defined as a
function of time as

Φ(t) ≡
∫

M
P · dS (A.2)

=

∫

M
P(x = α(ξ, η; t), t) ·

(

∂α

∂ξ
× ∂α
∂η

)

dξdη. (A.3)

So now we equate the total time derivative of Φ,

dΦ
dt
=

d
dt

[∫

M
P ·

(

∂α

∂ξ
× ∂α
∂η

)

dξdη
]

. (A.4)

Let V be the volume swept byM for t ∈ [ti, t]. The surface
of V consists of three manifolds;

– S 1 = {x ∈ α(ξ, η, t)|ξ ∈ [ξi, ξ f ], η ∈ [ηi, η f ], t = ti}
– S 2 = {x ∈ α(ξ, η, t)|ξ ∈ [ξi, ξ f ], η ∈ [ηi, η f ], t = t}
– S 3 = {x ∈ α(ξ, η, t)|ξ = ξ f , η ∈ [ηi, η f ], t ∈ [ti, t]}.

S 1 and S 2 areM at ti and t, and S 3 composes the side of V .
In the parametric form, volume integral of div P on V is done

as
∫

V

(∇ · P)dV =

∫

V

(∇ · P)
[(

∂α

∂ξ
× ∂α
∂η

)

· ∂α
∂t

]

dξdηdt

=

∫

S 2

P ·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη

−
∫

S 1

P ·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη

+

∫

S 3

P ·
(

∂α

∂η
× ∂α
∂t

)

dηdt. (A.5)

Here Gauss’s theorem is used. By taking the total time derivative,

d
dt

(∫

V

(∇ · P)dV

)

=
d
dt

[∫

S 2

P ·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη
]

− d
dt

[∫

S 1

P ·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη
]

+
d
dt

[∫

S 3

P ·
(

∂α

∂η
× ∂α
∂t

)

dηdt

]

(A.6)

is obtained. The left hand side becomes zero because P is
divergence-free. The first term of the right hand side is dΦ/dt.
The second and third terms are equated as

− d
dt

[∫

S 1

P.

(

∂α

∂ξ
× ∂α
∂η

)

dξdη
]

= −
∫

S 1

∂P

∂t
·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη (A.7)

P(ti)

P(t)

M(t)

C(t)

α(ξ,η;t)

C(ξ=ξf ;ti)

M(ti)
xc (ξ=ξi)

η=ηi=ηf

ξ=const.

η=const.

α(ξ,η;ti)

v(ξ,η;ti)dt

Fig. A.1. Illustration of the geometry. The 2d manifoldM is shown by
blue shaded areas. Below: M at ti. Above: M at t. An element of M,
which is parametrically specified as α(ξ, η; t), is shown by a red point.
It moves with velocity u(ξ, η; t). The divergence-free vector field, P, is
shown as green lines. The thicker ones are P at ti and the thinner ones
are P at t.

and

d
dt

[∫

S 3

P ·
(

∂α

∂η
× ∂α
∂t

)

dηdt

]

=

∫

S 3

∂P

∂t
·
(

∂α

∂η
× ∂α
∂t

)

dηdt

+

∮

ξ=ξ f ,t=t

P ·
(

∂α

∂η
× ∂α
∂t

)

dη

=

∫

S 3

∂P

∂t
·
(

∂α

∂η
× ∂α
∂t

)

dηdt

+

∫

S 2

[

∇ ×
(

∂α

∂t
× P

)]

·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη, (A.8)

where, Stokes’s theorem is used. Notice that P ·
(

∂α
∂η
× ∂α
∂t

) (

∂α
∂t
× P

)

· ∂α
∂η

. Therefore, Eq. (A.6) equates with

0 =
dΦ
dt
−

∫

S 1

∂P

∂t
·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη

+

∫

S 3

∂P

∂t
·
(

∂α

∂η
× ∂α
∂t

)

dηdt

+

∫

S 2

[

∇ ×
(

∂α

∂t
× P

)]

