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The interaction between two particles made of an isotropic linearly polarizable magnetic material

and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the

magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact

solution of the magnetic problem in the linear polarization case, although existing, is not practical;

to circumvent its use, an interpolation formula is proposed. One more interpolation expression is

developed for the resistance of the elastic matrix to the field-induced particle displacements.

Minimization of the total energy of the pair reveals its configurational bistability in a certain field

range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the

other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical

hysteresis which has important implications for the macroscopic behavior of magnetorheological

elastomers. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895980]

I. INTRODUCTION

Functionality of magnetorheological elastomers (MRE)

as well as magnetorheological suspensions (MRS) is due to

their strong shape and rheological responses to applied mag-

netic fields. Understanding of these effects is the task for the

theory, which by that provides fundamentals for the design

and engineering of the devices comprising MREs and MRSs

as essential working elements; the examples are numerous.

In the present work, we look closely at the driving

mechanisms of the field-induced spatial rearrangements of

the particles in MREs. The focus hereby is placed on the par-

ticles of micron size, which are the customary fillers for

these materials The most popular substance for the micro-

grains is carbonyl iron that entails their magnetic softness

and, thus, multi-domainness in the absence of external field.

In this state, the net particle magnetic moments are virtual

zeroes, so that their magnetic interaction is negligible.

Hence, such an MRE does not differ mechanically from any

other composite with a non-magnetic solid filler of the same

dispersity.

When a field is imposed, the micrograins polarize becom-

ing the sources of additional magnetic fields. As a result, each

particle is engaged in magnetic (ponderomotive) interaction

with the external field and with the fields of all the other

grains in the sample. The particle multi-domainness ensures

that the magnetization curve of such a sample is non-

hysteretic and turns to zero in the absence of the external field

H0. Therefore, the particle magnetic moment is of purely

induced origin and can be presented as m ¼ veVðH0 þHLÞ,
where ve is the external susceptibility of the particle, V its vol-

ume, and HL the local field generated by all the other particles

at the position of the given one.

If the system is dilute, i.e., on the average the particles

are separated by the distances l, which are much greater than

the reference grain radius a, the interparticle interactions

could be treated as if each particle is a point dipole with the

moment m. The latter interacts with the external field via

Zeeman energy � 1
2
l0 mH0ð Þ and is coupled to all the others

by the long-range dipolar potential

Ud ¼ l0

XN�1

j

m �mj

l3
j

� 3 m � ljð Þ mj � ljð Þ
l5j

" #
; (1)

where l0 is the magnetic permeability of vacuum, lj is the

center-to-center vector and N the total number of particles in

the sample.

In MRE and MRS systems, which are attractive from

practical viewpoint, i.e., those whose deformational and rheo-

logical properties are considerably changed under the field, the

situation is different. As the filler density is rather high: 10–25

vol. %,1,2 the typical interparticle distances are in the range

l � 2a. Under these conditions, the dipole approximation (1)

fails by definition since the particles by no means might be

considered as points. Instead, one should treat them as 3D

objects, whose short-range interaction is determined by the

mutually induced intrinsic non-uniformities of magnetization.

This interaction is of paramount interest since it

strongly affects the particle aggregation and structuring. In

particular, a well-known specific feature of MREs and

MRSs is that, having been subjected to a field, the particles

self-organize along its direction forming long prolate aggre-

gates (columns), whose thickness is much greater than the

size of a single particle. This morphology is fully inherent

to MRSs3,4 and (with the positional restrictions imposed by

the matrix) to soft MREs.5–7

The column morphology strikingly differs from the

field-induced patterns in the assemblies of magnetically hard

(single-domain) particles, i.e., those possessing permanent

magnetic moments. For those systems, the dipole potential

(1) is indeed a realistic one. It ensures that in a pair of
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particles, whose magnetic moments are aligned by the exter-

nal field, the configuration “head-to-tail” ðl k H0Þ means

attraction, while the “side-by-side” ðl?H0Þ pattern corre-

sponds to repulsion. This “lateral” repulsion spans over the

angle interval defined by condition cos2c � 1=3, where c is

the angle between l and H0. A direct result of the dipole

interaction (1) of the magnetic moments is that the field-

induced aggregation starts with formation of short chains,

which have only one particle in their cross-section.

