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Chapter 1

Introduction

This thesis is concerned with the formulation, implementation and valida-
tion of a numerical method that may contribute to the design of new medical
diagnostic ultrasound equipment. The method predicts the nonlinear acous-
tic wavefield emitted by an ultrasound transducer and thus assists in under-
standing the physical phenomena of nonlinear acoustic propagation and in
estimating the performance of new transducer designs and imaging methods.
The method is referred to as the Iterative Nonlinear Contrast Source (INCS)
method, and it is based on a Green’s function representation of the forward
source problem. This formulation yields a convolution integral over the spa-
tiotemporal source domain. The convolution integral is evaluated by means
of an efficient numerical method that employs an equidistantly sampled grid
with a coarse discretization.

This introduction discusses the background and context of this thesis.
In Section 1.1, we introduce the application of medical diagnostic ultrasound.
Section 1.2 is concerned with the phenomenology of nonlinear acoustics and
its utilization in medical ultrasound. Section 1.3 treats the numerical mod-
eling of nonlinear acoustic fields, the challenges to be met, the work that has
been done by other researchers and the aim of the current research. Finally,
Section 1.4 gives an overview of the subjects treated in this thesis.
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(a) (b)

Figure 1.1. (a) Picture of an echography machine.
(b) Echography image of an 11 week fetus.

1.1 Medical diagnostic ultrasound imaging

In the last 40 years, the application of high-frequency acoustic waves, or ul-
trasound waves, for echographic purposes has become an all-round standard
in the medical diagnostic practice [65]. The basic principle behind this ap-
plication is the generation of an acoustic field in the human body and the
reception of the wavefield coming back from reflections on tissue layers and
body structures, or from volume scattering within the tissue. With the in-
formation that is present in this backscattered wavefield, an image can be
constructed of the inner organs like the heart, liver and spleen, or of a fetus
in the uterus, thus uncovering their structures and (dys)functionalities that
are of interest to the clinician. An example of an echography machine and
a typical echography image of a fetus are shown in Fig. 1.1. Compared to
other imaging modalities like X-ray, Computerized Tomography (CT) and
Magnetic Resonance Imaging (MRI), the main advantages of echography are
its versatility, its ability to present a real-time and moving image, its rela-
tively low cost and its harmlessness. It has been estimated that in the year
2000, each week 5 million ultrasound examinations were performed world-
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Figure 1.2. (a) Picture of a medical phased array transducer.
(b) Schematic configuration of the phased array transducer, showing a row
of active elements and a sketched profile of a steered and focused ultrasound
beam in the scan plane.

wide [65]. In obstetrics, echography is the single preferred imaging method.
Many parents have stood in wonder looking at their yet unborn child and
seeing the beat of its heart and the activities that it is employing. In car-
diography, ultrasound has enabled cardiologists to diagnose a score of heart
diseases and abnormalities, thus saving thousands of lives each year. And
in many other applications, echography has provided a means for obtaining
information on the patient’s health without the need for an alternative tech-
nique that is more inconvenient for the patient or more elaborate for the
clinician.

In most present-day echography equipment, an ultrasound image is ob-
tained by scanning an acoustic beam over a certain plane through the body.
Most often, the acoustic beam is generated with a phased array transducer,
which is a piezoelectric device consisting of up to 256 separately excitable
elements arranged in a row. The phased array excites a wavefield that can
be focused and steered in any desired direction in the so-called scan plane, as
is shown in Fig. 1.2. The size of a typical transducer is in the order of cen-
timeters and it can be easily operated with one hand. For this type of trans-
ducer, the employed ultrasound frequencies are in the range of 1 − 15 MHz.
The spatial resolution of the ultrasound image and the penetration depth of
the acoustic beam are both dependent on the imaging frequency, in such a
way that a higher imaging frequency yields a higher resolution but a lower
penetration depth. At a frequency of 1 MHz, the resolution is about 3 mm
and the penetration depth is in the range of 10 − 20 cm. For intravascular
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ultrasound, the imaging frequency can go up to 30 MHz, giving a resolution
of about 0.1 mm and a penetration depth up to 5 mm. The used imaging
frequency is thus determined by the specific application and the transducer
type. The maximum amplitude of the acoustic pressure fields used in echog-
raphy is generally in the range of 0.1 − 1 MPa.

The recent decade has seen a number of revolutions in echography that
have further enhanced its applicability and imaging quality. Firstly, the em-
ployment of contrast agents has given a new dimension to the echo image
by showing the degree of perfusion of the tissue. Secondly, a spatial dimen-
sion has been added to the ultrasound image by the development of three-
dimensional echography methods, which are able to scan an entire volume
instead of only a certain scan plane. Finally, the utilization of the nonlinear
distortion of the ultrasound field has resulted in a significant improvement of
the image quality. The latter development will be discussed in more detail
in the next section.

1.2 Nonlinear acoustics and its application to

echography

The mathematical-physical equations that describe the propagation of acous-
tic waves are inherently nonlinear. This nonlinearity is caused by field-
dependent medium behavior that shows up in the derivatives as well as in
the medium parameters in the acoustic equations. For most phenomena
and applications involving acoustic wavefields, the amplitude of the acous-
tic disturbances is relatively small, and therefore a linear approximation of
the nonlinear equations yields sufficiently accurate results. However, for in-
creasing amplitude and frequency the nonlinear terms may not be neglected
anymore, and the resulting nonlinear distortion grows from just observable
to strong.1

Consider an acoustic wavefield that is excited by a certain source. In
the case of linear propagation, a scaling of the excitation amplitude by a
certain factor results in a scaling of the wavefield amplitude by the same
factor, and the wavefield of a combination of several sources is equal to a
superposition of the wavefields of the separate sources. For a plane-wave,
homogeneous and lossless situation, the linear propagation of an acoustic

1In parallel to the linear description of sound propagation being referred to as small-
signal, the nonlinear description is often referred to as finite amplitude.
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Figure 1.3. Pulse shape of a plane wave in a lossless, homogeneous medium at the
source (dashed) and at a certain distance from the source (solid), under
linear and nonlinear propagation. (a) Time signature, linear propagation.
(b) Frequency spectrum, linear propagation. (c) Time signature, nonlinear
propagation. (d) Frequency spectrum, nonlinear propagation. In (b) and
(d), f0 is the center frequency of the source pulse.

pulse with a certain amplitude and center frequency over a certain distance
yields a waveform which shape and spectrum remain the same. This is shown
in Figs. 1.3a and b, where the pulse shape at a certain distance completely
overlaps the pulse shape at the source. In the case of nonlinear propaga-
tion, the scaling and superposition rules do not apply, and we will observe
a cumulative deformation of the pulse shape. This deformation depends on
the amplitude and the center frequency of the excitation, as well as on the
propagation distance. An example of a rather strong nonlinear deformation
can be seen in Figs. 1.3c and d. In the spectrum we observe that besides
the fundamental frequency component, which is located around the center
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frequency, also a number of harmonic frequency components occur around
multiples of the center frequency, and that a frequency component appears
between zero and the center frequency. Examples of phenomena and appli-
cations for which nonlinearity is important can be found in aircraft noise,
underwater acoustics, parametric arrays, non-destructive testing and med-
ical therapeutic and diagnostic ultrasound. The waveform distortion may
lead to shock formation, increased attenuation of the acoustic wave and the
consequent increased heating of the medium. Other nonlinear phenomena
are scattering of sound by sound and acoustic streaming [32]. Cavitation
effects can also be considered as nonlinear acoustic behavior, but they are
generally treated as a separate phenomenon.

It has been recognized in the 1980’s that for the frequencies and mag-
nitudes that are common in medical diagnostic ultrasound, the occurring
acoustic fields undergo an observable cumulative nonlinear distortion when
propagating through tissue [21, 50]. Originally considered as a side-effect
when studying the nonlinear response of contrast agents, in the 1990’s it was
realized that this effect could be employed to improve the imaging quality of
echography [4, 76]. The current imaging modality based on nonlinear distor-
tion is known as Tissue Harmonic Imaging (THI), and it constructs an echo
image by specifically considering the second harmonic frequency component
of the nonlinear wavefield. Since its introduction THI has gained rapid ac-
ceptance and popularity, and currently all echo machines are able to image
with the THI which has become the first choice in many echography exam-
inations. The improved image quality of THI is attributed to an improved
beamforming compared to the traditional fundamental imaging [20, 65].

Recently, Bouakaz and De Jong [7] have suggested an approach to
further benefit from nonlinear acoustic propagation in medical ultrasound
by taking into account the third till the fifth harmonics. This modality
is called SuperHarmonic Imaging (SHI). It is a topic of ongoing research
to develop a dedicated phased array transducer and imaging method that
enable the full exploitation of the possibilities of SHI. For this research, a
method for the accurate prediction of the nonlinear acoustic field excited by
phased array transducers with an arbitrary geometry and element steering
is of vital importance. The lack of a suitable method to assist in the further
development of SHI has motivated the research described in this thesis.
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1.3 Modeling of nonlinear medical ultrasound

In order to understand the character of nonlinear wave propagation and to
predict its behavior, numerical models are essential tools. The cumulative
nonlinear distortion effect cannot be understood as an isolated phenomenon,
but it depends on the magnitude and shape of the field on each position
along the propagation path between the source and the point of observa-
tion. In order to correctly reproduce the nonlinear acoustic field, the source
configuration and excitation, and all effects that significantly influence the
propagation of the wave need to be accounted for in a realistic and consis-
tent way. With the rise in computational speed and memory size, numerical
modeling of nonlinear wave propagation has become feasible for situations of
increasing size and complexity.

The research described in this thesis aims at the accurate prediction of
the pulsed acoustic pressure field generated by a medical diagnostic phased
array transducer in a nonlinear acoustic medium. The nonlinear distortion
involved in this application is weak to moderate. Special interest goes to the
development of higher harmonic frequency components that arise during the
nonlinear propagation of the acoustic pulse through the medium. Since these
components may be very small compared to the linear field, the nonlinear
pressure field must be predicted with great accuracy. The source may have a
complex geometry that requires the resulting wavefield to be considered in a
three-dimensional configuration. Since the shape of the excited acoustic pulse
strongly determines the nonlinear distortion of the field, we need to evalu-
ate the transient wavefield. For these reasons the resulting computational
domain consists of four dimensions. In view of the frequencies and the typi-
cal sizes and durations employed in medical diagnostic applications, this is a
large-scale domain (e.g. in the order of 100 wavelengths/periods in each spa-
tiotemporal direction). To enable the study of wide-angle effects like grating
lobes and steered acoustic beams, the field prediction needs to be accurate
for nonlinear acoustic fields propagating in arbitrary forward directions and
observed from arbitrary angles. The acoustic properties of soft tissue, which
is the medium for which the ultrasound equipment is ultimately used, are
in the order of the properties of water, except for the acoustic attenuation
which is generally much larger in tissue than in water [65]. Nevertheless,
water is considered as a good first approximation of human tissue. Medi-
cal transducers are generally designed on the basis of their performance in
a water tank, and therefore in this thesis water is taken as the propagation
medium.



8 Introduction

In the recent decades, several groups of researchers have invested their
effort in developing a numerical method that meets the challenge of accu-
rately predicting the nonlinear ultrasound field. Most currently used 3D
nonlinear acoustic models assume forward-wave propagation and are based
on an evolution equation that, starting from a certain source plane, march the
solution from plane to plane in the main direction of propagation. Within
this group of models, a first line of research is based on the Kuznetsov-
Zabolotskaya-Khokhlov (KZK) equation [45, 84]. The KZK equation is a
nonlinear wave equation derived from the basic nonlinear acoustic equations
under a parabolic approximation [32], and it accounts for the nonlinear terms
up to the second order in the field quantities. Because of its parabolic ap-
proximation it is valid for beams with quasi-plane wavefields. For this reason,
the region of validity is generally taken not too far off the main transducer
axis and not too close to the source. One numerical implementation of the
KZK equation, called the Bergen code [1], was originally designed to deal
with circular transducers, and subsequently it has been adapted to cope
with non-axisymmetric sources [5, 11]. A similar development applies to the
Texas code [46], which has been adapted by Bouakaz et al. [8, 9], Khokhlova
et al. [40, 41], and Yang and Cleveland [82] to deal with rectangular and
phased-array transducers. The latter two versions allow for tissue-like atten-
uation, and Cleveland and Jing [14] further extended the last version to deal
with slightly inhomogeneous media as well. A second line of forward-wave
models uses a phenomenological approach and splits each marching step into
separate operations that account for the effects of diffraction, absorption and
nonlinearity. The diffraction step is incorporated without using a parax-
ial approximation. Based on the work of Christopher and Parker [12, 13],
Tavakkoli et al. [66] improved the algorithm and Zemp et al. [85] further de-
veloped it for use with non-axisymmetric sources and tissue-like attenuation,
employing an angular spectrum approach. Recently, Wojcik et al. [44, 81]
proposed a similar approach, where the nonlinear step is performed using
a wave envelope expansion of the field. Finally, Varslot and Taraldsen [72]
developed a forward-wave propagating method for heterogeneous media, and
within this context they compared both a paraxial and an angular spectrum
approach. For the nonlinear propagation step, all of the above authors use a
plane-wave solution in the time domain or in the frequency domain, thus as-
suming that the main nonlinear distortion is in the direction of the transducer
axis. Although at each diffraction step the nonlinear distortion is spreaded
again, this may not be accurate for wavefields that are strongly focused or
that propagate at an angle significantly different from the transducer axis.
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A correction method has been proposed by Christopher and Parker [12],
and Fox et al. [26] implemented a KZK method with a steered propagation
axis. However, when studying wide-angle phenomena like grating lobes or
propagation through heterogeneous media, we need to account for nonlinear
distortion in all directions. A method that handles nonlinear propagation in
all forward directions was proposed by Varslot et al. [71], but this method is
limited by its quasilinear approximation.

Apart from the forward-wave propagation models, a number of mod-
els has been developed for full-wave nonlinear propagation of acoustic fields.
Because of the computational effort involved, these models have been limited
to 2D cartesian or cylindrical implementations. Sparrow and Raspet [60] and
Yano and Inoue [83] studied nonlinear effects in air and in ideal gas, respec-
tively, both with a finite difference solution of a set of first-order conservation
laws. Liebler et al. [30, 48] developed a similar approach for transient fields
in water and tissue. Hallaj and Cleveland [31] employed a finite difference
method to solve the Westervelt equation [1, 32], which is another second or-
der nonlinear wave equation derived from the basic acoustic equations [32].
Wojcik et al. [80] and Hoffelner et al. [34] based their solution on a finite
element approach. None of these models have an assumed directionality in
the wave propagation or in the nonlinear distortion. Whereas most authors
include nonlinear medium behavior in a constitutive equation and directly
obtain the nonlinear field by solving the differential equations, Hoffelner used
an iterative correction of the linearized wave problem to obtain the nonlinear
field. A problem of the mentioned full-wave models is the large number of
points per wavelength and per period (referred to as PPW) in space and
time that is needed for an accurate computation. The Nyquist-Shannon
sampling theorem for bandlimited signals prescribes a minimum of 2 PPW
at the highest harmonic frequency component of interest. Finite Difference
and Finite Element methods need a much higher number of PPW, and this
makes these methods particularly unfavorable for application to large-scale,
three-dimensional problems. The best effort in this respect has been made
by Wojcik et al. [79], who present a pseudospectral method that handles
the spatial differentiation in the k-space domain and includes propagation
in inhomogeneous media. It needs 4 PPW in the spatial dimensions, and
with a Courant number of 0.2 it employs at least 20 PPW in the temporal
dimension.

The numerical method developed in this thesis, the Iterative Nonlinear
Contrast Source (INCS) method, can be classified as a full-wave model, and



10 Introduction

it does not suffer from an assumption on the directionality of the wavefield as
made with all described forward-wave models. The INCS method employs an
integral equation formulation of the wave problem, instead of a differential
equation formulation, which is the basis of all other methods. For the solution
of the integral equation, the INCS method applies an iterative scheme that
involves the spatiotemporal convolution of a contrast source with a Green’s
function. The issue that full-wave models usually require a large number
of points per wavelength is resolved by employing an approach that enables
a discretization of the convolution integral at the limit of 2 PPW in all
dimensions. Because of these characteristics, we believe that the developed
numerical method is a worthwhile contribution to the challenge of predicting
the nonlinear ultrasound wavefield from a medical diagnostic transducer. The
method is capable of handling a four-dimensional spatiotemporal domain
with a size in the order of 100 wavelengths/periods in each dimension. The
source is included as a plane geometry with an arbitrary amplitude and delay
time distribution across the source plane, exciting a pulsed waveshape. In the
derivation, the propagation medium is considered lossless in order to focus
our full attention to the accurate incorporation of the nonlinear distortion
effect. This approximation makes the method fit for nonlinear propagation in
water. Due to the general formulation, the method may be easily extended to
deal with, e.g. tissue-like attenuation2 and inhomogeneities of the medium.3

1.4 This thesis

This thesis describes in detail the development of the INCS method. Here
we give an overview of the subjects treated in this thesis.

In Chapter 2, we present the formulation of the mathematical-physical
basis of nonlinear acoustic wave phenomena. We derive a pair of first order,
nonlinear basic equations and the accompanying constitutive equations, and
we show that under certain assumptions these basic equations simplify to a
nonlinear wave equation that is identified as the lossless Westervelt equation
with a source term.

In Chapter 3, we discuss the solution of the Westervelt equation by the
Iterative Nonlinear Contrast Source (INCS) method. The method is based
on an iterative scheme that addresses the nonlinear terms in the Westervelt

2See Appendix D.
3See Appendix E.
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equation as contrast sources. The recurring linear field problem is solved
with a Green’s function method, which yields a convolution integral that is
approximated by a discrete convolution sum. The latter can efficiently be
evaluated by means of a numerical method based on the Fast Fourier Trans-
form (FFT). Special interest goes to the discretization of the convolution
integral, and an approach is presented that enables a coarse discretization in
all spatiotemporal dimensions.

In Chapter 4, we discuss the implementation of the INCS method for
one-dimensional nonlinear wave problems, and we present simulation results
for linear and nonlinear wave problems. We will compare these results with
those from analytical solutions and from an alternative numerical method.

In Chapter 5 we discuss the implementation of the INCS method as
applied to three-dimensional nonlinear wave problems, and we compare the
model results with several numerical methods that have been discussed in
Section 1.3.

In Chapter 6, we describe laboratory measurements that we have per-
formed for the validation of the INCS method.

Chapter 7 completes this thesis with a presentation of the final conclu-
sions that may be drawn from the described research, and the discussion of
a number of perspectives for future development.





Chapter 2

Basic equations for the acoustic field in

nonlinear media

We start our study with the basic equations of nonlinear acoustic wave prop-
agation, viz. the pertaining field equations and constitutive equations. These
equations form the relations between the basic quantities that describe the
acoustic wavefield. The field equations describe the fundamental relations
between the basic wavefield quantities in a continuum, and they have the
form of conservation laws. The constitutive equations specify the behavior
of the specific medium that constitutes the continuum. Together, they form
a complete set of equations for the acoustic field. As will become clear, the
nonlinearity in the equations is caused by field-dependent medium behav-
ior that shows up in the derivatives as well as in the medium parameters
in the constitutive equations. In Section 2.1 we set up the framework in
which we will derive our equations. Next, in Section 2.2 we study the basic
field equations with special attention to the nonlinear aspects. In Section 2.3
we discuss a number of constitutive equations for different media. The field
equations and a particular set of constitutive equations lead to a set of first
order partial differential equations, from which in Section 2.4 we derive a
second order nonlinear wave equation that is accurate up to the second order
in the wavefield quantities. In the closing Section 2.5 we place some remarks
on specific aspects of the derivation.

Throughout this chapter, we employ the subscript notation for all vec-
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tor quantities. For instance, a vector is written as aj , where the subscript j
is an index variable that denotes the different components of the vector a.
Therefore, in a threedimensional space the index variable can vary from 1 to
3. Moreover, we use the Einstein summation convention, which states that
multiplication of two quantities with an identical subscript variable signifies
an addition of the products of components with an identical subscript; e.g.
for the vectors ai and bj , in a threedimensional space we have

akbk = a1b1 + a2b2 + a3b3. (2.1)

We will adopt the following shorthand notations for the partial temporal and
spatial derivatives:

∂t · =
∂ ·

∂t
, (2.2)

∂j· =
∂ ·

∂xj
. (2.3)

The first three sections of this chapter draw heavily on the studies on con-
tinuum mechanics by De Hoop [17] and by Thompson [67].

2.1 Basic considerations regarding the continuum

model

The acoustic field equations and the acoustic constitutive equations will be
derived under the continuum hypothesis, formulated as follows:

Assumption 1 The field quantities and medium parameters that describe
the macroscopic acoustic phenomena vary piecewise continuously with posi-
tion.

When studied on a microscopic scale, all physical media exhibit a non-
continuous structure consisting of discrete atoms or molecules interacting
with each other. Since these interactions determine the acoustic behavior of
the medium, the basis of acoustic phenomena is of a discrete nature. How-
ever, the scale at which the acoustic phenomena occur, i.e. the macroscopic
scale, is so large that the observations always involve the statistical, spatial
averages of a large number of discrete particles or interactions, and these
averages are by Assumption 1 considered to behave as piecewise continuous
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Figure 2.1. Procedure to derive continuous quantities and their local interrelations from
discrete particle systems.

quantities. A typical microscopic spatial dimension in gases is the mean free
path length, which is in the order of 10−7 m for gases under normal con-
dition. For liquids, we can use as a typical microscopic spatial dimension
the intermolecular spacing, giving an order of 10−10 m. The wavelengths of
the ultrasound wavefields we are concerned with are in the order of 10−3 m
in liquids. The vast difference between these two scales ensures that the
averaging may always involve sufficient particles or interactions to assure the
validity of the continuum hypothesis while the occupied domain is still small
on the macroscopic scale. For these spatially averaged quantities we will for-
mulate conservation laws in the form of global laws over a certain domain.
And because of the continuity of the field quantities and medium parameters,
we can then consider them on an infinitesimal scale by reducing the global
laws to local conservation laws in the form of partial differential equations.
This procedure is outlined in Fig. 2.1.

The continuum is spanned in a Euclidean background space R
3, where

a Cartesian right-handed reference frame with orthonormal base vectors ix,
iy, iz is given. The position vector x of a point, or xj in subscript notation,
is denoted as

x = x1ix + x2iy + x3iz. (2.4)

In the continuum, we define a continuous number density of particles, de-
noted by n(xj , t) [m−3]. As the particles are allowed to move through space,
the number density varies with space and time, and we can observe in each
point an average drift velocity vk(xj , t) [m s−1]. When each particle is as-
signed a mass m [kg], we obtain a continuous mass distribution in each point,
denoted by the mass density ρ(xj , t) [kg m−3]. The flow of mass in each point
is denoted by the mass flow density Φk(xj , t) [kg m−2s−1]. In the continuum,
we may have different types of particles, each type identified by a superscript
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ix

iy

iz

n(x, t)
v(x, t)
ρ(x, t)
Φ(x, t)

D

∂D

ν

Figure 2.2. Background space R
3 with base vectors ix, iy and iz, the continuous

quantities n, v, ρ and Φ defined within R
3, and the material volume D

with its boundary ∂D and unit normal ν.

B and distinguished by its particle mass mB. The behavior of the particles
with mass mB is described by the set of quantities {nB, ρB, vB

k , ΦB
k }. The

relations between the quantities describing the behavior of the continuum as
a whole and their componentwise counterparts are

n =
∑

B

nB, (2.5)

ρ =
∑

B

ρB =
∑

B

mBnB, (2.6)

vk = [
∑

B

nB]−1
∑

B

nBvB
k , (2.7)

Φk =
∑

B

ΦB
k =

∑

B

ρBvB
k . (2.8)

Examples of media where the different components play a distinct role are
two-phase media like bubbly liquid or porous rock. In the current thesis, we
will restrict ourselves to media where all components share the same average
drift velocity vB

k = vk, which assumption is known as common collective
motion:

Assumption 2 Particles with different mass mB everywhere share the same
average drift velocity vk.

This assumption ensures that we only have to account for the total quantities
instead of all their componentwise counterparts. A consequence that will be
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employed in the upcoming discussion is the fact that under this assumption
we have Φk = ρ vk.

An important concept within the continuum model is the material vol-
ume, which is a volume that follows a fixed, identified collection of particles.
The material volume, denoted as D(t), can vary continuously in time with
respect to its shape, position and volume. The boundary of the material
volume is denoted as ∂D(t), and since D(t) should follow a specific amount
of matter, there is supposed to be no transport of matter across ∂D(t). On
the microscopic level, this could not hold in a strict sense, since the molecu-
lar diffusion would give rise to a fading of the boundary and after sufficient
time the material volume would lose its identity. We will restrict ourselves to
treating the material volume on the macroscopic level, using only averaged
or global quantities without reference to a specific identity of the particles.
Thus, we define the material volume as a certain domain D(t) at t = t0 within
the continuum, whose boundary ∂D(t) follows the average drift velocity vk.
With Assumption 2 we can then conclude that on average there is no mass
flow across the boundary.

2.2 Acoustic field equations

2.2.1 Reynold’s transport theorem

When we formulate conservation laws for the continuum, we will consider the
rate of change over time of some quantity, integrated over a certain domain.
Both the domain, in this thesis always chosen to be the material volume D(t),
and the quantity, being some continuous function Ψ(xj , t) defined in D(t),
may change with respect to time, and therefore the total time derivative
consists of two terms, giving Reynold’s transport theorem

dt

∫

D(t)
Ψ dV =

∫

D(t)
∂tΨ dV +

∫

∂D(t)
Ψ vk νk dA, (2.9)

where dt denotes the total time derivative and νk is the unit normal to ∂D(t),
pointed outwards. The quantity Ψ(xj , t) is a scalar field, but Eq. (2.9) is
equally valid for a vector field, which would be denoted by Ψm(xj , t).
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2.2.2 Gauss’ divergence theorem

A mathematical theorem that will be used extensively to derive the local
equations from their global forms is Gauss’ divergence theorem. This theo-
rem gives the relation between the integration of a quantity over a domain
and its integration over the domain boundary. In this thesis, the domain is al-
ways chosen to be the material volume D(t), and the quantity is a continously
differentiable function Ψ(xj , t) defined in D(t). Then Gauss’ divergence the-
orem states

∫

D(t)
∂kΨ dV =

∫

∂D(t)
Ψ νk dA. (2.10)

The quantity Ψ(xj , t) may be a (continously differentiable) vector field as
well, denoted by Ψm(xj , t), or a tensor field, denoted by Ψmn(xj , t).

2.2.3 Conservation of volume

A fundamental conservation law describing the behavior of the continuum
lays down its deformation. As we are only interested in acoustics, which is
concerned with compressional waves, we will restrict ourselves in deriving a
relation for volume dilatation and compression, thus disregarding any devia-
toric deformations that may occur in the continuum as well. We consider a
material volume D(t) and we study its volume V (t) [m3] given as

V (t) =

∫

D(t)
dV. (2.11)

Since the velocity of the boundary ∂D(t) is vk, and since the only change over
time in the volume V can occur by expansion or reduction at the boundary,
we can write down the global law of volume conservation as

dtV (t) =

∫

∂D(t)
vk νk dA. (2.12)

This relation can be derived from Reynold’s transport theorem, Eq. (2.9),
by substituting Ψ(xj , t) ≡ 1. The volume change dtV can be split up in an
induced part that is caused by internal action arising from stresses within the
medium – to be described by the constitutive equations – and an injected,
source part that is caused by external action. In order to derive a local
equivalent of Eq. (2.12) we would like to have local measures for the induced
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and injected parts of the volume change. Therefore, we define a function that
describes the volume density of the induced part of the time rate of change of
the volume, the induced cubic dilatation rate θ̇(xj , t) [s−1]. In the same way,
the injected part of the volume change is represented by the volume density
of volume injection rate q(xj , t) [s−1]. The integration of these quantities
over D(t) yields dtV (t), and thus θ̇ and q are given by

∫

D(t)

(

θ̇ + q
)

dV = dtV. (2.13)

The physical meaning of (θ̇ + q) may be better understood by dividing both
sides of Eq. (2.13) by V and by considering an infinitesimally small domain
D(t). Now we can remove the domain integral and Eq. (2.13) yields

θ̇ + q = lim
V →dV

1

V
dtV, (2.14)

i.e. the local volume change per unit volume of an infinitesimally small
material volume.

With these two local quantities, we can rewrite Eq. (2.12) as

∫

D(t)

(

θ̇ + q
)

dV =

∫

∂D(t)
vk νk dA. (2.15)

When we ensure that vk is continuously differentiable in D(t) we can apply
Gauss’ divergence theorem, Eq. (2.10), to the right-hand term of Eq. (2.15).
This gives

∫

D(t)

(

θ̇ + q
)

dV =

∫

D(t)
∂kvk dV. (2.16)

Considering that D(t) can be chosen arbitrarily, we can then remove the
domain integrals and we obtain the local form of the deformation equation

∂kvk − θ̇ = q. (2.17)

2.2.4 Conservation of linear momentum

A second fundamental conservation law within the continuum model is the
conservation law of linear momentum, better known as Newton’s second law.
It is stated as follows:
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Axiom 1 Within the material volume, the rate of change over time of the
linear momentum is equal to the force exerted on it.

The total linear momentum of the material within D(t) is given by the mass
flow density Φk integrated over D(t). Since there is no average mass flow
across ∂D(t), as was noted in Section 2.1 on the basis of Assumption 2, we
do not have to account for any inflow or outflow of momentum through mass
transport across the boundary. The total force on the material within D(t)
consists of surface forces and volume forces. The surface forces operate on
the domain boundary ∂D(t) and are represented by the force surface density
or traction tk(xj , t) [N m−2]. At this stage we make another assumption
regarding the nature of the medium:

Assumption 3 For acoustic propagation, the medium can be considered
non-viscous.

Under this assumption, the surface forces are always directed normal to the
boundary, and we can write the traction as

tk = −p νk, (2.18)

where p(xj , t) [N m−2] is the mechanical pressure on ∂D. The minus sign
is explained by the fact that for positive p the traction on D(t) is directed
inwards while the normal νk is always directed outwards. The volume forces
exert a force on each point inside D(t) and are represented by the volume
force density fk(xj , t) [N m−3]. We reserve p to account for internal action,
which will be further described by the constitutive equations, and with fk we
account for any external actions. Thus, fk acts as a source term that excites
the acoustic field. The conservation of linear momentum in the material
volume D(t) can now be formulated as the equation of motion

∫

∂D(t)
−p νk dA +

∫

D(t)
fk dV = dt

∫

D(t)
Φk dV. (2.19)

If we ensure that p is continuously differentiable in D(t) we can apply Gauss’
divergence theorem, Eq. (2.10), to the first term of Eq. (2.19). When subse-
quently we consider that D(t) can be chosen arbitrarily and when we define
the mass flow density rate Φ̇(xj , t) [kg m−2s−2] as

∫

D(t)
Φ̇k dV = dt

∫

D(t)
Φk dV, (2.20)
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then we can remove the domain integrals and we obtain the local form of the
equation of motion

∂kp + Φ̇k = fk. (2.21)

2.3 Acoustic constitutive equations

The local equations of deformation and motion, Eqs. (2.17) and (2.21), will
serve as the field equations for the acoustic field. In these equations we see
four dependent variables, namely vk, θ̇, p and Φ̇k, and two source terms, q
and fk. In order to obtain a complete set of equations we need two extra
equations, which will be introduced in this section. They are called the
constitutive equations as they are presumed to specify the medium-specific
acoustic behavior. The distinction between field equations and constitutive
equations should not be interpreted too strictly, since in the derivation of
the field equations we already made some assumptions with regard to the
constitution of the medium, Assumptions 2 and 3. The first constitutive
equation will be obtained from the principle of mass conservation, and the
second constitutive equation will be derived using the equation of state of an
adiabatical gas. Subsequently, we will derive the medium parameters for a
generalized equation of state.

2.3.1 Material time derivative

An operator that will arise in the constitutive equations is the material time
derivative, also called the co-moving time derivative, denoted as Dt. It is
defined as

Dt · = ∂t · + vk∂k·. (2.22)

The first term on the right-hand side is called the unsteady part, the second
term is called the convective part. The material time derivative can be inter-
preted as the time rate of change of a certain quantity that an observer sees
when he moves through the fluid with the drift velocity vk(xj , t), i.e. along
with the material.
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2.3.2 Conservation of mass

The principle of the conservation of mass is based on the axiom of conserva-
tion of particles:

Axiom 2 In the absence of processes that create or annihilate particles
within the continuum, the total number of particles remains constant.

These processes will indeed remain outside the scope of our study. With the
substitution of the mass density ρ(xj , t) as the field quantity into Reynold’s
transport theorem, Eq. (2.9), we can therefore write down the mass conser-
vation law as

∫

D(t)
∂tρ +

∫

∂D(t)
ρ vk νk dA = dt

∫

D(t)
ρ dV = 0. (2.23)

Upon application of Gauss’ divergence theorem, Eq. (2.10), to the second
term on the left-hand side, and with the realization that D(t) can be chosen
arbitrarily, we arrive at the continuity equation of mass flow

∂tρ + ∂k(ρ vk) = 0. (2.24)

By applying the spatial derivative to the quantities within parentheses we
can write this equation in an alternative form as

Dtρ + ρ ∂kvk = 0. (2.25)

2.3.3 First constitutive equation

The first constitutive equation relates the mass flow density rate Φ̇k to the
drift velocity vk. We start with the definition of Φ̇k, Eq. (2.20), and we sub-
stitute Reynold’s transport theorem, Eq. (2.9), with Φk as the field quantity
in the right-hand side of Eq. (2.20) to obtain

∫

D(t)
Φ̇k dV =

∫

D(t)
∂tΦk dV +

∫

∂D(t)
Φk vm νm dA. (2.26)

Next we apply Gauss’ theorem, Eq. (2.10), to the second term on the right-
hand side and we get

∫

D(t)
Φ̇k dV =

∫

D(t)
∂tΦk dV +

∫

D(t)
∂m(Φkvm) dV. (2.27)
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Since D(t) can be chosen arbitrarily, we can remove the domain integrals,
and with Φk = ρ vk we get

Φ̇k = ∂t(ρ vk) + ∂m(ρ vkvm). (2.28)

When we apply the partial derivatives to the terms within parentheses we
can rewrite this equation as

Φ̇k = ρDtvk + vkDtρ + vkρ∂mvm, (2.29)

and with the application of the equation of mass flow in its alternative form,
Eq. (2.25), the last two terms cancel and we arrive at

Φ̇k = ρDtvk. (2.30)

This is the first constitutive equation. It is general for all media obeying
Assumption 2.

2.3.4 Hydrostatic equation of state

To formulate the second constitutive equation, we need to introduce ther-
modynamic considerations into our discussion. In order for them to be valid
within the context of sound propagation, we must assume that the medium is
everywhere in instantaneous local thermodynamic equilibrium [43, 67]. This
can be formulated as follows:

Assumption 4 All quantities that describe the thermodynamic and acoustic
state of the continuum vary slowly enough in time and space, so that in each
point and at each instant an equilibrium is established between the thermo-
dynamic state variables within a small neighborhood around that point.

If this assumption holds then we can formulate an equation of state (EOS)
that interrelates a number of thermodynamic state variables for the medium.
This EOS is in general only valid for a single phase of the medium, and to
be useful for our considerations we assume the absence of changes in phase:

Assumption 5 There are no phase changes of the medium.

Phase changes like cavitation and condensation may occur because of strong
acoustic fluctuations of the total pressure. We thus assume that these fluc-
tuations have such a magnitude that the phase of the medium is not affected
by them.
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A well-known EOS is the ideal gas law, which states

p = ρ R T, (2.31)

where R is the specific gas constant and T [K] is the temperature. The
pressure p is the hydrostatic pressure, which we take to be equal to the me-
chanical pressure.1 Many gases obey this EOS in first order. From Eq. (2.31)
we can obtain the so-called adiabatical gas law, see e.g. [59],

p

p0
=

(

ρ

ρ0

)γ

, (2.32)

where γ is the ratio of specific heats at constant pressure and at constant
volume, and p0 and ρ0 are the pressure and density at the ambient state. This
equation is useful as a basis to describe the medium behavior for acoustic
phenomena in gases, as it is well-known that for gases in first order sound
propagation can be considered as an adiabatic process [32, 67]. We extend
the applicability of Eq. (2.32) by making a generalization:

Assumption 6 For acoustic propagation, the medium can be considered to
behave adiabatic, i.e. non-thermally conducting.

We will not go into detail on the derivation of Eq. (2.32) from Eq. (2.31), but
a fundamental axiom that is employed and that cannot remain unmentioned
is the first law of thermodynamics:

Axiom 3 Within the material volume, the rate of change over time of the
internal energy plus the kinetic energy is equal to the work upon the material
volume plus the amount of heat transferred to it.