·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη

=
dΦ
dt
−

∫

S 2

[

∂P

∂t
− ∇ ×

(

∂α

∂t
× P

)]

·
(

∂α

∂ξ
× ∂α
∂η

)

dξdη. (A.9)

Here Gauss’s theorem is again applied to the divergence-free
vector field ∂P/∂t.
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So we obtain

dΦ
dt
=

∫

M

(

∂P

∂t
− ∇ × (u × P)

)

· dS. (A.10)

Appendix B: Viscosity of the Pitts–Tayler instability

The vertical and horizontal length scales of the fluctuation driven
by the Pitts–Tayler instability are respectively defined as lv and
lh. The horizontal scale will be replaced with r. The vertical sale
is limited to be
lv

lh
=

lv

r
<
ωA

N
, (B.1)

where ωA ≡ Bφ/
√

4πρr is the Alfvén frequency of the toroidal
magnetic field and N is the Brunt–Väisälä frequency, since the
vertical replacement should work against the restoring force of
buoyancy. This gives the maximum scale for the vertical fluc-
tuation. On the other hand, the fluctuation will be damped by
the dissipation, if the vertical fluctuation is too small. Therefore,
the dissipation time should be longer than the growth time of
the Pitts–Tayler instability, τPT. This gives

l2v

ν
> τPT =

Ω̃

ω2
A

· (B.2)

The two inequalities yield a relation

(

ωA

N

)2
>

(

Ω̃

ωA

)2
(

ν

Ω̃r2

)

· (B.3)

Ω̃ = Ω has been used in previous works, but in such a case τPT
becomes zero whenΩ is zero. In order to avoid too rapid growth,
we apply Ω̃ = Ω(1 + ωA/Ω) instead so that the growth time
approaches 1/ωA in the limit of Ω→ 0.

Following the original discussion by Spruit (2002), we
assume that the inequality (B.3) reaches the equipoise situation
when the instability saturates. This is because a turbulent vis-
cosity induced by the Pitts–Tayler instability starts to act as the
effective viscosity in the right-hand side of the inequality. This
results in
(

ωA

N

)2
=

(

Ω̃

ωA

)2
(

νPT

Ω̃r2

)

· (B.4)

Besides, according to Maeder & Meynet (2004), we assume
the relation between the Brunt–Väisälä frequency and the effec-
tive viscosity as

N2 =
νPT/K

νPT/K + 2
N2

T + N2
µ , (B.5)

where K is the thermal diffusivity and NT and Nµ are oscilla-
tion frequencies associated with thermal and chemical gradients,
respectively.

Finally, the two equations yield a quadratic equation for
νPT/K,

0 =
(

νPT

K

)2














(

NT

K/r2

)2

+

(

Nµ

K/r2

)2














(

Ω̃

K/r2

)

+

(

νPT

K

)















2
(

Nµ

K/r2

)2 (

Ω̃

K/r2

)

−
(

ωA

K/r2

)4














− 2
(

ωA

K/r2

)4

·

Since it has a negative zeroth-degree coefficient, it has one posi-
tive solution when N2

T+N2
µ is positive. We solve this equation for

the estimate of the turbulent viscosity of the Pitts–Tayler insta-
bility.

Appendix C: Wind-magnetic field interaction

According to 2D axisymmetric MHD simulations with an
aligned dipole magnetic field by ud-Doula & Owocki (2002),
Ud-Doula et al. (2008, 2009), we estimate the effects of the mag-
netic wind confinement and the magnetic braking as follows.