As there is a direct analogy between electrically and

magnetically polarizable particle assemblies—it requires just

to replace the magnetic fields by the electric ones—a lot of

knowledge on the particle field-induced interaction and

aggregation can be taken from the well-developed theory of

electrorheological fluids. In particular, this concerns column

formation in dense systems and the inner structure of the col-

umns that is proven to resemble the so-called body-centered

tetragonal (bct) lattice.8–10

Self-organization of the particles in MREs undergoes in

a more complex way than in MRSs, because the aggregation

process is strongly impeded by the elastic forces developing

in the polymer matrix in response to the particle displace-

ments. Evidently, this magneto-elastic interplay is an exclu-

sive feature of MREs. Hereby, we consider the simplest

problem of this type, namely, the behavior of a pair of mag-

netically polarizable particles in a polymeric matrix. One of

the particular objectives of this consideration is to shade light

on the mechanism of the so-called magnetic shape memory

effect. Namely, the sufficiently dense MREs are known to be

able, when magnetized, to change drastically their rheology

from elastic-like to plastic-like one.6,11 As long as the field is

on, the MRE, like a putty, easily deforms without inducing

any restoring forces. Upon turning off the field, the magnetic

forces zero out, and the sample restores its initial shape. The

only existing qualitative explanation for the effect employs

the hypothesis of “magnetic staples,”12,13 i.e., small tight

particle clusters. It helps in phenomenological modeling but

is unable to clarify the mesoscopic mechanism of the effect.

In Sec. II, the problem of magnetic interaction of the

particles at close distances is reviewed and an interpolation

formula for the “multipolar” potential is proposed. In Sec.

III, the elastic energy arising in the matrix due the particle

mutual approach is considered, a pertinent approximate

expression for it is derived and justified. Minimization of the

combined magnetoelastic energy of the particle pair is done

and analyzed in Sec. IV. We show that in a certain field

range this system is bistable, i.e., displays hysteretic behav-

ior under the change of the applied field. One of the equilib-

rium states of the pair corresponds to a weakly deformed

configuration, while the other is cluster-like, thus resembling

an elementary “magnetic staple.” The macroscopic conse-

quences of the found mesoscopic magnetoelastic hysteresis

are discussed in Sec. V and then summarized in Sec. VI.

II. INTERACTION OF POLARIZABLE PARTICLES

Each polarizable particle, when subjected to an external

field, becomes the source of polarization for its neighbors,

and as well, polarizes in response to their fields. Such a

particle should be treated as a finite object whose magnetic

state, instead of a single vector m, is determined by a non-

uniform spatial distribution of magnetization MðrÞ inside the

particle. In this aspect, the problem is very much alike those

addressed in micromagnetism.14 The form of MðrÞ plays the

decisive role in the short-range particle coupling. Note that

this interaction, unlike the point-dipole one, it is not additive:

the energy of, e.g., three particles at close distances cannot

be presented as a sum of three respective pair potentials.15

The problem of the field-induced interaction of a pair of

spherical polarizable particles is a classical one. In here we

restrict ourselves by the case of linear polarizability that

implies either those particles made of a (super)paramagnetic

material or the multi-domain ferromagnetic ones provided

the field is sufficiently low, and the magnetization curve of

the material is yet quasi-linear. The exact solution (in the

form of infinite series) of the pertinent Laplace equation had

been first published about a century ago.16 Being of general

interest, it repeatedly turns up in diverse contexts: hydrody-

namic,17 elastic,18 thermophysical,19 electro-,10,20–22 and

magnetorheological.23,24 The two conventional representa-

tions of the said solution differ by the choice of the coordi-

nates: either a single bispherical16 or a pair of spherical

frames.19–22,24 Either of them yields the magnetic interpar-

ticle energy in the general form

Umpðq; cÞ ¼ x0ðqÞ þ x2ðqÞ cos2c: (2)

Functions xa are presented in the form of multipole expan-

sions, i.e., the series in inverse powers of parameter

q ¼ l=a. This analytical procedure is rather cumbersome,

and the labor to evaluate the series coefficients grows dras-

tically with the increase of the length of the series, see, for

example, Ref. 19, where they are given up to q�9.

Meanwhile, the number of terms needed to accurately find

Ump for the case of close particle contact ðq! 2Þ, amounts

to hundreds. As well, this number grows with the magnetic

permeability mismatch a ¼ lp=l, where lp and l are the

permeabilities of the particle material and the embedding

matrix, respectively.

