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I. Introduction 

The potential of engineered materials that possess novel dielectric properties is well known and has 

been intensively studied in recent years. Much attention has been focused on the properties associated 

with two- or three-dimensional arrays of infinitesimal unit cells comprised of electromagnetic 

resonators. These so-called meta-materials comprise a burgeoning and potentially valuable research 

area. [1-5] However, comparatively little attention has been given to the case when the resonators 

themselves possess significant nonlinear properties. Such a situation is akin to that of a lasing medium 

[6] or nonlinear transmission line [7], which have been found to display a wide variety of frequency and 

amplitude dependent phenomena. 

Moreover, an array of coupled nonlinear oscillators was the basis of the famous Fermi, Pasta, Ulam 

system [8] that was first studied numerically and found to contain unexpected effects, namely a 

repeated recurrence of a given initial perturbation, and persistent frequency mixing phenomena. In 

addition, very simple nonlinear resonator circuits were shown to exhibit chaos in an isolated context [9], 

however it is not clear how these complex phenomena might manifest themselves in an array. It is this 

situation that has compelled us to study nonlinear meta-materials in particular, with an eye to 

developing novel applications that can make use of these effects. In particular, we are interested in the 

frequency agility of nonlinear meta-materials, and in identifying the forms of nonlinear waves that may 

occur in such systems. 

To this end we have undertaken both an experimental and theoretical study of nonlinear resonant 

circuits in the microwave frequency range. In our case the specific nonlinearity is introduced by the 

insertion of a biased tunnel diode into the resonator circuit, and the fabrication of prototype circuits is 

described elsewhere. We report here the results of numerical studies of prototype elementary circuits 

in both frequency and time domains. Our experimental results will be described in a companion paper. 

[10] We show the existence of both frequency mixing and chaotic effects, and investigate the properties 

associated with arrays of such resonators. 

In the second section, we describe the stability of the nonlinear circuit of interest, and discuss the 

frequency and steady-state behavior of the system. In Section 3, we outline the onset of chaotic 

phenomena, and describe numerical tools to determine its dependence on circuit parameters. In 

Section 4, we outline the nature of nonlinear waves that can exist in a 1-dimensional array of such 



resonators, and in Section 5, we discuss future directions of our research, as well as the development of 

potential applications. 

II. Stability and Harmonic Behavior 

Many elementary nonlinear resonant circuits have been shown to exhibit complex behavior, such as 

Chua's circuit [9], among others. We will choose the simple circuit model that is motivated by our 

experimental configuration, shown in Fig. 1. The physical circuit element consists of a resonator in 

series with a tunnel diode. Losses are represented by resistor R; and the circuit is excited by an external 

source Va coupled through impedance Rs . 
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Fig. 1 Lumped element circuit model. An RLC circuit includes a series tunnel diode. 
An external source Vo is used to drive the system though coupling impedance Rs. 

It is well-known that such circuits can exhibit self-oscillations when biased in the negative resistance 

portion of the tunnel diode characteristic. To examine the dynamics of such a circuit, we use Kirchhoff's 

voltage and current laws to express the dynamical equations in the following form 

where q is the normalized tunnel diode voltage and p is its normalized rate of change. We have 

assumed the usual cubic dependence of the tunnel diode current on voltage, as given in the numerator 

of the second term on the right hand side of the dp/dt expression. Fixed points in the dynamics occur 

when p = dp = O. They represent the locations in the p-q plane where steady-state solutions may 
dr 

reside, if they are stable. There are one or three such points in the above case, depending on the circuit 

losses. For sufficiently low loss and for a DC bias in a certain range, one of the fixed points becomes 

unstable, and the circuit may exhibit self-oscillation. However, due to the fact that the large-amplitude 

asymptotes of the tunnel diode function are in the first and third quadrants of the phase plane, it can be 



shown that the oscillations approach a limit cycle and do not grow without bound. We adopt a 

numerical approach to the integration of the above equations using a standard fourth-order Runge­

Kutta method. A typical result for this case is shown in Figure 2. Here the circuit proceeds from any 

given initial condition to the limit cycle. 
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Fig. 2 Limit cycle under conditions of self-oscillation in the p-q phase plane. 

A corresponding frequency domain picture shows a rich spectrum of harmonics is generated, though the 

lines remain relatively narrow, as shown in Figs. 3a and 3b, consistent with the limit cycle 

representation. The detailed spectral response depends on whether the drive frequency is above or 

below the self-oscillation frequency, reminiscent of frequency sum rules associated with the Manley­

Rowe relations [11]. However, those rules were derived for loss less systems, and our system contains 

significant loss. By direct computation, we find that the powers associated with each harmonic do not 

exactly obey the Manley-Rowe power laws. Nonetheless, the frequency sum rules appear to apply. 
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Fig 3a Spectral response for excitation below 

the self-oscillation frequency. Upper sidebands 

appear, consistent with frequency sum rules. 
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In addition, we observe an amplitude dependence of the response such that sufficiently large drive 

amplitudes tend to lock the response to the drive frequency, suppressing significant harmonic 

generation, as shown in Fig. 4. 
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Fig. 4 Frequency locking as a function of drive amplitude. 
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We note that all of this behavior has been qualitatively confirmed in the experiments [10]. 