First, the magnetic confinement parameter η∗ is calculated as

η∗ ≡
B2

eqR2

ṀB=0v∞,B=0
, (C.1)

where Beq = Bθ(r = R, θ = π/2) is the surface magnetic
field strength at the equator and ṀB=0 and v∞,B=0 are the wind
mass-loss rate and the terminal wind velocity for a nonmagnetic
model. In the present work we approximately estimate the ter-
minal wind velocity as v∞,B=0 = 2

√
GM/R. Next, the Alfvén

radius, RA, where the radial components of the field and the mat-
ter flow have an equal energy density, is estimated as

RA

R
= 1 + (η∗ + 1/4)1/4 − (1/4)1/4. (C.2)

Efficiencies of the magnetic confinement and the magnetic
braking are estimated as

fconf =













1 −
√

1 − R

Rc













(C.3)

and

fbreak =

(

RA

R

)2

, (C.4)

where Rc = R + 0.7(RA − R) is a maximum closure
radius of magnetic loops. We note that an additional term of
(

1 −
√

1 − 0.5R/RK

)

, in which RK = R(vK/vrot)2/3 is the Kepler
corotation radius, is included in the original formula of the mag-
netic confinement in Ud-Doula et al. (2008). It is discussed that
this term accounts for the breakout of the gas from the closed
loops due to the fast rotation of the star. However, since the
enhancement happens even for a non-magnetic (η∗ = 0) model,
this additional term likely partly accounts for theΩ effect, which
is already taken into account in our simulation by Eq. (9). To
avoid double-counting of the Ω effect, this term is omitted from
our simulation.

Appendix D: Code test

D.1. Magnetic flux conservation

As the simplest test case, we have calculated a 1.5 M⊙ stellar
evolution with the magnetic field but switching off the magnetic
dissipation and the Ω effect to test whether the magnetic field
satisfies the flux conservation. The initial magnetic field is arbi-
trarily set to have a r−3 radial dependence for both the poloidal
and toroidal components. The evolution is followed from the
ZAMS phase through the TAMS and the red-giant phase until
the star experiences helium flash and starts core helium burning,
entering into the red clump in the Hertzsprung-Russell Diagram.
During the evolution, the star experiences significant contraction
in the central core and expansion in the outer envelope.

Figure D.1 shows the resulting evolution of the internal mag-
netic field. We note that Br in the figure shows the polar value of
the radial magnetic component, thus Br = 2A(r)/r, and, Bφ in
the figure is the toroidal component at θ = π/4, thus Bφ = B(r).
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Fig. D.1. Internal magnetic field distributions of 1.5 M⊙ magneto-
rotational star with 5 evolutionary stages, at ZAMS (red), at the middle
of the main-sequence phase (MS; green), at TAMS (blue), at the mid-
dle of the red-giant phase (RG; magenta), and at the red clump phase
(Clump; cyan) are shown. In this test case, η- andΩ-effects are switched
off to confirm magnetic flux conservation, and the Maxwell stress is also
neglected. Top two panels: evolution of the radial component (Br; left)
and the toroidal component (Bφ; right). Bottom two panels: evolution of
corresponding conserved quantities, Brr

2 by the left, and Bφ/ρr by the
right.

The top two panels showing radial and toroidal magnetic field
components exhibit the effect of core contraction and envelope
expansion: the magnetic field in the central core of .0.4 M⊙ is
amplified by about two orders of magnitude, while that in the
outer envelope is reduced by about four orders of magnitude.
Nevertheless, the two conserved quantities, which are shown
in the bottom panels, are entirely conserved during the whole
evolutionary phases. Only a small fluctuation is seen for Bφ/ρr
at ∼0.3−0.4 M⊙. This results from automated mesh refinement,
which is done to capture a thin structure of the hydrogen-burning
shell that surrounds the helium core.

D.2. Magnetic dissipation

Here, the effect of magnetic dissipation is tested. Firstly, mag-
netic dissipation due to core convection is calculated taking the
initial condition from the above test calculation. It is in the
main-sequence phase with the central hydrogen mass fraction of
0.3. Both field components initially have a radial dependence of
∼r−3. The star at this phase has a convective hydrogen-burning
core of ∼0.2 M⊙. The convective turbulence explains the mag-
netic diffusivity of ∼1012 cm2 s−1, which is large enough to estab-
lish a steady state for the magnetic field within a much shorter
timescale than the evolutionary time.