2.3.5 Second constitutive equation

We start the derivation of the second constitutive equation with the local
deformation equation, Eq. (2.17), with q = 0. Using the alternative form of
the mass equation, Eq. (2.25), we see that Eq. (2.17) can be written as

θ̇ = ∂rvr =
−Dtρ

ρ
. (2.33)

1For viscous fluids, there is a subtle difference between mechanical and hydrostatic pres-
sure; for non-viscous fluids, the distinction vanishes. See e.g. [77] for a further discussion.
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When we take the natural logarithm of the adiabatical gas law, Eq. (2.32),
we get

ln(p) − ln(p0) = γ [ln(ρ) − ln(ρ0)] , (2.34)

and taking the material derivative of Eq. (2.34) gives us

Dtp

p
=

γDtρ

ρ
. (2.35)

When we substitute this in Eq. (2.33), we obtain

θ̇ =
−Dtp

γp
. (2.36)

For sound propagation in gases it makes sense to define a parameter κ [Pa−1]
by

κ =
1

γp
, (2.37)

which is fairly constant for common acoustic phenomena. With this pa-
rameter, called the compressibility, Eq. (2.36) results in

θ̇ = −κDtp. (2.38)

This is the second constitutive equation.

2.3.6 Medium parameters for the adiabatical gas EOS and

for a Taylor approximation of the EOS

In the constitutive equations Eqs. (2.30) and (2.38), we have the field quan-
tities Φ̇k, vk, θ̇ and p. The quantities ρ and κ are considered as medium pa-
rameters. For an ideal gas, ρ and κ are related to the pressure by Eqs. (2.32)
and (2.37), rewritten here as

ρ = ρ0

(

p

p0

)1/γ

, (2.39)

κ = κ0

(

p0

p

)

, (2.40)
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where κ0 = 1/γp0 is the compressibility at the ambient state. For small
acoustic pressures, the variations of κ and ρ in p are small and they are gen-
erally neglected, as will be shown in Section 2.4. However, for the nonlinear
acoustic field they are essential.

The ideal gas law is valid for gases in first order. Liquids do not obey
this law since the ideal gas law neglects the intermolecular attractive forces
that are so significantly present in a liquid. There have been proposed many
equations of state for liquids based on fittings of empirical data, on simplified
medium models or on a combination of them [10, 37, 67]. We refrain from
picking a specific EOS, but we join in with the common practice of formu-
lating the EOS as a Taylor series expansion of p as a function of ρ around
the ambient state (p0, ρ0) and under isentropic condition. For acoustic prop-
agation the employment of the isentropic form of the EOS is valid only when
we neglect the heat flow and the dissipation in the medium. The absence
of the heat flow has already been stated in Assumption 6. The absence of
dissipation is covered by:

Assumption 7 For our purpose of deriving the dependency of the constitu-
tive parameters on the field quantities, the dissipation can be neglected.

The use of a Taylor series expansion is appropriate when the following as-
sumption holds [32]:

Assumption 8 The equation of state of the medium behaves sufficiently
smooth around the ambient state so that it can be adequately approximated
by a two-term Taylor approximation.

This gives an approximation of the EOS of the form

p(ρ) = p0 +

(

∂p

∂ρ

)

ρ=ρ0

(ρ − ρ0) +
1

2!

(

∂2p

∂ρ2

)

ρ=ρ0

(ρ − ρ0)
2, (2.41)

or equivalently

p(ρ) = p0 + c2
0(ρ − ρ0) +

1

2

c2
0

ρ0

B

A
(ρ − ρ0)

2, (2.42)
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where

c2
0 =

(

∂p

∂ρ

)

ρ=ρ0

, (2.43)

B

A
=

ρ0

c2
0

(

∂2p

∂ρ2

)

ρ=ρ0

, (2.44)

are the small-signal sound speed and the B/A ratio, respectively. Inversion
of Eq. (2.42) gives

ρ = ρ0 + ρ0
A

B

(√

1 + 2
B

A

p − p0

ρ0c2
0

− 1

)

. (2.45)

Combining Eqs. (2.33) and (2.38) shows us that

κ =
1

Dtp

Dtρ

ρ
=

1

ρ

dρ

dp
, (2.46)

and with Eq. (2.45) we arrive at

κ =
1

ρ0c2
0

(

1 + 2
B

A

p − p0

ρ0c2
0

)−1/2
[

1 +
A

B

(√

1 + 2
B

A

p − p0

ρ0c2
0

− 1

)]−1

.

(2.47)

The first-order forms of Eqs. (2.45) and (2.47) are obtained by approximating
these expressions around the ambient state p = p0, giving

ρ = ρ0 [1 + κ0(p − p0)] , (2.48)

κ = κ0 [1 + κ0(1 − 2β)(p − p0)] , (2.49)

where β = 1 + B/2A is the so-called coefficient of nonlinearity and
κ0 = 1/ρ0c

2
0 is the compressibility at the ambient state.

2.4 Second-order nonlinear wave equation

The four equations that form the starting point for our subsequent analysis
are the deformation equation (2.17), the equation of motion (2.21) and the
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first and second constitutive equations (2.30) and (2.38). These equations
lead to a set of first order partial differential equations in p and vk,

∂kp + ρDtvk = fk, (2.50)

∂rvr + κDtp = q. (2.51)

In the derivation of the second constitutive equation we have already in-
troduced the ambient states for p, ρ and κ. We will now write the latter
quantities as the summation of their ambient states p0, ρ0 and κ0, and an
acoustic perturbation p′, ρ′ and κ′,

p = p0 + p′, (2.52)

ρ = ρ0 + ρ′, (2.53)

κ = κ0 + κ′, (2.54)

where p′ is also known as the acoustic pressure. The velocity vk is in itself a
perturbed quantity since in the ambient state vk = 0.

When we substitute the forms Eqs. (2.52)–(2.54) in Eqs. (2.50)
and (2.51) and we only keep terms that are of first order in the perturbed
quantities, and we also let the symbol p denote the acoustic pressure instead
of the total pressure, we get the linear acoustic equations

∂kp + ρ0∂tvk = fk, (2.55)

∂rvr + κ0∂tp = q. (2.56)

From these equations we derive a linear wave equation in p under the as-
sumption that ρ0 is homogeneous:

Assumption 9 The ambient density ρ0 is not varying with respect to posi-
tion.

If we subtract the divergence of Eq. (2.55) from ρ0 times the temporal deriva-
tive of Eq. (2.56), we obtain the linear acoustic wave equation

c−2
0 ∂2

t p − ∂2
kp = S, (2.57)

where

S = ρ0∂tq − ∂kfk (2.58)

is the source term and c−2
0 = ρ0κ0.
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Next we derive a wave equation that accounts for the nonlinearity up
to the second-order terms in the perturbed quantities. A principle that will
be employed throughout is that we can substitute first-order relations like
Eqs. (2.48), (2.49) and (2.55)-(2.57) into a second-order term and retain
second-order accuracy. When we write out all terms in Eqs. (2.50) and (2.51),
where for ρ and κ we take the expressions derived from the two-term Taylor
approximation Eqs. (2.48) and (2.49), and we discard the terms that are of
third and higher order in the perturbed quantities, we get

∂kp + ρ0∂tvk = fk − ρ0κ0p ∂tvk − ρ0vj∂jvk, (2.59)

∂jvj + κ0∂tp = q − κ2
0(1 − 2β)p ∂tp − κ0vj∂jp. (2.60)

From these equations it can be proven that up to second order we can con-
sider the acoustic velocity to be free of rotation. Firstly, this gives us the
opportunity to substitute ∂jvk = ∂kvj in the final term in Eq. (2.59). Sec-
ondly, this enables us to write the velocity outside any source domain by
means of a velocity potential φ, defined by

vk = ∂kφ. (2.61)

If we substitute this into the linear acoustic equation (2.55), then for regions
where ρ0 is constant we obtain a relation between φ and p that is valid up
to first order

p = −ρ0∂tφ. (2.62)

With Eqs. (2.61) and (2.62) we obtain from Eq. (2.56) a wave equation in φ,
that is valid up to first order

c−2
0 ∂2

t φ − ∂2
kφ = 0. (2.63)

Substituting ∂jvk = ∂kvj and Eqs. (2.61) and (2.62) in all the second-order
terms of Eqs. (2.50) and (2.51) except in the term with the factor 2β, gives

∂kp + ρ0∂tvk = fk + ρ2
0κ0 ∂tφ ∂t∂kφ − ρ0 ∂jφ ∂k∂jφ, (2.64)

∂jvj + κ0∂tp = q + 2βκ2
0 p ∂tp − ρ2

0κ
2
0 ∂tφ ∂2

t φ + ρ0κ0 ∂jφ ∂j∂tφ. (2.65)

We obtain a second-order nonlinear wave equation by subtracting the diver-
gence of Eq. (2.64) from ρ0 times the time derivative of Eq. (2.65). This
yields

c−2
0 ∂2

t p − ∂2
kp = S + ρ0κ

2
0β∂2

t p2

+
ρ0

2

[

−c−2
0 ∂2

k(∂tφ)2 + ∂2
k(∂jφ)2

−c−4
0 ∂2

t (∂tφ)2 + c−2
0 ∂2

t (∂jφ)2
]

. (2.66)
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The term between square brackets can be rewritten as

[

−c−2
0 ∂2

k (∂tφ)2 + ∂2
k(∂jφ)2 − c−4

0 ∂2
t (∂tφ)2 + c−2

0 ∂2
t (∂jφ)2

]

=
[

∂2
k + c−2

0 ∂2
t

] [

(∂jφ)2 − c−2
0 (∂tφ)2

]

=
[

∂2
k + c−2

0 ∂2
t

]

[

1

2
(∂2

j − c−2
0 ∂2

t )φ2 − φ(∂2
j − c−2

0 ∂2
t )φ

]

. (2.67)

The factor (∂2
j − c−2

0 ∂2
t )φ in the last term is zero up till first order in view of

Eq. (2.63), and omitting the entire last term will therefore give only a third
order error, which may be neglected. When the bracketed term in Eq. (2.66)
is thus rewritten, we can straightforwardly see that in second order this
equation is equal to

c−2
0 ∂2

t p̃ − ∂2
k p̃ = S + ρ0κ

2
0β∂2

t p̃2, (2.68)

where

p̃ = p +
ρ0

4
(∂2

k + c−2
0 ∂2

t )φ2. (2.69)

Suppose that we can solve p̃ from Eq. (2.68), then by applying the trans-
formation of Eq. (2.69) we obtain the nonlinear acoustic pressure estimate
from the second order equation. Following the arguments put forward by
Aanonsen et al. [1] and Naze Tjotta and Tjotta [32, 52], we notice that both
the transformation of Eq. (2.69) as well as the nonlinear term in Eq. (2.68)
give rise to nonlinear distortion of the acoustic pressure field. However, the
nonlinearity in the transformation is of a local and instantaneous nature,
whereas the nonlinear term in Eq. (2.68) accounts for cumulative nonlinear
distortion that builds up gradually during the propagation of the acoustic
field. We can neglect the nonlinear term in the transformation Eq. (2.69) if
we assume that the local nonlinear effect is negligible:

Assumption 10 In the nonlinear distortion of the acoustic field, the cumu-
lative nonlinear effect dominates the local nonlinear effect.

Under this assumption, p̃ may be taken equal to p and we end up with the
lossless Westervelt equation [1, 32]

c−2
0 ∂2

t p − ∂2
kp = S +

β

ρ0c4
0

∂2
t p2. (2.70)
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2.5 Discussion

In this section we will highlight a number of issues related to the derivations
discussed in this chapter.

Firstly, we note that for the derivation of the local laws we have em-
ployed Gauss’ divergence theorem more than once under the assumption that
the quantities p, ρ and vk were continuously differentiable across the entire
domain. However, as implied by Assumption 1, these quantities may exhibit
jumps across certain boundaries, and therefore the local laws are not valid
here. As a consequence, we should derive nonlinear boundary conditions from
the global laws to adequately describe the acoustic field across these bound-
aries. The reason that this exercise has not been undertaken here is two-fold.
First, in this thesis we will not consider media with spatial jumps in their
constitutive parameters. Second, the method that we will develop for the nu-
merical evaluation of the acoustic field will turn such jumps into continuous
changes.

Secondly, we remark that in the derivation of the momentum equation
in Section 2.2.4 the pressure is used to describe the internal mechanical force,
and the volume force is used to describe the external mechanical force. When
we would like to apply a pressure as an external excitation, then this may
be performed through an infinite volume force acting on an infinitely thin
source surface and oriented perpendicular to that surface. This issue will be
further discussed in Chapter 3.

Thirdly, we briefly review the assumptions that were made in the course
of the discussion. The five assumptions identified as the continuum hypothe-
sis (1), common collective motion (2), instantaneous local thermodynamic
equilibrium (4), absence of phase change (5) and smoothness of the EOS (8)
are commonly and often silently accepted. The effectiveness and predictive
force of the resulting theories and equations in the past centuries is a clear hint
to their all-round validity, although we may always come up with examples
where under specific or extreme conditions some of them are violated.

Three assumptions showed that in our analysis we have not accounted
for possible loss mechanisms. These are Assumptions 3 and 6, which assume
that viscosity and thermal conduction can be neglected, and Assumption 7,
which supposes that dissipation can be treated separately from the nonlin-
ear behavior. Our main concern in this chapter has been to show the origin
of the nonlinear terms in the equations, and for simplicity and clarity on
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this aspect we have neglected the loss mechanisms. For the description of
shockwaves [32] it has been realized in the past century that attenuation
mechanisms have to be included in the analysis. However, at the same time
they have always been treated separately from the nonlinear terms, and all
coupled terms have been considered to be of third order and were thus ne-
glected in a second-order derivation. We justify our approach of neglecting
loss phenomena in the derivation of the nonlinear acoustic equations by three
observations. Firstly, the separate treatment of nonlinear and loss phenom-
ena in studies for modeling acoustic shockwaves has shown to be effective. In
the examples in this thesis we will use pressures, configurations and media
in which the nonlinear effect is clearly observable but does not lead to shock-
waves, which is all the more justifying the separate treatment of acoustic
losses. Secondly, for our first medium of interest, water, the thermoviscous
absorption is in fact negligible for the pressure levels and distances occur-
ring in our examples. Thirdly, for the medium which is our final target,
i.e. human tissue, it is empirically known that the attenuation is of a kind
that cannot be adequately described with a simplified model that could have
been included straightforwardly in the analysis. This is due to absorption
processes in human tissue like relaxation, dissipation and scattering2 that
are of a different nature than the thermoviscous absorption that is normally
accounted for. As explained in e.g. [19, 22, 65], thermoviscous models end up
with an order f2 power law attenuation, f denoting the frequency, while in
tissue we have a frequency-dependency that is more accurately described by
an order fα power law with 1 < α < 2. Therefore, our approach is to adopt a
phenomenological approach and to account for acoustic loss in a later stage.3

The assumption of constant density for deriving the linear and non-
linear wave equations, Assumption 9, is one that puts indeed a serious limit
to the applicability of the theory, as it excludes all heterogeneous media in-
cluding human tissue. It would be a considerable improvement to include
medium inhomogeneity into the model, and in Appendix E it is show that
inhomogeneity may be included into our approach in a straightforward way.

The remaining Assumption 10, stating negligible local nonlinearity,
was employed in the derivation of the Westervelt equation and excludes the
description of nonlinear effects like nonlinear radiation pressure, nonlinear
distortion in compound wavefields such as standing or guided waves, and

2Scattering is not a loss mechanism, but for a distribution of scatterers the effect on
the acoustic field is not distinguishable from dispersion due to acoustic loss. It can thus be
accounted for through an attenuation function.

3See Appendix D.
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nonlinear fields in intersecting beams [32]. In these phenomena, local nonlin-
ear effects contribute significantly to the nonlinear distortion of the acoustic
wavefield. The local nonlinear effect is also not negligible within a wavelength
of a boundary or a source domain. When these nonlinear phenomena need
to be accounted for in the model we should revert to the set of first order
equations, Eqs. (2.50) and (2.51), with appropriate expressions for ρ and κ.
However, in this thesis we will be concerned with the nonlinear distortion
effects of progressive fields from a source plane, in which case the cumulative
nonlinear effects dominate and for which we can safely employ the Westervelt
equation.





Chapter 3

Solution of the basic nonlinear equations

employing the INCS method

In the previous chapter we presented the mathematical-physical basis for
the nonlinear acoustic wavefield. We found that the basic equations can be
formulated in two ways. Firstly, by the set of two coupled, first-order, partial
differential equations given by Eqs. (2.50) and (2.51),

∂kp + ρDtv = f , (3.1)

∇ · v + κDtp = q. (3.2)

Here ρ and κ are given by one of the sets of equations (2.39)-(2.40), (2.45)-
(2.47) or (2.48)-(2.49), depending on the medium and on the accuracy needed.
Secondly, and with one further assumption, the nonlinear acoustic wavefield
can be described by the single, second-order, partial differential equation
which is known as the lossless Westervelt equation, and which is given by
Eq. (2.70),

c−2
0 ∂2

t p − ∇
2p = S +

β

ρ0c4
0

∂2
t p2. (3.3)

In this chapter we will develop a strategy to compute the nonlinear acoustic
pressure field from Eq. (3.3) for a homogeneous medium. The strategy will
consist of four steps. Firstly, in Section 3.1 the nonlinear acoustic wave prob-
lem will be formally solved by a Neumann iterative solution, in which the
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nonlinear terms in the basic equations act as nonlinear contrast sources and
provide iterative corrections to the linear wave problem. Secondly, in Sec-
tion 3.2 the linear wave problem is solved by a spatiotemporal convolution
of the (primary or contrast) source with the Green’s function of the linear
background medium. Thirdly, in order to numerically evaluate the convo-
lution integral, in Sections 3.3-3.5 the terms under the integral are filtered
and windowed in all spatiotemporal dimensions, where the filtering allows for
a discretization at the minimum rate of two points per wavelength and per
period. Fourthly, as also discussed in Section 3.3, the discretized convolution
sum is efficiently evaluated using a Fast Fourier Transform (FFT) method. In
the closing Section 3.6 we discuss some further issues related to the analysis
in this chapter.

In this chapter we present the solution strategy that applies to Eq. (3.3),
although it can equally well be applied to the set of equations (3.1) and (3.2).
Using these equations instead of Eq. (3.3) would be useful for employing a
different form for the constitutive parameters, for inhomogeneous media or for
validating the assumptions made in the derivation of the Westervelt equation.
In this chapter we will no longer use the subscript notation and the Einstein
summation convention associated with it.

3.1 Neumann iterative solution

The main purpose of this chapter is to develop a strategy for solving the
nonlinear acoustic pressure field p(x, t) from the Westervelt equation (3.3).
We consider the nonlinear field in a homogeneous medium, i.e. ρ0, κ0 and β
are assumed to be constant. The nonlinear pressure field is interpreted as a
summation of the linear field solution, denoted as p(0)(x, t), and a nonlinear
correction, denoted as δp(x, t). The linear field solution p(0) can be obtained
by solving the wave equation (2.57) for the homogeneous, lossless and linear
background medium in which the external term S acts as the primary source.
We will denote the solution method for the wave equation for the given
background medium as the operator L, so p(0) = L[S]. Equivalently, the
nonlinear field correction δp can be obtained by letting L work on the second
term on the right-hand side of Eq. (3.3), which we will define as the nonlinear
contrast source

SNL(p) =
β

ρ0c4
0

∂2
t p2. (3.4)
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When we assume that the total nonlinear pressure field p is dominated by
p(0), then a good first estimate of SNL(p) is SNL(p(0)). The operator L can
now be employed to obtain a first estimate of the nonlinear field correction as
δp(1) = L[SNL(p(0))]. Repeating these steps, the contrast source formulation
enables the computation of a successive estimate p(j) = p(0) + δp(j) to p and
results in the Neumann iterative solution [23]

p(0) = L[S(0)], S(0) = S, (3.5)

p(j) = p(0) + L[S(j)], S(j) = SNL(p(j−1)), j ≥ 1. (3.6)

This scheme is the formal equivalent of the approach used by Hoffelner et
al. [34]. Moreover, it can be interpreted as a perturbation scheme [32], where
p(1) in our scheme is identified as the quasilinear solution. With j > 1,
we improve this quasilinear solution towards the full nonlinear wavefield,
assuming that the scheme indeed converges.

3.2 Green’s function method for the primary and

contrast source problem

One method to compute L[S(j)] is the evaluation of the convolution inte-
gral [58]

L[S(j)] = G(x, t) ∗x,t S(j)(x, t)

=

∫

D(j)
S

∫

T
(j)

S

G(x−x′, t−t′)S(j)(x′, t′) dt′ dx′, (3.7)

where G(x, t) is the Green’s function of the homogeneous, lossless and linear
background medium. For many background media the Green’s function is
known in closed form, see e.g. [17, 18]. In this thesis we will employ the one-
dimensional and the three-dimensional free-space Green’s functions, given
by [18]

G(x, t) =
c0

2
H(t − |x| /c0), (1D) (3.8)

G(x, t) =
δ(t − ‖x‖ /c0)

4π ‖x‖ , (3D) (3.9)

where H(t) is the Heaviside step function and δ(t) is the Dirac delta distri-

bution. In Eq. (3.7) D(j)
S and T (j)

S denote the relevant spatial and temporal
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domains of integration. For p(0), the spatial integration is over the support

D(0)
S of the primary source S and may involve zero to three integrations, de-

pending on whether S(0) contains a point, line, surface or volume source. For
the successive estimates p(j), the integration is over the three-dimensional

domain D(j)
S that supports the contrast source S(j), which is equal to the

support of p(j−1). In principle, the latter support spans the entire space
where an acoustic pressure is observed. In practice however, the domain in
which the contrast sources contribute significantly to p(j) is limited. We will
further investigate this issue in Chapters 4 and 5.

3.3 Discretization at the Nyquist rate: spatiotem-

poral filtering and windowing

Except in the simplest cases, the convolution integral in Eq. (3.7) must be
discretized and evaluated by numerical means. When we employ a straight-
forward approach, we will need a fine discretization and a corresponding large
number of samples to obtain sufficient accuracy. However, especially when
dealing with multi-dimensional, large-scale convolutions, as will be the case in
computing the nonlinear acoustic field of medical phased array transducers,
this will result in a prohibitively large grid size. A coarse discretization is
therefore essential for the tractability of the computation. In addition to
this, most iterative methods, like the Neumann iterative scheme, require the
storage of the computed pressure field at the full spatiotemporal grid, which
makes the employment of a coarse discretization all the more necessary. In
Subsection 3.3.1 we will first discuss the straightforward discretization of a
one-dimensional convolution integral and its efficient evaluation. To analyze
the approximation error in the discretization, in Subsection 3.3.2 we recall a
number of basic properties of the Fourier transform of a continuous signal and
its discretized version. Next, in Subsection 3.3.3 we present an improved dis-
cretization method that allows for the accurate evaluation of the convolution
integral at a discretization down to the limit of 2 points per period for band-
limited signals, as prescribed by the Nyquist-Shannon theorem. We discuss
an alternative procedure within the proposed method in Subsection 3.3.4,
and finally in Subsection 3.3.5 we discuss the application of the developed
method to the multi-dimensional convolution of Eq. (3.7).
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3.3.1 Straightforward discretization and efficient evaluation

of a convolution integral

We first consider the numerical evaluation of a one-dimensional convolution
integral

F (t) = G(t) ∗t S(t) =

∞
∫

−∞

G(t − t′)S(t′) dt′. (3.10)

A straightforward approach is to use a trapezoidal quadrature rule with a
sampling distance Δt to approximate the convolution integral by the convo-
lution sum [2, p. 885]

F ∗
n = Δt Gn ∗ Sn = Δt

∑

m

Gn−mSm, (3.11)

where it is assumed that the integrand is zero at the endpoints. Here, Gn−m =
G[(n − m)Δt] and Sm = S(mΔt) exactly, but F ∗

n is an approximation of
Fn = F (nΔt). The exclusive use of the function values at the collocation
points t = nΔt implies that the functions have been sampled. To keep the
number of samples finite, n − m and m must be limited to a finite number,
which means the windowing of G(t), S(t) and, consequently, F (t). Let us
assume that the interval of interest of Fn ranges from n = 0 to N −1 and the
support of Sm also ranges from m = 0 to N − 1.1 Then the support of Gq

may be restricted to the points q = n−m = −N +1 to N − 1, giving 2N − 1
points. For reason of efficiency, the convolution sum is usually evaluated by
applying a Fast Fourier Transform (FFT) method [54]. Since this implies a
circular convolution instead of a linear one as in Eq. (3.11), a wraparound
error in the interval of interest must be avoided by extending the support of
Sm with at least N − 1 zeros (zero-padding) [57]. For an efficient FFT and
for simplifying the upcoming discussions, the number of points is rounded
up to 2N by zero-padding Sm with N points and Gq with one point. The
computational effort of the FFTs thus employed is of the order 2N log(2N).

The approximation error is given by F ∗
n − Fn and is controlled by the

step size Δt. Often, the step size is compared to the wavelength of a harmonic
signal that is characteristic for the problem under investigation. To this end

1For ease of the discussion we take the interval of interest in F (t) and the support of
S(t) to coincide. The generalization to non-coinciding intervals is straightforward and is
not explicitly treated in this thesis.
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we introduce the number of points per period

Dφ =
2π

φ Δt
, (3.12)

where φ is the angular frequency of the chosen characteristic signal.2 When
we employ a discretization procedure based on the trapezoidal rule, usually
10 to 20 points per period are needed for a sufficiently accurate evaluation.
We illustrate this with the integration of a switched harmonic function, given
by

F (t) =

∞
∫

−∞

G(t − t′)S(t′) dt′ (3.13)

with

G(t) = H(t), (3.14)

S(t) = sin(Ω0 t)[H(t − Tb) − H(t − Te)]. (3.15)

The exact result for F (t) is

F (t) =

⎧

⎨

⎩

0, t ≤ Tb

Ω−1
0 [cos(Ω0 Tb) − cos(Ω0 t)], Tb < t ≤ Te

Ω−1
0 [cos(Ω0 Tb) − cos(Ω0 Te)], Te < t

(3.16)

and the approximation of Eqs. (3.13)–(3.15) with the trapezoidal rule gives
us

F ∗
n =

Δt

2
S(nΔt) + Δt

n−1
∑

m=−∞

S(mΔt). (3.17)

In the present case we take Ω0 = 1, {Tb, Te} = {2π, 8π}, and we consider the
region of interest t ∈ [0, 10π]. For this problem we choose the characteristic
frequency to be φ = Ω0 = 1 in Eq. (3.12), so for a given DΩ0 the step size
will be Δt = 2π/DΩ0 . We obtain estimates F ∗

n on the points t = nΔt,
n ∈ [0, N − 1] with N − 1 = 10π/Δt. We further define a relative root mean
square (RRMS) error

Err =

√

∑N−1
n=0 (F ∗

n − Fn)2
∑N−1

n=0 F 2
n

. (3.18)

2The subscript φ on D acknowledges the fact that Dφ is related to a specific charac-
teristic frequency φ, which is not always unambiguously determined. Dφ can be converted
between different choices of the characteristic frequency according to Dφ1

/Dφ2
= φ2/φ1.
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Figure 3.1. RRMS error for the trapezoidal rule approximation Eq. (3.17) versus the
number of points per period.

The behavior of the error as a function of DΩ0 is given in Fig. 3.1. In the
figure we see that to arrive at an error equal to or less than 1% with the
trapezoidal rule, we have to take DΩ0 ≥ 18.

3.3.2 Basic Fourier theorems

We further investigate the approximation error F ∗
n−Fn from a Fourier domain

perspective and formulate a method to arrive at the same error with a coarser
discretization. We first recall three basic properties of an arbitrary function
f(t) and its Fourier transform f̂(ω) defined by the Fourier transformation
pair

f̂(ω) =

∞
∫

−∞

f(t) exp(−jωt) dt, (3.19)

f(t) =
1

2π

∞
∫

−∞

f̂(ω) exp(jωt) dω. (3.20)

The first basic property is the convolution theorem, which states that
the Fourier transform of a convolution is given as [55]

f(t) = a(t) ∗t b(t) ↔ f̂(ω) = â(ω) b̂(ω). (3.21)

This property forms the basis of the FFT method mentioned in the previous
Subsection. In the dual case, for a convolution in the Fourier domain, the



42 Solution strategy

equivalent in the original domain is given as

f̂(ω) = â(ω) ∗ω b̂(ω) ↔ f(t) = 2π a(t) b(t). (3.22)

The second property involves the process of equidistant sampling of
f(t) and f̂(ω). The sampled version of f(t) is defined as

f∆t(t) =

∞
∑

n=−∞

f(nΔt) δ

(

t − nΔt

Δt

)

, (3.23)

where Δt is the sampling distance. With the impulse train defined as

δ∆t(t) = Δt

∞
∑

n=−∞

δ (t − nΔt) =

∞
∑

n=−∞

δ

(

t − nΔt

Δt

)

, (3.24)

we can rewrite Eq. (3.23) as

f∆t(t) = f(t) δ∆t(t). (3.25)

Since the Fourier transform of δ∆t(t) is

δ̂∆t(ω) = 2π
∞

∑

m=−∞

δ

(

ω − 2π m

Δt

)

, (3.26)

the Fourier transform of f∆t(t) is given as

f̂∆t(ω) = f̂(ω) ∗ω δ̂∆t(ω) =
∞

∑

m=−∞

f̂(ω + m Ωper), (3.27)

which is periodic with Ωper = 2π/Δt. Overlap of the terms in Eq. (3.27)

makes that whenever f̂(ω) is nonzero for |ω| > 1
2Ωper, then f̂∆t(ω) 
= f̂(ω)

for |ω| < 1
2Ωper . This effect is called aliasing and it is illustrated in Fig. 3.2.

The quantity 1
2Ωper = π/Δt = Ωnyq is the angular Nyquist frequency. In the

dual case, sampling of f̂(ω) with a sampling distance Δω results in a function
f∆ω(t) that is periodic with Tper = 2π/Δω. For this case we observe that
whenever f(t) is nonzero for |t| > 1

2Tper, we have a similar overlap of terms
in f∆ω(t) for |t| < 1

2Tper as in Eq. (3.27). We will refer to this effect as
time-domain aliasing.

The third property involves rectangular windowing of f(t) and f̂(ω).
If a windowed version of f(t) is given by

fT (t) = f(t) [H(t + T ) − H(t − T )], (3.28)
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Figure 3.2. Illustration of aliasing in the Fourier domain due to the sampling of a
function in the original domain.

where 2T is the width of the window, then the Fourier transform of this
function is

f̂T (ω) =
T

π
f̂(ω) ∗ω sinc(T ω), (3.29)

in which sinc(x) = sin(x)/x. In the dual case, windowing of f̂(ω) with a
window of width 2Ω,

f̂Ω(ω) = f̂(ω) [H(ω + Ω) − H(ω − Ω)], (3.30)

results in a function fΩ(t) that is given by

fΩ(t) =
Ω

π
f(t) ∗t sinc(Ω t). (3.31)

Windowing in the original domain always leads to a function of infinite sup-
port in the Fourier domain, and vice versa. In this thesis, we will refer to
the operation to obtain fT (t) or f̂T (ω) as windowing, and to the operation
to obtain fΩ(t) or f̂Ω(ω) as filtering. The parameters T and Ω are referred
to as half window width and cutoff angular frequency, respectively.

The notation introduced in this subsection for the sampling, windowing
and filtering operations will be used extensively in the subsequent discussion.
Table 3.1 summarizes the definitions in the original domain as well as in the
Fourier domain.
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Sampling in the original domain

f∆t(t) =
∞

∑

n=−∞

f(nΔt) δ

(

t − nΔt

Δt

)

f̂∆t(ω) =
∞

∑

m=−∞

f̂(ω + m Ωper)

(Ωper = 2π/Δt)

Sampling in the Fourier domain

f∆ω(t) =

∞
∑

m=−∞

f(t + mTper) f̂∆ω(ω) =

∞
∑

n=−∞

f̂(nΔω) δ

(

ω − nΔω

Δω

)

(Tper = 2π/Δω)

Windowing

fT (t) = f(t) [H(t + T ) − H(t − T )] f̂T (ω) =
T

π
f̂(ω) ∗ω sinc(T ω)

Filtering

fΩ(t) =
Ω

π
f(t) ∗t sinc(Ω t) f̂Ω(ω) = f̂(ω) [H(ω + Ω) − H(ω − Ω)]

Table 3.1. Summary of the definitions of the sampling, filtering and windowing oper-
ations in the temporal dimension.
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3.3.3 Improved discretization of a convolution integral

In Subsection 3.3.1 we already observed that the straightforward discretiza-
tion of Eq. (3.10) implies the sampling of G(t) and S(t) with a step size Δt.
To analyze this process we first observe that

G∆t ∗t S∆t =

∞
∫

−∞

∑

q

G(qΔt) δ

(

t − t′ − qΔt

Δt

)

×
∑

m

S(mΔt) δ

(

t′ − mΔt

Δt

)

dt′

= Δt
∑

m

∑

q

Gq Sm δ

(

t − (q + m)Δt

Δt

)

= Δt
∑

m

∑

n

Gn−m Sm δ

(

t − nΔt

Δt

)

=
∑

n

F ∗
n δ

(

t − nΔt

Δt

)

= F ∗,∆t(t), (3.32)

where we have used Eq. (3.11) and the fact that q = n − m. As we al-
ready noted, in general F ∗

n 
= Fn and therefore in general F ∗,∆t(t) 
= F∆t(t).
This can be seen better when F∆t(t) and F ∗,∆t(t) are studied in the Fourier
domain and are written out as

F̂∆t(ω) =
(

ĜŜ
)∆t

=
∑

m

Ĝ(ω + m Ωper) Ŝ(ω + m Ωper), (3.33)

F̂ ∗,∆t(ω) = Ĝ∆tŜ∆t=
∑

m

Ĝ(ω + m Ωper)
∑

q

Ŝ(ω + q Ωper)

= F̂∆t(ω) +
∑

m

Ĝ(ω + m Ωper)
∑

q �=m

Ŝ(ω + q Ωper).

(3.34)

The remaining sum term in the last expression is caused by the multiplication
of the aliased spectra Ĝ∆t(ω) and Ŝ∆t(ω), and it forms the actual difference
between F̂ ∗,∆t(ω) and F̂∆t(ω). The term is zero when Ĝ(ω) and Ŝ(ω) are
zero outside the region ω ∈ [−1

2Ωper,
1
2Ωper] = [−Ωnyq, Ωnyq]. This is in fact

the Nyquist-Shannon sampling theorem for bandlimited signals [55], and it
forms the basis of our method for the efficient discretization of the convolution
integral.
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The underlying assumption of our method is that we are only interested
in the contributions in F̂ with frequencies |ω| ≤ Φ, Φ being the maximum
angular frequency of interest. As a consequence of our limited interest, before
we sample G(t) and S(t), we limit their spectra by filtering these functions
according to Eq. (3.31) with a cutoff angular frequency Ω ≥ Φ, and we use the
bandlimited versions GΩ(t) and SΩ(t) instead of the original functions G(t)
and S(t). Next we sample GΩ(t) and SΩ(t) at a sampling distance Δt = π/Ω,
so the situation Ω = Ωnyq occurs and the aliasing error reduces to zero. This
means that we obtain F ∗

n as the exact value of FΩ(nΔt) for any Ω. The
approximation error is then entirely due to the difference between FΩ(nΔt)
and F (nΔt), and as long as Ω ≥ Φ, i.e. DΦ = 2Ω/Φ ≥ 2, this difference
manifests itself only in the part of the spectrum that we are not interested
in. With the proposed method we thus prefer to discard the contributions
from the frequencies |ω| > Ω over making an aliasing error in the frequency
range |ω| ≤ Ω.

So far, everything seems rather ideal. However, computational reality
requires us to work with a finite number of samples, and this enforces the
windowing of the functions involved, as we did in Subsection 3.3.1. The
windowing operation is formally represented by Eq. (3.28) and it ensures
that we have at most 2N nonzero samples in G(t) and S(t). This is realized
by taking a half window width T < NΔt.3 The application of the window
to GΩ(t) and SΩ(t) may re-introduce an infinite support of ĜΩ,T (ω) and
ŜΩ,T (ω) – the order of the superscripts indicating the order of corresponding
operations – that leads to an aliasing error when the functions are sampled.
This error is however of second order and in general much smaller than the
aliasing error which would have been caused by the direct sampling of the
functions G(t) and S(t).

When the filtering and windowing operations have been applied to G(t)
and S(t), we continue with the procedure as given in Subsection 3.3.1. To
summarize, our method for the improved discretization and evaluation of a
one-dimensional convolution integral is:

3We exclude T = N∆t as this gives 2N + 1 points. For the supports t ∈ [0, (N − 1)∆t]
of S(t) and t ∈ [(−N +1)∆t, (N − 1)∆t] of G(t), as in Subsection 3.3.1, the windows are in
fact defined with T = N∆t/2 and T = (N −1/2)∆t, respectively, where for S(t) the center
of the window is shifted to t = (N−1)∆t/2. This window translation is not incorporated in
our definition of the windowing operation Eq. (3.28), but it is not essential to the discussion
of Subsections 3.3.2-3.3.4.
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1. Subject G(t) and S(t) to a filter with cutoff angular frequency Ω ≥ Φ.

2. Subject GΩ(t) and SΩ(t) to suitable time windows with half window
width T < NΔt.

3. Sample GΩ,T (t) and SΩ,T (t) on 2N points with step size Δt = π/Ω.

4. Obtain the FFT coefficients of GΩ,T
n and SΩ,T

n using an FFT.

5. Multiply the FFT coefficients, return to the original domain using an
inverse FFT and scale the result with Δt.

This yields FΩ,T (nΔt) as an approximation for F (nΔt). The proposed
method will be referred to as the Filtered Convolution (FC) method.

