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Abstract 
 

This paper presents a method for analyzing multi-
layered power distribution networks in the frequency 
domain. Using a two dimensional array of distributed 
RLCG circuits, multi-layered power distribution planes 
are represented. Each plane pair is connected by vias, 
which are modeled as partial self and mutual inductors. 
For the efficient computation of the power distribution 
impedances at specific points in the network, a multi-
input and multi-output transmission matrix method has 
been used, which is much faster than Spice and reduces 
memory requirements. This method has been compared 
with the cavity resonator method simulated in Spice. 
 
 
1. Introduction 
 

A major problem in power distribution networks is 
simultaneous switching noise (SSN) induced by power 
and ground inductance. As a result, an important area in 
high-speed digital systems is the design of the power and 
ground planes arising in power distribution networks. A 
major challenge in the design of planes, which forms an 
integral part of the power delivery system (PDS) for 
gigahertz (GHz) packages and board, is the supply of 
clean power to the switching circuits. As clock speeds 
increase, and signal rise time and supply voltages 
decrease, the transient current injected into the power 
distribution planes builds up energy due to the resonant 
cavity; as a result, it can cause voltage fluctuations and 
circuit delays [1]. This leads to unwanted effects on the 
PDS such as ground bounce, power supply compression, 
and electromagnetic interference. Hence, it is required that 
the PDS should have a low impedance and less resonant 
frequencies over the entire bandwidth of the signal so that 
the transient current does not cause excessive noise on the 
power distribution network. For the design of the reliable 

PDS to suppress the SSN, efficient noise prediction 
methods are necessary. 

In a realistic package/board, since the PDS consists of 
numerous vias, decoupling capacitors, signal lines, 
irregular geometries, and multiple plane layers, the 
number of transmission line segments required may 
become very large. As a result, large memory 
requirements and a considerable CPU run time are 
required for analysis. The transmission matrix method 
discussed in this paper offers a more efficient technique 
for solving these kinds of problems. In [2], [3], for the 
analysis of an arbitrary shaped power/ground plane pair, 
the transmission matrix showed the following efficiency: 
small memory requirements, large savings in computer 
run time, and flexibility and versatility in applications. It 
is because the transmission matrix method is based on a 
multi-input, multi-output transfer function which enables 
the matrix for the entire power distribution network 
( MN× unit cells) to be computed as the product of the 
individual square matrices formed by 2N-port networks 
having N input ports and N output ports [2]. Once the unit 
cell parameters are computed, the transmission matrix 
method can be efficiently applied to any arbitrary shaped 
plane geometry. 

In this paper, the transmission matrix has been 
extended to a third dimension, which is made up of two-
dimensional plane pairs connected by vertical vias. From 
the via inductance extraction program FastHenry, which 
was developed at MIT, partial self and mutual inductances 
between vias have been extracted and added to the 
transmission matrix method. This paper discusses the use 
of the transmission matrix method with Π model unit cells 
shown in [3] for computing impedances between 2 or 
more ports; however, each individual square matrix is 
based on a pair of power/ground planes while it was based 
on a column of unit cells in [2], [3]. Where applicable, the 
results have been compared with Spice, in which the 
cavity resonator model was used for simulation [4].  
Multi-layered power/ground planes have also been 



modeled without vias (as short circuits), with vias as 
partial self inductances, and with vias coupled to each 
other. 
 

2. Modeling of plane layers using unit cells 
 

Figure 1 shows the structure of multi-layered power 
distribution planes, which are commonly used in computer 
applications. Each two-dimensional plane pair is 
connected through vertical vias.  

 
Figure 1. Multi-layered power/ground plane 
structure 

From quasi-static approximations where the dielectric 
separation (d) is much less than the metal dimensions (a, 
b) and the wavelength (λ) [5], which is true for 
power/ground plane pairs, each power/ground plane can 
be divided into unit cells with a lumped element model for 
each cell, as described in [6]. Each cell consists of an 
equivalent circuit with R, L, C, and G components, as 
shown in Figure 2. 