Since evaluation of Ump by exclusively analytical treat-

ment is not feasible, the expansion coefficients should be

found numerically. In Ref. 22, this was done numerically to

q�25, which worked up to q¼ 2.02 and for a as large as 5.

This range fits well the case of electrorheological suspen-

sions (l is replaced by dielectric permeability e) but does not

suffice for the magnetic case since parameter a for iron

against water or a polymeric solution amounts to many hun-

dreds. Besides, when studying structure transformations in

MRE(S)s, one needs to know interparticle forces, not ener-

gies. This implies differentiating of expression (2) with

respect to l, and, thus, involves one more numerical proce-

dure that efficiently spoils accuracy. To retain it in final

results, one has to substantially precise the data on Ump.

Searching the way to facilitate the work, we, first, have

built up a program to evaluate Ump from the exact solution (mul-

tipole expansion) truncating it at an arbitrary order in 1=q. By

taking the increasing number of terms, we have found that a se-

ries of about 100 multipoles suffices to describe the interparticle
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forces with high accuracy (�10�2%) whatever q (up to full sur-

face contact) and c, and the permeability mismatch a ranging

from 102 to 104 (aiming at iron microparticles).

Then, using these numeric results as a benchmark, inter-

polation formulas were constructed, which ensure accuracy

better than 1% inside the interval of interparticle distances,

where the short-range (multipole) forces differ significantly

from the dipole approximation. The obtained expression is

as follows:

Ump q; cð Þ ¼ �3l0lH2
0V
X7

k¼3

a� 1

aþ 2

� �pk

� ak

q� bkð Þk
þ ck

q� dkð Þk
cos2c

� �
: (3)

The coefficients in formula (3) are given in Table I.

From formula (3), the interparticle force is obtained in a

standard way as

f ¼ f n þ f s; f n ¼ �
q

a
q � @Ump

@q

� �
;

f s ¼
1

a
q� q� @Ump

@q

� �� �
;

(4)

where q ¼ l=a. As seen, f n is the component along the cen-

ter-to-center vector, while f s is perpendicular to f n and lies

in the plane made by vectors q and H0. The force couple f s

produces the torque

M ¼ a q� f sð Þ ¼ �a q� @Ump

@q

� �
; M ¼ � @Ump

@c
: (5)

The difference between the point-dipole and multipole

results is illustrated in Fig. 1 for the cases of the center-to-

center force f n in the “head-to-tail” ðc ¼ 0Þ and “side-by-

side” ðc ¼ 90�Þ configurations.

The data shown in Fig. 1(a) infer that the particle pairs

(dimers) in MREs and MRSs, once formed in the direction

of the field, are much stronger those of point dipoles. On the

other hand, the lateral ðc ¼ 90�Þ repulsion force, see Fig.

1(b), is notably weaker. The qualitative difference between

those two types of interaction becomes clear when compar-

ing the angle dependencies fn. The geometry scheme and the

function plots are presented in Fig. 2.

Setting the coordinate origin at the center of particle 1,

from Fig. 2(a) one sees that according to the point dipole

model particle 2 is attracted if its center is inside the region

c < c0 and is repelled otherwise, i.e., at c > c0. The straight

dashed lines in Figs. 2(a) and 2(b) correspond to c0 ¼ 54:7�

and, thus, to the “neutrality” condition fn ¼ 0. Such a distri-

bution of interparticle forces implies that a monodisperse as-

sembly of point-dipole particles, being subjected to a field,

begin to self-arrange as one-particle thick strands.

The situation for the magnetizable particles is different,

as is shown by the solid lines in Fig. 2. In this case, the sign

of interaction force fn depends on the interparticle distance.

In close vicinity of particle 1, particle 2 is attracted at almost

any angle except for the narrow interval 84:3� < c < 90�.
We note that Fig. 2 details the force distribution only in the

0 < c < 90� quadrant, but the solutions described possess

azimuthal as well as inversion (H0 ! �H0) symmetry.