To show the improvement with the Filtered Convolution method, let
us go back to the integral of the switched harmonic function in Eqs. (3.13)–
(3.15). When we apply the filtering operation of Eq. (3.31) to G(t), we obtain

GΩ(t) =
1

π

[

Si(Ω t) +
π

2

]

, (3.35)

where Si(z) is the sine integral [2, p. 231]

Si(z) =

∫ z

0

sin(t′)

t′
dt′. (3.36)

For Ω > Ω0, the filtered form of S(t) becomes

SΩ(t) =
sin(Ω0t)

2π

{

Si[(Ω+Ω0)(t−Tb)] + Si[(Ω−Ω0)(t−Tb)]

− Si[(Ω+Ω0)(t−Te)] − Si[(Ω−Ω0)(t−Te)]
}

−cos(Ω0t)

2π

{

Cin[(Ω+Ω0)(t−Tb)] − Cin[(Ω−Ω0)(t−Tb)]

− Cin[(Ω+Ω0)(t−Te)] + Cin[(Ω−Ω0)(t−Te)]
}

, (3.37)

where Cin(z) is entire cosine integral [2, p. 231]

Cin(z) =

∫ z

0

1 − cos(t′)

t′
dt′. (3.38)
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Figure 3.3. (a) Original form (dashed) and filtered form (solid) of G(t) and (b) Original
form (dashed) and filtered form (solid) of S(t), both with a cutoff angular
frequency Ω = 2Ω0.

As an example, Fig 3.3 shows the original and filtered functions G(t)
and S(t) for Ω = 2 Ω0. Since we apply the FC method, Ω is related
to Δt by Ω = Ωnyq = π/Δt. If we vary DΩ0 ,

4 we get Δt = 2π/Ω0DΩ0

and Ω = Ω0DΩ0/2, and we obtain estimates FΩ,T
n on the points t = nΔt,

n ∈ [0, N − 1], with N − 1 = 10π/Δt. The support of SΩ
n is taken to co-

incide with the region of interest of FΩ
n and the support of GΩ

n is therefore
n ∈ [−N + 1, N − 1]. To prevent the wraparound error in the region of in-
terest and to obtain an FFT with 2N points, we zero-pad SΩ

n with N points
and GΩ

n with one point. Figure 3.4a shows the error in the results of the
convolution as obtained with the trapezoidal rule and with the FC method.
From the figure we observe a reduction of the error by a factor 30 for the FC
method, resulting in an RRMS error below 1% at DΩ0 = 5.5 The remain-
ing error in the FC method results from the difference between FΩ

n and Fn

and the difference between FΩ,T
n and FΩ

n . Figure 3.4b shows the latter two
errors plotted separately. We observe that the total error in the FC method
is mainly determined by the difference between FΩ

n and Fn, i.e. the filtering
operation. As assumed previously, the difference between FΩ,T

n and FΩ
n , i.e.

the second-order error introduced by the windowing of the filtered signals, is
indeed very small.

4As in Subsection 3.3.1, here we describe the discretization in terms of the characteristic
frequency Ω0 instead of the the maximum frequency of interest Φ.

5Obviously, for this example the maximum frequency of interest Φ should be taken larger
than the chosen characteristic frequency Ω0. Conform footnote 2 we have DΦ = DΩ0

Ω0/Φ.
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Figure 3.4. (a) RRMS error for the trapezoidal rule (dashed) and the FC method (solid)
versus DΩ0

. (b) RRMS error of the FC method splitted up in the error in
FΩ

n as compared to Fn (solid) and the error in FΩ,T
n as compared to FΩ

n

(dashed).

An important property of the error for the FC method can be observed
from Figure 3.5, where the error F ∗

n − Fn corresponding to the trapezoidal
rule and the error FΩ,T

n −Fn corresponding to the FC method are shown for
DΩ0 = 10. With the trapezoidal rule the error retains a constant fluctuation,
while with the FC method the error is localized mainly around n = Tb/Δt and
n = Te/Δt. As already noted, the error in FΩ,T

n is explained mostly by the
difference between FΩ(t) and F (t), which is localized around the transitions
in F (t) and which is recognized as a Gibbs phenomenon [25].
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Figure 3.5. Absolute errors F ∗

n − Fn for the trapezoidal rule (dashed) and FΩ,T
n − Fn

for the FC method (solid), both with DΩ0
= 10.



50 Solution strategy

3.3.4 Alternative procedure for obtaining the FFT coeffi-

cients of the filtered and windowed functions

In the procedure described in the previous subsection we sample the filtered
and windowed GΩ,T (t) and SΩ,T (t) in the temporal domain and then trans-
form these with an FFT. As an alternative, we can obtain the FFT coefficients
of GT,Ω(t) or ST,Ω(t) by a direct sampling of their Fourier domain equiva-
lents. When the step size and number of coefficients in the original domain
are Δt and 2N , as in Subsection 3.3.1, then in the Fourier domain the sample
points are ω = nΔω, with Δω = π/NΔt and n ∈ [−N, N − 1]. To obtain
the correct magnitude and format for the application of the inverse FFT, the
coefficients need to be scaled with a factor 1/Δt and they have to be placed
in the order {[0, N − 1], [−N,−1]}.

When we intend to adopt this alternative procedure, we need to per-
form the windowing and filtering in the Fourier domain. In this domain,
these operations play a dual role as compared to the original domain. The
filtering operation in Eq. (3.30) limits the support of the functions in the
Fourier domain to ω ∈ [−Ω, Ω] and it ensures that we obtain a finite num-
ber of samples. The windowing operation, Eq. (3.29), limits the support of
the functions in the original domain to t ∈ [−T, T ], where T < NΔt as in
Subsection 3.3.3, and it ensures that the time-domain aliasing error, which
is the dual of the aliasing error, does not occur when the function is sampled
in Fourier domain with a step size Δω ≤ π/T .

In the Fourier domain the filtering is a trivial task. However, as dis-
cussed in Subsection 3.3.3, the windowing of ĜΩ(ω) and ŜΩ(ω) may re-
introduce an infinite support and therefore leads to an infinite number of
samples. Because of this, in the Fourier domain we need to interchange the
order of the filtering and windowing and derive ĜT,Ω(ω) and ŜT,Ω(ω). Of
course, in a dual way to the procedure in Subsection 3.3.3, the filtering of
ĜT (ω) and ŜT (ω) may re-introduce an infinite support of GT,Ω(t) and ST,Ω(t)
that leads to a time-domain aliasing error when the functions are sampled
in the Fourier domain. This error is however of a second order and in gen-
eral much smaller than the time-domain aliasing error that would have been
caused by the direct sampling of the functions Ĝ(ω) and Ŝ(ω) in the Fourier
domain.

Our aim to remove the aliasing error and thus enable a sampling down
to two points per period can thus be attained by the alternative procedure
as well as by the original procedure. In summary, the Filtered Convolution
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method with the original and alternative procedure is stated as follows:

Original FC method

1. Subject G(t) and S(t) to
a filter with cutoff angular
frequency Ω ≥ Φ.

2. Subject GΩ(t) and SΩ(t) to
suitable time windows with
half window width T < NΔt
with Δt = π/Ω.

3. Sample GΩ,T (t) and SΩ,T (t)
on 2N points with step size
Δt = π/Ω.

4. Obtain the FFT coefficients
of GΩ,T

n and SΩ,T
n using an

FFT.

5. Multiply the FFT coeffi-
cients, return to the original
domain using an inverse FFT
and scale the result with Δt.

Alternative FC method

1. Subject Ĝ(ω) and Ŝ(ω) to
suitable time windows with
half window width T < NΔt
with Δt = π/Ω.

2. Subject ĜT (ω) and ŜT (ω) to
a filter with cutoff angular
frequency Ω ≥ Φ.

3. Sample ĜT,Ω(ω) and ŜT,Ω(ω)
on 2N points with step size
Δω = Ω/N .

4. Obtain the FFT coefficients
of GT,Ω

n and ST,Ω
n by scaling

with 1/Δt and reordering.

5. Multiply the FFT coeffi-
cients, return to the original
domain using an inverse FFT
and scale the result with Δt.

We can of course also choose to derive and sample the filtered and windowed
forms of G(t) in the one domain and of S(t) in the other. This freedom will be
a benefit when applying the filtering and windowing operations to the specific
Green’s functions and source functions, as will be shown in Sections 3.4
and 3.5.

3.3.5 Improved discretization and efficient evaluation of the

multi-dimensional convolution integral

In order to discretize and evaluate the multi-dimensional convolution integral
in Eq. (3.7) using the Filtered Convolution method, we have to apply the fil-
tering and windowing operations to all spatiotemporal dimensions of G(x, t)
and S(j)(x, t) before we sample them. The order in which the dimensions
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are addressed is not important, and for each dimension we have the freedom
to either sample in the original domain or in the Fourier domain. We use
the superscripts Ω and T to denote the filtering and windowing operations
in the temporal dimension. For the spatial dimension, the filtering and win-
dowing operations will be denoted by the subscripts K and X, respectively.
The employed notations and the operations they refer to are summarized for
the temporal dimension in Table 3.1, and their spatial counterparts can be
straightforwardly derived from them.

The prime parameter for both the spatial and the temporal dis-
cretization is the temporal angular cutoff frequency Ω. As explained in
Subsection 3.3.3, this quantity directly determines the temporal sampling
distance Δt = π/Ω. For waves in three spatial dimensions, the length
of the vectorial wavenumber or the vectorial spatial angular frequency is
‖k‖ = (k2

x+k2
y +k2

z)
1/2. Under the assumption that at the cutoff frequency Ω

we are only interested in the contribution of propagating (i.e. non-evanescent)
waves, we have ‖k‖ ≤ Ω/c0 and the maximum possible wavenumber in each
spatial dimension is K = Ω/c0. This, in turn, yields the spatial sampling
distance in each spatial dimension as Δx = π/K = c0Δt.

Assuming a problem involving one temporal and three spatial dimen-
sions, sampling of the source and Green’s function reduces the convolution
integral Eq. (3.7) to the convolution sum

L[S(j)]a,b,c,n = Δx3Δt
∑

d,e,f

∑

m

Ga−d,b−e,c−f,n−m S
(j)
d,e,f,m, (3.39)

where L[S(j)], G and S(j) denote the spatiotemporally filtered and windowed
forms. The evaluation of Eq. (3.39) can be done efficiently with either the
original or alternative Filtered Convolution method as summarized in the
previous subsection, using the parameters given abouve. In both cases we

encounter a four-dimensional FFT and S
(j)
d,e,f,m has to be zero-padded in all

four dimensions to avoid the wraparound error. If A×B×C×N is the total
number of points in the discrete domain of interest, the number of operations
required for the convolution is of the order 16A×B ×C ×N log(16A×B ×
C × N). Appendix B describes a number of memory-efficient methods for
evaluating Eq. (3.39).

The success of the Filtered Convolution method depends on the ability
to perform the filtering and windowing operations on the Green’s function
and on the primary and contrast sources in all spatiotemporal dimensions.
This will be the subject of the subsequent sections.



3.4 Filtering of the Green’s function 53

3.4 Spatiotemporal filtering and windowing of the

Green’s function

In this section we will consider the spatiotemporal filtering and windowing
of the Green’s functions in Eqs. (3.8) and (3.9) in all occurring dimensions.
We will obtain expressions for ĜT,Ω

K,X in the temporal Fourier domain. In
Eqs. (3.19) and (3.20) we have already introduced the temporal Fourier trans-
formation pair. In addition, here we introduce the one-dimensional spatial
Fourier transformation pair

F̃ (kx, ω) =

∞
∫

−∞

F̂ (x , ω) exp(jkxx) dx, (3.40)

F̂ (x , ω) =
1

2π

∞
∫

−∞

F̃ (kx, ω) exp(−jkxx) dkx, (3.41)

and the three-dimensional spatial Fourier transform pair

F̃ (k, ω) =

∫

R3

F̂ (x, ω) exp(jk · x) dx, (3.42)

F̂ (x, ω) =
1

8π3

∫

R3

F̃ (k, ω) exp(−jk · x) dk. (3.43)

3.4.1 One-dimensional Green’s function

The one-dimensional, space-time domain free space Green’s function of
Eq. (3.8) is repeated here as

G(x, t) =
c0

2
H(t − |x| /c0). (3.44)

Its temporal Fourier domain equivalent is

Ĝ(x, ω) =
exp(−jk |x|)

2jk
, (3.45)

where k = ω/c0 is the wavenumber, and its spatial Fourier domain counter-
part is

G̃(kx, ω) =
1

k2
x − k2

. (3.46)
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We start with the spatial filtering operation. The spatial angular cutoff fre-
quency K is determined by the maximum temporal angular cutoff frequency
Ω through K = Ω/c0. The filtered form of G̃(kx, ω) can then be written as

G̃K(kx, ω) = G̃(kx, ω)H(K − |kx|). (3.47)

With the application of the inverse spatial Fourier transform we obtain the
spatially filtered Green’s function in the temporal Fourier domain for |k| < K
as [69]6

ĜK(x, ω) = Ĝ(x, ω)

− cos(k |x|)
2πk

{

Cin[(K−k) |x|] − Cin[(K+k) |x|] − ln

(

K − k

K + k

)}

− sin(k |x|)
2πk

{

Si[(K−k) |x|] + Si[(K+k) |x|] − π
}

. (3.48)

Next, we perform the temporal windowing in the temporal Fourier
domain. For the unfiltered Green’s function, temporal windowing yields

GT (x, t) =
c0

2
H(t − |x| /c0) [H(t + T ) − H(t − T )]

=
c0

2
[H(t − |x| /c0) − H(t − T )] H(c0T − |x|), (3.49)

and therefore

ĜT (x, ω) =
exp(−jk |x|) − exp(−jk c0T )

2jk
H(c0T − |x|). (3.50)

We may directly apply this result to the first term of Eq. (3.48). The time
windowing of the other terms in Eq. (3.48), which represent the spatial filter-
ing operation, is more involving. When we omit the time windowing of these
terms, we are bound to make a time-domain aliasing error during the eval-
uation of the temporal convolution sum. As explained in Subsection 3.3.4,
the temporal filtering of ĜT

K(x, ω) that must still take place will force us to
make a similar time-domain aliasing error anyhow, so we decide to restrict
the temporal windowing to the first term of Eq. (3.48) and to leave the other
terms in the equation unaffected. Thus, we have obtained an approxima-
tion of the spatially filtered, temporally windowed form of Ĝ(x, ω), valid for

6The differences between Eq. (3.48) and the form used in [69] are due to an alternative
definition of the temporal Fourier transform and the use of Cin(t) instead of Ci(t).
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|k| < K,

ĜT
K(x, ω) =

exp(−jk |x|) − exp(−jk c0T )

2jk
H(c0T − |x|)

− cos(k |x|)
2πk

{

Cin[(K−k) |x|] − Cin[(K+k) |x|] − ln

(

K − k

K + k

)}

− sin(k |x|)
2πk

{

Si[(K−k) |x|] + Si[(K+k) |x|] − π
}

. (3.51)

In the limit k → 0, Eq. (3.51) reduces to

ĜT
K(x, ω) =

c0T − |x|
2

H(c0T − |x|) − cos(K |x|)
πK

− |x|
2π

[2 Si(K |x|) − π].

(3.52)

Now we may perform the remaining temporal filtering and spatial win-
dowing operations by straightforward multiplications with the appropriate
windows, resulting in ĜT,Ω

K,X(x, ω). This function can subsequently be sam-
pled in x and ω.

3.4.2 Three-dimensional Green’s function

The three-dimensional, space-time, free-space Green’s function of Eq. (3.9)
is repeated here as

G(x, t) =
δ(t − ‖x‖ /c0)

4π ‖x‖ , (3.53)

Its temporal Fourier domain equivalent is

Ĝ(x, ω) =
exp(−jk ‖x‖)

4π ‖x‖ , (3.54)

where k = ω/c0 is the wavenumber, and its spatiotemporal Fourier domain
counterpart is

G̃(k, ω) =
1

‖k‖2 − k2
. (3.55)

We find it most convenient to first perform the spatial filtering in the spa-
tiotemporal Fourier domain. There is a subtlety connected to the filtering
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with respect to the three spatial dimensions. To prevent spatial aliasing at Ω
with the given spatial sampling, it is necessary to ensure that we only have
nonzero content in the Green’s function at |kx| ≤ K, |ky| ≤ K and |kz| ≤ K,
i.e. to apply a cube-shaped filter in the spatial Fourier domain. This may be
achieved by separately applying a filter with cutoff wavenumber K in each
spatial dimension. Since at Ω we are only interested in propagating waves,
it is sufficient to ensure that we only have nonzero frequency content in the
Green’s function (k2

x +k2
y +k2

z)
1/2 ≤ K with K = Ω/c0, i.e. to apply a spher-

ical filter with cutoff wavenumber K in the spatial Fourier domain. When
employing the spherical filter, we obtain

G̃K(k, ω) = G̃(k, ω)H(K − ‖k‖). (3.56)

With the application of the inverse spatial Fourier transform we obtain the
spatially filtered Green’s function in the temporal Fourier domain for |k| < K
as [70]7

ĜK(x, ω) = Ĝ(x, ω)

− sin(k ‖x‖)
4π2 ‖x‖

{

Cin[(K−k) ‖x‖] − Cin[(K+k) ‖x‖] − ln

(

K − k

K + k

)}

+
cos(k ‖x‖)
4π2 ‖x‖

{

Si[(K−k) ‖x‖] + Si[(K+k) ‖x‖] − π
}

. (3.57)

Next, we perform the temporal windowing in the temporal Fourier
domain. For the unfiltered Green’s function, temporal windowing yields

GT (x, t) =
δ(t − ‖x‖ /c0)

4π ‖x‖ [H(t + T ) − H(t − T )]

=
δ(t − ‖x‖ /c0)

4π ‖x‖ H(c0T − ‖x‖), (3.58)

and therefore

ĜT (x, ω) =
exp(−jk ‖x‖)

4π ‖x‖ H(c0T − ‖x‖). (3.59)

We may directly apply this result to the first term of Eq. (3.57). Using
an identical reasoning as for the one-dimensional Green’s function we leave
the other terms in the equation unaffected. Thus, we have obtained an

7The differences between Eq. (3.57) and the form used in [70] are due to an alternative
definition of the temporal Fourier transform and the use of Cin(t) instead of Ci(t).
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approximation of the spatially filtered, temporally windowed form of Ĝ(x, ω),
valid for |k| < K,

ĜT
K(x, ω) =

exp(−jk ‖x‖)
4π ‖x‖ H(c0T − ‖x‖)

− sin(k ‖x‖)
4π2 ‖x‖

{

Cin[(K−k) ‖x‖] − Cin[(K+k) ‖x‖] − ln

(

K − k

K + k

)}

+
cos(k ‖x‖)
4π2 ‖x‖

{

Si[(K−k) ‖x‖] + Si[(K+k) ‖x‖] − π
}

. (3.60)

In the limit ‖x‖ → 0, Eq. (3.60) reduces to

ĜT
K(x, ω) = − jk

4π
+

k

4π2
ln

(

K − k

K + k

)

+
K

2π2
. (3.61)

Now we may perform the remaining temporal filtering and spatial win-
dowing operations by straightforward multiplications with the appropriate
rectangular windows, resulting in ĜT,Ω

K,X(x, ω). This function can subse-
quently be sampled in x and ω.

3.5 Evaluation of the primary and contrast sources

In the previous section we focused on the treatment of the Green’s functions.
In this section we will discuss the definition, filtering, windowing and eval-
uation of the primary and contrast sources. Special attention is paid at the
evaluation on a coarse grid of the derivatives in the source terms. The discus-
sion focuses on the three-dimensional case, from which the one-dimensional
case can straightforwardly be extracted.

3.5.1 Definition, filtering and evaluation of the primary

source

The primary source S(0)(x, t) is identified as the source term S(x, t) in the
Westervelt equation (3.3). Conform Eq. (2.58) it is written as

S = ρ0∂tq − ∇ · f , (3.62)

where q [s−1] is the volume density of the volume injection rate and f [N m−3]
is the volume density of the external volume force. The two terms in
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Eq. (3.62) can be employed to describe jump conditions in v and p across
a certain surface. A velocity jump condition can be imposed as a volume
injection q on an infinitely thin source surface. A velocity jump ΔV in the
z-direction across the plane z = 0 requires a source term q = ΔV δ(z), i.e.

S = ρ0∂t[ΔV δ(z)]. (3.63)

Equivalently, a pressure jump condition across a surface can be imposed as
an external force on an infinitely thin source surface, directed perpendicular
to that surface. A pressure jump ΔP across the plane z = 0 requires a source
term f = izΔP δ(z), i.e.

S = −∂z[ΔP δ(z)]. (3.64)

For the problems in this thesis we will describe the primary source with either
Eq. (3.63) or Eq. (3.64), and therefore we will focus on these source types
and discuss the filtering and windowing for all spatiotemporal dimensions, as
well as the evaluation of the occurring derivatives.

In the three-dimensional situation, the excitation functions ΔV or ΔP
may depend on x, y and t. Subsection 3.5.2 will be devoted to the spa-
tiotemporal filtering of ΔV (x, y, t) and ΔP (x, y, t) in these dimensions. In
the z-dimension, filtering of the delta pulse δ(z) gives, in view of Eq. (3.31),

δK(z) =
K

π
sinc(Kz), (3.65)

which for K = π/Δx gives 1/Δx for z = 0 and 0 for z = nΔx, n 
= 0. Thus,
in the calculation of the linear field solution the four-dimensional convolution
reduces to a convolution in x, y and t.

The evaluation of the derivatives in the velocity and pressure jump con-
ditions can be performed as follows. The temporal derivative in Eq. (3.63)
applies to ΔV (x, y, t) and may be performed analytically on its time signa-
ture if it is known analytically. Alternatively, we could first filter and sample
ΔV and then apply a discrete method to approximate the temporal deriva-
tive. However, since ΔV is discretized on a coarse grid, a straightforward
approach like a second order centered finite difference will not exhibit suffi-
cient accuracy. The issue of evaluating a derivative on a coarse grid will be
further discussed in Subsection 3.5.3.

The spatial derivative in Eq. (3.64) applies to the delta pulse δ(z). We
could apply the derivative to the filtered pulse δK(z), but this would turn
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the surface source in z into a volume source. Instead, since for a convolution
we have the commutative property

A ∗z (∂zB) = (∂zA) ∗z B = ∂z(A ∗z B), (3.66)

we may postpone the evaluation of the derivative until after the convolution of
the Green’s function with the source. The derivative must then be performed
on a function that has been discretized on a coarse grid. For this we need a
similar discrete method as for the temporal derivative in the velocity jump
condition, which will be discussed in Subsection 3.5.3.

In the discussion up till now we silently assumed that the filtering and
windowing operations applied on S commute with the derivatives within S.
For the filtering operation this can be easily shown to be true with the aid
of Eq. (3.31) and Eq. (3.66). For the windowing operation this is not true,
and this may result in an error in the temporal dimension for the velocity
jump source and in the z-dimension for the pressure jump source. Regarding
the velocity jump source, as long as the time signature has a support that
is smaller than the time window, the windowing of the filtered pulse will
be applied only to the tails that are due to the filtering and the error will
be of a similar smallness as those already made in the approximations of
Subsection 3.3.3 and Section 3.4. Regarding the pressure jump source, we
observed from Eq. (3.65) that the filtered delta pulse in z only has a value
at z = 0, and the windowing can therefore be omitted, thus removing the
commutativity issue.

3.5.2 Spatiotemporal filtering and windowing of the primary

source geometry and signature

The approach for the spatiotemporal filtering of the excitation function, being
either ΔV (x, y, t) or ΔP (x, y, t), depends on its spatial geometry and its
temporal signature. When, apart from the amplitude and the time delay,
every point of the source emits the same signature, we can treat the temporal
dimension independently from the spatial dimensions. In all practical cases,
the spatial support of the source is limited and the explicit spatial windowing
for preventing time-domain aliasing error is therefore not necessary. Likewise,
all practical sources have a limited temporal support that makes explicit
temporal windowing superfluous.

When the source signature has a bandwidth that is already below Ω,
the temporal filtering may be skipped as well. In many other situations,
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the Fourier transform of the signature is known analytically, so the temporal
filtering may conveniently be performed in the temporal Fourier domain.
In a similar way, the spatial filtering is easily applied whenever the spatial
Fourier domain equivalent is available in analytical form, as for rectangular
or cylindrical piston sources, or for phased array transducers [85]. In such
cases, the sampling is first applied in the Fourier domain, after which an
inverse FFT is employed to return to the original domain. By using the
spatial filtering we conveniently circumvent problems like staircase effects
or the missing out of very small sources that are located in between the
gridpoints.

When the filtering of the source cannot be employed before the sam-
pling, e.g. when the source can only be characterized through discrete mea-
surements, aliasing must be avoided in a numerical way. For this we propose
the procedure as exemplified in Fig. 3.6 for the time coordinate. This proce-
dure is equally applicable to any of the spatial coordinates. The procedure
starts with oversampling the relevant source window at aN points instead of
the intended N points. Subjection of the samples to an aN -point FFT yields
a discrete version of the Fourier domain function over an interval that is a
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times as long as intended but, for a properly chosen oversampling factor a,
with negligible aliasing at the N points around the origin. Next, all points
except those N around the origin are discarded, thus getting the Fourier do-
main function over an interval of the intended length. This restriction is the
actual filtering step since the remaining discrete interval corresponds with the
continuous angular frequency interval [−Ω, Ω]. Finally, an N -point inverse
FFT is performed, and the result is scaled with a factor 1/a. This yields N
samples in the original domain, at the intended sampling distance and with
negligible aliasing.

3.5.3 Computing derivatives on a coarse grid

Assume that we have available the values of a certain function f(t) on the
points t = nΔt, n ∈ [0, N − 1]. A straightforward method to approximate
the derivative ∂f(t)/∂t on the points t = nΔt is to employ a second order
centered finite difference (FD) scheme [63]

df(t)

dt

∣

∣

∣

∣

n∆t

=
f((n + 1)Δt) − f((n − 1)Δt)

2Δt
+ O(Δt2). (3.67)

The accuracy of this scheme is such that for a contribution with angular
frequency φ, as a rule of thumb we would need Dφ ≥ 10 for sufficient ac-
curacy. To obtain sufficient accuracy at smaller Dφ, as in our case where
φ = Ω = Ωnyq and Dφ = DΩ = DΩnyq = 2, we have two alternatives: a
high-order FD scheme, or a spectral difference method. A high-order FD
scheme is realized by including more sample points in the FD stencil than
the two points in Eq. (3.67). The stencil weights can be obtained through the
method of undetermined coefficients [51] or via a fast algorithm developed by
Fornberg [24, 25]. The limiting case for these high-order FD schemes is the
spectral difference, which uses all N points in the interval [25]. It is based
on the fact that in the Fourier domain a derivative of a function f(t) turns
into a scaling of f̂(ω) with jω. The spectral difference method is efficiently
implemented with the help of the FFT conform the following procedure:

1. Apply the FFT to the coefficients f(nΔt), n ∈ [0, N − 1].

2. Scale the FFT coefficients with j nΔω, where Δω = 2π/NΔt and n
takes on the values {[0, (N − 1)/2], [−(N/2),−1]} (division rounded
down).

3. Apply the inverse FFT.
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The spectral difference assumes circular boundary conditions, in other words
it assumes that the function f(t) is periodic in NΔt. If, upon cyclic con-
tinuation, there is a nonsmooth transition between the period boundaries,
the spectral difference will give rise to a Gibbs phenomenon at the boundary.

The high-order FD scheme gives us more freedom in the treatment at
the boundaries. We can of course assume circular boundary conditions, but
these give similar problems as with the spectral difference. Alternatively, if we
can supply the function values f(nΔt) on a larger interval n ∈ [−q, N−1+q],
then we can apply a centered FD scheme of order 2q and obtain the derivative
on the interval n ∈ [0, N − 1] without extra tricks. A third option is to
use asymmetric FD schemes at the boundaries. However, for high-order
schemes the magnitudes of some weights become extremely large when the
asymmetry increases. This will amplify the numerical errors at the boundary
and destroy the accuracy of the FD scheme. A trade-off in accuracy is reached
by employing a reduced order at the boundaries when the asymmetry grows.

In conclusion, the spectral difference is the favorite choice as long as
we can assure that the transition between end and beginning of the interval
of f(t) is smooth. Otherwise we should revert to a high-order FD and treat
the boundaries preferably by supplying a longer interval of points than the
interval for which the derivative will be needed. If this is not possible, then
we will need to satisfy ourselves with asymmetric FD schemes of lower order
at the boundaries.

3.5.4 Definition, filtering, windowing and evaluation of the

nonlinear contrast source

The contrast source S(j)(x, t) follows from Eqs. (3.4) and (3.6) as

S(j) = SNL(p(j−1)) =
β

ρ0c4
0

∂2
t (p(j−1))2. (3.68)

In discussing the filtering of the contrast source, we assume that p(j−1) is
bandlimited in all dimensions with a cutoff temporal angular frequency Ω
and a cutoff wavenumber K, and we assume that it is given over the domain
of interest, which implies the windowing to that domain. When p(j−1) has
been obtained as a sampled function with the Filtered Convolution method,
these assumptions are always satisfied. The multiplication of a bandlimited
signal with itself results in a signal with a bandwidth that is twice as large as
the bandwidth of the original signal, while subsequent differentiation has no
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influence on the bandwidth. Therefore in principle the squaring operation in
Eq. (3.4) causes the need to filter the contrast source in all spatiotemporal
dimensions to avoid aliasing. However, in fact the filtering is only necessary
for a reduced number of dimensions, as we will discuss in Chapters 4 and 5.

For a given sampled function p(j−1), the following method can be used
to perform a temporal filtering of the contrast source. This method is equally
applicable to any of the spatial coordinates. When the samples of p(j−1) are
multiplied with themselves, the original sampling distances Δt = π/Ω and
Δx = π/K are no longer sufficient for the increased bandwidth of the re-
sult. To avoid aliasing, we must decrease the relevant sampling distances
by a factor 2 before the multiplication takes place. This must be performed
by interpolating the available samples of p(j−1) without distorting the cor-
responding spectral values. To achieve this, we suggest the procedure of
spectral interpolation as depicted in Fig. 3.7 for the time coordinate. First,
an N -point FFT is applied to the available N sample points. The discrete
Fourier domain is then extended from N to 2N points by zero-padding. Fi-
nally, an 2N -point inverse FFT is performed and the result is scaled with a
factor 2. This yields 2N samples in the original domain, without distorting
the relevant spectral values. Using the interpolated samples of p(j−1) thus
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obtained, we may perform the squaring operation and obtain 2N samples
of (p(j−1))2. This densely sampled function is then directly amenable for a
subsequent numerical filtering according to Fig. 3.6 with a = 2. The entire
numerical procedure for the evaluation of the contrast source is summarized
in Fig. 3.8. An issue of special attention in the procedure is that in a similar
fashion as for the spectral difference method discussed in Subsection 3.5.3,
the filtering procedure assumes a circular boundary and is therefore sensitive
to strong jumps on the boundaries. These jumps may give rise to Gibbs
phenomenon at the boundary.

When the product (p(j−1))2 has been obtained, we can calculate the
second-order temporal derivative by employing one of the methods already
discussed in Subsection 3.5.3. The spectral derivative may be obtained with
negligible extra computational cost by benefiting from the availability of the
FFT coefficients in the filtering procedure.

3.6 Discussion

In this chapter, we have presented a method to compute an estimate of the
nonlinear acoustic pressure. The aim of the method is to enable the evalua-
tion of the nonlinear acoustic pressure on a coarse grid. The nonlinear acous-
tic pressure was obtained with a Neumann iterative solution of the Westervelt
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equation, with the nonlinear term acting as a contrast source. In the scheme,
the wavefield estimates were obtained through a convolution of the relevant
source terms with the Green’s function of the linear background medium.
The discretization of this convolution involved spatiotemporal filtering, win-
dowing and sampling of both the Green’s function and the sources. It was
shown that with this method a discretization of DΦ = 2 at the maximum
angular frequency of interest Φ is feasible in all dimensions with sufficient
accuracy. In the upcoming chapters, we will refer to the complete method
as the Iterative Nonlinear Contrast Source (INCS) method. The part of the
method concerning the discretization and evaluation of the convolution will
be referred to as the Filtered Convolution (FC) method. In the next chap-
ters, we will use the INCS method for one-dimensional and three-dimensional
problems, and we will analyze the ability of the scheme to correctly and ac-
curately predict the nonlinear acoustic pressure.

In the course of the derivation of the INCS method, we have used a
number of approximations which may result in global or local errors:

1. In Section 3.1, the nonlinear acoustic pressure p(x, t) is approximated
with the iterative estimates p(j)(x, t), resulting in a global error. Pro-
vided that the scheme converges, this error is controlled by the number
of iterations.

2. In Section 3.3, the pressure estimate p(j)(x, t) is approximated with its
spatiotemporally filtered form pΩ

K(x, t) . As was seen for the example at
the end of Subsection 3.3.3, this will mainly establish itself as a localized
error at places where sudden transitions in p(j)(x, t) occur. This error
is inherent to our choice of focusing on the frequencies |ω| < Ω, with
Ω ≥ Φ.

3. In Section 3.4, errors are introduced in the Green’s functions by 1) the
application of the spatial window after the application of the spatial
filter, 2) the application of the temporal filter after the application of
the temporal window, and 3) by not applying the temporal window to
the terms in the Green’s functions that result from the spatial filter.
These approximations may result in global as well as local errors in the
pressure estimate, but they are all second-order effects.

4. In Subsection 3.5.2, an error may be introduced if the primary source
describes a velocity jump condition. This error is caused by the com-
mutation of the windowing operation and the temporal derivative, and
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may establish itself at the beginning and end of the interval in t. It
is of a second order and is controllable by choosing a sufficiently long
time window.

5. In the numerical evaluation of the derivatives in the primary and con-
trast sources, as proposed in Subsection 3.5.3, we may also introduce a
global error in the entire field and a local error at the beginning and end
of the spatial or temporal intervals. The global error is controlled by
the order of the numerical scheme, and the local errors can be prevented
by choosing a sufficiently long time window.

6. In Subsection 3.5.4, application of the filtering procedure of Fig. 3.8
in the evaluation of the nonlinear contrast source may result in a lo-
cal error in the form of a Gibbs phenomenon at the boundaries of the
temporal or spatial interval. This error is controlled by choosing a suf-
ficiently long time window. Alternatively, when we omit the procedure
we may end up with a global error due to aliasing if the nonlinear
distortion is strong.

The global errors caused by the approximations 1, 5 and 6 mentioned above
affect the nonlinear field distortion, and they will be best visible in the spec-
tral domain. The local errors are mostly located at the boundaries of the
spatiotemporal grid. These regions will therefore have our special attention
in the numerical experiments in the coming chapters.

We further analyze approximation 2 and its consequences for the
modeling of the physical problem at hand. With approximation 2 we project
the entire acoustic field problem, i.e. the primary and contrast sources, the
Green’s function and the resulting acoustic pressure, on a bandlimited space
which is governed by the angular cutoff frequency Ω. For the primary source
this means that sharp details in the geometry and the signature are blurred.
This gives some advantages from the discretization point of view in that we
do not suffer from the staircase effect and from the missing out of very small
sources that are located in between the grid points. On the other hand, the
acoustic field resulting from these sources will also be reproduced only up
to Ω in the temporal dimension and up to K = Ω/c0 in the spatial dimen-
sions. Therefore, sharp transitions in the wavefield in time or space cannot
be entirely accounted for, and we expect to observe Gibbs phenomena in the
calculated wavefield. Looking back to Fig. 2.1, we could say that beyond
the infinitesimal domain we have created another domain, the bandlimited
domain, in which the quantities are always continuous instead of piecewise
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Figure 3.9. Plot of the filtered three-dimensional Green’s function versus time for
‖x‖ /c0 = 10 and Ω = 4π.

continuous. In this domain, the differential equations derived in the previous
chapter are therefore valid everywhere. This suggests that it is not neces-
sary to formulate boundary conditions since in this domain a boundary will
not show up as a discontinuity but as a smooth transition, albeit with the
accompanying Gibbs phenomenon.

Apart from the loss of strict localization, another consequence of the
projection onto the bandlimited space is the loss of strict causality. This
can be demonstrated for the Green’s function. Fig. 3.9 shows the three-
dimensional spatiotemporally filtered Greens function for ‖x‖ /c0 = 10,
where Ω = 4π and where T is taken sufficiently large. For strict causal-
ity, we would expect the Green’s function at t < 10 to be zero. For the
filtered Green’s function, this is not the case. If we would like to reproduce
the strict causality, this would require an infinitely large maximum frequency
of interest. However, this would also give us back the delta pulse and the
singularity at ‖x‖ = 0 in the three-dimensional Greens function and the ac-
companying difficulties in their evaluation. In the bandlimited domain, there
is no such thing as a sharp pulse from a sharp point source, but only their
filtered equivalents with a level of precision governed by Ω, and for these
filtered forms the filtered Green’s function suffices. Although in the band-
limited domain causality cannot be defined as strictly as in the infinitesimal
domain, we still recognize that a filtered effect cannot precede its filtered
cause.

A third consequence of Approximation 2 is that in the projection on the
bandlimited space we remove a part of the energy from the original acoustic
field. This is performed before the numerical iterative scheme is invoked,
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and is thus of a controlled nature that is governed by Ω. In the convolution
sum that is subsequently evaluated, no energy is lost, but in the evaluation
of the nonlinear contrast source we may again remove some acoustic energy
by the procedure to prevent aliasing. The effects of this will be visible in the
evaluation of strong nonlinearity, to be studied in the upcoming chapters.