Figure D.2 shows the result of the evolution of the radial
(top) and toroidal (middle and bottom) magnetic field compo-
nents. As a result of the magnetic diffusion, the radial com-
ponent reaches a steady state inside the convective region
within a timescale of ∼109 s, where the time derivative of the
poloidal field becomes uniformly nearly zero. This steady state
is achieved as the magnetic diffusive flux becomes uniform in
the convective region:
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Fig. D.2. Evolution of magnetic field distributions during the core
hydrogen-burning phase for the inner 0.34 M⊙ region of a 1.5 M⊙
magneto-rotational star, for five different epochs, which are indicated
by the legends. In this test case, magnetic dissipation by the η effect
is included and accounts for the short timescale evolution. Top panel:
radial component of the field, Br. Middle panel: the toroidal compo-
nent, Bφ, is shown for a case in which only the diffusion term of the
magnetic dissipation is included. Meanwhile, Bφ evolution for a case
with both diffusion and advection terms of the magnetic dissipation is
shown in the bottom panel.

with Br ∝ r0 and A ∝ r. The convective region is surrounded
by an overshoot region, in which magnetic diffusivity exponen-
tially decreases with radius. The small magnetic diffusivity lim-
its the magnetic diffusive flux, explaining the longer timescale of
∼1013 s for the further extension of the steady region. Similarly
to the poloidal component, the toroidal component also reaches a
steady state at ∼109 s, and the steady region extends further with
a longer timescale of ∼1013 s. The middle panel shows the cal-
culation result in which the magnetic diffusion term in Eq. (37)
is considered but the magnetic advection term is not; because of
the Bφ ∝ r2 distribution, the diffusive flux of the toroidal field
becomes uniform as well.

In the bottom panel, the toroidal field evolution of a calcu-
lation in which both the magnetic diffusion and the magnetic
advection are taken into account is shown. We might suspect
that the toroidal component in this case does not reach the steady
state because Bφ at late times does not converge. However, the
rate of the change of Bφ is significantly smaller than the fluxes of
the diffusion and the advection. In fact, both fluxes cancel each
other out to achieve ∂B/∂t ∼ 0. In this meaning, again, we con-
sider that the toroidal field evolves keeping a steady state. In this
steady state, the radial gradient of the toroidal magnetic field can
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be determined by solving the equation

0 = ηr2 ∂

∂r

(

1
r4

∂

∂r
(Br3)

)

+
∂η

∂r

∂Br

∂r
,

which yields 0 = m2− (n−1)m− (n+6), where m ≡ ∂ ln B/∂ ln r
and n ≡ −∂ ln η/∂ ln r. The dissipative region can be divided
into the fully convective region of .0.17 M⊙ and the surrounding
overshooting region at ∼0.17−0.21 M⊙. In the former region, n
is so small that m ∼ 2 is achieved. Meanwhile, n is as large as
∼200 in the latter region, resulting in m ∼ 200 to compensate for
the advection flux by the diffusion flux.

Secondly, magnetic dissipation due to the envelope convec-
tion is tested in a similar way taking an initial condition with a
red-giant envelope of a radius of R = 10 R⊙. The uniform ini-
tial distributions of Br = Bφ = 1 kG are applied for the mag-
netic components in this case. The results are shown in Fig. D.3.
Within a diffusion timescale of ∼109 s, the magnetic field finds
a steady state of Br ∝ Bφ ∝ r−3, which corresponds to having
a zero magnetic diffusive flux. The advection term in this case
has only a minor effect, probably due to the much narrower con-
vective overshooting region located at the base of the convective
envelope.

In conclusion, the magnetic field is destined to reach a steady
state under the efficient magnetic dissipation effects of convec-
tion. In a convective core, the magnetic field distributes such that
the magnetic flux uniformly distributes. In contrast, the distribu-
tion of the magnetic field is such that the magnetic flux becomes
zero in a convective envelope.
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Fig. D.3. Same as Fig. D.2 but showing magnetic dissipation in a
convective envelope during the red-giant phase of a 1.5 M⊙ magneto-
rotational star.
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