TABLE I. Numerical coefficients for the interpolation formula (3).

k ak bk ck dk pk

3 –1 0 3 0 2

4 0 0 3:42� 10�2 1.3976 3

5 0.111 �0.689 2:83� 10�6 1.8947 11

6 0.509 0.589 1:8� 10�13 1.9898 13

7 �0.424 0.592 0 0 20

FIG. 1. Center-to-center force in a pair of polarizable particles with a ¼ 103

in c¼ 0 (a) and c ¼ 90� (b) configurations; point-dipole approximation

(dashed), multipole calculation with about 100 terms (solid); positive sign

corresponds to attraction and negative to repulsion forces; note the logarith-

mic scale of the vertical axis.
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III. ELASTIC ENERGY OF THE PARTICLE PAIR

In MRSs, where the particles are virtually free, the mag-

netic interaction is the sole cause of aggregation. In MREs,

where the particles in the no-strain/field-off state keep cer-

tain equilibrium positions in the polymer matrix, the action

of magnetic forces in the field-on state is counteracted by

elasticity. Due to that the rearrangement of the particles

inside a magnetized MRE results from minimization of the

sum of magnetic and elastic energies. In this section, we

work out an approximation for the latter.

Note that if the elasticity is linear (Hookean) then the

deformation field around the particles obeys the same

Laplace equation as that describing their magnetic potential,

and, thus, an exact solution is available.18 However, in the

case of MREs, the Hook model is practically useless,

FIG. 2. Regions of mutual attraction/

repulsion separated by “neutral” lines

(fn¼ 0). In the polar plot (a) straight

dashes show neutral line for point

dipoles, solid curve is the same for

magnetizable particles; the dots mark

possible positions of the center of mag-

netizable particle 2, where it is

attracted at q¼ 2; in plot (b) the

“neutral” angle for point dipoles is

constant: c0 ¼ 54:7�, for magnetizable

particles it grows up to c ¼ 83:4� at

the particle contact.
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since—see Ref. 25, for example—for elastomers, it works

quite poorly even at small strains. The more so it is for the

interparticle distances l � 2a, where the local strains are

indeed high.

To construct an analytical approximation compatible

with the elastomer rheology, we take the Mooney-Rivlin

(hyperelastic) model, where the potential (energy volume

density) is

W ¼ c1

�
J�2=3I1 Cð Þ � 3
� �

þ ~c2 J�4=3I2 Cð Þ � 3
� �

þ 1

2
~K J � 1ð Þ2

	
: (6)

Here I1, I2, I3 are the invariants of the Cauchy-Green tensor

C related to the Green-Lagrange deformation tensor E as

C¼ 2Eþ I, where I is unit tensor and J ¼
ffiffiffiffiffiffiffiffiffiffiffi
I3ðCÞ

p
the

Jacobian. Keeping c1 a free parameter (for small deforma-

tions 2c1ð1þ ~c2Þ is the shear modulus), the other constants

of expression (6) we set ~c2 ¼ 0:1 and ~K ¼ 103 thus assum-

ing that the elastomer is weakly compressible. As potential

W is nonlinear, the pertinent Laplace equation cannot be

solved exactly. A standard way to solve it for a Mooney-

Rivlin material is via finite-element method. This, however,

does not yield analytical forms and, thus, is not fit for further

minimization. Instead, we construct a formula with a few pa-

rameters capable to reproduce the numerical (i.e., virtually

exact) results for a Mooney-Rivlin elastomer. This is done

with the aid of a heuristic scheme shown in Fig. 3.

In Fig. 3, two particles are separated by the equilibrium

distance l0, and to each particle two solid plates are attached,

one of which is step-shaped. In between, three elastic cylin-

drical rods are set along Oz axis. The shortest rod (1) has ra-

dius r1 and length l1 ¼ h0 ¼ l0 � 2a; the two other rods with

radii r2 and lengths l2 ¼ h0 þ a are positioned alongside and

parallel to it. The solid plates ensure uniform strain of rods 1

and 2 when the particles move along Oz. The “external” rods

(3) have lengths l3¼ h0 and radii r3; their outer ends abut on

unmovable walls, where the normal (but not tangential) dis-

placements are forbidden.

Reliability of the proposed scheme has been proven by

comparison with numerical simulations of the stress-strain

behavior of a Mooney-Rivlin matrix containing two solid

spherical inclusions. For that, we use SfePy (Simple finite ele-

ment in Python) package.26 The model sample is a cube with

the edge d, inside which two spherical “holes” are positioned

along the line (Oz axis) connecting the centers of opposing

faces of the cube. The variational problem takes the formð
X0

½SeffðuÞ þ ~KðJ � 1ÞJC�1� � � dEdV ¼ 0; (7)

where X0 is the initial configuration of the sample. Imposing

symmetry requirements x$ �x and y$ �y, the problem

(7) is solved for a quarter of the cube under the following

boundary conditions for the displacements:

ujC1
¼ u1 ¼ ð0; 0;�uÞ; ujC2

¼ u2 ¼ ð0; 0; uÞ;
uxjx¼0 ¼ 0; uyjy¼0 ¼ 0; (8)

here C1;2 are the surfaces of the particles 1 and 2, respec-

tively; the effective stress tensor is evaluated as

Seff uð Þ ¼ 2J�2=3 I � 1

3
I1 Cð ÞC�1

� �

þ2~c2J�4=3 I1 Cð Þ I� C� 2

3
I2 Cð ÞC�1

� �
:

As seen from Eq. (8), the mutual approach of the “holes” is

imposed by vectors u1 and u2, which render a given displace-

ment u to all the points of the surfaces of both “holes”. Due to

that, the action of such “holes” on the surrounding matrix is

equivalent to that of solid particles of the same radius a. The

displacement is enhanced discretely from zero (initial state)

up to the maximum corresponding to the nearly tight contact

of the particles. At each step in u, the elastic problem is

solved, and the displacement field in the sample is obtained.

From it, first, the Cauchy-Green deformation and then the

potential W are found. Finally, the elastic energy of the sample

Uel ¼
Ð

WdV as a function of q ¼ l=a is evaluated. Each se-

ries of calculations begins with setting the non-dimensional

value for the initial interparticle distance q0 ¼ l0=a and the

non-dimensional size d ¼ 4ðq0 þ 2Þ of the cube.

The finite-element mesh is thickened around the holes

complying with the non-uniformity of the stress-strain distri-

butions. Doing that with regard to the available computa-

tional resources, we choose the reference size of the mesh

cell as 0.05 a near the hole surface and 0.4 a at the outer

boundary of the sample cube. Using these parameters, data

arrays Uelðq; q0Þ had been obtained with supercomputer

SL390s/SL270s Uran.27

The numerical representation of the elastic energy

Uelðq; q0Þ enables one to evaluate the parameters of the

scheme of Fig. 3. Upon mutual approach of the “holes,” rods

1 and 2 shrink, while rods 3 elongate. The arising strains are

in a simple way expressed in terms of displacement u:

k1 ¼
l1 � 2u

l1
¼ h0 � 2u

h0

; k2 ¼
l2 � 2u

l2

¼ h0 þ 1� 2u

h0 þ 1
;

k3 ¼
l3 þ u

l3
¼ h0 þ u

h0

: (9)

Deriving the Gauchy-Green tensor for each kn in Eq.

(9), one arrives at the elastic potential of a rod made of the

Mooney-Rivlin material:
FIG. 3. Elastic element scheme imitating stress-strain behavior of a pair of

particles under axial displacement.
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W ¼ c1f½I1ðCnÞ � 3� þ ~c2½I2ðCnÞ � 3�g;

where the invariants are I1ðCnÞ ¼ 2=kn þ k2
n and I2ðCnÞ ¼

2=k2
n þ 2kn with n¼ 1, 2, 3. Since the rod volume is

Vn ¼ pr2
nln, the elastic energy of the whole scheme takes the

form

Uel ¼ pr2
1l1Wðk1Þ þ 2pr2

2l2Wðk2Þ þ 2pr2
3l3Wðk3Þ: (10)

In formula (10), the approximation parameters are radii

r1�3; their values for several initial interparticle distances are

given in Table II.

As tested, this approximation reproduces all the data on

Uel with accuracy not worse than 0.1% for the interparticle

distances q 	 2:5. Assuming its reliability at smaller q as

well, we use Eq. (10) to evaluate the elastic energy down to

q � 2, where the computer simulation is unstable.

IV. BISTABILITY EFFECT

The reference particle size in MREs ranges from several

microns to several tens of microns. The thermal motion of

such particles is rather weak. Given that equilibrium configu-

rations of the pair of magnetizable particles embedded in an

elastomer might be found from minimization of the sum of

the magnetic (3) and elastic (10) energies. Consider the

“head-to-tail” configuration of the pair. The non-dimensional

form of the total energy is

~U ¼ ðUmp þ UelÞ=ðc1a3Þ ¼ ~H
2

0½x0ðqÞ þ x2ðqÞ�
þp½r2

1l1
~Wðk1Þ þ 2r2

2l2
~Wðk2Þ þ 2r2

3l3 ~Wðk3Þ�; (11)

where ~W ¼ W=c1 ¼ I1ðCnÞ � 3þ ~c2½I2ðCnÞ � 3� and pa-

rameter ~H0 ¼ H0=
ffiffiffiffiffi
c1
p

is introduced.