Chapter 4

Application of the INCS method to

one-dimensional wave problems

In this chapter the INCS method will be applied to one-dimensional, nonlin-
ear acoustic wave problems. We will present numerical results and compare
these with results from reference solutions. We will investigate general prop-
erties of the nonlinear propagation of plane acoustic waves and we will test
the performance of the INCS method for a number of aspects. In Section 4.1,
the configuration under study will be described, and in Section 4.2 the imple-
mentation of the one-dimensional INCS method is discussed. In Section 4.3
we will present numerical results and discuss observations from those results.
The chapter closes with a short discussion in Section 4.4.

Throughout this chapter we will employ the spatial coordinate x. When
referring to equations in which the vectorial coordinate x or the coordinate
z is used, their replacement by x is implicitly assumed.

4.1 Configuration

We consider the nonlinear propagation of a plane acoustic wave that is excited
by a plane surface source at x = 0 and that propagates up to a certain dis-
tance of interest X in the positive x-direction. The source action is described
either by a velocity jump ΔV (t) as in Eq. (3.63), or by a pressure jump ΔP (t)
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as in Eq. (3.64). With either of these source types and the one-dimensional
Green’s function of Eq. (3.8) substituted in Eq. (3.7), the exact solution of
the linear pressure field becomes

pL(x, t) =

⎧

⎪

⎨

⎪

⎩

ρ0c0
1
2ΔV (t − |x| /c0)

sign(x) 1
2ΔP (t − |x| /c0)

, x 
= 0. (4.1)

This shows that for x > 0 the linear pressure field from the two source types
differs only by the acoustic impedance ρ0c0. For a pressure field with an
amplitude P0, the excitation functions are given as

ρ0c0 ΔV (t) = ΔP (t) = 2P0 s(t), (4.2)

where s(t) is the source signature. For s(t) we choose a harmonic signal with
a Gaussian envelope,

s(t) = exp

[

−
(

t − Td

Tw/2

)2
]

sin[2πf0(t − Td)], (4.3)

where Tw and Td are the width and the delay of the envelope, and f0 is the
fundamental frequency. Representative values of P0 and f0 for diagnostic
ultrasound are P0 = 500 kPa and f0 = 1 MHz. We set the width and delay
of the envelope at Tw = 3/f0 and Td = 6/f0, giving a pulse of about six
cycles as shown in Fig. 4.1.
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The medium in which the wave propagates is water, with a small-
signal sound speed c0 = 1492 m s−1, a density of mass ρ0 = 998 kg m−3 and
a coefficient of nonlinearity β = 3.52. All values apply to an ambient pressure
of 105 Pa and a room temperature of 23 ◦C [32, 47, 49]. In all simulations,
attenuation will be neglected.

4.2 Implementation

In this section we will discuss the implementation of the INCS method on a
number of aspects. We will address the evaluation of the Green’s function,
the primary source and the nonlinear contrast source, and we discuss the
step sizes and domain sizes that will be used in the field calculations.

For the calculation of the nonlinear acoustic field we employ the INCS
method with the spatiotemporally filtered and windowed one-dimensional
Green’s function that has been obtained in Subsection 3.4.1. For the evalua-
tion of the Green’s function on the sample points, values for Cin(x) and Si(x)
can be obtained by implementations found in standard mathematical libraries
like NAG [53] or IMSL [75], or they can be obtained by an implementation
of the procedure described in [57].

The filtering and evaluation of the primary source is performed as out-
lined in Subsection 3.5.1–3.5.3. As can be seen from Fig. 4.1b, the chosen
source signature has a narrow-band spectrum that at f = 1.5f0 gives a power
level of −48 dB relative to the level at f0. Thus for Ω ≥ 3πf0 the temporal
filtering of the primary source is considered superfluous and is omitted. The
spatial filter in the x-dimension results in Eq. (3.65). For the velocity jump
source, the temporal derivative is applied directly to the source signature
in Eq. (4.3). For the pressure jump source, the spatial derivative is applied
after the convolution with the Green’s function. The spatial derivative is
implemented as a centered FD scheme of order 30, where the boundaries are
treated by making the x-axis 15 points longer on each side of the spatial
interval of interest.

The nonlinear contrast source of Eq. (3.4) is evaluated by using the
procedure of Fig. 3.8 in the temporal dimension only. If we assume that
the nonlinear pressure field only propagates in the positive x-direction, then
spatial filtering of the nonlinear contrast source can be omitted. To show this,
we will first study the nonlinear contrast source SNL(p) for a pressure field
p(x, t) that consists of two steady-state, plane waves that are traveling in the
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positive x-direction and that have frequencies ω1 and ω2, with 0 ≤ ω2 ≤ ω1,

p(x, t) = sin

[

ω1t −
ω1

c0
x

]

+ sin

[

ω2t −
ω2

c0
x

]

. (4.4)

The square of p(x, t) that occurs in SNL(p) consists of five terms

p2(x, t) = I0 + I2ω1 + I2ω2 + Iω1+ω2 + Iω1−ω2 , (4.5)

where

I0 = 1, (4.6)

I2ω1 = −1

2
cos

[

2ω1t −
2ω1

c0
x

]

, (4.7)

I2ω2 = −1

2
cos

[

2ω2t −
2ω2

c0
x

]

, (4.8)

Iω1+ω2 = − cos

[

(ω1 + ω2)t −
ω1 + ω2

c0
x

]

, (4.9)

Iω1−ω2 = cos

[

(ω1 − ω2)t −
ω1 − ω2

c0
x

]

. (4.10)

In the nonlinear contrast source we have to take the second order temporal
derivative of p2, and therefore the term I0 yields no contribution. If ω1 and
ω2 are smaller than the temporal cutoff frequency Ω, as will be the case for
a pressure field obtained with the Filtered Convolution method, then the
term Iω1−ω2 always contains temporal frequencies (ω1 − ω2) ≤ Ω and spatial
frequencies (ω1 − ω2)/c0 ≤ K = Ω/c0. The three remaining terms may
actually possess temporal frequencies larger than Ω and spatial frequencies
larger than K, which could give rise to aliasing in the temporal and spatial
dimensions. The application to p2 of a temporal filter with a cutoff frequency
Ω entirely removes those terms I2ω1 , I2ω2 and Iω1+ω2 for which 2ω1 > Ω,
2ω2 > Ω and ω1 + ω2 > Ω, respectively. This implies that those terms I2ω1 ,
I2ω2 and Iω1+ω2 that pass the temporal filter automatically have 2ω1/c0 ≤ K,
2ω2/c0 ≤ K and (ω1+ω2)/c0 ≤ K. Consequently, after the temporal filtering
all the spatial frequencies of the terms in Eq. (4.5) are below K and the spatial
filter is superfluous. The considered case can be readily generalized to the
nonlinear contrast source in a realistic situation where the nonlinear pressure
field p consists of a continuum of plane waves, all with temporal frequencies
below Ω. Therefore, we conclude that, assuming the nonlinear pressure field
propagates in a forward direction and the temporal filtering is applied, spatial
filtering of the nonlinear contrast source can be safely omitted.
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The temporal derivative in the nonlinear contrast source is evaluated
using the spectral difference method. For this, the temporal region of interest
is taken such that the linear field solution does not cross the beginning or
end of the interval, so that in a cyclic continuation of the contrast source
the transition at the period boundaries is sufficiently smooth. This aspect
requires that the pulse delay Td is large enough to have a negligible excitation
level at t = 0, which is realized by taking Td = 6/f0, as can be seen from
Fig. 4.1. The spatial domain of the contrast source is taken as the entire
interval from the primary source up to the distance of interest.

For a given value of DF
1 at a given maximum frequency of inter-

est F , the step sizes Δt and Δx are given by Δt = Δx/c0 = 1/DF F ,
and the temporal and spatial cutoff angular frequencies Ω and K follow
as Ω = c0K = π/Δt = π DF F . In the Green’s function, K is taken slightly
larger than Ω/c0 to avoid the integrable singularities k = ±K, see Eq. (3.51).
For the domain of interest, the chosen distance of interest X also determines
the temporal window size T through T = X/c0 + Tp, where Tp is the length
of the excitation pulse. For the presented pulse we use Tp = 12/f0. The
Green’s function is sampled in (x, ω), and the primary source is sampled in
(x, t).

The complete algorithm is implemented in Matlab and is evaluated
on a laptop PC with a 1.7 GHz processor and 1.25 GB memory. The im-
plementation was done straightforwardly, and the memory requirements for
the simulations in this chapter were satisfied without any problems by the
applied computer system. Typical run times under Matlab 7.1 ranged from
seconds to several minutes.

4.3 Numerical simulations

In this section we will present results of simulations performed with the INCS
method as applied to one-dimensional acoustic wave problems. Several cases
will be discussed, ranging from the linear field solution in Subsection 4.3.1 to
strong nonlinear distortion in Subsection 4.3.4.

1Here, the number of points per period is not expressed in terms of the angular fre-
quency φ but in terms of the ordinary frequency f , replacing the definition in Eq. (3.12)
by Df = 1/f ∆t. Clearly, since φ = 2πf , we have Df = Dφ.
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Figure 4.2. Linear pressure field up to X = 30 mm obtained by the INCS method with
the velocity jump source and DF = 4.

4.3.1 Linear field solution

To first investigate the performance of the INCS method for linear propaga-
tion, we compare p(0) with the analytical solution of Eq. (4.1). We use the
source and medium parameters as supplied in Section 4.1. For the pulse of
Eq. (4.3) we choose a maximum frequency of interest F = 1.5f0. For our
domain of interest we take X = 30 mm and T = 32 µs. Figure 4.2 shows
the linear pressure field as obtained by the INCS method with the velocity
jump source and with DF = 4, and Table 4.1 summarizes the RRMS errors
for various values of DF , with pL from Eq. (4.1) as the reference solution.
The RRMS error is obtained from Eq. (3.18) by summing over all samples in
the domain (0, X]× [0, T ]. In the first and second column we list the RRMS
errors for the velocity jump source and the pressure jump source. In the third
column we list the RRMS errors for p(0) as obtained by the direct approach
based on the trapezoidal rule, i.e. by omitting the spatiotemporal filtering
and directly sampling the Green’s function in Eq. (3.8).2 From the table we
observe that the INCS method shows a considerable improvement compared
to the direct method. Already at DF = 2.5 we have an RRMS error below
1% for both source types. We recall that this error includes the intended
error that arises from the filtering operation. The large difference in error
between the velocity jump source and the pressure jump source for DF = 2
is explained by the limited accuracy of the 30th order FD scheme employed
with the latter source type. As can be observed from Fig. 4.3, the absolute

2For evaluation purposes, we represent the filtered version of the delta pulse δ(x) that
appears in the source by a value 1/∆x at x = 0 and zero at other sample points.
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Table 4.1. RRMS errors in the linear pressure field p(0) for various DF , listed for the
INCS method with either a velocity jump source ΔV or a pressure jump
source ΔP , and for the direct approach with a velocity jump source. The
reference is the solution pL from Eq. (4.1).

RRMS Error [%]
DF INCS INCS Direct

ΔV ΔP ΔV

2.0 1.6 4.0 41
2.5 0.8 0.4 25
3.0 0.5 0.2 17
4.0 0.3 0.2 10
5.0 0.2 0.2 6
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Figure 4.3. (a) Absolute error in the linear pressure field p(0) obtained by the INCS
method with the velocity jump source and DF = 2.5. The greyscale axis
has been limited to [−1, 1] kPa to focus on the spatiotemporal development
of the error. (b) Detail of the absolute error along the x axis at t = 6.1 µs.
The reference is the solution pL from Eq. (4.1).



76 1D nonlinear wave problems

error p(0) − pL in the INCS method is localized mainly at x = 0 and at the
time that the source is excited. As Fig. 4.3a shows, we also have a global
oscillating error on the entire x-axis at the time of excitation. However, as
Fig. 4.3b shows, this global error is 25 times smaller around x = 0 than the
linear acoustic field solution, and it is rapidly decreasing for increasing x.

4.3.2 Nonlinear field solution

The INCS method is employed to obtain estimates p(j), j = 1, 2, . . . of the
nonlinear pressure field from the velocity jump source. The source and
medium parameters as supplied in Section 4.1 are used. The maximum fre-
quency of interest is set at F = 6.5f0 and we keep the discretization at
DF = 2, which gives us Δt = 1/13f0 and Δx = c0/13f0. For our domain
of interest we take X = 100 mm and T = 78 µs. As a reference we employ
the solution pB of the lossless Burgers equation [15], which is outlined in Ap-
pendix A. For the solution of the Burgers equation we use a temporal step
size of Δt = 1/200f0 and the same spatial step size as is used for the INCS
method. Figure 4.4 shows the spectrum of p(j) at x = 100 mm for j = 0
to 7, and Fig. 4.5 shows a detail of the spectrum of p(7) at the highest har-
monic that is accounted for. For higher iterations we observe no significant
improvement.

The nonlinear effect causes the appearance of the second and higher
harmonic frequency components around multiples of the fundamental fre-
quency f0, and a component around a frequency below f0. We denote the
fundamental component as F0 and the harmonic components as 2H, 3H etc.
The nonlinear component around the frequency below f0 is known as the self-
demodulation part [3]. This component is reproduced by the INCS method,
but it will not be considered further in this thesis except for the discussion
in Section 4.4. From Fig. 4.4 we observe that each iteration gives a better
estimate for increasingly higher harmonics. As both Figs. 4.4 and 4.5 show,
the peaks of the higher harmonic frequency components are located at fre-
quencies somewhat higher than the exact multiples of f0. For the h-th higher
harmonic, the peak frequency will be denoted as fh, and as can be seen from
Fig 4.4 this is the frequency at which the (h + 1)-th maximum of p̂(f) is lo-
cated. From Fig. 4.5 we observe a slight overestimation of the sixth harmonic
as well as the Fourier domain equivalent of a Gibb’s phenomenon that is su-
perimposed on the solution. The Gibb’s phenomenon has to be attributed
to the error made by the spatial windowing of the spatially filtered Green’s
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Figure 4.4. (a)-(f) Spectrum of p(j) at x = 100 mm as obtained by the INCS method
with j = 0 to 7 (solid). The reference (dashed) is the solution pB of the
Burgers equation.
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Figure 4.5. Detail at the sixth harmonic of the spectrum of p(7) at x = 100 mm
as obtained by the INCS method with F = 6.5 MHz (continuous). The
reference (dashed) is the solution pB of the Burgers equation.

function. For 6.5 MHz < f < 7.5 MHz, we see the periodical continuation of
the spectrum at the negative frequencies −6.5 < f < −5.5 MHz due to the
fact that the temporal sampling frequency is 2F = 13 MHz.

Table 4.2 gives the relative errors [p̂(j)(fh) − p̂B(fh)]/p̂B(fh) for the
peaks p̂(j)(fh) of the fundamental and the higher harmonics at x = 100 mm,
for iterations up to j = 7. This error follows from comparison with the
corresponding solution p̂B(fh) of the Burgers equation. From the table we
observe that, except for the last harmonic, at an iteration j = h−1 we obtain
an overestimated approximation of the h-th harmonic with a relative error
less than 9%. In the next two iterations the approximations are improved
further. As the boldface entries show, for a relative error less than 1% we
need iteration j = h + 1. This behavior is explained as follows. It appears
that as soon as we obtain a rough estimate of the h-th harmonic in iteration
j = h−1, then in iteration j = h the (h+1)-th harmonic is also approximately
included in the solution. As soon as this (h + 1)-th harmonic is present,
in iteration j = h + 1 it will lead to a correction of h-th harmonic. The
latter correction will significantly reduce the error level. This mechanism
also partially explains the persistent error in the sixth harmonic. Apart from
the Gibb’s phenomenon already noted, this error has to be attributed to the
absence of the seventh and higher harmonics that would otherwise lead to
corrections of the sixth harmonic.

To further investigate the relation between the different harmonics,
Fig. 4.6 shows the spatial development of the higher harmonics up to
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Table 4.2. Relative errors in the peaks of the fundamental and the higher harmonics
at x = 100 mm, as predicted by the INCS method with j = 0 to 7. The
reference is the solution pB of the Burgers equation.

j Relative error [%]
f0 f2 f3 f4 f5 f6

0 0.8 -100 -100 -100 -100 -100
1 0.8 2.8 -96 -100 -100 -100
2 0.0 2.8 5.2 -69 -89 -100
3 0.0 0.0 3.8 7.5 -30 -54
4 0.0 0.0 -0.1 3.6 8.5 1.9
5 0.0 0.1 -0.1 -0.2 3.1 11
6 0.0 0.1 0.0 0.0 0.3 6.7
7 0.0 0.1 0.0 0.1 0.4 6.3
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Figure 4.6. Progressive development of the fundamental and the first five harmonic
frequency components for x = 0 to 100 mm, as predicted by the INCS
method with j = 7. (a) Logarithmic plot relative to the maximum of p̂(f0)
at x = 0 mm. (b) Linear plot, each harmonic relative to its own spatial
maximum level.
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x = 100 mm as predicted by the INCS method with j = 7. From Fig. 4.6b
we observe a slight decrease in level of p̂(f0) over distance. Physically, this
can be attributed to the transfer of energy from the fundamental component
to the harmonic components. The level of the second harmonic component
p̂(f2) shows a nearly linear growth over distance. This indicates that the
level of the second harmonic is mainly determined by the accumulation of
contributions arising from the fundamental component.3 Both observations
support the conclusions from Table 4.2 that in general a harmonic is mainly
determined by its lower harmonic predecessors and is to a lesser degree cor-
rected by its higher harmonic offspring.

4.3.3 Domain of the contrast source

Up to now we have without motivation used a contrast source domain that
coincides with the domain of interest of p(x, t). As we saw in the previous
subsection, this results in an accurate estimate of the nonlinear pressure field.
To test the assumption that it is sufficient to include the nonlinear contrast
sources between the primary source at x = 0 and the observation point x,
we re-run the simulation of the previous subsection, but in each iteration
we put the contrast source equal to zero for x > 50 mm. Figure 4.7 shows
the spatial development of the higher harmonics up to x = 100 mm for this
situation. We observe that as a result of the removal of the contrast sources
beyond x = 50 mm the development of all higher harmonics stagnates. A
corresponding view is offered in Fig. 4.8, where in the subfigures a and b the
linear field solution p(0) and the nonlinear field correction δp(7) = p(7) − p(0)

are shown up for x = 0 to 50 mm. We observe that the correction grows over
distance and travels along with the pulse of the linear field solution. Up to
x = 50 mm, the magnitude of the correction is in the order of 10% of p(0).
All separate contrast sources contribute in such a way that the correction
field remains in step with the linear pulse. Let us denote the field correction

of the simulation with the contrast source domain up to x = 50 mm as δp
(7)
50 .

If we subtract from δp
(7)
50 the field correction δp

(7)
100 of the simulation with the

contrast source domain up to x = 100 mm, then we observe a small pulse
traveling in the negative x-direction, as pictured in Fig. 4.8c. It seems as
though the sharp boundary of the contrast source results in a reflection, or

3This observation forms the basis for the usability of quasilinear theory to obtain a first
approximation for the second harmonic component [32]. The nearly linear growth over
distance of the second harmonic component can also be observed from the Fubini solution
for harmonic waves [56].
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Figure 4.7. Progressive development of the fundamental and the first five harmonic
frequency components for x = 0 to 100 mm, as predicted by the INCS
method with j = 7 when the contrast source is put to zero for x > 50 mm.
(a) Logarithmic plot relative to the maximum of p̂(f0) at x = 0 mm.
(b) Linear plot, each harmonic relative to the spatial maximum level it
obtains in case of an unmasked contrast source, as in Fig. 4.6.

stated otherwise, as though the contrast sources just before the boundary
are missing out the corrective effect that the contrast sources beyond the
boundary would have when they would have been included. The reflection is
small, and therefore it does not noticeably influence the nonlinear pressure
field when the contrast source domain is restricted to the domain from the
primary source up to the observation point x.

4.3.4 Behavior at strong nonlinear distortion

The magnitude of the nonlinear distortion of the acoustic field is determined
by a number of parameters, whose relation to the occurrence of strongly
nonlinear distortion is best shown through the expression for the plane-wave
shock formation distance [32]

x̄ =
ρ0 c3

0

2πf0β P0
. (4.11)

This expression gives the distance x̄ at which a plane-wave pressure field,
starting as a harmonic excitation with frequency f0 and amplitude P0, and
propagating in a homogeneous, lossless, nonlinear medium with parameters
ρ0, c0 and β, is transformed into a shockwave, i.e. when it has obtained
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Figure 4.8. (a) Linear field solution p(0) up to x = 50 mm. (b) Field correction δp(7)

up to x = 50 mm. (c) Difference between the field correction δp
(7)
50 as

given by a nonlinear contrast source chopped off at x = 50 mm and the

field correction δp
(7)
100 running up to x = 100 mm.
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Figure 4.9. (a) Nonlinear waveform steepening for a pulse with P0 = 3 MPa. The
dashed line shows the pulse at x = 0 mm, the solid line shows the pulse at
x̄ = 50 mm. The pulse is obtained with the solution of Burgers’ equation.
The time axis is in the comoving time frame τ = t − x/c0. (b) Spectrum
of the pulse at x̄ = 50 mm.

an infinite slope in its signature. The shock is the result of the effect of
nonlinear waveform steepening. This is illustrated in Fig. 4.9, where we have
depicted the nonlinear pressure field at x = x̄ = 50 mm of a pulse with
P0 = 3 MPa and with the other parameters taken as in the previous sections.
The results have been obtained by using the solution of the Burgers equation
with Δt = 1/200f0 and Δx = c0/13f0. The expression for x̄ shows that the
strength of the nonlinear distortion increases with increasing β, f0 and P0.
The lossless nonlinear theory is invalid for x > x̄, which makes that the field
at x̄ is in principle the one with the strongest possible nonlinear distortion
that can be studied within the context of this thesis. Still, as Fig. 4.9b
shows, the second and higher harmonic frequency components stay below
10 dB relative to the fundamental component, signifying that the nonlinear
field can be considered as a nondominant correction to the linear field.

Although the INCS method has not been designed to include shock
waves, it is instructive to study the behavior of the method under such a
strong nonlinear distortion. Figure 4.10 shows the pressure field and its
spectrum at x = x̄ = 50 mm resulting from a pulse with P0 = 3 MPa
and with the other parameters as in the previous sections. The maximum
frequency of interest is chosen as F = 6.5 MHz, we keep the discretization
at DF = 2, and we iterate up to j = 11. For higher iterations we observe
no significant improvement. The time signature in Fig. 4.10a shows that the
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Figure 4.10. (a) Acoustic pressure at x = x̄ = 50 mm for a pulse with P0 = 3 MPa,
as predicted by the INCS method (solid) with j = 11, and the solution of
the Burgers equation (dashed). (b) Spectrum of the same pulses.

waveform steepening is well accounted for up to a level of detail governed by
F . Around the sharpest edge in the center of the pulse we may observe a
Gibbs phenomenon superimposed on the signal.

From the spectrum in Fig. 4.10b we observe a significant overestimation
of the sixth harmonic and some overestimation of the lower harmonics. This
is also observed from Table 4.3, where, for iterations up to j = 11, we have
listed the relative errors [p̂(j)(fh) − p̂B(fh)]/p̂B(fh) for the peaks p̂(j)(fh)
of the fundamental and the higher harmonics at x = x̄ = 50 mm. This
error follows from comparison with the corresponding solution p̂B(fh) of the
Burgers equation. From the table we observe that for the strongly nonlinear
field it takes more iterations for the Neumann scheme to converge than for
the weakly nonlinear field. For each harmonic except the sixth we observe
at first a strong overestimation of the harmonic peak level, then a smaller
underestimation and finally an even smaller overestimation with a relative
error up to 3%. The persistent error in the sixth harmonic is 68%. This
overestimation can be explained by the inability of the scheme to generate
the harmonics above F = 6.5 MHz, i.e. the seventh and higher harmonics.
Thus, the corrective effect of these higher harmonics on the lower harmonics,
especially on the sixth harmonic, is not incorporated. Or, in physical terms,
the amount of energy that would otherwise have been transferred from the
lower harmonics to the higher ones is not extracted and the lower harmonics,
especially the sixth, retain an amplitude that is too large.
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Table 4.3. Relative errors in the peaks of the fundamental and the higher harmonics of
the acoustic field at x = 50 mm of a pulse with P0 = 3 MPa, as predicted
by the INCS method with j = 0 to 11. The reference is the solution pB of
the Burgers equation.

j Relative error [%]
f0 f2 f3 f4 f5 f6

0 7.6 -100 -100 -100 -100 -100
1 7.6 28 -98 -100 -100 -100
2 -0.3 28 59 -49 -90 -100
3 -1.2 -2.6 41 94 35 29
4 -0.3 -5.4 -12 32 103 110
5 0.0 0.1 -8.9 -24 12 132
6 0.1 1.3 3.0 -7.3 -27 68
7 0.0 0.5 3.0 7.4 -2.5 53
8 0.0 0.2 0.9 4.6 7.0 66
9 0.0 0.3 0.8 2.1 3.0 70
10 0.0 0.3 1.0 2.5 1.6 68
11 0.0 0.3 1.1 2.8 2.2 68

As explained in Section 4.2, to prevent aliasing we employ the filtering
procedure of Fig. 3.8 in the evaluation of the nonlinear contrast source. If
we omit the filtering procedure and if we revert to a direct evaluation of the
contrast source, then the nonlinear pressure field of Fig. 4.11 results. We
observe a strong overestimation of the highest harmonics, which reveals itself
in the time domain signal as an oscillation around the time signature. Yet,
the iterative scheme remains stable even for the shock wave.

In conclusion, although the INCS method is not designed to account
for strong nonlinearity, it reproduces the harmonics reasonably well except
for the highest harmonic that is accounted for. With these strong nonlinear
distortions, the Neumann iterative scheme remains stable up to the shock
formation distance x̄, although the convergence is somewhat slower than for
the weakly nonlinear case. The accuracy of the scheme can be improved by
accounting for a larger number of harmonics, which is achieved by increasing
F . To obtain an accurate result for the h-th harmonic in the case of strong
nonlinearity, the number of iterations has to be taken larger than the rule of
thumb j = h + 1 as mentioned in Subsection 4.3.2.
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Figure 4.11. (a) Acoustic pressure at x = x̄ = 50 mm for a pulse with P0 = 3 MPa,
as predicted by the INCS method with j = 11 and without filtering of the
nonlinear contrast source (solid), and the solution of the Burgers equation
(dashed). (b) Spectrum of the same pulses.

4.4 Discussion

In this chapter we have investigated the performance of the INCS method for
plane, nonlinear acoustic waves. It has been shown that the INCS method
is able to accurately generate the linear field solution, as well as the non-
linear field distortion, with a discretization down to two points per period
at the maximum frequency of interest. We saw that for moderate nonlinear
distortion an accurate estimate of the h-th harmonic frequency component
was obtained by including h + 1 harmonics and by iterating up to j = h + 1.
A rough estimate of the harmonic was already obtained with the inclusion
of h harmonics and by iterating up to j = h − 1. The iterative scheme has
been shown to be stable up to the plane-wave shock formation distance. It
proved to be necessary and sufficient to employ the filtering procedure in
time in the evaluation of the nonlinear contrast source. In all situations the
highest harmonic component showed to be more or less overestimated. In
the simulations we observed some of the local and global errors that were
summarized in Section 3.6, like the artifacts shown in Figs. 4.3 and 4.4b, but
none of them showed to have a severe impact on the presented results in the
case of moderately nonlinear distortion.

In Subsection 4.3.2 we noted a strong dependence of the harmonics
on their preceding and following neighbors. The lower harmonics mainly
determined the level of the specific component and the higher harmonics
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corrected it to a lesser degree. The generation of higher harmonics may be
explained further by considering the nonlinear contrast source

SNL(p(j−1)) =
β

ρ0c4
0

∂2
t (p(j−1))2. (4.12)

When this expression is transformed to the temporal Fourier domain, we
obtain

ŜN (p̂(j−1)) =
−β

ρ0c4
0

ω2 (p̂(j−1) ∗ω p̂(j−1)). (4.13)

This expression shows that the higher harmonics are introduced into the con-
trast source by the auto-convolution of the spectrum of the previous nonlinear
field estimate. This explains the generation of increasingly higher harmonics
in each successive iteration, as pictured in Fig. 4.4. In the linear field solu-
tion p(0) we only have the fundamental frequency component around f = f0

and a corresponding component around f = −f0. For the first nonlinear
estimate we obtain the self-demodulation component around f = 0 and the
second harmonic component around f = 2f0 and f = −2f0. Subsequent
multiplication with −ω2 makes that the self-demodulation component is zero
at f = 0 and that at the other frequencies it is much smaller than the second
harmonic component. In each successive iteration, the present harmonics
are convolved with themselves and with all other components, and thus we
obtain new harmonics and correct the lower ones. This effect explains the
iterative behavior as observed with INCS scheme.

From Eq. (4.13) we can also explain the observation that the peaks of
the harmonic components are not exactly at the multiples of the fundamental
frequency f0, as was observed from Fig. 4.4. For the first nonlinear contrast
source estimate from the linear field solution p(0), the second harmonic com-
ponent generated by the auto-convolution is at first symmetric around 2f0.
However, the multiplication with ω2 favors the higher frequencies within the
harmonic component and thus shifts the peak to a frequency that is larger
than 2f0. For the higher harmonics, this effect results in an increasing de-
viation of the peak frequency from the integer multiple of the fundamental
frequency.





Chapter 5

Application of the INCS method to

three-dimensional wave problems

In this chapter the INCS method will be applied to a variety of three-
dimensional, nonlinear acoustic wave problems. We will present numeri-
cal results and compare these with results from reference solutions. General
properties of the nonlinear propagation of acoustic fields from various sources
will be investigated and the performance of the INCS method will be tested
on a number of aspects. In Section 5.1 the configuration under study is de-
scribed. In Section 5.2 the implementation of the INCS method is discussed.
In Section 5.3 we will present the numerical results and discuss observations
from those results. The chapter closes with a short discussion in Section 5.4.

5.1 Configuration

We consider the nonlinear propagation of an acoustic wave that is excited
by a source located in the plane z = 0 and with its center at the origin.
We are interested in the nonlinear acoustic pressure field propagating from
the source up to a distance of interest ‖X‖ and propagating in an outward
direction, for which often the positive z-direction is taken. The source action
is described either by a velocity jump as in Eq. (3.63), or by a pressure jump
as in Eq. (3.64). The excitation functions ΔV (x, y, t) and ΔP (x, y, t) are
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given by

ρ0c0 ΔV (x, y, t) = ΔP (x, y, t) = 2P0 s(t) ∗t A(x, y, t), (5.1)

where P0 is the source pressure amplitude, s(t) is the source signature and
A(x, y, t) describes the source geometry and time delay. For s(t) we choose
a harmonic signal with a Gaussian envelope,

s(t) = exp

[

−
(

t − Td

Tw/2

)2
]

sin[2πf0(t − Td)], (5.2)

where Tw and Td are the width and the delay of the envelope, and f0 is the
fundamental frequency. Representative values of P0 and f0 for diagnostic
ultrasound are P0 = 100 kPa and f0 = 1 MHz. We set the width and delay
of the envelope at Tw = 3/f0 and Td = 6/f0, giving a pulse of about six
cycles as shown in Fig. 4.1. The geometry and delay function may be written
as

A(x, y, t) = a(x, y) δ[t − td(x, y)], (5.3)

in which a(x, y) is an geometry function ranging between 0 and 1, and td(x, y)
is a time delay. Combination of Eqs. (5.1) and (5.3) yields

ρ0c0 ΔV (x, y, t) = ΔP (x, y, t) = 2P0 s[t − td(x, y)]a(x, y). (5.4)

In the one-dimensional case that was treated in the previous chapter, the
velocity and pressure jump conditions yield pressure fields that for x > 0
differ only in magnitude by the acoustic impedance ρ0c0. In the three-
dimensional case that we are dealing with in this chapter, the two source
descriptions yield pressure fields that differ in magnitude as well as in shape.
The velocity jump condition can be related to the boundary value problem
of a transducer mounted in a perfectly rigid baffle in the plane z = 0, and
prescribes a normal velocity vz(x, y, t) = ΔV (x, y, t)/2. The pressure jump
condition can be related to the boundary value problem of a transducer
mounted in a perfectly compliant baffle in the plane z = 0, and prescribes a
pressure p(x, y, t) = ΔP (x, y, t)/2.1

We will consider several types of sources, viz. a point source, an un-
focused or focused cylindrical source, a rectangular source, and a steered and

1Since we use velocity and pressure jump conditions, our solution applies to a saltus

problem. Most reference solutions employed in this thesis are based on a boundary value

problem. A discussion on the difference between saltus problems and boundary value
problems can be found in e.g. [6, 17].
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Figure 5.1. Four different source geometries: (a) Point source. (b) Cylindrical source
with radius R and focal distance zf . (c) Rectangular source with width
W and height H. (d) Phased array transducer with Nel elements of width
Wel, height Hel and pitch del, and lateral focus (xf , zf ) and elevation focus
zele, where zele is not necessarily equal to zf .

focused phased array transducer. These geometries are shown in Fig. 5.1,
together with their respective parameters. For each geometry we obtain a
geometry function a(x, y) and a time delay function td(x, y). For unfocused
sources, td(x, y) is zero everywhere. For the focused cylindrical source, the
time delay function is

td(x, y) =
1

c0

[√

R2 + z2
f −

√

x2 + y2 + z2
f

]

. (5.5)

For a defocused cylindrical source, the time delay function becomes

td(x, y) =
1

c0

[√

x2 + y2 + z2
f − |zf |

]

. (5.6)

For the phased array source, in the x-dimension td(x, y) is determined by
(xf , zf ) and it varies elementwise. In the y-dimension td(x, y) is determined
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by zele and it varies continuously in y. This results in

td(x, y) =
1

c0

[√

(W/2 + |xf |)2 + z2
f −

√

(xel − xf )2 + z2
f

+
√

(Hel/2)2 + z2
ele −

√

y2 + z2
ele

]

, (5.7)

where W is the total transducer width and xel is the center of the element to
which x belongs. Typical geometry sizes range from millimeters to centime-
ters.

The medium in which the wave propagates is water, with a small-
signal sound speed c0 = 1492 m s−1, a density of mass ρ0 = 998 kg m−3 and
a coefficient of nonlinearity β = 3.52. All values apply to an ambient pressure
of 105 Pa and a room temperature of 23 ◦C [32, 47, 49]. In all simulations,
attenuation will be neglected.

5.2 Implementation

In this section we will discuss the implementation of the INCS method. We
start with specific aspects like the evaluation of the Green’s function, the
primary source and the nonlinear contrast source. We discuss the step sizes
and domain sizes that will be used in the field calculations. Finally, we
discuss the general implementation of the method as a Fortran program on
a parallel computer.

For the computation of the nonlinear acoustic field we employ the INCS
method with the spatiotemporally filtered and windowed three-dimensional
Green’s function that has been obtained in Subsection 3.4.2. For the eval-
uation of Cin(x) and Si(x) occurring in ĜT,Ω

K,X(x, ω), implementations are
available in standard mathematical libraries like NAG [53] or IMSL [75], or
they can be obtained by an implementation of the procedure described in [57].
However, since the evaluation of the Green’s function contributes significantly
to the overall evaluation time of the INCS method, we have developed our
own, optimized implementations of these functions.

The primary source is filtered and evaluated with the approaches out-
lined in Section 3.5. The convolution in Eq. (5.1) is evaluated in the Fourier
domain by multiplying ŝ(ω) with Â(x, y, ω), where the latter follows from
Eq. (5.3) as

Â(x, y, ω) = a(x, y) exp[−jω td(x, y)]. (5.8)
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Equivalent to the situation in the one-dimensional case, the temporal fil-
tering of the source signature s(t) is considered superfluous for Ω ≥ 3πf0

and is omitted. Filtering of the primary source in the z-dimension results
in Eq. (3.65). The approach for the spatial filtering of Â(x, y, ω) in x and
y depends on the type of source. Spatial filtering of the point source geo-
metry is performed analytically and leads to Eq. (3.65) in both x and y.
For K = π/Δx and with the x, y and z-dimension all filtered, the point
source therefore results in the value 1/Δx3 at the sample point (x, y) = (0, 0)
and zero at the other sample points. The cylindrical source is filtered in x
and y by the oversampling procedure outlined in Subsection 3.5.2 with an
oversampling factor of eight. The filtering of the rectangular source is per-
formed analytically in x and y employing the filtered form of the Heaviside
step function as given in Eq. (3.35). For the phased array source, filtering in
the x-dimension is realized by using the filtered form of the Heaviside func-
tion for each element since the phase delay function is constant in x over
the element. In the y-dimension, we may apply the oversampling procedure
with an oversampling factor of eight. The contributions of all elements are
subsequently summed.

For the velocity jump source, the temporal derivative is applied directly
to the source signature in Eq. (5.2). For the pressure jump source, the spatial
derivative is applied after the convolution with the Green’s function. The
spatial derivative is implemented as a centered FD scheme of order 30, where
the boundaries are treated by making the z-axis 15 points longer on each side
of the interval of interest.