 
Figure 2. Unit cell and equivalent circuit 
 Using the equations for a parallel plate [5], from the 
lateral dimension of a unit cell ( w ), separation between 
planes (d), dielectric constant ( ε ), loss tangent of 
dielectric ( )tan(δ ), metal thickness (t), and metal 
conductivity ( cσ ), the equivalent circuit parameters of a 

unit cell can be computed as: 
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In the above equation, oε  is the permittivity of free space, 

oµ  is the permeability of free space, and rε  is the relative 

permittivity of the dielectric. The parameter dcR  is the 

resistance of both the power and ground planes for a 
steady D.C. current where the planes are assumed to be of 
uniform cross section. The ac resistance acR  accounts for 

the skin effect on both conductors. The shunt 
conductance dG  represents the dielectric loss in the 

material between the planes. 
Using the unit cell, a distributed network of RLCG 

elements can be generated for the multi-layered planes, as 
shown in Figure 1. Since this is a circuit model, it can be 
simulated in Spice by generating the Modified Nodal 
Analysis (MNA) equations or using the transmission 
matrix method. To obtain good accuracy, a unit cell size 
that is 10 times less than the wavelength at the highest 
frequency of interest was used. 

 

3. Transmission matrix method 
 
3.1. Power/ground planes 
 

 
Figure 3. Equivalent circuit for a pair of 
power/ground planes 

As shown in Figure 1, using a distributed network of 
RLCG elements, each rectangular plane pair can be 
divided into )1N()1M( −×−  unit cells. The )1N()1M( −×−  
unit cells can be represented as a )NM(2)NM(2 ×××  
matrix formed by )NM( ×  input ports and )NM( ×  output 

ports. This is shown in Figure 3 for the Π equivalent 
circuits for the unit cells, which are cascaded to represent 
a pair of power/ground planes shown in Figure 2. 

From Figure 3, the input ports are indexed as 1 to 
)NM( × , and the output ports are indexed as )NM( × +1 to 

)NM(2 × . The transmission matrix for the )NM(2 × -port 
network can be derived in terms of the node voltages and 
port currents. Using the 22 ×  block matrix representation, 
the transmission matrix can be represented to relate the 
voltages and currents as:  
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The above transmission matrix of a power/ground plane 
pair can be rewritten in the simpler form: 
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where [ ]I  (identity matrix), [ ]0  (zero matrix), and [ ]pC  are 

)NM()NM( ×××  matrices. In Eq. (3), the matrix [ ]pC is of 

the form: 
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As can be seen in Eq. (3A), the transmission matrix for a 
power/ground plane pair is sparse, which enables 
reduction in memory and CPU time when applied to 
realistic structures. 
 
3.2. Vias and via coupling 
 

Multi-layered power distribution planes can be 
represented as a cascade of a power/ground plane pair 
connected by vias. In a realistic structure, there are 
thousands of via connections to reduce the via inductances 
and for thermal dissipation. These effects are not totally 
negligible in the high frequency range as clock speeds 
increase. Figure 4 shows the side view of three conductor 
planes, which can be separated into two pairs of 
power/ground planes with vias. 

 
Figure 4. Side view of power/ground planes with 
vias 
It is assumed that there are )NM( ×  vias, which can be 
decomposed into partial self and mutual inductances as 
shown in Figure 4. 

In terms of PL1 and PL3 conductor planes, the node 
voltage and port current between point 1P  and 1)NM(P +× , 

shown in Figure 4, can be represented as follows: 
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where mutual inductance jjiiijij LLkM = . Other node 

voltages and port currents follow Eq. (4). In Eq. (4), the 
inductances of the vias represent partial inductances. 

From Eq. (4), in the transmission matrix method, 
partial self and mutual inductances, which can be 
extracted from FastHenry, can easily be included into the 
matrices. Actually, FastHenry gives losses and 
inductances; and polarity (dot convention). These real 
(loss) and imaginary (inductance) values are frequency-
dependant. To apply static values with a good 
approximation, two frequency data points are sampled; 
namely, low-frequency data and high-frequency data. 
Since inductance values are dominant in the high 
frequency range, the high frequency inductances are used 
in the entire frequency band. However, the loss (real) 

parts can be approximated as )fRR( acdc + . From the 

two real parts of data, the two unknown values can be 
found and represented using the following equation. 
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where 1D is the data at the frequency 1f  and 2D  at the 

frequency 2f . From these values, the transmission matrix 

for vias in terms of input ports on PL1 and PL2; and 
output ports on PL3 and PL2 planes can be represented as 
follows: 

       [ ] 







=

I0

BI
T via

via                                                      (6) 



[ ]























=

×××××

×

×

×

)NM)(NM(,via)NM(3,via)NM(2,via)NM(1,via

)NM(3,via33,via23,via13,via

)NM(2,via23,via22,via12,via

)NM(1,via13,via12,via11,via

via

ZZZZ

ZZZZ

ZZZZ

ZZZZ

Bwhere

�

�����

�

�

�

 

In Eq. (6), ijij,acij,dcij,via LjfRRZ ω++= . As seen in Eq. 