The behavior of potential ~Uðq; q0; ~H0Þ, whose minima

determine the equilibrium interparticle distance under a given

field, is shown in Fig. 4. When the field is weak, so is the

induced strain. To roughly ascertain the particle displacement

in this case, we set elasticity to be Hookean. At high magnetic

permeability of a ferromagnet, the calculation similar to that

outlined in Ref. 28 yields q ¼ q0½1� 96p2l0
~H

2

0=q6
0�, thus

indicating that the system has a single energy minimum corre-

sponding to small mutual approach of the particles. In

Fig. 4(a), this situation is reflected by curve 1.

Upon the field increase, the magnetic interparticle forces

grow along with the particle magnetization. This entails a

qualitative change of the situation. Besides the state of weak

compression, there emerges another energy minimum corre-

sponding to close approach of the particles and, thus, strong

deformation of the matrix, see curve 2 in Fig. 4(a). This

means that the system becomes bistable and can attain either

of the two equilibrium states. On further increase of ~H0, the

weak-deformation minimum disappears, and the collapsed

(dimer) state remains the only possible one, see curve 3. As

soon as the dimer is formed, the equilibrium interparticle dis-

tance becomes virtually independent of the field strength.

This is clearly visible in Fig. 4(b), which expands the part of

Fig. 4(a) in the vicinity of q¼ 2. This reflects a well-known

fact that a real elastomer, when strongly stressed, is very

stiff.

We remark that the use of approximation (11) in the

region q � 2, where the numerical solution is not available,

entails some uncertainty in evaluation of the position qmin of

the cluster-type minimum. However, in qualitative aspect,

the results presented in Fig. 5 are completely justified.

Moreover, as the second minimum always means close

neighboring of the particles, the differences between exact

and approximate values of qmin are not very important.

The above-described bistability effect implies that the

transitions between the equilibrium configurations of the pair

occur in a hysteretic manner. Let us assume that the particle

pair responds to turning on a weak field ( ~H0 
 1) by

TABLE II. Numerical coefficients for the interpolation formula (10).

q0 r1=a r2=a r3=a

2.5 1:3� 10�2 0.76 0

3 2:3� 10�2 0.60 0.61

3.5 2:6� 10�2 0.49 0.97

4 2:5� 10�2 0.43 1.21

FIG. 4. Magnetoelastic energy of a pair under change of the applied field

strength (a) in general and (b) in the vicinity of q¼ 2; initial interparticle

distance is q0 ¼ 4, the field strength is ~H0 ¼ 5 (1), 15 (2), and 25 (3); dots

mark the values of ~U obtained from the finite element solution.

FIG. 5. Equilibrium interparticle distance in the “head-to-tail” configuration

of the particles in a field cycle; particle initial separations are q0 ¼ 2:5 (1), 3

(2), 3.5 (3), and 4 (4), arrows mark the directions of the displacements; dot-

ted lines show the branches obtained with the aid of extrapolation; the elastic

constant ~c2 ¼ 0:1.
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deformation l0 � l
 l0. Upon increase of the field, the sys-

tem would reside in this particular state even after appear-

ance of the second minimum because thermal fluctuations

are negligible. The weakly deformed configuration would

cease to exist only when the “distant” minimum of the

energy would disappear, cf. curves 2 and 3 in Fig. 4. As a

result, the particles would move into the only remained

“close” minimum thus forming a dimer. In the inverse pro-

cess (diminution of the field), the same scenario applies to

the restoration of the initial configuration of the pair.

Displacement hysteresis loops of the particle pair under

a cyclic change of the field are presented in Fig. 5. In each

loop, the vertical lines mark the lower and upper bounds of

the bistability region with respect to ~H0. The branches of

functions qð ~H0Þ adjacent to the ~H0 axis are given by dotted

lines since they are plotted with the aid of approximation for-

mula (11).

V. DISCUSSION

We remark on drastic distinction between the magneto-

statics forces in a pair of point-dipole and in a pair of mag-

netizable particles. This is essential for sufficiently dense

MRE(S)s where the point-dipole model is inappropriate. The

wide region of attraction around a magnetizable particle

infers that, when subjected to a field, the particles are

strongly inclined not only to form single-particle chains

along the field but also to unite with those particles located

in their lateral vicinity. This supports visual observations

that particle aggregation in MRSs nucleates via formation of

“droplets” rather than the strands, which are one-particle

wide.