III. Onset of Chaos 

When the circuit is driven by an external source Va in the transition region of Fig. 4, then the two 

oscillators may interact to produce a chaotic phase behavior, as shown in Fig. 5. However, it is not 

obvious from such a representation that the circuit behavior is truly chaotic. In this case it is helpful to 

use a Poincare Surface-of-Section to display the circuit behavior. The voltage is sampled once per cycle 

of the drive voltage and displayed over many cycles of the response. When the circuit is locked to the 

drive, the resulting display is confined to a small number of lines representing the harmonic periods 

present in the response. Chaos may cause randomness in both phase and amplitude, which is clearly 

shown to be confined to a specific operating band, as shown in Fig. 6. 

A further corroboration of the chaotic behavior may be obtained by the well-known method of finding 

the largest Lyapunov exponent. This is done numerically by tracking the growth of neighboring phase­

space trajectories. Formally, the maximum Lyapunov exponent is defined as the limit 

where I1R is the maximum separation of adjacent trajectories that are initially separated by l1Ro. 
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Fig. 5 Phase plane representation of chaotic behavior. 
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Fig. 6 Poincare Surface-of-Section . Note abrupt changes in period and chaotic 

Regions as a function of drive amplitude and circuit losses. 

The results for the above case are shown in Fig. 7, indicating the Poincare SOS shows chaotic behavior 

just where the Lyapunov exponents become positive. It is worthwhile to note that self-oscillation can 

lead to chaotic behavior in conjunction with external excitation, when the internal and external 

frequencies are not quite locked, namely in the transition region shown in Fig. 4. 
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Fig_ 7 Lyapunov exponents as a function of external drive amplitude. A positive exponent 

implies the existence of chaotic orbits caused by the interplay of internal and external 

oscillators. The chaotic behavior disappears for sufficiently large drive amplitude, locking the 

response to the drive frequency. 

IV. Nonlinear Waves 

It is worthwhile to study the properties of arrays of such nonlinear resonators. As a first attempt to 

understand the complex behavior of such systems, it is useful to restrict our attention to one­

dimensional arrays, namely a nonlinear transmission line such as that shown in Fig. 8. These 

systems have received a great deal of study in recent years because of their propensity to produce 

solitons and rich harmonic generation [7]. 

Fig.8 Single node of an infinitely long transmission line loaded with tunnel diodes. 



To find the nonlinear waves in this system, we use a direct approach of integrating a high-order 

system of coupled circuit equations where we introduce a pulse as an initial condition and observe 

its propagation through the system. Our results show that solitons can indeed exist on such arrays, 

but the nonlinear or soliton-like behavior is strongly determined by losses. In fact we observe a 

continuous transformation of the pulse propagation from that of a linear dispersive response to one 

in which the pulse shape and amplitude remain nearly unchanged as the pulse propagates, 

depending on the loss-per-cell . Hence we are evidently in the realm of dissipative solitons [12], 

which have been observed in many other systems, as shown in Fig. 9. 
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Fig. 9 Time domain representation of a disspative soliton on a tunnel-diode loaded 

transmission line. Note the existence of potentially chaotic phase in the tails of the pulse . 

It is interesting to note that chaotic phase behavior appears to occur in the tails of the soliton, but 

not for the solitary pulse itself. Presumably the amplitude ofthe soliton edge causes frequency 

locking which suppresses much of the harmonic generation. It is conjectured that Fermi, Pasta Ulam 

Recurrence may be related to this phenomenon. 

v. Discussion and Future Directions 

In this work, we have explored numerically the phenomena that can be expected in single nonlinear 

cells that are being considered as meta-material building blocks. We have found rich harmonic 

generation and solitary wave generation are possible in such systems. Moreover, chaotic behavior 

can occur in specific bands determined by circuit parameters and bias settings. Qualitatively, our 

numerical results reproduce many of the features that have been observed experimentally for such 

cells. 
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We note that these results represent a fairly exotic taxonomy of effects which have yet to yield 

specific applications. However, there are allusions in the literature to possibilities including highly 

frequency-agile antenna systems, non-reciprocal (hence low detectability) receivers and encryption, 

among others. At the very least we hope to shed light on the connections between FPU Recurrence, 

dissipative solitons and chaos. 

In future work we plan to extend these models to fully two- and even three-dimensional arrays of 

elementary cells. We will focus on questions related to specific harmonic generat ion, nonlinear 

wave propagation and overa ll system efficiency. 
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