6, the transmission matrix loses the sparsity as the number 
of vias increases.  The negligible coupling coefficients 
( ijk ) can be eliminated in the matrix to enable sparsity 

using the transmission matrix method.                                                   
 

3.3. Decoupling capacitors 
 
In the transmission matrix method, decoupling 

capacitors can readily be included into the matrices. The 
impedance of a decoupling capacitor is represented using 
the following equation. 
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where 'R' is the Equivalent Series Resistance (ESR), 'L' is 
the Equivalent Series Inductance (ESL), and 'C' is the 
capacitance. The transmission matrix for decoupling 
capacitors can be represented as follows: 
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where 
i,cap

i,cap Z

1
Y =  and if there is no decoupling 

capacitor in the thi  row, then 0Y i,cap = . 

 
3.4. Overall Networks 

 

 
Figure 5. Block diagram of entire system 

The )NM(2)NM(2 ×××  transmission matrix for the 
overall power distribution network which consists of a 
cascade of two or more networks can now be obtained by 
multiplying the individual matrices [2], [3]. For the 
rectangular multi-layered planes in Figure 1, since all the 
matrices for planes, via, and decoupling capacitors have 
the same size, the response of the entire geometry can be 

obtained as a single )NM(2)NM(2 ×××  matrix. The block 
representation of the cascade connection of )NM(2 × -port 
networks is shown in Figure 5 using the [T] matrix 
representation. As seen in Figure 5, the entire system can 
be simplified into 3 parts of block diagrams in term of 
input and output ports, which have input voltage and 
current variables; and output voltage and current 
variables, respectively. The transmission matrix for the 
block diagrams can be represented as follows: 
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where l, m, and n represent the number of power/ground 
plane pairs. From Figure 5, two inversions of a 

)NM(2)NM(2 ×××  matrix are needed to obtain the 
overall transmission matrix, and one inversion of a matrix 
is needed to convert to the )NM(2)NM(2 ×××  impedance 
matrix [Z] of the network [2], [3]. However, since most of 
the computational time is taken to invert a matrix, the 
number of matrix inversions needs to be minimized. Using 
one inversion of a matrix, it is possible to convert to the 
impedance matrix from Eq. (9). The overall 

)NM(2)NM(2 ×××  impedance matrix for the multiple 
input and output ports can be computed as follows: 
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During the design of the power delivery system, the 
impedance at specific points on the network is often 
desired. This can either be the self impedance at a port or 
the trans-impedance between ports. This can reduce about 
half the computations during the matrix multiplications. 
Only the C matrix, which can be computed by 
multiplications of the transmission matrix from Plane 1 to 
Plane (l+m+n), the rows of nR  and nA , and the columns 

of lR  and lD  at the specific points are needed. 

 
4. Test vehicle description 

 
The test structure consists of five 27.94 cm by 22.86 

cm rectangular pairs of power/ground planes with FR4 



dielectric with relative permittivity rε = 4.5. Figure 1 

shows the details of the plane layers. The conductor 

planes are made of copper ( cσ  = 7108.5 ×  S/m) with a 

thickness of 30 µm and dielectric loss tangent )tan(δ  = 
0.02 at 1 GHz. Using a unit cell size of 7.62 mm by 7.62 
mm, the PDS was divided into 3037×  unit cells, which 
require a 23562356×  matrix size for the transmission 
matrix. An excitation point (Port 1) was located at (x = 
13.8 cm, y = 11.25 cm) and an observation point (Port 2) 
at (x = 2 cm, y = 2 cm) between V1 and G1 planes. Three 
kinds of 32 decoupling capacitors (C = 47 nF, ESL = 1 
nH, ESR = 0.1 Ω; C = 10 nF, ESL = 1 nH, ESR = 0.1 Ω; 
and C = 20 µF, ESL = 10 nH, ESR = 0.1 Ω), with 
locations as shown by the rectangular dots in Figure 2, 
were incorporated between V1 and G1 planes. Twenty 
vias, which have the same locations as the decoupling 
capacitors, were vertically connected from power plane to 
power plane and from ground plane to ground plane. 