The nonlinear contrast source of Eq. (3.4) is evaluated by using the
procedure of Fig. 3.8 in the temporal dimension only, since the aliasing error
caused by omitting the filtering in the spatial dimensions is only small. To
show this, we will first study the nonlinear contrast source SNL(p) for a
pressure field p(x, t) that consists of two steady-state, two-dimensional, plane
waves that are traveling in the plane y = 0 that have frequencies ω1 and ω2

with 0 ≤ ω2 ≤ ω1, and that cross each other at an angle 0 ≤ α ≤ π,

p(x, t) = sin

[

ω1t −
ω1

c0
sin

(α

2

)

x − ω1

c0
cos

(α

2

)

z

]

+ sin

[

ω2t +
ω2

c0
sin

(α

2

)

x − ω2

c0
cos

(α

2

)

z

]

. (5.9)

The square of p(x, t) that occurs in SNL(p) consists of five terms

p2(x, t) = I0 + I2ω1 + I2ω2 + Iω1+ω2 + Iω1−ω2 , (5.10)
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where

I0 = 1, (5.11)

I2ω1 = −1

2
cos

[

2ω1t −
2ω1

c0
sin

(α

2

)

x − 2ω1

c0
cos

(α

2

)

z

]

, (5.12)

I2ω2 = −1

2
cos

[

2ω2t −
2ω2

c0
sin

(α

2

)

x − 2ω2

c0
cos

(α

2

)

z

]

, (5.13)

Iω1+ω2 = − cos

[

(ω1 + ω2)t −
ω1 − ω2

c0
sin

(α

2

)

x − ω1 + ω2

c0
cos

(α

2

)

z

]

,

(5.14)

Iω1−ω2 = cos

[

(ω1 − ω2)t −
ω1 + ω2

c0
sin

(α

2

)

x − ω1 − ω2

c0
cos

(α

2

)

z

]

.

(5.15)

In the nonlinear contrast source we have to take the second order temporal
derivative of p2, and therefore the term I0 yields no contribution. If ω1 and
ω2 are smaller than the temporal cutoff frequency Ω, as will be the case for a
pressure field obtained with the Filtered Convolution method, then the four
remaining terms may actually possess temporal frequencies larger than Ω and
spatial frequencies larger than K = Ω/c0, which could lead to aliasing in the
temporal and spatial dimensions. The application to p2 of a temporal filter
with a cutoff frequency Ω entirely removes those terms I2ω1 , I2ω2 and Iω1+ω2

for which 2ω1 > Ω, 2ω2 > Ω and ω1 +ω2 > Ω, respectively. This implies that
those terms I2ω1 , I2ω2 and Iω1+ω2 that pass the temporal filter automatically
have 2ω1/c0 ≤ K, 2ω2/c0 ≤ K, (ω1 − ω2)/c0 ≤ K and (ω1 + ω2)/c0 ≤ K.
Consequently, after the temporal filtering all the spatial frequencies of these
terms are always below K and the spatial filter is superfluous. However, the
term Iω1−ω2 may contain a temporal frequency (ω1 − ω2) ≤ Ω and a spatial
frequency (ω1 + ω2) c−1

0 sin(α/2) > K in the x-dimension, and for this term
the spatial filter in x would therefore be necessary. The issue is now for which
ω1, ω2 and α we would still obtain a spatial frequency smaller than or equal
to K in this term. Or in other words, given ω1 = β Ω and ω2 = γ ω1, for
which 0 ≤ α ≤ π, 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1 we would get

(1 + γ)β sin
(α

2

)

≤ 1. (5.16)

We observe that this always occurs if β ≤ 1/2, i.e. for frequencies ω2 ≤ ω1 ≤
Ω/2, and if α ≤ π/3, i.e. for a crossing angle smaller than 60◦. For other
values of α and β, only specific ranges of γ yield a spatial frequency larger
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than K. For the case of two crossing plane waves we therefore conclude that
temporal filtering with a cutoff frequency Ω implies spatial filtering with a
cutoff frequency K ≤ Ω/c0 for all frequencies smaller than Ω/2 and for all
crossing angles smaller than 60◦.

The considered case of two crossing plane waves can be generalized to
the nonlinear contrast source in a realistic three-dimensional situation where
the nonlinear pressure field p consists of a continuum of plane waves, all with
temporal frequencies below Ω. In this realistic situation, we can distinguish
between the pressure field in points that are close to the source and the pres-
sure field in points that are some distance away from the source. For points
close to the source, the cumulative nature of nonlinear propagation results
in a pressure field in which the higher harmonic components are virtually
absent, and the field only consists of the fundamental frequency components
in a small frequency band around f0. In any computation involving nonlinear
fields, the maximum frequency of interest F is chosen such that at least the
second harmonic is incorporated, i.e. F ≥ 2f0. As a consequence, for the
temporal frequencies involved with the fundamental field we have β ≤ 0.5
near the source, which makes that the spatial filtering will be superfluous
here. For points at some distance from the source, the constituents of p will
travel more or less parallel to each other and cross each other under an angle
far below 60◦. This causes that at some distance from the source the spatial
filtering may safely be omitted as well. This completes the motivation for
the omission of the spatial filtering of the contrast source.

The temporal derivative in the nonlinear contrast source is evaluated
using the spectral difference method. For this, the temporal region of interest
is taken such that the linear field solution does not extend beyond the be-
ginning or end of the interval, so that in a cyclic continuation of the contrast
source the transition at the period boundaries is sufficiently smooth. This
aspect requires that the pulse delay Td is large enough to have a negligible
excitation level at t = 0, which is realized by taking Td = 6/f0, as can be
seen from Fig. 4.1. As far as the spatial domain of the contrast source is
concerned, we observed in the previous chapter that for the one-dimensional
case it was sufficient to include the nonlinear contrast sources between the
primary source at x = 0 and an observation point x. In the current three-
dimensional case, we therefore assume that the conical region spanned by
a point of observation x (top of the cone) and the primary source (base of
the cone) is sufficient as a contrast source domain for yielding an accurate
estimate of the nonlinear pressure field in x. In other words, from x the
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entire source aperture has to be visible through the contrast source domain.
We will investigate this assumption in Subsection 5.3.3.

For a given value of DF
2 at a given maximum frequency of inter-

est F , the step sizes Δt and Δx are given by Δt = Δx/c0 = 1/DF F ,
and the temporal and spatial cutoff angular frequencies Ω and K follow
as Ω = c0K = π/Δt = π DF F . In the Green’s function, K is taken slightly
larger than Ω/c0 to avoid the integrable singularities k = ±K, see Eq. (3.60).
The spatial domain of interest follows from the domain of the nonlinear con-
trast source as described in the previous paragraph, and it spans the entire
three-dimensional domain from the primary source to all the points of obser-
vation. The temporal window size T is taken as T = L/c0 + Td + Tp where
L is the largest distance from any point in the spatial domain of interest to
any point on the source aperture, Td is the largest time delay on the source
and Tp is the excitation pulse length, which is taken as Tp = 12/f0 for the
given pulse.

The complete INCS method has been implemented in Fortran90,
both as a sequential program to run on a single processor desktop com-
puter, and as a parallel program to run on a large-scale, clustered multi-
processor system. To realize flexibility and speed we have employed the
FFTW library for the evaluation the multi-dimensional FFT’s in the algo-
rithm [27]. A significant benefit of this library is that it contains efficient
routines for multi-dimensional FFT’s, where each dimension can consist of
2n23n35n57n711n1113n13 points , n2 to n13 being arbitrary integers, instead of
only being efficient for sizes 2n as for a standard FFT [28]. In the sequential
program as well as in the parallel program, careful attention needs to be given
to the memory management in order to enable the evaluation of the nonlin-
ear pressure field in a large four-dimensional domain. Appendix B describes
several approaches to reduce either the total grid size or the size of the arrays
that need to be stored temporarily during the evaluation of the convolution.
In the parallel program, the array that stores the nonlinear contrast source
S(j)(x, t) or the pressure field estimate p(j)(x, t) is always distributed evenly
over all processors. Depending on the operation to be applied, we employ a
T-local distribution, where each processor is allocated a complete time trace
for a limited number of spatial points, or an X-local distribution, where each
processor is allocated the entire spatial domain for a number of time instances

2Here, the number of points per period is not expressed in terms of the angular fre-
quency φ but in terms of the ordinary frequency f , replacing the definition in Eq. (3.12)
by Df = 1/f ∆t. Clearly, since φ = 2πf , we have Df = Dφ.
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Figure 5.2. Structure diagram for the parallel implementation of the INCS method. The
symbols indicating the field solution and correction, the Green’s function,
and the primary and contrast sources, refer to the filtered, windowed and
sampled quantities.
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or angular frequencies [42]. In Figure 5.2 we show the structure diagram of
the parallel program, in which the focus lies on the evaluation of the convolu-
tion. Inside the outer loop over j, first S(j)(x, t) is zero-padded, transformed
in the temporal dimension, and redistributed to X-local. In this way, inside
the nested loop over ω, the local temporary arrays, which will include the
spatial zero-padding regions, need only be three-dimensional arrays. Another
advantage of this approach is that the redistribution steps occur outside the
loop over ω. Inside this loop, Ĝ(x, ω) is evaluated for each angular frequency
and each spatial point. The parallel program was run on the Aster computer
at SARA in Amsterdam, which is an SGI Altix 3700 clustered multiprocessor
system consisting of 416 Intel Itanium 2 processors running at 1.3 GHz and
with 2 GB memory per processor.

5.3 Numerical simulations

In this section we will present results of simulations performed with the INCS
method as applied to three-dimensional acoustic wave problems. Several
cases will be discussed, ranging from a linear field solution in Subsection 5.3.1
to strong nonlinear distortion in Subsection 5.3.5. For the discretization of
the linear field problem, we will fix a specific maximum frequency of interest
F and we will vary the number of points per wavelength DF down to DF = 2.
For all nonlinear field problems, we will vary F depending on the number of
harmonic frequency components to be included, and we will keep DF fixed
at DF = 2. In all situations we will focus on the field in the plane y = 0, as
this plane contains the characteristic features of the spatial field distribution.

We will employ four methods for the presentation of the results:

1. To compare the linear field solution p of the INCS method with a cor-
responding reference solution pref , we apply the RRMS error

Err =

√

∑

[p(x, 0, z, t) − pref(x, 0, z, t)]2
∑

p2
ref(x, 0, z, t)

, (5.17)

where the summations are taken over all sample points (x, 0, z, t) in the plane
y = 0 and within the domain of interest.

2. For the visualization of the spatial characteristics of the linear field solu-
tion and the nonlinear field correction we define the profile P [p](x) as the
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maximum of the envelope of the acoustic pressure p(x, t) in a point x, ob-
tained with

P [p](x) = max
t

{|p(x, t) + j Ht[p(x, t)]|}, (5.18)

where Ht[p(x, t)] denotes the temporal Hilbert transform of p(x, t). To obtain
an accurate pressure profile, the coarse discretization employed in the INCS
method may require the pressure signature to be interpolated in time with
the procedure of Fig. 3.7, before Eq. (5.18) is applied.

3. For the visualisation of the frequency contents of the nonlinear field so-
lutions, we transform the pressure field to the time Fourier domain and we
define the h-th harmonic spectral profile as the peak level p̂(x, fh). For the
higher harmonics, fh is defined as the frequency where the (h + 1)-th maxi-
mum of the spectrum of p is located. To assess the accuracy of the nonlinear
field solution of the INCS method, its spectral profiles p̂(x, fh) will be com-
pared to the spectral profiles p̂ref(x, fh) obtained by other methods.

4. In some cases however, the spectral profile does not yield a representative
view of the higher harmonic frequency contents generated by nonlinear dis-
tortion. For example, this is the case if the three-dimensional linear acoustic
field has several arrivals due to the finite source geometry. In such cases,
we will extract the harmonic component by applying a bandpass filter to
the pressure field p(x, t) and subsequently obtain the profile of the filtered
pressure field component by applying Eq. (5.18). For the h-th harmonic, we
will use an eighth-order Butterworth filter with cutoff frequencies (h−0.3)f0

and (h+0.3)f0. The main advantage of this filtered profile Ph[p](x) is that it
is more robust than the spectral profile in case of a multiple arrival, in case
of a long pulse in combination with a short temporal window, or in case of
experimental artifacts. An extra advantage may be that it yields a time do-
main quantity rather than a frequency domain quantity, as the latter makes
sense only in relative terms. Since it is less straightforward to compute than
the spectral profile, we will employ the filtered profile only in cases where the
spectral profile would yield ambiguous results.

In the upcoming sections, all profiles will be shown on a dB-scale rela-
tive to a certain characteristic field profile level.
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Figure 5.3. Linear profile P [p(0)] for the cylindrical piston source. (a) In the plane
y = 0. (b) On the z-axis. The discretization is DF = 2.33.

5.3.1 Linear field solution

We start the investigation of the performance of the INCS method by con-
sidering linear propagation. We will use the method to obtain p(0) for two
different source types. For both source types, we use the source signature of
Eq. (5.2) with f0 = 2 MHz and P0 = 100 kPa. Further we choose a maximum
frequency of interest F = 1.5f0.

Our first source type is an unfocused cylindrical source with a radius
R = 5 mm, causing a pressure jump. The linear field solution p(0)(x, t) is
obtained in a domain of interest with a spatial size of 40 mm×2 mm×100 mm
and a comoving temporal window of 10 µs. Figure 5.3a shows several contours
of the linear profile P [p(0)] in the plane y = 0 for DF = 2.33. Figure 5.3b
shows the profile on the axis of the transducer, which coincides with the
z-axis. The maximum of P [p(0)] equals 193 kPa and is found at the natural
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Table 5.1. RRMS error in the linear pressure field p(0)(x, t) of the unfocused cylindrical
source, obtained by the INCS method with various DF . The reference is
the solution as derived in Appendix C. Also listed are the grid size, the wall
clock time needed for the evaluation and the number of processors.

DF Err 4D grid size Wall clock Number of
[%] ×106 points time [s] processors

2.00 4.0 25.72 143 4
2.33 1.0 39.26 230 4
2.67 0.8 60.24 393 4
3.33 0.5 155.7 873 4
4.00 0.5 345.6 686 8
5.33 0.4 1150 1203 48

focus (x, y, z) = (0, 0, 34) mm.

Our results are compared to results from a reference solution for the
pressure field of a cylindrical piston source causing a pressure jump. This
has been obtained using a Lobatto quadrature integration of the Kirchhoff-
Huygens integral across the source surface, which is derived in Appendix C.
Table 5.1 presents the RRMS error for various DF . Also listed are the cor-
responding grid size, the evaluation time and the number of processors used
by the INCS method. From these simulations we observe that the results
for DF = 2.33, with an RRMS error of 1%, compare very well with the ref-
erence solution. The arrival times of the body waves and the edge waves3

are reproduced correctly. The latter is also the case for DF = 2, although
for this discretization the RRMS error is 4%. For higher DF , the error de-
creases quickly to a level of 0.4% at DF = 5.33. The main contribution to
the latter error comes from the first plane beyond the source plane z = 0 at
the time that the source is excited. If the first plane is left out of the RRMS
error, the RRMS errors for DF = {3.33, 4.00, 5.33} respectively decrease to
{0.2%, 0.1%, 0.1%}.

The second source type presented in this subsection is a phased array
source causing a velocity jump. The transducer is a 64 element array with
element parameters Wel × Hel = 0.25 mm × 12 mm and del = 0.3 mm. The
array is focused at (xf , zf ) = (0, 60) mm and zele = zf . The linear field

3see Appendix C
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Figure 5.4. Linear profile P [p(0)] for the phased array source. (a) In the plane y = 0.
(b) On the z-axis. The discretization is DF = 2.

solution p(0)(x, t) is obtained in a domain of interest with a spatial size of
80 mm× 1 mm× 100 mm and a comoving temporal window of 20 µs. Figure
5.4a shows the profile P [p(0)] in the plane y = 0 for DF = 2. Figure 5.4b
shows the profile on the axis of the transducer. The profile level close to the
source is about 83 kPa,4 and the maximum of P [p(0)] equals 470 kPa and is
found at the realized focus (x, y, z) = (0, 0, 51) mm.5

Our results are compared with results from the FieldII program [38, 39].
FieldII solves the Rayleigh integral [61], which applies to a source in a per-

4The ratio of the profile level of 83 kPa close to the source and the source pressure
P0 = 100 kPa is the same as the ratio of the element width Wel = 0.25 mm and the pitch
del = 0.3 mm.

5The realized focal distance z = 51 mm is smaller than the theoretical focal distance
zf = 60 mm. This is due to the fact that the phased array source has a limited height and
number of elements, whereas in the calculation of the element delays from the theoretical
focal distance we assume that these parameters are infinite.
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Table 5.2. RRMS error in the linear pressure field p(0)(x, t) of the phased array source,
obtained by the INCS method with various DF . The reference solution is
the result given by the FieldII program. Also listed are the grid size, the wall
clock time needed for the evaluation and the number of processors.

DF Err 4D grid size Wall clock Number of
[%] ×106 points time [s] processors

2.00 1.6 67.0 352 4
2.67 1.0 161.6 510 8
3.33 0.7 318.1 1380 8

fectly rigid baffle. Table 5.2 presents the RRMS error for various DF , in
combination with the grid size, the evaluation time and the number of pro-
cessors used by the INCS program. The FieldII solution has been obtained
with a temporal sampling frequency of 400 MHz and with 20 by 40 math-
ematical elements for each transducer element in the x and y-dimensions.
From Table 5.2 we observe that the results from both programs show excel-
lent comparison already for DF = 2. The large difference in error between
the cylindrical source and the phased array source for DF = 2, being respec-
tively 4% and 1.6%, is explained by the limited accuracy of the 30th order
FD scheme employed in the evaluation of the pressure jump condition for the
cylindrical source.

From these cases we observe that large domains, with up to the order of
500× 106 grid points, can be handled successfully with the parallel program
employing a limited number of processors. This problem size is equivalent
to a four-dimensional computational domain of 75 wavelengths/periods at
fmax in each spatiotemporal dimension. This gives a clear indication of the
applicability of our method to large-scale problems. As can be seen from the
last line of Table 5.1, the problem size and computation time grow massively
for increasing DF . This illustrates once more the necessity of a coarse dis-
cretization. The second case shows that our method is capable of accurately
computing the linear acoustic pressure field of complex planar sources, even
when discretized with DF = 2.
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5.3.2 Directional independence

As discussed in Section 1.3, most models used to predict the nonlinear acous-
tic field of medical transducers assume that the wavefield is quasi-plane.
Compared to these models, an important benefit of the INCS method is the
directional independence of the linear and nonlinear field solution. We will
demonstrate this by using the INCS method to compute the nonlinear pres-
sure field from a point source located at x = 0. The point source is defined
as6

S = S0 S(t) δ(x). (5.19)

The linear field solution for the point source is found by substituting
Eq. (5.19) and the three-dimensional Green’s function of Eq. (3.9) in
Eq. (3.7). This yields

pL(x, t) =
S0 S(t − ‖x‖ /c0)

4π ‖x‖ , x 
= 0. (5.20)

The signature of the point source is the harmonic signal with f0 = 1 MHz
and a Gaussian envelope as used before, and S0 is taken such that at
‖x‖ = 1 mm the linear profile is P1 = 500 kPa, i.e. S0 = 2π × 103 N m−1.
We compute the nonlinear pressure field in a domain of interest of size
8.6 mm × 8.6 mm × 8.6 mm, centered at the origin, and a temporal win-
dow of 12 µs. The maximum frequency of interest is F = 5 MHz, we sample
at DF = 2 and we use iteration j = 3.

Figure 5.5a shows the linear profile P [p(0)] in the plane y = 0, and
Fig 5.5b shows P [p(0)] on the z-axis, together with the profile P [pL] of the
linear field solution from Eq. (5.20). As observed from this figure, the INCS
method reproduces the linear field profile accurately except for a very small
region around the point source.

To investigate the directional independence of the INCS method, we
check the profile P [p(0)] of the linear field solution and the profile P [δp(3)] =
P [p(3) − p(0)] of the nonlinear field correction on the half circle with radius
‖x‖ = 4 mm that is indicated in Fig. 5.5a. The mean levels of the lin-
ear field profile and the nonlinear field correction profile on that radius are
P [p(0)] = 123 kPa and P [δp(3)] = 0.97 kPa, respectively. Figure 5.6 shows

6The point source thus defined can be interpreted as a velocity jump source, and it
can be translated to the form of Eq. (5.1) by taking P0 = c0S0/2, s(t) =

R t

−∞
S(t′) dt′,

a(x, y) = δ(x)δ(y) and td = 0.
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Figure 5.5. Profile P [p(0)] for the point source. (a) In the plane y = 0, together with
the half-circle referred to in the text. (b) On the z-axis, as obtained from
the INCS method (solid) and from the analytical solution in Eq. (5.20)
(dashed).

the relative variation of the mentioned radial profiles around their mean lev-
els, versus the angle θ. We observe that the relative directional variation is
less than 0.05 dB, which is equal to 0.6%. This forms a good illustration for
the directional independence of the INCS method, both for the linear field
solution as well as for the nonlinear field correction.

In Fig. 5.6 we have used the entire domain of interest as the contrast
source domain for the nonlinear field corrections. If the contrast source do-
main is limited in the z-direction to the interval [−0.8, 4.3] mm, we get the
profiles as shown in Figs. 5.7a and c. The variation in the profile of the
nonlinear field correction around its mean level is increased but it is still
less than 0.2 dB. However, if the contrast source domain is limited in the
z-direction to the interval [0, 4.3] mm, as in Figs. 5.7b and d, the variation
in the nonlinear field correction profile around its mean levels increases to
a magnitude of 3 dB with a trend towards θ = 0◦ and θ = 180◦. These
results show that the nonlinear contrast source method model is indeed free
of directional dependence as long as the nonlinear contrast source domain is
chosen correctly.
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Figure 5.6. Radial profile levels at a radius ‖x‖ = 4 mm, versus angle θ. (a) For the
linear field solution p(0). (b) For the nonlinear field correction δp(3).

5.3.3 Domain of the contrast source

As we have observed in the previous subsection, it is essential to incorporate
the nonlinear contrast sources that contribute significantly to the nonlinear
distortion, in order to obtain an accurate estimate of the nonlinear acoustic
field and to preserve the directional independence of the nonlinear operator.
This fact determines the spatiotemporal domain of the contrast sources that
must be accounted for. As we saw in Subsection 4.3.3, in the one-dimensional
situation it was sufficient to take the domain of the contrast source from the
primary source to the observation point. In the three-dimensional situation
we expect a similar requirement. Therefore we assume that those nonlinear
contrast sources that lie in the region between the primary source and the
point of observation will mainly contribute to the nonlinear distortion, and
that the influence of other contrast sources may be safely ignored.7

We will investigate this assumption by using the INCS method to com-

7For the point source in the previous subsection it showed to be necessary to stretch the
contrast source domain out to the negative z-axis. For the plane surface source investigated
in this and the upcoming subsections it is expected that this will not be necessary, as they
resemble the situation of Chapter 4 more than they resemble the case of the point source.
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Figure 5.7. Radial profiles at a radius ‖x‖ = 4 mm, versus angle θ for the profile of
the linear field solution p(0) (a,c) and of the nonlinear field correction δp(3)

(b,d). (a,b) With a contrast source domain limited in the z-direction to
[−0.8, 4.3] mm. and (c,d) With a contrast source domain limited in the
z-direction to [0, 4.3] mm.
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pute the nonlinear field correction with a nonlinear contrast source that is
masked in a part of the domain of interest. The primary source is a rect-
angular piston with dimensions W × H = 10 mm × 10 mm, causing a pres-
sure jump. The source emits a pulse with a frequency of f0 = 1 MHz and
a Gaussian envelope as used before, and the source pressure amplitude is
P0 = 500 kPa. The pressure field is obtained in a domain of interest with a
spatial size of 15 mm×15 mm×52 mm and a temporal window of 22 µs. The
maximum frequency of interest is F = 3 MHz, we discretize with DF = 2 and
we use iteration j = 1. The profile of the linear field solution p(0) is shown in
Fig. 5.8, and the profile of the first nonlinear field correction δp(1) employing
the entire region of interest for the contrast source is depicted in Fig. 5.9a.
The maximum levels of P [p(0)] and P [δp(1)] are respectively 870 kPa and
73 kPa.

When we mask the contrast source in a region X × Z =
[−7.5 mm,−1 mm]× [z, 52 mm] with z = {5, 20} mm, as depicted in Fig. 5.8,

we obtain an error p
(1)
z −p(1) = δp

(1)
z −δp(1) in the first nonlinear field estimate,

where the subscript z denotes the specific masking domain. In Fig. 5.9b, we
see that the effect of this masking in the axial profile mainly manifests itself
as an underestimation of the nonlinear field correction. This effect is larger
for a masking domain starting closer to the primary source. The profiles of

the errors δp
(1)
z − δp(1) are shown in Fig. 5.10. From these figures we observe

that the more the masking blocks the view from an observation point to the
primary source, the higher the error becomes in the nonlinear field correction.
Moreover, close examination (not shown) reveals that besides the underes-
timation there is a similar small reflection from the contrast source domain
boundary as observed for the one-dimensional wave problem in Fig. 4.8c.
From this test we conclude that the contrast sources that contribute most
significantly to the nonlinear field in a certain observation point indeed lie in
the region in between the observation point and the primary source.

5.3.4 Nonlinear field solution

In this subsection we will present nonlinear field profiles that have been ob-
tained with the INCS method for a variety of situations and we will compare
these results with the results from three existing numerical models. The first
model that is used for comparison purposes is a finite-difference implemen-
tation of the Westervelt equation for cylindrical source geometries [31, 36].
It will be referred to as the FD-WV model, and in contrast two the other



5.3 Numerical simulations 109

z [mm]

x
[m

m
]

P [p(0)]/ max(P [p(0)]) [dB]

-20
-10

-6
-3 -3

-6
-10

-6
-10

-6
-10

-20

0 10 20 30 40 50

-5

0

5

(a)

z [mm]

P
[p

(0
)
]

m
a
x
(P

[p
(0

)
])

[d
B

]

0 10 20 30 40 50
-10

-5

0

(b)

Figure 5.8. Profile of the linear field solution p(0) for the rectangular piston source.
(a) In the plane y = 0. (b) On the z-axis.
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Figure 5.9. Profile of the nonlinear field correction δp(1). (a) In the plane y = 0. (b) On
the z-axis. Shown are the axial profiles for the reference case (solid), for a
masking domain starting at z = 5 mm (dashed) and for a masking domain
starting at z = 20 mm (dotted).
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Figure 5.10. Profiles P [δp
(1)
z − δp(1)] of the error in the nonlinear field corrections

caused by the masking of the contrast source domains. The plots show
the profiles in the plane y = 0 for the masking domains starting at (a) z =
5 mm and (b) z = 20 mm.

two models it is a full-wave model. The second model we will employ for
comparison is the angular spectrum nonlinear propagation (AS-NLP) model
developed by Zemp et al. [85]. This model is based on a phenomenologi-
cal approach to the nonlinear forward-wave problem [12]. In this approach,
the acoustic diffraction, attenuation and nonlinear distortion phenomena are
separately treated in a scheme that marches the field from the source plane
at z = 0 to computational planes at z + kΔz, k = 1, 2, 3 . . ., in the direc-
tion of the positive z-axis. The diffraction and attenuation operators are
free of angle-dependent behavior up to an angle of ±90◦ relative to the pos-
itive z-axis. The nonlinearity operator is based on a plane-wave algorithm,
and therefore we expect to obtain reliable nonlinear field results as long as
the field is propagating in a quasi-plane fashion and in a direction close to
the positive z-axis. However, when the field significantly deviates from this
characterization, we expect to observe deviations in the nonlinear field com-
ponents. The third model we employ for comparison is a numerical model
for cylindrically symmetric problems that is based on the KZK equation.
The latter is a parabolic approximation of the Westervelt equation [7, 46].
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Within the parabolic approximation, the field is also assumed to be quasi-
planar and to propagate in a direction close to the positive z-axis, as with
the AS-NLP model, but this assumption is already incorporated in the linear
field solution and not only in the nonlinear field correction. For unfocused
cylindrical piston sources, the KZK model should result in accurate answers
in a region not too close to the source and not too far from the z-axis [29].
For the off-axis limit an angle of 15◦ is sometimes mentioned [72]. All three
models use a boundary value condition prescribing an acoustic pressure in
the plane z = 0, and therefore in this section we will everywhere apply the
INCS method with a pressure jump source.

Unfocused cylindrical source

We will first employ all four methods to evaluate the nonlinear field of an
unfocused cylindrical source with a radius R = 5 mm, exciting a pulse with
a frequency of f0 = 1 MHz, a Gaussian envelope as used before and a source
pressure amplitude P0 = 500 kPa. With the INCS method we consider a
spatial region of interest of 17 mm×11 mm×45 mm and a temporal window
of 39 µs. The maximum frequency of interest is F = 4f0, we discretize with
DF = 2, resulting in step sizes Δx = 0.19 mm and Δt = 0.13 µs, and we
use iteration j = 4. Based on our observations in the one-dimensional case,
with these settings we expect to get an accurate estimate for the fundamental
and the second harmonic frequency components, and a fair estimate of the
third harmonic component. The FD-WV method uses a maximum radius
of 40 mm, an axial distance of 50 mm and a temporal window of 19 µs.
It employs spatial step sizes Δr = 0.03 mm and Δz = 0.015 mm, and a
temporal step size Δt = 0.004 µs. The AS-NLP method uses 10 computa-
tional planes of size 60 mm × 60 mm to step from the source plane to the
plane z = 50 mm, and a temporal window of 25 µs. Moreover, it employs
spatial step sizes Δx = Δy = 0.63mm, Δz = 5mm and a temporal step
size Δt = 0.05 µs. The KZK method uses step sizes in the radial and axial
directions and a maximum radius. These all vary in relation with the axial
distance as described in the original paper [46]. For the current problem
the radial step size is between 0.05 mm and 0.2 mm, the axial step size is
between 0.03 mm and 0.7 mm, the radius is between 27 mm and 107 mm
and the maximum axial distance is z = 50 mm. The temporal window size
is 25 µs and the temporal step size is Δt = 0.01 µs. The resulting axial spec-
tral profiles and radial spectral profiles at z = 20 mm are shown in Fig. 5.11
for all four methods. With the INCS method, the maximum profile level is
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Figure 5.11. Spectral profiles for the cylindrical source as obtained by the INCS method
(solid), the FD-WV method (dashed), the AS-NLP method (large, sparse
dots) and the KZK method (small dots). (a) Axial spectral profiles.
(b) Radial spectral profiles at z = 20 mm.
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Table 5.3. Typical differences and variations in the spectral profiles in the plane y = 0
for the cylindrical source, as obtained by the INCS method and compared
to those computed by the FD-WV method, the AS-NLP method and the
KZK method.

Spectral Typical deviation and variance [%]
profile of INCS relative to

FD-WV AS-NLP KZK

f0 1.1 ± 2.3 0.0 ± 1.1 0.0 ± 5.9
f2 0.0 ± 2.3 −3.4 ± 5.9 3.5 ± 5.9
f3 −6.7 ± 2.3 −16 ± 5.9 −16 ± 16

P [p(4)] = 983 kPa at the natural focus z = 17.6 mm. The maximum second
and third harmonic spectral profile levels are −27 dB and −46 dB relative
to the maximum fundamental level. However, the third harmonic spectral
profile has not yet reached its global maximum at z = 45 mm.

From these figures we observe a good agreement between the INCS
method, the FD-WV method and the AS-NLP method for all three profiles.
The differences with the KZK method in the axial profiles for z < 13 mm and
in the radial profiles for |x| > 6 mm are due to the parabolic approximation,
but elsewhere the fundamental, second and third harmonic profiles coincide
well with those of the other models. In Table 5.3 we list typical differences
and variations observed in the spectral profiles in Fig. 5.11a and b, as ob-
tained by the INCS method and compared to those obtained by the other
three methods. For the KZK method, we have only accounted for the region
z > 13 mm and |x| < 6 mm. From the figures and the table we observe that
for the fundamental component resemblance with the INSC results is best
for the AS-NLP method, and for the second and third harmonic components
this resemblance is best for the FD-WV method and second-best for the AS-
NLP method. The second harmonic profile predicted by the INCS method
is at the average level of the predictions by the other methods. For the third
harmonic spectral profile we observe that the INCS method produces the
lowest estimate of all three methods.

From this comparison, the question arises which method may serve as
a benchmark for the other three methods. In Chapter 4 we observed that the
nonlinear distortion is excellently accounted for by the INCS method in case
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of one-dimensional wave propagation. When the results were compared to
the results of the Burgers Equation, it turned out that for a sufficient num-
ber of iterations the relative errors as reported in Table 4.2 were an order of
magnitude smaller than the relative errors reported in Table 5.3. Moreover,
in Subsection 5.3.1 we added the observation that the linear field predicted
by the INCS method is very accurate and that the three-dimensional diffrac-
tion is therefore well accounted for as well. From these facts we draw the
conclusion that the INCS method serves as a benchmark for the other three
methods. This implies that for the cylindrical transducer studied in this
paragraph, the other methods overestimate the third harmonic component
by a factor of about 7% for the FD-WV method and and 19% for the AS-NLP
and KZK method.

Phased array, unsteered beam

Next, we will present a number of simulation results that have been obtained
with the INCS method for a phased array geometry. With this source we
can only use the AS-NLP method for a comparison, since the FD-WV and
KZK methods are limited to sources with cylindrical symmetry. We simulate
the nonlinear field of a 48 element phased array with element parameters
Wel × Hel = 0.21 mm × 12 mm and del = 0.5 mm. The array is focused
at (xf , zf ) = (0, 56.6) mm and zele = zf . We use a source pulse with a
center frequency f0 = 1 MHz, a Gaussian envelope as used before and a
source pressure amplitude P0 = 250 kPa. The nonlinear field solution is
obtained with the INCS method in a domain of interest with a spatial size of
30 mm×18 mm×72 mm and a comoving temporal window of 36 µs. For these
simulations we use F = 4f0 and DF = 2. We use the nonlinear field estimate
for j = 4. Figure 5.12 shows the spectral profiles of the three frequency
components f0, f2 and f3 in the plane y = 0 and relative to their respective
maximum levels, and the figure also shows the axial spectral profiles relative
to the maximum fundamental level. The profile level close to the source is
about P [p(4)] = 105 kPa, and the maximum profile level is P [p(4)] = 414 kPa
at the realized focus (x, y, z) = (0, 0, 45) mm. The maximum levels of the
second and the third harmonic spectral profiles are −30 dB and −55 dB
relative to the maximum fundamental level.

From these figures we observe that the higher harmonic spectral profiles
attain their maxima at a larger distance in z than the fundamental profile.
Moreover, when compared to their maximum levels, the relative harmonic
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Figure 5.12. Spectral profiles for the phased array transducer exciting an unsteered
beam. (a) Fundamental spectral profile in the plane y = 0. (b) Second
harmonic spectral profile in the plane y = 0. (c) Third harmonic spectral
profile in the plane y = 0. (d) On the beam axis.
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spectral levels close to the source are much lower than for the fundamental
component, and the levels fall off much faster to the side, yielding a narrower
main beam and a smaller sidelobe level than for the fundamental component.

We compare the spectral profiles obtained by the INCS method with
those obtained by the AS-NLP method. For the latter method we use 35
computational planes of size 60 mm × 60 mm to step from the source plane
to the plane z = 70 mm, and a temporal window of 41 µs. Moreover, it
employs spatial step sizes Δx = Δy = 0.47 mm and Δz = 2 mm, and a
temporal step size Δt = 0.05 µs. In Fig. 5.13 the axial spectral profiles and
the lateral spectral profiles for y = 0, z = 58 mm are shown. From these
figures we observe an even better resemblance between the spectral profiles of
the INCS method and the AS-NLP method than for the unfocused cylindrical
source.

Phased array, steered beam

Employing the same phased array source, we have also used the INCS
method to obtain the spectral profiles of the acoustic beam when its axis
is steered 22.5◦ and 45◦ off the transducer axis. The focuses in these cases
are (xf , zf ) = (22, 52) mm and (xf , zf ) = (40, 40) mm, with zele = zf ,
giving the same focal distances as in the unsteered case. The domains of
interest are parallellogram-shaped in the xz-plane, conform the beam an-
gle, and these skew domains have a size of 30 mm × 18 mm × 60 mm and
30 mm × 18 mm × 53 mm, respectively. We use the nonlinear field estimate
for j = 4. In Figures 5.14 and 5.15, the fundamental, the second harmonic
and the third harmonic spectral profiles in the plane y = 0 are shown for
both steering angles, as obtained with the INCS method with the same dis-
cretization as in the unsteered situation. Both figures also show the axial
spectral profiles relative to the maximum fundamental level. The fundamen-
tal profiles clearly show the parallellogram-shaped domains. Based on the
observations in Subsection 5.3.3 we expect that these contrast source do-
mains will be adequate for the estimation of the nonlinear profiles. For 22.5◦

beam steering, the maximum level of the profile is P [p(4)] = 396 kPa at the
realized focus (x, y, z) = (17, 0, 40) mm. The maximum second and third
harmonic spectral profile levels are −31 dB and −56 dB relative to the maxi-
mum fundamental level. For 45◦ beam steering, the maximum level of the
profile is P [p(4)] = 358 kPa at the realized focus (x, y, z) = (24, 0, 23) mm.
The maximum second and third harmonic spectral profile levels are −33 dB
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Figure 5.13. Spectral profiles for the phased array transducer exciting an unsteered
beam, as obtained by the INCS method (solid) and by the AS-NLP method
(dashed). (a) Axial spectral profiles. (b) Lateral spectral profiles for y = 0,
z = 58 mm.
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Figure 5.14. Spectral profiles for the phased array transducer exciting an beam steered
at 22.5◦. (a) Fundamental spectral profile in the plane y = 0. (b) Second
harmonic spectral profile in the plane y = 0. (c) Third harmonic spectral
profile in the plane y = 0. (d) On the steered beam axis.
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Figure 5.15. Spectral profiles for the phased array transducer exciting an beam steered
at 45◦. (a) Fundamental spectral profile in the plane y = 0. (b) Second
harmonic spectral profile in the plane y = 0. (c) Third harmonic spectral
profile in the plane y = 0. (d) On the steered beam axis.
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and −59 dB relative to the maximum fundamental level. When comparing
the higher harmonic spectral profiles with the fundamental spectral profile,
we observe from these figures similar characteristics as for the unsteered case.