The bistability effect in a pair of magnetizable particles

embedded in an elastic matrix is of apparent importance for

MREs. It favors abundant clusterizing accompanied by

shrinking of the sample in the direction of the field and a

substantial change of rheology of the material. Both these

phenomena turn up in experiments. However, compression,

often predicted as well on the basis of the point-dipole

model,29–33 is observed quite rarely.34 Most probably, this is

due to the chaotic nature of MREs prepared in the absence of

external field. Indeed, along with the pairs approximately

parallel to the direction of the imposed field, there is a num-

ber of particles, which are already pre-clusterized. MREs

inherit them from the magnetic powder due to imperfect

technique of dispersing. If a pre-existing cluster is even

slightly anisometric, when magnetized, it strives to align its

longest axis along the applied field. Such a rearrangement

induces elongation of the sample both locally and macro-

scopically.31 As in a real sample all kinds of particle configu-

rations are present, then, depending on the details of the

particle short-range spatial order, one might encounter elon-

gation as well as compression or virtual absence of the mag-

netic striction.

Another consequence of the internal clusterization is

insensitive to the sign of the macroscopic magnetic striction.

Dense MREs are known to change drastically their rheology

from elasticity to plasticity.6,11 The hypothesis of “magnetic

staples”12,13 invented to explain the effect assumes that the

particles form a set of clusters. This structure responds to

mechanical load by relocation of particles between the clus-

ters. This inter-cluster particle exchange has low thresholds,

so that the magnetic energy of the sample remains at approx-

imately the same level. Due to that the sample readily

deforms under low loads without displaying any significant

resistance forces. Note, however, that in this process, the

polymer molecules attached to the particles surfaces,

unwound but do not break. As soon as the field is switched

off, the particles lose their magnetization. Then the relatively

weak elastic forces, formerly completely dominated by the

magnetic ones, restore the initial shape of the sample.

Therefore, the hysteretic displacements of magnetizable par-

ticles embedded in a polymer seem to provide a reasonable

explanation for the occurrence of magnetic plasticity in

MREs.

Here, we demonstrated it for pair clusters, but it is rea-

sonable to surmise that it makes the base of the collective

effect of the same origin as well. Certainly, to get a descrip-

tion for the net observable plastic behavior effect one needs

to allow for the polydispersity of the particles, the presence

of pre-existing clusters, etc. Moreover, one has to take into

account that the field-induced deformation of the sample is

governed by at least two mechanisms: the short-range and

long-range (shape effect) ones, which might work coherently

or counteract.31,33

VI. CONCLUSIONS

Combination of magnetic and elastic interactions in a

pair of magnetizable particles embedded in an elastic matrix

is considered. In the magnetic aspect, the difference of the

situation from that of point dipoles is that in the vicinity of a

magnetizable particle attraction completely dominates repul-

sion. A robust interpolation formula to describe this interac-

tion and to facilitate calculation of the interparticle forces is

proposed.

An interpolation expression for the elastic interaction of

the particles under their mutual approach is constructed with

the aid of a heuristic rheological scheme. The reliability of

this formula is tested against the numerical solution of the

same problem. Combining these two interpolations, the mag-

netoelastic energy of a pair of particles subjected to an exter-

nal field is obtained for the “head-to-tail” configuration.

Analysis shows that, depending on the field strength, the pair

might dwell in a state of weak compression or collapse form-

ing a cluster. In a certain range of field strength the system is

bistable and might assume any of these states. As the thermal

motion has virtually no effect on the particle behavior, the

transitions between the weakly compressed and cluster con-

figurations should occur in a hysteretic manner. The signa-

tures of such a behavior could be found in the reported

experimental data.

The above-described bistability effect provides a meso-

scopic justification for the phenomenological model of

“magnetic staples,” which explains the field-induced plastic-

ity observed in dense MREs.

An important limitation of the built-up description is the

assumption of linear polarizability of the particle material.
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Meanwhile, MREs are intended to work in the fields, which

can easily saturate the particles. In this case—it never occurs

in electrorheology—the above-used series expansions are

not valid and should be replaced by a numerical model. As

the next step, a finite-element treatment of the magnetic

interaction problem is being developed in order to overcome

the limitations imposed by the requirement of linear

magnetization.
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