 

5. Results 
 
5.1. Comparison of the transmission matrix and 
cavity resonator method 

 
To check the accuracy of the transmission matrix 

method, the results have been compared with the cavity 
resonator model for the structure shown in Figure 1. 
Figure 6 shows the transfer impedance between Port 1 and 
Port 2. In this section, via inductances were not included. 
Each plane pair is connected by a small value of resistors 
(1 Ωµ ), so that the resistors mimic a short circuit. For 
comparison, the propagating modes were set to m = 6, and 
n = 5 in the cavity resonator model described in [4]. As 
shown in Figure 6, both the methods show good 
agreement. 

 
Figure 6. Impedance without via effects 
solid line: transmission matrix     
dashed line: cavity resonator 

5.2. Comparison of vias with no inductance, self 
inductance, and self and mutual inductance 

 
As the cut-off frequency on the PDS increases, the 

effects of vias are no longer negligible. Since vias are 
characterized as inductances, impedance values are varied 
in the high frequency range, and the null resonant 
frequencies move to lower frequencies. To check the 
effect of vias, three cases were compared: effect of no 
inductances (as short circuits), effect of partial self 
inductances, and effect of partial self and mutual 
inductances. The diameter of the via holes is 0.3556 mm 
and the value of the partial self inductances is around 110 
pH. Since the via couplings between the different layers, 
which were computed as a very small value using 
FastHenry, are negligible [7], they were neglected. Figure 
7 shows the differences for the three cases. 

 
(a) 

 
(b) 

Figure 7. Impedance with and without via effects 
solid line: no via inductance 
dashed line: self inductance 
dash-dot line: self and mutual inductance 
As shown in Figure 7, via inductances affects the null 
resonant frequencies and magnitudes of plane impedances 



as the frequency range increases. However, while multi-
layered power/ground planes with via inductances have 
the same peak resonant frequencies of the planes without 
inductances, they have additional resonant frequencies 
since via inductances are coupled with the capacitances of 
the planes. As the PDS has more planes with the parallel 
connections of vias, the plane impedances can be more 
seriously affected by vias. The impedance magnitude with 
partial self and mutual inductances are very close to the 
magnitude with partial self inductances. This means that 
the coupling coefficients are secondary effects to the PDS. 

In [3], a transient response in the time domain was 
generated from the frequency domain data. Using Inverse 
Discrete Fourier Transform (IDFT), ground bounce in 
PDS was captured. The simulation results in the time 
domain for the three cases, which have been mentioned 
previously, were also compared. 

 

6. CPU time and memory requirement 
comparison 

 
As per the comparison of CPU time between Spice and 

the transmission matrix method in [2], a speed-up in the 
range 7X-13X was obtained for a pair of power/ground 
planes by using the transmission matrix method. 
Compared with Spice, it is believed that a larger speed-up 
can be obtained for the multi-layered planes than for a 
single plane pair. Moreover, as shown in Eq. (9), the 
number of decoupling capacitors does not affect CPU 
time since only additions are required. To compute the 
impedances of the planes with the decoupling capacitors 
and vias for the test structure, a CPU time of 717 seconds 
for 300 sampling frequency points was required using 
MATLAB. In addition, the transmission matrix method 
enables large memory savings that enable the analysis for 
any numbers of plane pairs. Table 1 shows the number of 
circuit elements and the matrix size between Spice and the 
transmission matrix method for the amount of memory 
storage required in computation. These numbers were 
estimated only for the plane RLCG circuit elements as an 
example, which is shown in Figure 1. Most of the 
computational time is required to invert a matrix, as 
mentioned in the previous section. Hence, the smaller the 
matrix, the smaller is the computation time. As shown in 
Table 1, the small size of the transmission matrix leads to 
savings in CPU time. 
Table 1.  Comparison of matrix size 

Number of 
 unit cells 

 
Parameter 

       Spice 
     (MNA) 

Transmission 
       matrix 

Elements 57,520 57,520 
Nodes 40,195 5,890 

 
53037 ××

 Matrix size 4106341063 ,, ×  35623562 ,, ×  

 
 

7. Conclusion 
 
The transmission matrix method has been discussed for 

analyzing multi-layered power distribution with 
decoupling capacitors and vias. This paper described the 
physical principle, formulation and implementation of the 
transmission matrix method. This method is 
computationally more efficient than Spice, which is 
commonly used for most power delivery system analysis. 
The transmission matrix leads to small memory 
requirements and large savings in computer run time.  In 
addition, even the most complicated power plane structure 
can be analyzed using the transmission matrix method. 
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