We compare the results of the INCS method for the steered beams with
those obtained by the AS-NLP method. To employ the latter method for
22.5◦ beam steering we use 30 computational planes of size 70 mm × 70 mm
to step from the source plane to the plane z = 60 mm, and a temporal window
of 50 µs. Moreover, we employ spatial step sizes Δx = Δy = 0.55 mm and
Δz = 2 mm, and a temporal step size Δt = 0.05 µs. For 45◦ beam steering,
we use 30 computational planes of size 90 mm × 90 mm to step from the
source plane to the plane z = 60 mm, and a temporal window of 74 µs. Here
we employ spatial step sizes Δx = Δy = 0.35 mm and Δz = 2 mm, and a
temporal step size Δt = 0.05 µs. The computational planes are perpendicular
to the transducer axis, as in the previous simulations. In Fig. 5.16 the lateral
spectral profiles in the plane y = 0 are shown at z = 52 mm for 22.5◦ beam
steering and at z = 40 mm for 45◦ beam steering. In both situations we
observe a perfect agreement of both methods for the fundamental component.
For 22.5◦ beam steering, the level of the second harmonic component at the
main beam predicted by the AS-NLP method is 0.5 dB lower than the level
predicted by the INCS method, and this difference increases for larger x. The
third harmonic components obtained by both methods differ by 1.5 dB at
the main beam, and the tails have a widely different shape and level. For
45◦ beam steering, the level of the second harmonic component at the main
beam predicted by the AS-NLP is 2.6 dB lower than the level predicted by
the INCS method. The third harmonic components differ by 7.5 dB at the
main beam, and again its overall shape is much different for both methods.

From these simulations we clearly see the limitations of the quasi-planar
wave assumption in the nonlinear step of the AS-NLP method. The results
obtained with the AS-NLP method did not improve when the step size Δz
was reduced to 1 mm, and this was also not the case when a smaller tem-
poral step size of Δt = 3.3 µs was taken. The step sizes Δx and Δy were
{0.47, 0.55, 0.35} mm for the respective beam steering angles {0◦, 22.5◦, 45◦},
but the observed trends in the deviating second and third harmonic compo-
nents for increasing steering angle did not show any dependence on them.
This suggests that further reducing Δx and Δy would not have improved the
obtained results of the AS-NLP method.
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Figure 5.16. Lateral spectral profiles in the plane y = 0 for the phased array transducer
exciting a steered beam as obtained by the INCS method (solid) and by
the AS-NLP method (dashed). (a) Lateral profile at z = 52 mm for the
beam steered at 22.5◦. (b) Lateral profile at z = 40 mm for the beam
steered at 45◦.
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Phased array, steered beam, grating lobe

In the following simulation we will demonstrate the ability of the INCS
method to account for wide-angle phenomena like grating lobes. Grat-
ing lobes may appear in the field profile of a phased array transducer
when del > c0/2f0. With f0 = 1MHz and c0 = 1500 ms−1 we get
c0/2f0 = 0.75 mm, and therefore for a 48 element phased array transducer
with element parameters Wel×Hel = 0.42 mm×12 mm and del = 1.0 mm we
expect a grating lobe. The acoustic beam is steered at 45◦ by focusing it at
(xf , zf ) = (40, 40) mm, with zele = zf . As in the previous situations we use
a source pulse with a center frequency f0 = 1 MHz, a Gaussian envelope and
a source pressure amplitude P0 = 250 kPa. The field profiles are obtained in
two simulations where we employ two parallellogram-shaped domains of size
60 mm×18 mm×50 mm, one of which making an angle of 45◦ and capturing
the main bean, and the other making an angle of −45◦ and capturing the
grating lobe. The comoving temporal window has a duration of 75 µs. For
both simulations we use F = 4.5f0 and DF = 2, and we use iteration j = 4.
The two skew beams are merged into one image for the spectral profiles, as
shown in Fig. 5.17. The maximum profile level is 536 kPa at the realized
focus (x, y, z) = (38, 0, 37) mm. The maximum second and third harmonic
spectral profile levels are −29 dB and −54 dB relative to maximum funda-
mental level. When comparing the higher harmonic spectral profiles with
the fundamental spectral profile, we observe from this figure similar charac-
teristics as for the case without grating lobe. Moreover, we observe a strong
reduction of the grating lobe in the higher harmonic profiles.

We compare the results of the INCS method with those of the AS-NLP
method employing the same settings as for the 45◦ beam steering without the
grating lobe. In Fig. 5.18 the lateral spectral profiles for y = 0, z = 40 mm
are shown. As in the case of the steered beam without the grating lobe,
we observe a perfect agreement of the fundamental profile in the calculated
regions. However, the higher harmonic spectral profiles are not at all accu-
rately reproduced by the AS-NLP method, whereas the grating lobe shows a
stronger deterioration than the main beam.

5.3.5 Behavior at strong nonlinear distortion

As a final study we will investigate the capabilities of the INCS method in the
case of strong nonlinear distortion. For this we consider the nonlinear acoustic
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Figure 5.17. Spectral profiles in the plane y = 0 for the phased array transducer exciting
a beam steered at 45◦ and a grating lobe. (a) Fundamental spectral
profile. (b) Second harmonic spectral profile. (c) Third harmonic spectral
profile.
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Figure 5.18. Lateral spectral profiles at z = 40 mm in the plane y = 0 for the phased
array transducer exciting a beam steered at 45◦ and a grating lobe, as ob-
tained by the INCS method (solid) and by the AS-NLP method (dashed).

pressure field from an unfocused cylindrical source with a radius R = 6.9 mm,
excited by a pulse with f0 = 1 MHz, a Gaussian envelope as used before and a
source pressure amplitude P0 = 2 MPa. The INCS method is employed using
a spatial domain of size 20 mm×20 mm×100 mm and a comoving temporal
window of 28 µs. The maximum frequency of interest is F = 4.5 MHz, we
discretize with DF = 2 and we use iteration j = 4. In Fig. 5.19 the axial
spectral profiles of the fundamental and the second to the fourth harmonic
spectral profiles are shown, as computed with the INCS method as well as
with the KZK method. The maximum pressure of the filtered profile of
the fundamental is P0[p

(4)] = 3.54 MPa at z = 31 mm. In the figure, the
acoustic pressure and its spectrum on the axis at z = 40 mm and at z =
70 mm are also shown. From the figures we observe for z > 30 mm a similar
overestimation of the fourth harmonic component as we observed for the one-
dimensional wave problem in Figs. 4.10 and 4.11. For z > 70 mm the third
harmonic component shows a slight overestimation as well, and the pulseform
has deteriorated significantly. This is caused partly by overestimation of the
third and fourth higher harmonics, but more significantly by the the absence
of the fifth and higher harmonics due to the filtering. From Figs. 5.19b
and d we observe that, as far as the discretization allows, the INCS method
correctly reproduces the waveform asymmetry which is a well-known effect in
nonlinear ultrasound fields incorporating diffraction and focusing effects [65].
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Figure 5.19. Results on the transducer axis for the unfocused cylindrical source exciting
a strong acoustic pulse, as obtained with the INCS method (solid) and with
the KZK method (dashed). (a) Axial spectral profiles. (b) Signature at
z = 40 mm. (c) Spectrum at z = 40 mm. (d) Signature at z = 70 mm.
(e) Spectrum at z = 70 mm.
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5.4 Discussion

In this chapter we have investigated the performance of the INCS method
for three-dimensional acoustic wave problems involving various plane sources.
It has been shown that the INCS method is able to accurately predict the
linear as well as the nonlinear acoustic pressure field with a discretization
down to two points per period of the maximum frequency of interest. For
the linear field solution, the comparison with two different linear models has
shown excellent agreement. For the nonlinear field solution, we compared the
spectral profiles of the fundamental component and of the higher harmonic
components, as predicted by the INCS method, with those of three different
nonlinear acoustic models, and we found very good agreement in a number
of situations involving moderate nonlinear distortion. For the h-th harmonic
frequency, it appeared to be sufficient to include h harmonics and iterate
up to j = h + 1. It proved to be sufficient to employ a filtering procedure
in time in the evaluation of the nonlinear contrast source. In the case of
strong nonlinear distortion the waveform and the spectrum of the pressure
showed a deviation due to the filtering, but INCS method did not show any
instability. Regarding the local and global errors that were summarized in
Section 3.6, we did observe some small effects like the error in the third
harmonic spectral profile in Figs. 5.12 around z = 10 mm and in Fig. 5.19,
but none of them showed to have a severe impact on the results in the case
of moderate nonlinear distortion. From the observations in this and the
previous chapter we conclude that the INCS method is a reliable, robust and
general method for the prediction of the nonlinear acoustic pressure from
surface sources exciting a wavefield propagating under an arbitrarily wide
angle.

In the development of the INCS method we have paid specific attention
to an efficient discretization down to the limit of two points per wavelength
and per period. Yet, we observed that the resulting implementation may put
a considerable claim on the available computational resources. For a full-
wave method, discretization at the limit of two points per wavelength and
per period is the best attainable result, and comparing the step sizes used
for the first case in Subsection 5.3.4 with those of the FD-WV method for
that case, we see that the discretization in the INCS method is coarser by a
factor six in the radial direction and a factor 33 in the temporal direction.
In forward-wave methods, the problem is solved in an entirely different way,
which may give a considerable benefit in terms of the discretization. As
compared to the AS-NLP method, we see that the temporal discretization is
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a factor three coarser for the INCS method. However, the discretization in
the lateral x and y-directions are finer by a factor three. Moreover, according
to the paper by Zemp et al. [85] this discretization is not related to the highest
harmonic frequency component to be included, as in the INCS method, but
to the fundamental frequency. In the z-direction, the AS-NLP method has
a large step size, being a factor 25 larger than the step size of the INCS
method. This large step in z is a main advantage of the AS-NLP method.
This, however, however comes with the drawbacks of a quasi-plane nonlinear
propagator, as was shown in the examples. Compared to the KZK method,
the temporal discretization of the INCS method was a factor 13 coarser.
For the presented example, the spatial step sizes were in the same order as
for the INCS method, but according to the paper by Lee et al. [46], the
spatial step sizes in the KZK method are related to the geometry and the
fundamental frequency and not so much to the highest harmonic component
to be included. Therefore, the spatial discretization is more favorable with
the KZK method in case of strong nonlinear fields with a high number of
harmonic components. But this comes with the unfavorable consequences of
the parabolic approximation for the nonlinear field prediction.

With regard to the computational requirements for the INCS method
in terms of time and memory, we have seen that these varied strongly and
depended on the specific implementation and situation. To give an idea of
the scale that can be handled with the current program, we present some
data on the largest problem that has been addressed up to now. The prob-
lem concerned a phased array excited with a center frequency f0 = 5 MHz,
generating a steered acoustic beam with a grating lobe. For this problem,
the domain of interest was split up in two beams for the main beam and the
grating lobe, and each beam had a size of 15 mm × 8 mm × 80 mm and a
comoving temporal window of 7.6 µs. At the maximum frequency of interest
F = 12.5 MHz the discretization took place with DF = 2, resulting in an
accurate estimate for the fundamental and the second harmonic frequency
component. With λ = c0/F and T = 1/F , the domain size was equivalent to
that of a cube with edges of length 100λ and a time period of 100T . The com-
putational grid size used in the parallel program, employing symmetry in the
y-dimension and spatial decomposition in the z-dimension, was 252×72×672
points in space and 191 points in time, yielding an array with a total size
of 17 GB. For each of the two beams it took 2.5 hours to obtain iteration
j = 2 with 96 processors and a maximum of 3.7 GB of memory on each pro-
cessor. This example clearly shows that from a computational point of view
these problems pose a considerable challenge to the programmer and to the
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computational resources. However, we believe that the INCS method is the
most efficient method to deal with these large, nonlinear, three-dimensional,
pulsed problems.



Chapter 6

Experimental verification of the INCS

method

In order to validate the nonlinear field predictions from the INCS method,
measurements have been performed of the nonlinear acoustic pressure field
of a rectangular transducer. These measurements are part of a set of ex-
periments conducted at the Forschungszentrum Karlsruhe, Germany [35]. In
this chapter we will discuss the measurements and we will make comparisons
with the results from the INCS method. In Section 6.1 we will discuss the
experimental setup used for the measurements. In Section 6.2 we will de-
scribe the measurements and the comparisons with the predictions from the
INCS method and the FieldII program. The chapter ends with a discussion
in Section 6.3.

6.1 Experimental setup

The acoustic field measurements have been performed with an automated
measurement setup, which is shown in schematic form in Fig. 6.1. It com-
prises of a plexiglass water tank with a size of 45 cm × 30 cm × 30 cm. The
water has been demineralized, and it has been degassed by letting it rest
for 2–3 days prior to the measurements. The transducer under test (Tx)
is positioned inside the water tank in a waterproof chamber. A needle hy-
drophone (Rx) measures the acoustic field generated by the transducer in
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Figure 6.1. Schematic overview of the measurement setup.

the water. The hydrophone is attached to a three-dimensional translation
device (POS) that enables an accurate positioning. The entire setup is con-
trolled by a standard desktop PC which runs a control interface developed
under LabWindows and written in C. The control program initializes a Sony
Tektronix AWG2021 arbitrary waveform generator (AWG). The control pro-
gram also passes the measurement positions to the positioning device (POS),
a custom made system that controls the position. To indicate the position
of the hydrophone, a Cartesian reference frame has been defined with its
origin at the center of the transducer, as shown in Fig. 6.1. After positioning
the hydrophone, the control program triggers the AWG, which generates a
pulse that is amplified with a custom made amplifier (AMP1) based on a
PA85A Op-amp. The amplifier is connected to the transducer under test,
which is a custom made rectangular piezo piston transducer with dimensions
W × H = 10 mm × 15 mm, a center frequency of 1 MHz and a frequency
bandwidth of 30%. The transducer employs a matching layer in between the
piezo material and the water, and is air backed. The needle hydrophone is an
Onda HNC-0400. The hydrophone output signal is amplified with an Onda
AH-2010 20 dB preamplifier (AMP2) and converted to a digital signal with
a GaGe CS1250 data acquisitioning board (A/D). To improve the overall
signal-to-noise level, on each position the measurement is repeated 200 times
and the measured signatures are subsequently averaged and stored on the
hard disk of the control computer.

At the time of the measurements, the needle hydrophone and its pre-
amplifier were newly purchased. The hydrophone showed an angular depen-



6.2 Measurements and comparison 131

dency, with a −6 dB reduction of the sensitivity for pressure fields incident
at an angle 30◦ off the center axis of the hydrophone. For pressure fields
propagating perpendicularly to the hydrophone axis, the sensitivity of the
hydrophone-preamplifier combination was in the order of 1 mV/Pa, and its
frequency-dependent behavior was specified by the manufacturer over a fre-
quency range of 1–15 MHz and within an accuracy of 1 dB. In the post-
processing of the signatures we have applied this frequency-dependent be-
havior of the hydrophone to obtain the measured acoustic pressure. From
the measured acoustic pressure we computed the filtered profiles Ph[p] of the
fundamental and the second and third harmonic components.

6.2 Measurements and comparison

Measurements of the acoustic pressure have been performed in the planes
x = 0 and y = 0 and up to a distance z = 100 mm in the z-direction.
The planes were scanned at a resolution of 1 mm and with an accuracy of
0.1 mm in each spatial direction. To determine the parameters of the acoustic
medium, the water temperature was measured prior to each measurement
session. The measurements were performed with the rectangular transducer
being excited with a voltage pulse having a center frequency of 1 MHz and
having either a low or a high level. A low excitation level involved a 3.5 V
amplitude, resulting in an acoustic pressure amplitude in the order of 10 kPa,
and a high excitation level was obtained by a 35 V amplitude, resulting in
acoustic pressure amplitudes in the order of 100 kPa. For the low excitation
level, we expect that the nonlinear acoustic distortion is so small that we can
safely assume linear propagation. To simulate the pressure profile at the low
excitation level, in Subsection 6.2.1 we will use the FieldII program [38, 39].
This program also has been employed in Subsection 5.3.1 for obtaining the
linear acoustic pressure field of a surface source. For the high excitation
level, we expect that the nonlinear acoustic distortion is observable by the
occurrence of at least the second harmonic component. We will simulate
the pressure profiles of the fundamental and the second and third harmonic
components at the high-level field excitation by using the INCS method.
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Figure 6.2. Measured pulse on the axis of the transducer at z = 100 mm for the low
excitation. (a) Temporal signature. (b) Spectrum of the signature.

6.2.1 Low-level field measurements and comparison with the

FieldII method

Fig. 6.2 shows the pulse signature measured on the axis of the transducer
at z = 100 mm, at the low excitation level. In the spectrum we observe the
fundamental frequency component around the center frequency at 1 MHz.
Moreover, there is a significant third harmonic component that originates
from electronic distortion in the input circuit and that is emitted because,
apart from the narrow band around 1 MHz, the transducer also has pass-
bands at the odd harmonic frequency components. We have measured the
low-level acoustic pressure profiles, and we use the linear FieldII program to
simulate the acoustic field and reproduce the measured profiles. In the FieldII
program, we employ a plane rectangular source, and we derive a source signa-
ture that yields a pressure field exhibiting the same waveform as in Fig. 6.2.
In the absence of nonlinear propagation, this source signature can be derived
from the measured pressure signature on the axis of the transducer. In Ap-
pendix C it is shown that for large z the linear acoustic pressure on the axis
of a cylindrical transducer can be approximated by

p(z, τ) = P0 s(τ) − P0 s(τ − R2

2c0z
), (6.1)

where P0 is the source pressure amplitude, R is the source radius, s(t) is
the source signature and τ = t − z/c0 is a retarded time. The pressure
on the axis can be used to obtain a scaled, first order finite difference (FD)
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approximation of the time derivative of the source signature. To achieve this,
we write

R2

2c0z
= Δτ, (6.2)

and we subsequently recast Eq. (6.1) into

p(z, τ)

Δτ
=

P0 s(τ) − P0 s(τ − Δτ)

Δτ
. (6.3)

From this equation we see that

lim
∆τ→0

p(z, τ)

Δτ
= ∂τ [P0 s(τ)] . (6.4)

The FieldII program requires its input condition to be provided in the form
of the volume source description c−1

0 ∂t[P0 s(t)], and therefore we can directly
employ the measured function p(z, τ), divided by c0Δτ , as an approximation
to this input condition. This FD approximation of the input condition be-
comes better for increasing z. However, since at the same time for increasing
z the pressure amplitude and therefore the signal-to-noise level reduces, we
are compelled to make a trade-off. For the rectangular transducer, we expect
a similar behavior as for the cylindrical transducer, so that for increasing
z the pressure on the transducer axis resembles more and more the time
derivative of the source signature. However, the equation Δτ = R2/2c0z
does not apply, and for the rectangular transducer we therefore obtain Δτ
by matching the FieldII output level to the measured profile level.

We run the FieldII program with its input condition derived from the
measured axial pressure at z = 100 mm, as shown in Fig. 6.2, and with
a rectangular aperture of size W × H = 10 mm × 15 mm, i.e. identical
to the real transducer. During the measurements, the water temperature
varied between 24 ◦C and 28 ◦C, corresponding to a sound speed between
c0 = 1494 m s−1 and 1504 m s−1 at ambient pressure [49]. For the FieldII
simulations we used an intermediate temperature of 26 ◦C, corresponding
to c0 = 1499 m s−1. Further we use a sampling frequency of 150 MHz and
we employ 50 × 50 mathematical elements for the rectangular source geo-
metry. Figure 6.3a shows the filtered pressure profile of the fundamental
component on the transducer axis, as obtained from the measurements1 and
from the FieldII program with Δτ = 0.099 µs. The measured maximum

1The gaps at certain axial positions in the measured profile, which are visible in all
measured axial and surface profiles in this chapter, are due to a technical problem with the
positioning device. However, this issue does not seriously impair the observations based on
the axial and the surface profiles.
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Figure 6.3. Filtered pressure profile P0[p] on the transducer axis for the low excitation
level, obtained from the measurements (solid) and from the FieldII program
(dashed). (a) With the source parameters W ×H = 10 mm×15 mm. (b)
With the effective source parameters Weff ×Heff = 8 mm× 13.5 mm and
an offset zoff = −6 mm.

fundamental profile level on the axis is 13.2 kPa. It is clear from Fig. 6.3a
that the measured profile is not correctly reproduced by the FieldII program.
This mismatch must be attributed to the fact that the real transducer is in-
adequately described by the plane surface source. The acoustic disturbance
excited in the transducer does not only originate at the surface at z = 0, but
arises from the deformation of the entire piezo element. Most likely this does
not result not in a constant amplitude across the entire transducer, and ta-
pering near the edges is expected. Moreover, before the disturbance reaches
the transducer surface, it travels through the piezo material and through the
matching layer which causes time delays. In order to account for the tapering
effects and the time delays and still retain the surface source description, we
introduce effective width and height parameters Weff and Heff instead of the
real ones, and we offset the source plane in the z-direction by zoff . Tuning of
these parameters gives us a best match of the axial profile and of the lateral
profiles at z = 4 mm, z = 30 mm and z = 100 mm with Weff = 8 mm,
Heff = 13.5 mm, zoff = −6 mm and Δτ = 0.099 µs. The results are shown
in Figs. 6.3b and 6.4. In the axial profile obtained by the FieldII program,
the maxima and minima are reproduced at the correct distances, although
the first maximum at z = 4 mm is slightly overestimated. This should be at-
tributed to the sharp edge of the transducer as used in the FieldII simulation,
from which a rather ideal edge wave originates that interferes with the body
wave and thus causes the minima and maxima in the axial profile. For the
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Figure 6.4. Filtered lateral pressure profiles P0[p] for the low excitation level, obtained
from the measurements (solid) and from the FieldII program (dashed) with
the effective source parameters Weff×Heff = 8 mm×13.5 mm and an offset
zoff = −6 mm. (a) (y, z) = (0 mm, 4 mm). (b) (x, z) = (0 mm, 4 mm).
(c) (y, z) = (0 mm, 30 mm). (d) (x, z) = (0 mm, 30 mm).
(e) (y, z) = (0 mm, 100 mm). (f) (x, z) = (0 mm, 100 mm).
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real transducer, the edge is less sharp due to tapering effects, and the edge
wave is therefore less ideal, giving a reduced level at the first axial maximum.
In the lateral profiles, the beam widths are also reproduced correctly. The
sidelobes in Figs. 6.4e and 6.4f are more pronounced in the simulations than
in the measurement, but their location is again correct.

6.2.2 High-level field measurements and comparison with the

INCS method

In Fig. 6.5 we compare the measured fundamental and harmonic filtered pres-
sure profiles on the transducer axis for the low and high-level excitation. For
the high-level excitation, the maximum fundamental profile level is 128 kPa,
which is 19.7 dB higher than for the low-level excitation. From Fig. 6.5a
we observe that at small z the second harmonic component has a compa-
rable level for the low-level and high-level measurements. For z > 16 mm,
the high-level measurements show a considerable enhancement of the second
harmonic component as compared to the low-level measurements, up to a
level of 14 dB at z = 100 mm. This is caused by the generation of the sec-
ond harmonic component during the nonlinear propagation of the wavefield.
In Fig. 6.5b we observe that for small z the third harmonic component of
the high-level measurements is 3 dB higher than for the low-level excitation,
and this increases to 6 dB at z = 100 mm. The 3 dB increase for small z
indicates that the third harmonic component for the high-level excitation is
already enhanced in the source signature due to nonlinear behavior of the
transducer and/or the electronics. The 3 dB increase of the third harmonic
component over distance is again caused by the nonlinear propagation of the
wavefield. However, this effect is much smaller than for the second harmonic
component.

We compare the axial and lateral pressure profiles measured for the
high-level excitation with results from the INCS method. For the inclusion
of the source signature and geometry, we use a similar approach as in Subsec-
tion 6.2.1 for the FieldII simulations. We use the volume source description
according to Eq. (3.63), prescribing a velocity jump Δv(x, y, t) over the plane
z = 0. This results in the source term

S = ρ0∂t[ΔV (x, y, t) δ(z)], (6.5)

where ΔV (x, y, t) = (2/ρ0c0)P0 s(t) a(x, y), as in Eq. (5.1). With this source
we also need the time derivative ∂t[P0 s(t)], for which we employ p(z, τ)/Δτ
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Figure 6.5. Filtered pressure profiles Ph[p] on the transducer axis, measured with the
high excitation level (solid) and with low excitation level (dashed), rela-
tive to their respective maximum fundamental levels. (a) Fundamental
and second harmonic component. (b) Fundamental and third harmonic
component.

as an approximation. In this way we obtain the source excitation from
the measured low-level axial pressure at z = 100 mm, shown in Fig. 6.2,
with Δτ = 0.0103 µs. As for the low-level case, the source geometry is
described by the effective parameters Weff × Heff = 8 mm × 13.5 mm and
zoff = −6 mm. During the measurements the water temperature varied be-
tween 24 ◦C and 28 ◦C, corresponding to a variation in the sound speed
between c0 = 1494 m s−1 and 1504 m s−1 [49], a mass density between
ρ0 = 997.3 kg m−3 and 996.2 kg m−3 [47] and a nonlinearity parameter be-
tween β = 3.54 and 3.58 [32], all values given at ambient pressure. For
the INCS simulations we use an intermediate temperature of 26 ◦C, yielding
c0 = 1499 m s−1, ρ0 = 996.8 kg m−3 and β = 3.56. The INCS method is used
to predict the axial and lateral filtered pressure profiles of the fundamental
and the second and third harmonic components. With the INCS method, we
obtain the nonlinear field solution in a domain of interest with a spatial size
of 81 mm × 18 mm × 102 mm and a comoving temporal window of 24 µs, a
maximum frequency of interest F = 4f0 and a discretization with DF = 2.
We use the nonlinear field estimate for j = 2. Figure 6.6 shows the measured
and predicted axial filtered pressure profiles for the fundamental and the sec-
ond and third harmonic components. From Fig. 6.6a we observe that the
second harmonic profile is reproduced very well by the INCS method. The
difference between the level of the measured profiles and the profiles from the
INCS simulation is at most 1.2 dB, which is close to the 1 dB measurement
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Figure 6.6. Filtered pressure profiles Ph[p] on the transducer axis for the high excita-
tion level, as obtained from the measurements (solid) and from the INCS
method (dashed). (a) Fundamental and second harmonic component. (b)
Fundamental and third harmonic component.

accuracy. From Fig. 6.6b we observe that the INCS method provides the
shape of the axial profile of the third harmonic component, but its level is
underestimated by 8 dB. As we observed in Fig. 6.2, the third harmonic
component is already present in the source signature, and as we observed in
Fig. 6.5, it propagates mainly in a linear fashion. The underestimation of the
level of the third harmonic component is caused by the procedure to obtain
the derivative of the source signature from the measured axial pressure at
z = 100 mm. This procedure acts as a finite difference approximation, and a
well-known effect of the FD approximation is an increasing underestimation
of the higher frequencies [25].

Figure 6.7 shows the lateral profiles of the fundamental and second
harmonic component at z = 30 mm and at z = 100 mm, as obtained from
the measurements and from the INCS simulations. From these profiles we
also observe that the second harmonic frequency component is reproduced
very well by the INCS method, which shows that the INCS method accurately
predicts the nonlinear distortion.

In Figs. 6.8 and 6.9, the filtered pressure profiles for the fundamental
and the second and third harmonic components in the lateral plane x = 0
and on the transducer axis are shown, as obtained from the measurements
and from the INCS simulations. We observe a good resemblance between all
fundamental and harmonic profiles. Although the level of the third harmonic
predicted by the INCS method is too low, as was already noted, the shape
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Figure 6.7. Filtered lateral profiles Ph[p] for the fundamental and the second and third
harmonic component at the high excitation level, as obtained from the
measurements (solid) and from the INCS method (dashed).
(a) (y, z) = (0 mm, 30 mm). (b) (x, z) = (0 mm, 30 mm).
(c) (y, z) = (0 mm, 100 mm). (d) (x, z) = (0 mm, 100 mm).

of the profile is still reproduced very well.

Finally, in Fig. 6.10 the filtered pressure signatures for the fundamental
and the second and third harmonic components on the transducer axis at
z = 50 mm are shown, as measured and as predicted by the INCS method.
Again we note an excellent resemblance of the signature of the fundamental
and the second harmonic components. While the level of the signature of
the third harmonic component is again underestimated, its shape is still
reproduced very well.
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Figure 6.8. Filtered pressure profiles for the rectangular transducer with high-level ex-
citation, obtained from the measurements. (a) Fundamental profile in the
plane x = 0. (b) Second harmonic profile in the plane x = 0. (c) Third
harmonic profile in the plane x = 0. (d) On the transducer axis.



6.2 Measurements and comparison 141

z [mm]

y
[m

m
]

P0[p]/ max(P0[p]) [dB]

-10

-10

-6-3
-3

-3
-6

-6-10

-10

20 40 60 80 100
-10

-5

0

5

10

(a)

z [mm]

y
[m

m
]

P2[p]/ max(P2[p]) [dB]

-10
-6-3

-3 -6
-10

-3-6-10

-20

-20

20 40 60 80 100
-10

-5

0

5

10

(b)

z [mm]

y
[m

m
]

P3[p]/ max(P3[p]) [dB]

-10-6-3

-3 -6 -10

-3-3-6

-3

-3-6

-6
-10

-10

20 40 60 80 100
-10

-5

0

5

10

(c)

z [mm]

Ph[p]/ max(P0[p])] [dB]

f0

f2

f3

20 40 60 80 100
-60

-40

-20

0

(d)

Figure 6.9. Filtered pressure profiles for the rectangular transducer with high-level exci-
tation, obtained from the INCS method. (a) Fundamental filtered profile in
the plane x = 0. (b) Second harmonic profile in the plane x = 0. (c) Third
harmonic profile in the plane x = 0. (d) On the transducer axis.
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Figure 6.10. Filtered signatures at z = 50 mm on the transducer axis for the high-level
excitation, as obtained from the measurements (left) and from the INCS
method (right). (a,b) Filtered fundamental signatures. (c,d) Filtered
second harmonic signatures. (e,f) Filtered third harmonic signatures.
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6.3 Discussion

Comparisons with measurements show that the INCS method correctly pre-
dicts the measured second harmonic component in the case of a rectangular
transducer exciting an acoustic pressure in the order of 100 kPa. The ax-
ial and lateral second harmonic pressure profiles were reproduced with an
accuracy of 1.2 dB, which is close to the measurement accuracy. The time
signatures showed a very good resemblance for the fundamental and the
second harmonic component as well. Although the axial and lateral third
harmonic pressure profiles on the transducer axis and in the lateral plane
x = 0 were reproduced well, we cannot judge the performance of the INCS
method for this harmonic on the basis of the measurements since the predic-
tion of the source signature from a far-field measurement underestimates the
third harmonic that is already present in the source signature.

We saw that an accurate incorporation of the source geometry and the
source signature is essential for producing reliable simulation results. For the
rectangular transducer under investigation, it proved beneficial to introduce
effective width and height parameters and an offset in the z-dimension. If
we like to obtain further improvement in the description of the source geo-
metry, as a first possibility we may introduce a spatially dependent amplitude
distribution (or apodization) across the source surface, and possibly a spa-
tially dependent time delay of the source signature. However, this approach
would still not include the volume effects, reflections and dispersion effects
that may arise inside a real transducer. A second alternative would be to
replace the idealized source description with a measured pressure across an
entire plane. However, since hydrophones exhibit spatial averaging over their
active surface, the spatial resolution from acoustic measurements may be in-
sufficient. A third alternative is to use an accurate electromechanical model
of the transducer to predict the excited pressure.

Apart from the accurate incorporation of the source geometry, we saw
that it is also important to include the correct source signature. We found
that the source signature could approximately be obtained from the mea-
sured pressure signature on the transducer axis at a low excitation level.
This approximation sufficiently accounts for the fundamental component in
the source signature, but the third harmonic component that is present in
the source signature is underestimated, as expected. Improvement of the
estimate of the source signature would be attained by taking a measured
pressure at larger distance from the source, but this would go at the cost of
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a deteriorated signal-to-noise level. We could think of a number of alterna-
tive approaches for obtaining the source signature. Firstly, for large source
geometries it may be possible to measure the acoustic pressure very close to
the source. For a large source, the body wave and edge wave may still be
temporally separated and the source signature can be directly obtained by
applying a narrow time window. A second alternative would be to obtain the
spatial transfer function of the source signature to the pressure at a certain
point and then apply a spatial deconvolution of the measured pressure. This
approach requires the absence of nonlinear behavior of the transducer and
the electronics. As a third alternative we may again use an electromechanical
model of the transducer to find the source excitation.

Despite these considerations on incorporating the source geometry and
the source signature, the presented measurements and comparisons have
clearly shown that the INCS method is capable of predicting the nonlinear
distortion of the acoustic pressure field excited by a rectangular transducer.
Together with the theoretical considerations in Chapters 2 and 3, and with
the numerical comparisons with other models presented in Chapters 4 and 5,
the comparisons with practical results in this chapter provide a further in-
dication of the reliability of the nonlinear acoustic field predictions that are
produced by the INCS method.



Chapter 7

Conclusions and discussion

7.1 Conclusions

In this thesis we have developed a numerical method for the computation of
the three-dimensional, pulsed acoustic pressure field excited by plane sources
of arbitrary geometry in a nonlinear, homogeneous and lossless medium. The
Iterative Nonlinear Contrast Source (INCS) method has specifically been de-
signed to cope with large-scale problems (in the order of 100 wavelengths or
periods in each spatiotemporal direction) involving low to moderate nonlin-
ear behavior. Moreover, it enables the accurate computation of the higher
harmonic frequency components of the acoustic field, even if these are ex-
tremely weak as compared to the fundamental acoustic field. Unlike many
other methods [72, 82, 85], the INCS method is not based on an implicit
or explicit plane wave approximation, and is thus well suited to accurately
predict the nonlinear acoustic fields of medical phased array transducers for
all steering angles and all observation angles.

The following conclusions may be drawn from the research reported in this
thesis:

• We have shown that the acoustic field in a nonlinear medium may be
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described by a pair of first-order field equations and a pair of nonlinear con-
stitutive equations. For a homogeneous medium, combination of these leads
to a nonlinear wave equation that is valid up to second order in the field
quantities. For the progressive fields that occur in our examples, we neglect
local nonlinearity effects, and the consequent simplification of the nonlinear
wave equation leads to the lossless Westervelt equation.

• We have shown that the Westervelt equation may be solved efficiently by
our newly developed INCS method. This method obtains the pulsed, full-
wave nonlinear acoustic pressure field of a surface source excited by a pulsed
signal. The method consists of two steps:

1. The nonlinear wave problem is formally solved by a Neumann iterative
solution, in which the nonlinear term in the Westervelt equation acts as a
nonlinear contrast source and provides iterative corrections to the linear
approximation of the nonlinear wave problem. Each iterative step in
the Neumann scheme is performed by a four-dimensional spatiotemporal
convolution integral of the (primary or contrast) source with the Green’s
function of the linear background medium.

2. For the evaluation of the four-dimensional convolution integral by a
discrete convolution sum over a spatiotemporal grid, a maximum tem-
poral frequency of interest is chosen that determines all step sizes of the
grid. To attain a grid that is as coarse as possible, the Green’s function
and the (primary or contrast) source are filtered and windowed in all
spatiotemporal dimensions. The filtering operation prevents the aliasing
error that would otherwise result in all dimensions from the sampling
operation. Thus, we may attain a coarse discretization down to the
limit prescribed by the Nyquist-Shannon sampling theorem of two points
per wavelength/period of the maximum frequency of interest. The dis-
cretized convolution sum is efficiently evaluated using a Fast Fourier
Transform (FFT) method. For the contrast source and the pressure
field we require a doubling of the source domain by zero-padding in all
four dimensions to prevent a wraparound error. For a grid consisting
of N points this yields a complexity of the FFT method of the order
24N log(24N). We refer to this second part of the method as the Filtered
Convolution (FC) method.

• We have shown that the method is suitable for implementation on a se-
quential computer as well as on a parallel computer. For a number of linear
wave problems, results from the INCS method have been compared with
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an analytical solution, with a solution involving a numerical integration and
with results from the FieldII program [38, 39]. For a number of nonlinear
wave problems, results have been compared with results from methods based
on the Burgers equation [15] and on the KZK equation [7, 46], from the AS-
NLP method [85] and from a finite difference approximation of the Westervelt
equation [31, 36]. These results show that the INCS method produces accu-
rate results in all considered cases and that it is capable of efficiently predict-
ing the nonlinear pressure field in a large-scale domain. We conclude that
for moderate nonlinear distortion an accurate estimate of the h-th harmonic
frequency component is obtained by including h + 1 harmonics and itera-
tions up to j = h + 1, and most often it is sufficient to include h harmonics
and iterations up to j = h − 1. The INCS method shows no dependence
of the directionality of the wavefield. In case of strong nonlinear distortion
the method remains stable, for the one-dimensional wave problem up to the
plane-wave shock formation distance. However, since the strongly distorted
wavefields may exhibit sharp transitions and therefore would require a large
number of harmonics to be incorporated, the accuracy of the INCS method
is limited by the cutoff frequency used with the filtering operation. We con-
clude that because of its reliability, its robustness and the general validity of
its solution, the INCS method can be used as a benchmark model for wave
problems involving not too strong nonlinear distortion.

• We have shown with a validation experiment employing a rectangular
transducer and weak nonlinear distortion that the measured nonlinear acous-
tic field is predicted very well with the INCS method. Using the plane source
description we were capable to reproduce the axial and lateral field profiles
of the real transducer for the fundamental frequency component. For the
second harmonic component, the axial and lateral profiles and time signa-
tures were reproduced with an error close to the measurement accuracy of
1 dB. For the prediction of the third harmonic component we found that
the shapes of the axial and lateral profiles and of the time signature were
reproduced accurately. We explained that the underestimation of the third
harmonic profile was caused by a limited accuracy in the estimation of the
actual source signature used in the experiment.

7.2 Discussion

The presented INCS method is versatile and can be extended in a variety of
ways. Within the context of forward-wave problems in linear and nonlinear
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acoustics, the following extensions can be thought of:

• We may significantly extend the applicability of the INCS method by
including medium attenuation into the model. Up to now we have focused
on the accurate incorporation of nonlinear distortion and we have disregarded
the medium attenuation. Whereas in a medium like water the attenuation
can be safely neglected, in a medium like human tissue this is not the case.
We can think of two ways to include medium attenuation in our model. The
first way is to include a damping term in the contrast source [73] in a similar
way as the nonlinear term from the Westervelt equation. This will provide an
iterative correction to the lossless wave problem. The second way is to include
attenuation directly in the Green’s function of the background medium. The
latter approach is discussed in Appendix D.

• We may further extend the applicability of the INCS method by including
spatial inhomogeneity in the linear medium parameters ρ0 and κ0. This
would enable the INCS method to predict the diffraction and scattering of
the acoustic fields propagating in heterogeneous media like human tissue.
The inhomogeneous parts of the medium parameters can be interpreted as
a contrast to the homogeneous wave problem, and can be used to obtain a
contrast source term that gives an iterative correction to the homogeneous
field solution in a similar way as the nonlinear term from the Westervelt
equation. This approach is discussed in Appendix E. In the evaluation of
the contrast term due to inhomogeneity, we have to apply a spatial filter
to prevent spatial aliasing from occurring. For the accurate prediction of
the nonlinear propagation in inhomogeneous media, we may also have to
account for the local nonlinear distortion effects that were disregarded by
only considering the cumulative nonlinear behavior.

• We may include spatial inhomogeneity in the coefficient of nonlinearity β
as well. This may be necessary for the prediction of the nonlinear propagation
of acoustic fields in inhomogeneous media like human tissue. In the evaluation
of the contrast source, the omission of the spatial filtering as discussed in
Sections 4.1 and 5.1, is not allowed anymore.

• We may use an arbitrary volume source instead of a plane surface source.
The method is already capable of accounting for this type of source, as we
employed volume-type contrast sources in the iterative nonlinear corrections.
As an application we can think of acoustic fields generated by an optical
source, as occurs in photo-acoustic applications [16].

• We may use a formulation of the nonlinear medium behavior that is differ-
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ent from the one incorporated in the Westervelt equation. This may involve
the inclusion of the local nonlinearity effects that were discussed in Sec-
tion 2.5, or the application of an expression for the medium behavior that
differs from the one with the coefficient of nonlinearity β as developed in
Section 2.3.6. We could do this by employing the INCS method to solve
the pair of basic equations Eqs. (2.50) and (2.51) instead of the Westervelt
equation. However, this would require the storage of the three components
of the acoustic velocity as well as the acoustic pressure, and it would thus
increase the memory requirements by a factor four.

• In order to improve the convergence of the iterative scheme in the INCS
method, we may employ other iterative schemes than the Neumann solution.
Possible candidates are overrelaxation methods, Conjugate Gradient methods
or any other Krylov subspace method [23].

The application of the FC method may be fruitfully extended to other
wave problems like inverse source and scattering problems, to other physical
domains like electromagnetics or elastodynamics, and to any field of research
that involves the numerical evaluation of multi-dimensional, large-scale con-
volution integrals.

This concludes our thesis on the modeling of nonlinear medical diag-
nostic ultrasound. It is our hope that the research described in this the-
sis contributes to the further development of medical diagnostic ultrasound
equipment, and that the application of the method improves the understand-
ing of the physics underlying the generation and propagation of nonlinear
acoustic fields.
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Evaluation of the lossless Burgers equation

based on a time-base transformation

In Chapter 4 we have employed a numerical solution of the Burgers equation
as a benchmark solution for the one-dimensional INCS method. The method
to obtain and to evaluate the Burgers equation is described in [32]. In this
appendix we will shortly present the derivation of the Burgers equation from
the Westervelt equation, as well as its implicit solution. Based on this implicit
solution, an approximate solution of the Burgers equation can be obtained
with the aid of a time-base transformation [15], as will be discussed below.

The lossless Burgers equation is derived from the one-dimensional loss-
less and source-free version of the Westervelt equation. The latter follows
from Eq. (2.70) as [32]

1

c2
0

∂2p

∂t2
− ∂2p

∂x2
=

β

ρ0c4
0

∂2p2

∂t2
. (A.1)

The introduction of a comoving or retarded time τ = t − x/c0 in Eq. (A.1),
and the consequent transformation of the partial derivatives, yields

2

c0

∂2p

∂x∂τ
− ∂2p

∂x2
=

β

ρ0c4
0

∂2p2

∂τ2
. (A.2)

Within the comoving time frame, the variation of the pressure with respect
to x is small. If we neglect the second-order derivative with respect to x in
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Eq. (A.2), and we integrate the resulting expression with respect to τ , we
obtain the lossless Burgers equation

∂p

∂x
=

β p

ρ0c3
0

∂p

∂τ
. (A.3)

For this differential equation we have an implicit solution of the form

p(x, τ) = f(φ), φ = τ +
β

ρ0c3
0

(x − x0) p(x, τ), (A.4)

where f(φ) is an arbitrary function and x0 is an arbitrary constant. Tak-
ing x = x0 shows us that p(x0, τ) = f(τ), and therefore we can also write
Eq. (A.4) as

p(x, τ) = p[x0, τ +
β

ρ0c3
0

(x − x0) p(x, τ)]. (A.5)

The introduction of a distance Δx by defining x = x0 + Δx gives us

p(x0 + Δx, τ) = p[x0, τ +
β

ρ0c3
0

Δx p(x0 + Δx, τ)]. (A.6)

If we substitute the Taylor expansion of p(x0 + Δx, τ) around x = x0 in the
argument on the right-hand side of Eq. (A.6) and we neglect the higher order
terms in Δx, we obtain

p(x0 + Δx, τ) ≃ p[x0, τ +
β

ρ0c3
0

Δx p(x0, τ)], (A.7)

which approximation is valid as long as p(x, τ) varies slowly enough over
the distance Δx. The pressure at x = x0 + Δx is thus obtained from the
pressure at x = x0 by transforming the time-base of p(x0, τ) with a shift
that depends on the magnitude of the pressure field at each time instant.
This principle is shown in Fig. A.1 for a pressure field exhibiting a sinu-
soidal waveform at x = x0. From the figure we clearly observe the waveform
steepening effect that was also noted in Subsection 4.3.4. It is also clear
that an inconsiderate application of the time-base transformation results in
a multivalued waveform. Even before this case, the approximations of loss-
less propagation and the neglection of the second derivative in x do not hold
anymore. If we want to prevent multivaluedness, we may include absorption
into the Burgers equation. This may reduce the magnitude of the time shift
at time instants where steep slopes are present in the pressure field. In this
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Figure A.1. Time base transformation of a sinusoidal pressure field with an amplitude
P0 given at x = x0 (solid), resulting in the pressure field at a new position
x = x0 + Δx (dashed). The maximum shift equals A = βP0Δx/ρ0c

3
0.

thesis, the situation of a multivalued waveform is prevented by not marching
the solution of the Burgers equation beyond the shock formation distance
that is given by Eq. (4.11).

The spatial step size Δx is limited by the assumption regarding the
slow variation of p that leads to Eq. (A.7). By successive application of
Eq. (A.7) we obtain a numerical method that predicts the nonlinear pressure
at a position x = k Δx, k being a positive integer, starting from a given
source pressure p(0, τ) = P0 s(t) at x = 0. Here, P0 and s(t) respectively are
the source pressure amplitude and the source signature, as in Section 4.1. If
the source pressure is sampled on a uniform temporal grid, then the time-base
transformation results in a temporal axis that is nonuniformly spaced. To
recover the uniform grid, the waveform has to be interpolated at the original
time instants. For an accurate interpolation, the temporal sampling step size
Δt needs to be sufficiently small.
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Computational approaches for the efficient

evaluation of the INCS method in case of

large-scale problems

As was noted in Section 1.3, the problem of our interest concerns the eval-
uation of the pressure field in a large-scale, four-dimensional spatiotemporal
domain. Moreover, since the developed INCS method is an iterative method
with operations that apply to the full spatiotemporal grid, data needs to be
stored for all grid points. This may result in considerable memory require-
ments. For this reason, a significant part of Chapter 3 was devoted to the
development of the Filtered Convolution method, which enables an efficient
discretization. Still, the computational grids are of such a size that optimized
strategies for reduction of the memory usage are required for the evaluation
of the problem. In this appendix we will discuss a number of strategies that
either reduce the total spatiotemporal domain size or that minimize the mem-
ory demands during the evaluation of the INCS method. We will focus on
the evaluation of the convolution sum, as this is the most elaborate operation
in the INCS method in terms of memory requirements and computer time.
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Evaluation of the four-dimensional convolution sum

First we repeat the four-dimensional discrete convolution sum from Eq. (3.39)

L[S(j)]a,b,c,n = Δx3Δt
∑

d,e,f

∑

m

Ga−d,b−e,c−f,n−m S
(j)
d,e,f,m. (B.1)

We focus on the case j ≥ 1, for which S(j) is a source that is distributed over
a volume and the operator L[S(j)] yields the nonlinear field correction δp(j).
In Eq. (B.1), all quantities denote the spatiotemporally filtered, windowed
and sampled forms. Throughout this appendix we will omit the notation
developed in Chapter 3 to indicate this. To further simplify the notation,
in this appendix we will also omit the superscript (j), and we will use the
continuous variables x and t and their Fourier transform counterparts instead
of the subscript indices. In this way we focus on the computational evaluation
of the convolution sum and we are not distracted by heavy notation.

The spatiotemporal source domain as well as the spatiotemporal do-
main of interest are given by [0, X] × [0, T ], such that the grids of δp(x, t)
and S(x, t) coincide and have a size of A × B × C × N points. A straight-
forward evaluation procedure is presented in Fig. B.1 in the form of a Nassi-
Shneiderman structure diagram. The largest memory demand during the
numerical evaluation occurs at steps 4 to 7, where we have two complex ar-
rays of 16A × B × C × N points in memory. The data of L̃[S](k, ω) that is
obtained in step 7 may be stored in the array of S̃(k, ω). The most elaborate
operations in terms of computer time are obtaining Ĝ(x, ω) and evaluating
the FFT’s and IFFT’s.

Strategy 1: Use real-to-complex FFT routines

Since the Fourier spectrum of a real function f(t) has the property f̂(−ω) =
f̂∗(ω), we can save a factor of two in memory usage by only storing the
function values for the positive frequencies in [0, Ω]. The FFTW package [27,
28] employs special real-to-complex FFT routines that take care of this. We
can only employ this strategy in case of the temporal dimension, since the
subsequent transformations involve complex quantities.
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1. Obtain S(x, t) employing the windows [0, X ] and [0, T ]

2. Zero-pad S(x, t) in x and t

3. FFT S(x, t) with respect to x and t

4. Obtain Ĝ(x, ω) employing the windows [−X , X ] and [−T, T ]

5. Scale Ĝ(x, ω) with 1/∆t and reorder in ω

6. FFT Ĝ(x, ω) with respect to x

7. L̃[S](k, ω) := G̃(k, ω) S̃(k, ω)

8. IFFT L̃[S](k, ω) with respect to k and ω

9. Reduce the support of L[S](x, t) in x and t

10. Scale L[S](x, t) with ∆x3∆t

11. δp(x, t) := L[S](x, t)

Figure B.1. Structure diagram for the evaluation of the convolution sum in Eq. (B.1),
with the source domain and the domain of interest [0,X] × [0, T ].

Strategy 2: Use efficient evaluation of the convolution sum

The evaluation procedure in Fig. B.1 is not efficient in terms of computation
time and memory use, as in step 3 it first declares two large arrays and then
performs four-dimensional FFTs on these as a whole, i.e. including all zero-
padding regions in S(x, t). We can improve the procedure by addressing
each dimension separately [42]. In our case it is most beneficial to apply this
strategy only to the temporal dimension. The procedure for this strategy is
given in Fig. B.2.

The largest memory demand during the evaluation now occurs at steps
8 to 11, where we have a complex array of 2A × B × C × N points and
two complex arrays of 8A × B × C points in memory. This is considerably
less than the memory needed for the procedure in Fig. B.1. The obtained
L̃[S](k, ωn) in step 10 may again be stored in the array of S̃(k, ωn).

Strategy 3: Use a circular temporal axis

The FFT method yields a circular convolution instead of a linear one. As
a consequence, to evaluate the linear temporal convolution of the Green’s
function G with a single-pulse source signature S, we have to extend the
support [0, T ] of S by zero-padding. In doing so, we prevent the appearance
of a wraparound error in the pressure field within the interval [0, T ]. However,
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1. Obtain S(x, t) employing the windows [0, X ] and [0, T ]

2. Zero-pad S(x, t) in t

3. FFT S(x, t) with respect to t

4. For each ωn

5. Obtain Ĝ(x, ωn) employing the windows [−X , X ] and [−T, T ]

6. Scale Ĝ(x, ωn) with 1/∆t and reorder in ω

7. FFT Ĝ(x, ωn) with respect to x

8. Extend the support of Ŝ(x, ωn) in x

9. FFT Ŝ(x, ωn) with respect to x

10. L̃[S](k, ωn) := G̃(k, ωn) S̃(k, ωn)

11. IFFT L̃[S](k, ωn) with respect to k

12. Reduce the support of L̂[S](x, ωn) in x

13. IFFT L̂[S](x, ω) with respect to ω

14. Reduce the support of L[S](x, t) in t

15. Scale L[S](x, t) with ∆x3∆t

16. δp(x, t) := L[S](x, t)

Figure B.2. Structure diagram for the memory-efficient evaluation of the convolution
sum in Eq. (B.1), with the source domain and the domain of interest
[0,X] × [0, T ].

if the source signature is periodical with a period TP we can perform the
convolution by taking only one period t ∈ [0, TP ) of the source signature and
using a cyclic convolution with period TP . In order for the cyclic convolution
to yield the correct pressure field solution, we also need the cyclic continuation
of the Green’s function with a period TP . This is automatically obtained by
omitting the temporal windowing of the Green’s function in the temporal
Fourier domain. By using the cyclic convolution, the zero-padding region in
t is omitted. This results in a total grid size that is a factor of two smaller
as compared to the linear convolution with an aperiodic pulse.

The approach for the periodical source signature can also be employed
in the case of a single pulse excitation, saving a factor of two in memory
demand and computation time. If the temporal support on each spatial
position in the domain of interest has a maximum length T , regardless of the
time of arrival at that position, then a periodical continuation with a period
TP = T of the source and of the resulting pressure field will never yield an
overlap of the original field with its periodically continued counterparts. To



Efficient evaluation of large-scale problems 159

1. Obtain S(x, t) employing the windows [0, X ] and [0, T ]

2. Zero-pad S(x, t) only in x

3. FFT S(x, t) with respect to x and t

4. Obtain Ĝ(x, ω) employing only the spatial window [−X , X ]

5. Scale Ĝ(x, ω) with 1/∆t and reorder in ω

6. FFT Ĝ(x, ω) with respect to x

7. L̃[S](k, ω) := G̃(k, ω) S̃(k, ω)

8. IFFT L̃[S](k, ω) with respect to k and ω

9. Reduce the support of L[S](x, t) in x

10. Scale L[S](x, t) with ∆x3∆t

11. δp(x, t) := L[S](x, t)

Figure B.3. Structure diagram for the evaluation of the convolution sum in Eq. (B.1)
with the source domain and the domain of interest [0,X] × [0, T ]. The
procedure is applicable in case of either a periodical source signal with a
period TP = T , or when it may be assumed that the temporal window size
T is large enough to prevent the cyclic continuation of the field solution
from overlapping with the original field solution.

reconstruct the absolute time axis of the pressure field at a certain point, we
multiply the periodical continuation with a window at [t0, t0 + TP ], where t0
is the time of arrival at that point. The evaluation procedure for the cyclic
convolution sum is presented in Fig. B.3.

In the cyclic temporal convolution, the total number of points for S
is now N instead of 2N . For Ĝ(x, ω) this means that the samples in the
angular frequency domain are taken at ω = nΔω with Δω = 2π/NΔt and
n ∈ [−(N/2), (N − 1)/2] (division rounded down).

Strategy 4: Use convolutions over skew domains (candy cane
method)

As observed in Subsection 5.3.3, for the evaluation of the nonlinear field at a
certain point of observation it is sufficient to include the contrast sources in
the region in between the primary source and the point of observation. To
compute the field in points relatively close to the z-axis, e.g. for an unsteered
beam, we can take a block-shaped domain of interest with x and y-dimensions
that are approximately equal to the sizes of the primary source, as sketched
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Figure B.4. (a) Block-shaped domain of interest, located around the positive z-axis.
(b) Parallelepiped-shaped domain of interest around an axis with azimuth
α and elevation β. (c) Time of arrival on the z-axis of a pulse excited
at z = 0 on t = 0, and a stationary ”rectangular” domain of interest
with duration T . (d) Same situation as in (c), but now with a comoving
”parallelogram-shaped” domain of interest with duration T .

in Fig. B.4a. However, for points at a larger distance from the z-axis, e.g.
for a steered beam or a grating lobe, we would need block-shaped domains
of interest with large x or y-dimensions to cover the region in between the
primary source and the point of observation. In this case it is much more
efficient to calculate the field in a parallelepiped-shaped domain of interest,
with a certain azimuth and elevation, as depicted in Fig. B.4b.

A similar situation occurs in combination with the temporal dimension,
as is shown in Figs. B.4c and d. An excitation from the primary source at
z = 0 on t = 0 causes an acoustic pressure field on the z-axis with a time of
arrival t = z/c0. When studying the pressure pulse of duration T , it would
be more efficient to calculate the field in a temporal window that moves along
with the time of arrival. This is achieved by using a parallelogram-shaped
domain in the tz-plane.
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Figure B.5. Illustration of the blockwise evaluation of the convolution over two blocks
[0, Z/2) and [Z/2, Z) in the z-dimension.

An efficient method to calculate the convolution over a domain of that
is skew in any of the xz, yz and tz-planes and that yields a result in another
domain with arbitrary skewness, has been developed by De Koning [42]. This
method is called the candy cane method, and for a domain of interest and a
contrast source domain with equal skewness, it is equally efficient in memory
demand and computation time as the convolution over a rectangular domain
of the same volume.

For the temporal dimension, the situation with the comoving domain
is comparable to the periodical window used for Strategy 3, in that we can
use a much smaller time window than in case of a stationary domain. The
differences with Strategy 3 are that for the comoving domain we still need to
include a wraparound region, but on the other hand the time window at any
spatial position can now be taken below the maximum temporal support of
the entire field.

Strategy 5: Use spatiotemporal decomposition and blockwise
evaluation

If the domain of interest is too large to allow for the evaluation of the con-
volution, then we can subdivide the domain into spatiotemporal blocks and
we can evaluate the convolution using a blockwise approach. To illustrate
this, we consider a blockwise convolution in the z-dimension. For any ”field”
block, the result of the convolution over a ”source” block is evaluated, and
the results are added as depicted in Fig. B.5. In the procedure, care should
be taken to avoid overlap. The blockwise evaluation of the convolution takes
much less memory because of the smaller zero-padding regions and because
only the specific source and field correction blocks are needed in core mem-
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1. For v := 0 to V − 1

2. Obtain S(x, y, zv, t)

3. Zero-pad S(x, y, zv, t) in x and t

4. FFT S(x, y, zv, t) with respect to x and t

5. For w := 0 to V − 1

6. Obtain Ĝ(x, y, zvw, ω) employing the appropriate windows

7. Scale Ĝ(x, y, zvw, ω) with 1/∆t and reorder in ω

8. FFT Ĝ(x, y, zvw, ω) with respect to x

9. L̃[S](k, ω) := G̃(k, ω) S̃(k, ω)

10. IFFT L̃[S](k, ω) with respect to k and ω

11. Reduce the support of L[S](x, y, zw, t) in x and t

12. Scale L[S](x, y, zw, t) with ∆x3∆t

13. Add L[S](x, y, zw, t) to δp(x, y, zw, t)

Figure B.6. Structure diagram for the evaluation of the convolution sum in
Eq. (B.1) with the source domain and the domain of interest [0,X] ×
[0, T ], using blockwise evaluation over V blocks in the z-dimension.
Here, zv ∈ [v Z/V, (v + 1)Z/V ), zw ∈ [w Z/V, (w + 1)Z/V ) and
zvw ∈ ((w − v − 1)Z/V, (w − v + 1)Z/V ).

ory. The procedure for the evaluation of the convolution using a blockwise
approach in the z-dimension is given in Fig. B.6.

The approach to evaluate the convolution with a blockwise approach
may come at a cost in computation time. Firstly, for a one-dimensional
domain with a total of C points, the order of complexity of the blockwise
approach with V blocks is 2CV log(2C/V ). Compared with an order of
complexity of 2C log(2C) for the procedure in Fig. B.1, the increase in com-
putation time becomes considerable for large V . However, the blockwise
approach also gives us the option to exclude certain blockwise convolutions
that contribute little or nothing at all. We concluded in Subsection 5.3.3
that the contrast sources between the source and the point of observation
contribute dominantly to the nonlinear field correction. With the blockwise
approach we can therefore benefit from the fact that any source blocks out-
side this area can safely be disregarded. A second cause for the increase
in runtime is introduced if the harddisk is used as an external memory. If
between the blockwise convolutions the total contrast source data and the
total field correction data are stored on and retrieved from harddisk, then
the time needed for data access increases considerably as compared to the
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use of core memory. Thirdly, the blockwise approach requires the Green’s
function to be evaluated more often, which causes a considerable increase of
the total computation time.

Strategy 6: Use the symmetry

All primary source geometries used in Chapter 5 exhibit symmetry in the
y-dimension, which we can exploit to reduce memory demands and com-
putation time. A primary source that is symmetrical in the y-dimension
yields a pressure field that obeys p(x, y, z, t) = p(x,−y, z, t). If the source
domain as well as the domain of interest are given by [0, X] × [0, T ], with
[0, X] = [0, X]× [−Y, Y ]× [0, Z], the grids of δp(x, t) and S(x, t) coincide and
have a size of A×2B×C×N points. If we obtain the pressure field for [0, Y ]
only, we may use this field to calculate the contrast sources in [0, Y ], but
also the contrast sources in [−Y, 0). The required size of the grid of δp(x, t)
and S(x, t) is thus A × B × C × N , as in the straightforward convolution,
although the source domain employed in the computation is twice as large.
The procedure for the evaluation of the convolution employing symmetry in
the y-dimension is presented in Fig. B.7.

This strategy is a special case of Strategy 5, and it works in combination
with Strategy 4, as long as the elevation angle β = 0◦. It may also be applied
in the x-dimension if we have symmetry in that dimension.
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1. Obtain S(x, y+, z, t)

2. Zero-pad S(x, y+, z, t) in x and t by zero-padding

3. FFT S(x, y+, z, t) with respect to x and t

4. Obtain Ĝ(x, y++, z, ω) employing the appropriate windows

5. Scale Ĝ(x, y++, z, ω) with 1/∆t and reorder in ω

6. FFT Ĝ(x, y++, z, ω) with respect to x

7. L̃[S](k, ω) = G̃(k, ω) S̃(k, ω)

8. IFFT L̃[S](k, ω) with respect to k and ω

9. Reduce the support of L[S](x, y+, z, t) in x and t

10. Scale L[S](x, y+, z, t) with ∆x3∆t

11. δp(x, y+, z, t) := L[S](x, y+, z, t)

12. Obtain S(x, y−, z, t) from S(x,−y−, z, t)

13. Zero-pad S(x, y−, z, t) in x and t by zero-padding

14. FFT S(x, y−, z, t) with respect to x and t

15. Obtain Ĝ(x, y−+, z, ω) employing the appropriate windows

16. Scale Ĝ(x, y−+, z, ω) with 1/∆t and reorder in ω

17. FFT Ĝ(x, y−+, z, ω) with respect to x

18. L̃[S](k, ω) := G̃(k, ω) S̃(k, ω)

19. IFFT L̃[S](k, ω) with respect to k and ω

20. Reduce the support of L[S](x, y+, z, t) in x and t

21. Scale L[S](x, y+, z, t) with ∆x3∆t

22. δp(x, y+, z, t) := δp(x, y+, z, t) + L[S](x, y+, z, t)

Figure B.7. Structure diagram for the evaluation of the convolution sum in Eq. (B.1)
with the source domain and the domain of interest [0, X]×[−Y, Y ]×[0, Z]×
[0, T ]. The procedure is applicable in case of symmetry in the y-dimension.
Here, y+ ∈ [0, Y ], y− ∈ [−Y, 0), y++ ∈ [−Y, Y ] and y−+ ∈ (0, 2Y ].
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Derivation of the linear acoustic field of a

cylindrical piston transducer causing a

pressure jump

In this appendix we describe the derivation of the linear acoustic pressure field
of a cylindrical piston source causing a pressure jump. From the convolution
integral in Eq. (3.7) we derive a single variable integral that can be evaluated
with a standard numerical method.

The source under study is an unfocused cylindrical piston source lo-
cated in the plane z = 0 and causing a pressure jump. The piston has
O as its center and R as its radius. It causes a pressure jump that,
conform Eq. (5.4), can be described as ΔP (x, y, t) = 2P0 s(t) a(x, y) with
a(x, y) = H(R −

√

x2 + y2). If the pressure jump source of Eq. (3.64) and
the three-dimensional Green’s function of Eq. (3.9) are substituted into the
convolution integral in Eq. (3.7), then an expression is obtained for the linear
acoustic pressure p(x, t) in a point of observation x, viz.

p(x, t) =−
∫

DS

∫

TS

δ(t−t′ − ‖x−x′‖ /c0)

4π ‖x−x′‖ ∂z′ [ΔP (x′, y′, t′) δ(z′)] dt′ dx′.

(C.1)

With the application of the commutativity property for the convolution, see
Eq. (3.66), and by using the sifting property of the delta pulses, we can
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Figure C.1. Geometry of the cylindrical source, showing the source point x′ and the
observation point x, the polar coordinate system (ρ, θ), and several other
geometrical variables.

rewrite Eq. (C.1) as

p(x, t) =−∂z

∫

DS

ΔP (x′, y′, t − ‖x−x′‖ /c0)

4π ‖x−x′‖ dx′. (C.2)

where x′ = (x′, y′, 0). We now apply a transformation of x′ [33]. First
we define the point O′ as the projection of x onto the source plane, i.e.
O′ = (x, y, 0). Next, within the source plane we introduce the set of polar
coordinates (ρ, θ) with respect to O′ as

ρ =
√

(x′ − x)2 + (y′ − y)2, (C.3)

θ = tan−1

(

y′ − y

x′ − x

)

. (C.4)

The polar coordinate system is shown in Fig. C.1. Moreover, we introduce
the distance D between O and O′, the distance d between the observation
point x and the source point x′, and the retarded time τ as

D =
√

x2 + y2, (C.5)

d =
∥

∥x−x′
∥

∥ =
√

ρ2 + z2, (C.6)

τ = t − ‖x−x′‖
c0

= t − d

c0
. (C.7)
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Figure C.2. Determination of the angle Θ(ρ), for a source point x′ on the rim of the
cylindrical source. (a) Case D ≥ R and ρ ∈ [D − R,D + R]. (b) Case
D < R and ρ ∈ [R − D,R + D]; in this case there is no point on the rim
for ρ ∈ [0, R − D).

In the polar coordinate system we have dx′ = ρ dθ dρ, and by writing out
the excitation function, the integral in Eq. (C.2) yields

p(x, t) = −∂z

∫ ∞

0

∫ 2π

0

ΔP (ρ, θ, τ)

4π d
ρ dθ dρ

= −∂z

∫ ∞

0

P0 s(τ)

d

∫ 2π

0

a(ρ, θ)

2π
dθ ρ dρ. (C.8)

The geometry function a(ρ, θ) is derived from a(x′, y′) as

a(ρ, θ) = H
(

R −
√

[x + ρ cos(θ)]2 + [y + ρ sin(θ)]2
)

. (C.9)

Let us now define the function

aρ(ρ) =

∫ 2π

0

a(ρ, θ)

2π
dθ. (C.10)

The value of this function is determined by that part of the circle with radius
ρ and center O′ that falls within the support of a(x, y). We distinguish
between two cases that depend on the location of O′, as shown in Fig. C.2.
In case D ≥ R, for ρ ∈ [D − R, D + R] a part of the circle falls within the
support of a(x, y). As may be deduced from Fig. C.2a, the angle Θ(ρ) is
found from the cosine law as

Θ(ρ) = cos−1

(

D2 + ρ2 − R2

2Dρ

)

, (C.11)
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Table C.1. The ranges of ρ and the expressions for aρ(ρ), for the two cases for D. For
all other values of ρ, we have aρ(ρ) = 0. Θ(ρ) is given by Eq. (C.11).

Case Range [ρ1, ρ2]

for D ρ1 ρ2 aρ(ρ)

D ≥ R D − R D + R Θ(ρ)/π

D < R 0 R − D 1

D < R R − D R + D Θ(ρ)/π

and within this range of ρ, we therefore have

aρ(ρ) =
Θ(ρ)

π
. (C.12)

In case D < R, for ρ ∈ [0, R − D) the entire circle falls within the support
of a(ρ, θ), and therefore we have aρ(ρ) = 1. As shown in Fig. C.2b, for
ρ ∈ [R −D, R + D] the angle Θ(ρ) is again found from the cosine law and is
again given by Eq. (C.11). In all cases, the value of aρ(ρ) varies between 0
and 1, and aρ(ρ) acts as a geometry function. For the different cases for D
and ranges [ρ1, ρ2] of ρ the corresponding expressions for aρ(ρ) are given in
Table C.1. Substitution of aρ(ρ) into Eq. (C.8) gives us

p(x, t) = −∂z

∫ ρ2

ρ1

P0 s(τ)

d
aρ(ρ) ρ dρ. (C.13)

Next, we apply the derivative with respect to z, and with

∂z
1

d
=

−z

d3
, (C.14)

∂zτ =
−z

c0d
, (C.15)

we arrive at

p(x, t) = z P0

∫ ρ2

ρ1

[

s(τ)

d3
+

∂τs(τ)

c0 d2

]

aρ(ρ) ρ dρ. (C.16)

Finally, we change the integration variable from ρ to d. From Eq. (C.6) we
obtain ρ dρ = d dd, and this yields

p(x, t) = z P0

∫ d2

d1

[

s(τ)

d2
+

∂τs(τ)

c0 d

]

aρ(d) dd. (C.17)
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Table C.2. The ranges of d and the expressions for aρ(d), for the two cases for D. For
all other values of d, we have aρ(d) = 0. Θ(d) is given by Eq. (C.18).

Case Range [d1, d2]

for D d1 d2 aρ(d)

D ≥ R
√

(D − R)2 + z2
√

(D + R)2 + z2 Θ(d)/π

D < R z
√

(R − D)2 + z2 1

D < R
√

(R − D)2 + z2
√

(R + D)2 + z2 Θ(d)/π

For the different cases for D and ranges [d1, d2] of d, the corresponding ex-
pressions for aρ(d) are given in Table C.2. The angle Θ(d) employed in this
table is derived from Eq. (C.11) as

Θ(d) = cos−1

(

D2 + d2 − z2 − R2

2 D
√

d2 − z2

)

. (C.18)

The integral occurring in Eq. (C.17) is a regular integral that can be
evaluated numerically up to any degree of accuracy with an adaptive Lobatto
quadrature rule. On the source axis a closed-form solution can straightfor-
wardly be obtained from Eq. (C.13). For this special case we have ρ1 = 0
and ρ2 = R, and in between these bounds aρ(ρ) = 1. Equation (C.13) then
reduces to

p(z, t) = −∂z

∫ R

0

P0 s(τ)

d
ρ dρ. (C.19)

It can be easily shown that

∂z
s(τ)

d
=

z

ρ
∂ρ

s(τ)

d
, (C.20)
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and for z > 0 Eq. (C.19) therefore results in

p(z, t) = −z

∫ R

0
∂ρ

P0 s(τ)

d
dρ

= −z
P0 s(τ)

d

∣

∣

∣

∣

ρ=R

ρ=0

= P0 s(t − z

c0
) − z√

z2 + R2
P0 s(t −

√
z2 + R2

c0
). (C.21)

The two terms in this final form are respectively called the body wave and the
edge wave. The body wave term resembles a plane-wave starting at z = 0,
and the edge wave term seems to originate at the edge of the source. At the
source, the axial pressure field simply becomes limz↓0 p(z, t) = P0 s(t). For
z ≫ R, Eq. (C.21) can be approximated by

p(z, t) ≈ P0 s(τ) − P0 s(τ − R2

2c0z
), (C.22)

where τ = t− z/c0. For large z the time difference between the first and the
last term, i.e. the term R2/2c0z, becomes very small. From this we observe
that for z → ∞ we may apply a further approximation

p(z, t) ≈ R2

2c0z
∂τ P0 s(τ). (C.23)

This shows that for large z the waveform of the pressure on the axis resembles
the time derivative of the source pulse.
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Extension of the INCS method to media

with attenuation of a frequency power law

type

In the development of the INCS method we have disregarded the occurrence
of attenuation in the acoustic medium. As we mentioned in Sections 1.3
and 2.5, for water this neglection is allowed in case of not too strong non-
linearity. However, for the linear or nonlinear propagation of acoustic waves
through a medium like human soft tissue, attenuation cannot be neglected.
For the frequencies considered in this thesis, attenuation in tissue is about a
factor 100 higher than in water. In this appendix we will present an approach
for including acoustic attenuation in our physical and numerical model. We
start with the phenomenology of attenuation in water and in human tissue.
Next, we turn our attention to the inclusion of attenuation in the linear basic
equations and in the associated Green’s function. Subsequently, we discuss
the spatiotemporal filtering and windowing of the lossy Green’s functions,
followed by a description of the numerical evaluation of the resulting ex-
pressions. After this we generalize the approach to the nonlinear acoustic
wave problem, and finally we show the performance of the approach and the
differences with some results presented earlier in this thesis.
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Phenomenology of attenuation and dispersion in water and in tissue

When an acoustic wave propagates through a realistic medium, it undergoes
attenuation. A plane, harmonic wave traveling in the positive x-direction
through a lossy medium can be described by [65]

p(x, t) = P0 exp[jω(t − x/c0)] exp(−αx) = P0 exp(jωt − γx), (D.1)

where α > 0 is the attenuation coefficient and

γ(ω) = j
ω

c0
+ α (D.2)

is the propagation coefficient. The attenuation coefficient is usually expressed
in nepers per centimeter [Np/cm] or decibel per centimeter [dB/cm].1 For
water, α is proportional to the square of the frequency [32, 65]. For human
soft tissue, α can usually be described by a frequency power law with a power
1 < b < 2 up till very high frequencies [19]. For both types of media, the
attenuation coefficient can therefore be written as

α(ω) = α1 |ω|b , α1 > 0, 1 < b ≤ 2. (D.3)

Table D.1 lists typical values for the relevant acoustic medium parameters
for water and for several human tissues.

Lossy basic equations and lossy Green’s function

When drawing up a mathematical framework for the propagation of acous-
tic waves through an attenuative medium, two principles must at least be
obeyed that are essential to the physical nature of wave propagation. The
first principle is that of causality, i.e. a response cannot precede its cause.
The second principle is that an excitation always results in a wavefront that
travels through the medium with a finite sound speed. In this section we start
with the linearized, constitutive equations for a medium with relaxation in
the compressibility parameter. Together with the basic acoustic equations,
these relations lead to a Green’s function of the lossy, linear and homoge-
neous background medium that respects the two principles of acoustic wave
propagation and that expresses a frequency power law type of attenuation.

11 Np = 8.686 dB.
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Table D.1. Acoustic medium parameters for water and for several human tissues, ob-
tained from [19, 65]. The attenuation coefficient a as in the frequency
power law af b is given, from which α1 follows as α1 = a (2π)−b. The
given numbers are typical values.

Medium type c0 ρ0 β a b
[m s−1] [kg m−3] [Np cm−1MHz−b]

water 1492 998 3.52 2.5×10−4 2.0
blood 1584 1060 4.00 1.6×10−2 1.21
brain 1562 1035 4.28 6.7×10−2 1.3
fat 1430 928 6.14 1.4×10−2 1.0∗

liver 1578 1050 4.38 5.2×10−2 1.05
muscle (skeletal) 1580 1041 4.72 6.3×10−2 1.0∗

∗ assumed value

From Eqs. (2.30) and (2.38) the linearized, constitutive equations for
a lossless and therefore instantaneously reacting medium are obtained as

Φ̇k = ρ0∂tvk, (D.4)

θ̇ = −κ0∂tp. (D.5)

We introduce an attenuation mechanism in the medium by incorporating
relaxation in the compressibility parameter, and because of this the second
equation becomes

θ̇(t) = −κ0∂t

∞
∫

−∞

χ(t − τ)p(τ) dτ = −κ0∂t [χ(t) ∗t p(t)] , (D.6)

where χ(t) [s−1] is a normalized compressibility relaxation function and ∗t

denotes the convolution with respect to time. In this relation, causality
demands that the dilatation rate θ̇(t) is the reaction of the medium to a
pressure p(t) imposed on it either before or at the time of the reaction.
Therefore we must require that the integrand only yields a contribution for
τ ≤ t, which means that

χ(t) = 0 for t < 0. (D.7)

In the derivation of the first-order linear acoustic equations (2.55) and (2.56)
we have neglected loss mechanisms like viscosity and heat conduction by
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making Assumptions 3 and 6. Without going into detail on these issues, we
now simply assume that the linear acoustic equations for a lossy medium may
be obtained from the inclusion of Eqs. (D.4) and (D.6) in the deformation
equation (2.17) and the equation of motion (2.21). This gives [74]

∂kp(xj , t) + ρ0∂tvk(xj , t) = fk(xj , t), (D.8)

∂rvr(xj , t) + κ0∂t [χ(t) ∗t p(xj , t)] = q (xj , t). (D.9)

Conform the derivation in Section 2.4 these equations yield a lossy, linear
wave equation of the form

1

c2
0

∂2
t [χ(t) ∗t p(xj , t)] − ∂2

kp(xj , t) = S(xj , t). (D.10)

The Green’s function G(xj , t) for the lossy wave problem is defined as the
pressure response to a point source that is located at xj = 0 and that emits
an impulse at t = 0, i.e.

1

c2
0

∂2
t [χ(t) ∗t G(xj , t)] − ∂2

kG(xj , t) = δ(xj)δ(t). (D.11)

The lossy Green’s function has to obey causality as well, so G(xj , t) = 0 for
t < 0. Moreover, the lossy Green’s function has to yield a wavefront that
travels through the medium with a finite speed. This speed should equal the
sound speed c0 of the lossless wave problem.

The Green’s function is best solved from Eq. (D.11) by applying inte-
gral transforms with respect to xj and t. As in Section 3.4, we will employ
the Fourier transform in the spatial dimensions. For the temporal dimen-
sion however, we favor the single-sided Laplace transform, as it provides
straightforward conditions to ensure causality and to find the speed of the
wavefront. The Laplace transform f̂(s) of an arbitrary, causal function f(t),
with f(t) = 0 for t < 0, is defined by the Laplace transformation pair

f̂(s) =

∞
∫

0

f(t) exp(−st) dt, (D.12)

f(t) =
1

2πj

s0+j∞
∫

s0−j∞

f̂(s) exp(st) ds, (D.13)

where s is the complex Laplace parameter. The integration path in the in-
verse transformation is called the Bromwich contour and s0 is chosen such
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that the contour is located to the right of any singularities of the integrand.
Note from comparison with Eqs. (3.19) and (3.20) that the Fourier trans-
form pair of an arbitrary, causal function f(t) is obtained from Eqs. (D.12)
and (D.13) by taking the limit s → jω from the right half of the complex
s-plane. Since both χ(t) and G(xj , t) are causal functions, application of the
temporal Laplace and spatial Fourier transformations to Eq. (D.11) yields

[

s2

c2
0

χ̂(s) + ‖k‖2

]

G̃(k, s) = 1, (D.14)

and thus we find that the Green’s function in the spatiotemporal Fourier
domain is given by

G̃(k, s) =
1

‖k‖2 + γ2
, (D.15)

where

γ(s) =
s

c0
χ̂1/2(s) (D.16)

is the propagation coefficient. Comparison of Eq. (D.15) with Eqs. (3.46)
and (3.55) shows that the lossless Green’s functions straightforwardly gener-
alize to their lossy forms by substituting jk = γ(s). By using this substitution
in the lossless, temporal Fourier domain expressions in Eqs. (3.45) and (3.54),
we obtain the lossy, temporal Laplace domain forms of the one-dimensional
and three-dimensional Green’s functions as

Ĝ(x, s) =
exp(−γ(s) |x|)

2γ(s)
, (D.17)

Ĝ(x, s) =
exp(−γ(s) ‖x‖)

4π ‖x‖ . (D.18)

In the Laplace domain, the general conditions to be imposed on γ(s)
and χ̂(s) are:

1. χ̂(s) is the Laplace transform of a real function. This means that χ̂(s)
must be real for real values of s.

2. χ̂(s) is the Laplace transform of a unique, causal function. This con-
dition is imposed by Lerch’s theorem [78], stating that χ̂(s) must at
least remain bounded in the real points s = s0 + nl with s0 ≥ 0, l > 0
and n = 0, 1, 2, . . . This condition is certainly satisfied if χ̂(s) remains
bounded on the real axis for s ≥ s0 ≥ 0.
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3. The wavefront travels with a finite wave speed c0. In the lossless case,
the wave speed is obtained as c0 = s/γ(s). In the lossy case, the propa-
gation speed of the wavefront follows from γ(s) in the limit Re(s) → ∞
as

c0 = lim
Re(s)→∞

s

γ(s)
= lim

Re(s)→∞

c0

χ̂1/2(s)
, (D.19)

and therefore we have the requirement

lim
Re(s)→∞

χ̂(s) = 1. (D.20)

Within the bounds set by these conditions, we may construct a propagation
coefficient that obeys a frequency power law attenuation, i.e. a function γ(s)
that for s → jω gives

γ(jω) =
jω

c0
χ̂1/2(jω) = α(ω) + jβ(ω), (D.21)

where α(ω) satisfies Eq. (D.3). A possible function that fits these require-
ments is

γ(s) =
s

c0

(

1 +
c0α1s

b−1

cos(πb/2)[1 + (s/s1)a]

)

, (D.22)

where a is an integer value with a > b− 1 and s1 ≫ 1. From this expression,
the relaxation function is easily obtained. The term (s/s1)

a in the denomi-
nator is necessary to satisfy the general conditions 2 and 3. In this term, the
real positive constant s1 may be very large. Straightforward analysis shows
that as long as |ω| ≪ s1

α(ω) ≈ α1 |ω|b , (D.23)

β(ω) ≈ ω

c0
+ α1 tan(πb/2)ω |ω|b−1 . (D.24)

Here it has been assumed that the branch cut due to sb−1 is located in the
left half of the complex s-plane so that one and the same definition for the
fractional powers of ±j can be employed, i.e.

(±j)b = exp(±jπb/2) = cos(πb/2) ± j sin(πb/2). (D.25)

The dispersion term in β(ω) is the same as the one found by Szabo [64].
Moreover, the relaxation function χ̂(s) following from Eq. (D.22) is an ex-
tension of the Power Law loss model introduced by Strick, which was given
for 0 < b < 1 [62].
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Filtering and windowing of the 1D and 3D lossy Green’s functions

In the temporal and spatiotemporal Fourier domain versions of the Green’s
function, attenuation and the accompanying dispersion generally establish
themselves by the replacement of the real wavenumber k = ω/c0 by a complex
wavenumber

kα(ω) = −jγ(jω) = β(ω) − jα(ω), (D.26)

where β(ω) = ω/c(ω) and α(ω) > 0. The spatially filtered forms of the one-
dimensional and three-dimensional lossy Green’s functions are obtained by
the same approach as in Section 3.4, and result in Eqs. (3.48) and (3.57) with
k replaced by kα. The temporal windowing of the Green’s functions needs
further consideration.

For the one-dimensional Green’s function in the lossless, unfiltered case,
the windowing operation in Eq. (3.49) involved the subtraction of a step
function H(t − T ) and the multiplication with the window H(c0T − |x|). In
the temporal Fourier domain this resulted in a windowed Green’s function
Eq. (3.50),

ĜT (x, ω) =
exp(−jk |x|) − exp(−jk c0T )

2jk
H(c0T − |x|). (D.27)

For the lossy case, the multiplication with H(c0T − |x|) still applies, but the
subtraction of H(t−T ) that leads to the term − exp(−jk c0T ) in Eq. (D.27)
is formally not applicable anymore. If we keep this term and replace k by kα,
we obtain a less ideal window than the one in Eq. (3.28), but the obtained
window nevertheless shows a satisfactory performance. Figure D.1 shows the
spatiotemporally filtered and temporally windowed, lossy, one-dimensional
Green’s function for |x| /c0 = 10. The medium is liver and we have used a
cutoff frequency Ω/2π = 20 and a half window width T = 40. In this figure
we observe the smooth dropoff at t = T which is due to the smooth window
resulting from the replacement of k by kα in the window term. The tail after
t = T does not cause a wraparound error in the field solution if the temporal
axis is taken slightly larger than T .

For the three-dimensional Green’s function, the temporal windowing
operation is much more straightforward. In the lossless, unfiltered case the
approach leading to Eq. (3.58) involved only the multiplication with the
window H(c0T − ‖x‖), resulting in the temporal Fourier domain expression
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Figure D.1. Plot of the spatiotemporally filtered and temporally windowed lossy, one-
dimensional Green’s function versus time for |x| /c0 = 10 with Ω/2π = 20
and T = 40. The medium is liver.

of Eq. (3.59),

ĜT (x, ω) =
exp(−jk ‖x‖)

4π ‖x‖ H(c0T − ‖x‖). (D.28)

For the lossy case, this multiplication still applies, and we only make a small
wraparound error in the Green’s function due to its lossy tail in the temporal
dimension for points where ‖x‖ ≈ c0T .

In conclusion, for the filtered and windowed Green’s functions we may
employ the expressions from Eq. (3.51) in the one-dimensional case2 and from
Eqs. (3.60) and (3.61) in the three-dimensional case, with k replaced by kα.

Evaluation of the 1D and 3D lossy Green’s functions

For |x| = 0 and ‖x‖ = 0, the numerical evaluation of Eqs. (3.51) and (3.61)
for a complex wavenumber causes no problem. However, for other values of x
or x, the numerical evaluation of the spatial filtering terms in these equations
may result in instabilities in case of a complex wavenumber. These are caused
by exponential terms in the special functions. These terms cancel in the final
result, but yield large intermediate values which are sensitive to numerical
error. To prevent these problems, we reformulate the spatial filtering terms

2Note that Eq. (3.52) is not needed anymore since in the lossy case k will never become
zero.
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in Eqs. (3.51) and (3.60) by employing the exponential integral [2, p. 228]

E1(z) =

∫ ∞

z

e−t

t
dt, |arg z| < π, (D.29)

and by using the relations [2, p. 232]

Si(z) =
1

2j
[E1(jz) − E1(−jz)] +

π

2
, |arg z| <

π

2
, (D.30)

Cin(z) =
1

2
[E1(jz) + E1(−jz)] + ln z + γ, |arg z| <

π

2
, (D.31)

where γ = 0.57721 . . . is Euler’s constant. With cos(kα |x|) and sin(kα |x|)
written out in exponential functions and with some reordering of the terms,
the one-dimensional, lossy, spatially filtered, temporally windowed Green’s
function for |x| > 0 and |Re(kα)| < K becomes

ĜT
K(x, ω) =

exp(−jkα |x|) − exp(−jkα c0T )

2jkα
H(c0T − |x|)

− exp(jkα |x|)
4πkα

{

E1[−j(K−kα) |x|] − E1[j(K+kα) |x|]
}

− exp(−jkα |x|)
4πkα

{

E1[j(K−kα) |x|] − E1[−j(K+kα) |x|]
}

. (D.32)

Now we define the function

E′
1(z) = exp(z)E1(z), (D.33)

which, unlike E1(z), is well behaved even if Re(z) → −∞. With some re-
ordering of the terms in Eq. (D.32), this gives

ĜT
K(x, ω) =

exp(−jkα |x|) − exp(−jkα c0T )

2jkα
H(c0T − |x|)

− exp(jK |x|)
4πkα

{

E′
1[−j(K−kα) |x|] − E′

1[−j(K+kα) |x|]
}

− exp(−jK |x|)
4πkα

{

E′
1[j(K−kα) |x|] − E′

1[j(K+kα) |x|]
}

. (D.34)



180 Appendix D

In a similar fashion, the three-dimensional, lossy, spatially filtered, tempo-
rally windowed Green’s function for ‖x‖ > 0 and |Re(kα)| < K becomes

ĜT
K(x, ω) =

exp(−jkα ‖x‖)
4π ‖x‖ H(c0T − ‖x‖)

− exp(jkα ‖x‖)
8π2j ‖x‖

{

E1[−j(K−kα) ‖x‖] − E1[j(K+kα) ‖x‖]
}

+
exp(−jkα ‖x‖)

8π2j ‖x‖
{

E1[j(K−kα) ‖x‖] − E1[−j(K+kα) ‖x‖]
}

. (D.35)

In terms of E′
1(z), this yields

ĜT
K(x, ω) =

exp(−jkα ‖x‖)
4π ‖x‖ H(c0T − ‖x‖)

− exp(jK ‖x‖)
8π2j ‖x‖

{

E′
1[−j(K−kα) ‖x‖] + E′

1[−j(K+kα) ‖x‖]
}

+
exp(−jK ‖x‖)

8π2j ‖x‖
{

E′
1[j(K−kα) ‖x‖] + E′

1[j(K+kα) ‖x‖]
}

. (D.36)

For the evaluation of E′
1(z) at z 
= 0 we employ a number of terms of

the series expansion [2, p. 229]

E′
1(z) = exp(z)

[

−γ − ln(z) −
∞

∑

n=1

(−1)nzn

n n!

]

, (D.37)

or a number of terms of the even form of the continued fraction [57]

E′
1(z) =

1

z + 1−
12

z + 3−
22

z + 5−
32

z + 7− . . . . (D.38)

The two expressions approximate E′
1(z) with different efficiency in different

regions of the complex plane. In Fig. D.2, the region is shown where the
evaluation of E′

1(z) with an absolute error less than or equal to 10−6 is faster
with the series expansion than with the continued fraction. This figure is
based on a Fortran implementation of both expressions, in which the contin-
ued fraction is evaluated with the modified Lentz algorithm [57]. Since in our
applications only a small part of all evaluations requires the series expansion,
a further optimization of Eq. (D.37) is not opportune.
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Figure D.2. Region where the evaluation of E′

1(z) with an absolute error less than or
equal to 10−6 is faster with the series expansion than with the continued
fraction.

Extension to nonlinear, lossy wave problems

In the previous sections we have discussed the inclusion of attenuation in the
linear wave problem. The extension of the discussion to the nonlinear wave
problem is easy if we assume that the attenuation and nonlinear distortion
phenomena can be decoupled and treated separately. As was also discussed in
Section 2.5, the approach of decoupling attenuation and nonlinear distortion,
and thus of disregarding any interaction terms, is common in the modeling
of nonlinear acoustic phenomena. The interaction terms are considered to
be of third order in the wavefield quantities, and are thus neglected in any
second-order considerations. This decoupling, however, does not mean that
the field components that are generated by nonlinear distortion are not any-
more subject to lossy propagation. In fact, the level of the higher harmonic
frequency components will be determined by the combination of nonlinear
distortion and attenuation. As described in Subsection 4.3.2, the nonlinear
distortion results in the transfer of energy from the lower harmonics to the
higher harmonics. At the same time, the frequency-dependent attenuation
becomes higher for increasing frequency, thus removing more energy from the
higher harmonic frequency components.

The approach of decoupling the attenuation and the nonlinear distor-
tion phenomena enables us to extend the INCS method to lossy media in a
simple way. The only modification to the method as presented in Chapter 3
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is the replacement of the one-dimensional or three-dimensional lossless, fil-
tered and windowed Green’s functions by their lossy counterparts that have
been derived in this appendix.

One-dimensional results

We test the lossy INCS method for a one-dimensional configuration by consid-
ering a medium with the acoustic parameters of liver, as given in Table D.1.
We use the source configuration and the excitation pulse as defined in Sec-
tion 4.1, i.e. a plane surface source at x = 0 exciting a harmonic signal with
a Gaussian envelope and with f0 = 1 MHz and P0 = 500 kPa. Further we
employ a maximum frequency of interest F = 6.5 MHz and a discretization
with DF = 2. The first iteration, j = 0, yields the linear wavefield solution.
Figure D.3a shows the progressive development over distance of the spectral
profile of the fundamental component, giving an exponential decay of up to
2.27 dB at x = 50 mm. In the same figure, we compare this result with the
development of the pressure calculated by the lossy plane-wave solution

p̂(x, ω) = P0ŝ(ω) exp(−jkαx), (D.39)

where ŝ(ω) is the frequency domain source signature and kα is given by
Eqs. (D.22) and (D.26). The profiles show perfect agreement. To investigate
the frequency dependence of the attenuation, next we employ a narrowband
excitation pulse by setting Tw = 12/f0 and Td = 18/f0 in the Gaussian
envelope of Eq. (4.3), and we vary the center frequency of the source signature
f0 over the range 0.1 MHz to 6.4 MHz. The variation of the spectral profile
of the fundamental component at x = 50 mm as a function of the center
frequency is shown in Fig. D.3b. Again, comparison with the frequency-
dependent attenuation obtained with Eq. (D.39) yields a perfect agreement.

Further we compare the lossy and lossless acoustic pulse under strong
nonlinear distortion. Again we use liver as the acoustic medium, and for the
lossless case we set α1 = 0. We obtain the nonlinear pressure field of the
source as first described above, but now with P0 = 3 MPa, and we observe p
at the plane wave shock formation distance x = x̄ = 50 mm. As in Subsec-
tion 4.3.4, the maximum frequency of interest is chosen as F = 6.5 MHz, the
discretization is fixed at DF = 2, and we iterate up to j = 11. Figures D.4a
to d show the lossless and lossy results as obtained with the INCS method,
compared to the results obtained with the solution of the lossless Burgers’
equation outlined in Appendix A and computed with Δt = 1/200f0 and the
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Figure D.3. Spectral profile of the acoustic pressure in a one-dimensional, linear, lossy
medium, as obtained by the INCS method (solid) and from the plane wave
solution in Eq. (D.39) (dashed). (a) As a function of the distance x, at
a fixed center frequency f0 = 1 MHz. (b) As a function of the center
frequency f0, at a fixed distance x = 50 mm.

same spatial step size as for the INCS method. We observe that the lossy
result shows a strong decrease of the higher harmonic frequency components
compared to the lossless result, and that the signature in the time domain is
much smoother. The overshoot in the INCS method of the highest harmonic
is not so clearly visible in the lossy results, but it may still be present in
a reduced form. Figures D.4e and f show the acoustic field at x = x̄ for
a comparable medium3 but with b = 2. Comparing this with Figs. D.4c
and d, which give the result for b = 1.05, we see that although the signature
is very comparable, the higher harmonics in the case b = 2 are strongly at-
tenuated. This shows that in the case of nonlinear propagation, tissue-like
medium behavior cannot be accounted for with a square power law type of
attenuation.

Three-dimensional results

Finally we investigate the behavior of the lossy INCS method for a three-
dimensional configuration. For the medium we use liver, and we obtain the
linear and the nonlinear pressure field that is excited by a phased array source
causing a pressure jump. The transducer is a 64 element array with element

3For this medium, the attenuation coefficient a [Np/cm Mhzb], as occurs in the power
law a |f |b, is taken equal to that of liver.
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Figure D.4. Acoustic pressure at x̄ = 50 mm as predicted by the INCS method at
j = 11 (continuous) and by the lossless Burgers equation (dashed). (a),(b)
Lossless medium. (c),(d) Lossy medium with b = 1.05. (e),(f) Lossy
medium with b = 2. The figures on the left show the time domain pulses,
and the figures on the right the corresponding frequency spectra.
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Figure D.5. Spectral profiles on the transducer axis for the phased array transducer.
(a) Linear profiles obtained with the INCS method (solid) and the FieldII
program (dotted), both for the lossy case with b = 1.05. (b) Nonlinear
profiles obtained with the INCS method, for the lossy case with b = 1.05
(solid), for the lossless case (dashed) and for the lossy case with b = 2
(dash-dotted).

parameters Wel × Hel = 0.25 mm × 12 mm and del = 0.3 mm. The array
is focused at (xf , zf ) = (0, 40) mm and zele = zf . The excitation pulse is a
harmonic signal with a Gaussian envelope as defined in Section 4.1 and with
f0 = 1 MHz and P0 = 250 kPa. The nonlinear field solution is obtained
for a domain of interest with a spatial size of 36 mm × 18 mm × 66 mm
and a periodical temporal window of 20 µs, a maximum frequency of interest
F = 2.5f0, and a discretization with DF = 2. The linear field is obtained with
iteration j = 0, and the nonlinear field is estimated with j = 2. Figure D.5a
shows the lossy, linear field profile on the axis of the transducer, compared
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to the lossy, linear field profile obtained with the FieldII program.4 The
profiles show excellent agreement. Figure D.5b shows the nonlinear field
profiles of the fundamental and the second harmonic frequency components
on the axis of the transducer for the lossy situation with b = 1.05, the lossless
situation and the lossy situation with a comparable medium5 with b = 2. We
observe that compared to the lossless case, in the lossy case with b = 1.05
the fundamental component is reduced by 2.4 dB at z = 60 mm, and the
second harmonic is reduced by 5.0 dB. For the lossy case with b = 2, the
fundamental component is equally reduced as for the case with b = 1.05. This
is explained from the fact that the attenuation coefficient a is kept constant,
and therefore the damping at 1 Mhz is equal for both lossy cases. However,
for the case b = 2 the second harmonic component is reduced by 7.0 dB at
z = 60 mm, showing a stronger decay than for the case b = 1.05. Similar
to the one-dimensional example in Fig. D.4 this difference will become even
larger for the higher harmonic components. This confirms that in case of
nonlinear propagation, tissue-like medium behavior cannot be accounted for
with a square power law type of attenuation.

Conclusion

From the presented examples we conclude that the lossy INCS method is
able of incorporating tissue-like attenuation. Moreover, we conclude that a
square power law (with b = 2) and a frequency power law (with b < 2) result
in significantly different nonlinear fields. This shows the importance of an
accurate incorporation of the correct attenuation law in the estimation of the
nonlinear wavefield from medical phased array transducers.

4The FieldII program only allows for inclusion of a linear frequency attenuation law. To
match the attenuation in FieldII with our frequency power law, we use a first order Taylor
approximation of the frequency power law around the center frequency f0.

5For this medium, the attenuation coefficient a [Np/cm Mhzb], as occurs in the power
law a |f |b, is taken equal to that of liver.



Appendix E

Extension of the INCS method to media

with inhomogeneity

The methodology of the INCS method can also be applied to problems with
spatial inhomogeneity in the medium parameters. In fact, the contrast source
formulation employed in the INCS method was inspired by its earlier use in
problems with inhomogeneous media. In this appendix we will study the in-
corporation of inhomogeneous medium parameters in the INCS method. We
start with the formulation of the linear wave equation for inhomogeneous me-
dia Next we will discuss the solution of this wave equation using the contrast
source formulation in combination with the Filtered Convolution method. As
an illustration we will finally compute the linear acoustic pressure field in a
three-dimensional configuration with a number of objects.

Formulation of the wave equation for inhomogeneous media

We start with the repetition of the linear acoustic equations in Eqs. (2.55)
and (2.56)

∂kp + ρ ∂tvk = fk, (E.1)

∂rvr + κ ∂tp = q, (E.2)

where we have used the symbols ρ and κ instead of ρ0 and κ0 to indicate
that the mass density and compressibility vary in space. We assume that the
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medium parameters are time-independent, and therefore we also disregard
their variation as a function of the wave quantities. Conform the derivation in
Section 2.4 these equations then yield a linear, inhomogeneous wave equation
of the form

1

c2
∂2

t p − ∂2
kp − (∂kρ) ∂tvk = ρ ∂tq − ∂kfk, (E.3)

where c = (ρκ)−1/2 is the inhomogeneous sound speed. We apply Eq. (E.1)
once more to eliminate vk, and with (∂kρ)/ρ = ∂k ln(ρ) we get

1

c2
∂2

t p − ∂2
kp + [∂k ln(ρ)] ∂kp = ρ ∂tq − ∂kfk + [∂k ln(ρ)]fk. (E.4)

Further we assume that c and ρ deviate only locally from the quantities c0

and ρ0 of a homogeneous background medium. Assuming that the medium
inhomogeneity is only present outside the sources, Eq. (E.4) can be rewritten
as

1

c2
0

∂2
t p − ∂2

kp = S − [∂k ln(ρ)] ∂kp −
(

1

c2
− 1

c2
0

)

∂2
t p, (E.5)

where S = ρ0∂tq − ∂kfk is the source term as employed in this thesis.

Solution using a contrast source formulation and the Filtered Con-
volution method

Just as the nonlinear term in the Westervelt equation can be used as a con-
trast source that accounts for the nonlinearity in the medium, the last two
terms at the right-hand side of Eq. (E.5) can be used as a contrast source

SC(p) = −[∂k ln(ρ)] ∂kp −
(

1

c2
− 1

c2
0

)

∂2
t p (E.6)

that accounts for the inhomogeneity of the linear medium. In this appendix
we will apply the Neumann iterative scheme to solve the acoustic pressure
field for the inhomogeneous wave problem. We assume that the Neumann
scheme converges for this kind of contrast, but we have not investigated this
aspect.

As explained in Section 3.2, the iterative steps in the Neumann scheme
involve the convolution of the Green’s function of the background medium
with the primary or the contrast source. And as discussed in the remainder
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of Chapter 3, the evaluation of the convolution can be performed efficiently
with the Filtered Convolution method. One of the steps that is important
for the evaluation of the inhomogeneity contrast source is its spatiotemporal
filtering. As discussed in Sections 4.2 and 5.2, for the nonlinear contrast
source term it generally suffices to only apply a temporal filter. Since the
medium inhomogeneity is not coupled to time, the inhomogeneity contrast
source must be filtered in the spatial dimensions only. Since the acoustic
pressure itself has been obtained by the Filtered Convolution method, the
terms ∂kp and ∂2

t p in Eq. (E.6) contain no higher temporal and spatial angular
frequencies than Ω and K. However, sampling of the factors [∂k ln(ρ)] and
(c−2 − c−2

0 ) describing the medium inhomogeneity, and their multiplication
with the factors ∂kp and ∂2

t p to obtain the contrast source, could give rise
to spatial aliasing. To prevent this, the medium factors and the resulting
contrast source need to be filtered in all spatial dimensions with the methods
described in Section 3.5.

Illustration

As an illustration, we present simulation results for the linear acoustic wave-
field that propagates through a medium with three objects exhibiting in-
homogeneity in the sound speed. The contrasts are taken such that they
are representative for human tissue, and we neglect the inhomogeneity in
the mass density. The homogeneous embedding is water (ρ0 = 998 kg m−3,
c0 = 1480 m s−1), in which we have placed a homogeneous phase screen with
an undulation in the x direction (c = 0.95c0), a water-filled cylinder with a
homogeneous wall (c = 0.95c0), and an ellipsoid with a Gaussian distribution
of the wave speed (max(c) = 1.1c0). The distribution of the wave speed in
the medium is displayed in Figs. E.1a and E.2a. The term [c−2(x) − c−2

0 ] in
the contrast source is filtered in all spatial dimensions by using the method of
Fig. 3.6 with an oversampling factor a = 2. In this medium, an acoustic wave-
field is generated by a phased array source causing a velocity jump. It is lo-
cated in the plane z = 0 and has its center at the origin. The array consists of
64 elements with parameters Wel×Hel = 0.25 mm×12 mm and del = 0.3 mm,
and it is focused at (xf , zf ) = (0, 60) mm, with zele = zf . The signature is
a harmonic signal with a center frequency f0 = 2 MHz, a Gaussian envelope
as used before, and a source pressure amplitude P0 = 250 kPa. We have
obtained successive approximations p(j) up till j = 9 in a computational
domain with a spatial size of 42 mm × 16 mm × 60 mm and a comoving
temporal window of 24 µs, a maximum frequency of interest F = 2f0, and a
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Figure E.1. (a) The wave speed contrast c/c0 in the inhomogeneous medium. (b) The
pressure profile of p(0). (c) The pressure profile of p(9). All figures apply
to the plane y = 0 mm. The dashed line shows the cross-cuts in Fig. E.2.



Inclusion of medium inhomogeneity 191

z [mm]

y
[m

m
]

0 10 20 30 40 50

-5

0

5 0.95 1.01
1.05
1.09

(a)

z [mm]

y
[m

m
]

-10
-15

-15 -20

-20

-30

-30

-10

-15
-20

-15
-20

0 10 20 30 40 50

-5

0

5

(b)

z [mm]

y
[m

m
]

-10 -15

-20

-20

-30

-30

-10

-15
-20

-15
-20

0 10 20 30 40 50

-5

0

5

(c)

Figure E.2. (a) The wave speed contrast c/c0 in the inhomogeneous medium. (b) The
pressure profile of p(0). (c) The pressure profile of p(9). All figures apply
to the plane x = 3 mm. The dashed line shows the cross-cuts in Fig. E.1.
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discretization with DF = 2. The successive results are almost identical from
j = 5 to at least j = 9, which suggests that convergence has been obtained
at j = 5. Figures E.1b and E.2b show the profiles of p(0), i.e. the incident
field, in the planes y = 0 mm and x = 3 mm, respectively. In the same
figures, the panels c give the corresponding profiles for p(9), which seems to
be an accurate approximation to the total field. The results clearly reveal the
effect of the objects on the beam shape. The phase screen affects the beam
shape by generating an interference pattern just beyond the screen, and by
forming small side-lobes with large off-axis angles. The wall of the cylinder
acts as a curved waveguide, which captures a part of the beam and radiates
it off in the negative x direction. The main effect of the ellipsoid, which acts
as a diverging acoustic lens, is the diffraction of the beam in the negative x
direction.

Based on the fact that the total field solution barely changes for iter-
ations j = 5 to j = 9, we conclude that the Neumann iterative solution is
capable of handling the inhomogeneities of the kind presented here. However,
we have also observed instable behavior for higher numbers of iterations, as
well as for larger contrasts. For example, the artefacts at both ends of the
phase screen in Fig. E.1c will blow up for high values of j. To avoid these nu-
merical issues, the methodology of the INCS method may be combined with
more sophisticated iterative schemes with improved convergence properties,
like the successive overrelaxation method or the conjugate gradient method
[68].
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Samenvatting

Modellering van niet-linear medisch-
diagnostisch ultrageluid

In de afgelopen 40 jaar is het gebruik van ultrageluidsgolven uitgegroeid tot
een veelzijdige standaard techniek in de medische diagnostiek. Deze tech-
niek, bekend als echografie, is gebaseerd op de opwekking van een hoogfre-
quent akoestisch veld in het menselijk lichaam en het opvangen van het gere-
flecteerde veld dat ontstaat op weefselovergangen en lichaamsstructuren. Op
basis van de informatie in dit gereflecteerde veld kan een beeld worden opge-
bouwd van de inwendige organen zoals hart, lever, nieren en milt, of van
een foetus in de baarmoeder, en zo kunnen structuren en (dis)functionaliteit
van het inwendige op non-invasieve wijze door de clinicus worden onderzocht.
Recentelijk hebben een aantal revoluties binnen de echografie plaatsgevon-
den, waarvan het benutten van de eigenschappen van niet-lineaire akoestische
golfpropagatie niet de minste is. Voor de verdere ontwikkeling en optima-
lisatie van echografie-apparatuur is het van groot belang dat dit niet-lineaire
akoestische gedrag goed begrepen wordt en voorspeld kan worden. Het doel
van het onderzoek dat in dit proefschrift wordt beschreven, is hiertoe een
bijdrage te leveren door het ontwikkelen van een numerieke methode die een
nauwkeurige voorspelling levert van het niet-lineaire akoestische veld van een
medisch-diagnostische phased-array transducent.

Vanuit een mathematisch-fysisch perspectief bekeken vindt de niet-
lineaire propagatie zijn oorzaak in het inherent niet-lineair zijn van de
akoestische basisvergelijkingen, vanwege veldafhankelijk mediumgedrag. In
dit proefschrift wordt aangetoond dat een set van twee veldvergelijkingen en
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twee niet-lineaire, constitutieve vergelijkingen onder een aantal realistische
aannames resulteert in een tweede-orde akoestische golfvergelijking die be-
kend staat als de Westervelt vergelijking, waarin verliezen zijn verwaarloosd
en waaraan een bronterm is toegevoegd.

Op basis van deze niet-lineaire golfvergelijking is een numerieke me-
thode ontwikkeld die geschikt is voor de simulatie van het niet-lineaire
akoestische veld in een grootschalige configuratie in het vier-dimensionale
ruimte-tijddomein. De grootte-orde van dit domein is 100 golflengtes c.q.
periodes in elke dimensie, uitgaande van de hoogste relevante frequentie in
het probleem. In verband met de amplitude van de drukvelden die optre-
den bij medisch-diagnostische toepassingen, is bij de ontwikkeling van de
method uitgegaan van een zwak tot matig niet-lineair gedrag. De methode
wordt aangeduid als de Iteratieve Niet-Lineaire Contrastbron methode ofwel
de Iterative Nonlinear Contrast Source (INCS) methode. Deze methode om-
vat twee stappen:

• Vanwege de veronderstelde zwakke tot matige niet-lineariteit kan de niet-
lineaire term in de Westervelt vergelijking worden beschouwd als een veld-
afhankelijke contrastbron die een correctieve bijdrage levert op de lineaire
veldoplossing. De oplossing van het lineaire veldprobleem levert een eerste
schatting van het akoestische veld, waarmee ook een eerste schatting van
de contrastbron gemaakt kan worden. Een hernieuwde oplossing van het
lineaire veldprobleem met inbegrip van de benaderde contrastbron levert
een tweede schatting van het akoestische veld. Herhaald toepassen van
dit principe resulteert in een iteratieve Neumann oplossing waarvan we
aannemen dat deze convergeert naar het exacte niet-lineaire akoestische
veld. In de lineaire stap van de iteratieve Neumann oplossing lossen we een
voorwaarts bronprobleem op. Hierbij wordt het akoestische veld verkregen
via een convolutie van de primaire bron en de contrastbron enerzijds,
en de Greense functie van het gelineariseerde, homogene en verliesvrije
achtergrondmedium anderzijds.

• Voor een efficiente numerieke bepaling van de convolutie uit de vorige
stap, behandelen we de Greense functie en de bronnen in alle ruimte- en
tijddimensies met een ideaal filter en een ideaal venster. Hierdoor is het
mogelijk een discretizatie toe te passen van twee punten per golflengte
c.q. periode, uitgaande van de hoogste relevante frequentie in het pro-
bleem, zonder dat aliasing optreedt. Voor de numerieke evaluatie van de
discrete convolutie gebruiken we een zogenaamde Fast Fourier Transform
(FFT) methode. Dit resulteert in een schema dat voor grote aantallen
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punten per dimensie bijna een orde lager in complexiteit is dan met een
directe evaluatie van de discrete convolutie. De tweede stap van de INCS
methode duiden we aan als de Gefilterde Convolutiemethode ofwel de
Filtered Convolution (FC) methode.

In dit proefschrift laten we vervolgens met behulp van een aantal een-
dimensionale en drie-dimensionale simulaties het convergentiegedrag zien van
de gepresenteerde methode. Vergeleken met een aantal referentiemethodes
blijkt de INCS-methode binnen enkele iteraties een nauwkeurig en stabiel
resultaat op te leveren in het geval van zwakke tot matige niet-lineariteit. De
simulaties tonen ook de bruikbaarheid van de INCS-methode bij een groot
ruimte-tijddomein aan. De methode blijkt ongevoelig voor de richting van het
akoestische veld, en geeft een nauwkeurige voorspelling voor de afzonderlijke
hogere harmonischen die vanwege het niet-lineaire gedrag in het veld aanwezig
zijn. In het geval van sterke niet-lineariteit is de methode eveneens stabiel,
maar vergeleken met de resultaten van een aantal andere methodes begint de
voorspelling vanaf een bepaalde afstand van de bron af te wijken vanwege de
toegepaste filtering.

Naast de vergelijking met andere numerieke methoden, toont ook
een beschreven validatie-experiment, waarbij het niet-lineaire akoestische
veld van een rechthoekige bron wordt gemeten en vergeleken met de voor-
spelling van de INCS-methode, aan dat de gesimuleerde resultaten zeer goed
overeenkomen met het gemeten veld.

Op grond van de beschreven bevindingen concluderen wij dat de INCS
methode een zeer betrouwbaar middel is om het niet-lineaire akoestische
veld van medisch-diagnostische phased-array transducenten nauwkeurig te
voorspellen.
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