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Abstract

Developing realistic preclinical models using clinical sam-
ples that mirror complex tumor biology and behavior are vital
to advancing cancer research. While cell line cultures have been
helpful in generating preclinical data, the genetic divergence
between these and corresponding primary tumors has limited
clinical translation. Conversely, patient-derived xenografts
(PDX) in colorectal cancer are highly representative of the
genetic and phenotypic heterogeneity in the original tumor.
Coupled with high-throughput analyses and bioinformatics,
these PDXs represent robust preclinical tools for biomarkers,
therapeutic target, and drug discovery. Successful PDX engraft-
ment is hypothesized to be related to a series of anecdotal
variables namely, tissue source, cancer stage, tumor grade,
acquisition strategy, time to implantation, exposure to prior
systemic therapy, and genomic heterogeneity of tumors.
Although these factors at large can influence practices and

Introduction

Integrated application of patient-derived xenograft (PDX)
modeling has emerged as a key approach to more effective
biomarker, therapeutic target, and drug discovery (1, 2). Tradi-
tionally, preclinical evaluation of therapeutic targets in colorectal
cancer has been performed using either well-established cell lines
in tissue culture or tumors xenografted using these cell lines into
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patterns related to xenotransplantation, their relative signifi-
cance in determining the success of establishing PDXs is
uncertain. Accordingly, we systematically examined the pre-
dictive ability of these factors in establishing PDXs using 90
colorectal cancer patient specimens that were subcutaneously
implanted into immunodeficient mice. Fifty (56%) PDXs were
successfully established. Multivariate analyses showed tissue
acquisition strategy [surgery 72.0% (95% confidence interval
(CI): 58.2-82.6) vs. biopsy 35% (95% CI: 22.1%-50.6%)] to
be the key determinant for successful PDX engraftment. These
findings contrast with current empiricism in generating PDXs
and can serve to simplify or liberalize PDX modeling proto-
cols. Better understanding the relative impact of these factors
on efficiency of PDX formation will allow for pervasive inte-
gration of these models in care of colorectal cancer patients.
Mol Cancer Ther; 16(7); 1435-42. ©2017 AACR.

immunocompromised mouse strains (e.g., NOD-SCID mice). As
established colorectal cancer cell lines are most often phenotyp-
ically and genetically uniform due to extended selection or
passage, they often fail to account for the heterogeneity of the
original tumors from which they were derived. Thus, cell line-
based preclinical "in vivo" models have been criticized for their
modest genetic and molecular diversity (3). These cell lines
propagated in vitro demonstrate genetic departure from their
corresponding primary tumors (4). Furthermore, by virtue of
their in vitro selection in tissue culture, colorectal cancer cell lines
generally tend to display poortly differentiated and more aggres-
sive characteristics relative to more heterogeneous human colo-
rectal tumors. Although the uniformity of colorectal cancer cell
lines is very useful for studying cell signaling pathways, these
factors have limited translation into the real world effectiveness of
colorectal cancer cell line-based models in cancer drug discovery
and therapeutic marker/target identification, with few predictive
achievements and many notable failures (5).

On the basis of this unmet need for more representative
heterotypic disease-related translational research tools, newer
approaches involve the direct implantation of patient tissue into
immunocompromised mouse strains, so called PDX modeling. As
this approach actually incorporates the original heterogeneous
tumor, its use has increased considerably during the last decade
(6-14). This shift in preclinical models was influenced by notable
studies showing the advantage of PDX models relative to tradi-
tional xenografts in recapitulating the complex biology of human
disease (9, 15). Indeed, PDX models demonstrate genetic and
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molecular diversity that are fundamental characteristics of human
tumors (15-17). In addition, immediate passages preserve a
component of the human stromal compartment (18-22), shown
to play a key role in disease progression and development of
resistance to therapy. In consideration of these unique character-
istics, numerous research groups focused on developing PDX
models that represent the morphologic and the biologic spectrum
of the disease (20, 23, 24). To this end, xenografts derived from
primary tumors, metastatic sites, and treatment-naive tumors and
heavily treated tumors are gaining acceptance as a key preclinical
platform to study cancer behavior and to improve new drug
development (7-10, 25-29).

Nevertheless, the successful engraftment of patient samples
into PDX models is not universal for all tumor types. In the case
of one colorectal cancer study, approximately 70% of patient
samples grafts developed a PDX (22). Anecdotal practices, spec-
ulative factors, and limited experimental findings in other tumor
types support the notion that engraftment rates are affected by
several factors, including tumor type, tissue source, cancer stage,
tumor grade, tumor molecular characteristics, acquisition strate-
gy, exposure to prior radiation or systemic chemotherapy, and
technical manipulations during grafting (such as time to implan-
tation; refs. 30-33). In this study, we established a large cohort of
PDX models derived from both surgical and biopsy specimens to
systematically examine whether these factors effect engraftment in
PDX models. Our results are vital to understanding the role of
genetic characteristics in the ability of colorectal cancer tumors to
establish as a PDX and the fidelity of these models in recapitu-
lating human disease. Moreover, we discuss novel strategies for
the optimization of engraftment rates.

Materials and Methods

Patient characteristics

Patients enrolled on the study were treated at The University of
Texas MD Anderson Cancer Center (MDACC, Houston, TX)
between April 2012 and September 2014. Patient data were
collected prospectively and included gender, age, stage of the
disease, prior chemotherapy, prior targeted therapies, and tumor
genetic mutation status (Table 1). The study was carried out under
an Institutional review board-approved protocol and an
informed consent was obtained from each patient.

Collection of colorectal cancer human specimens

Colorectal cancer biospecimens collected included both sur-
gery and biopsy specimens. Immediately after collection, two
tumor pieces were snap-frozen and stored in liquid nitrogen for
molecular characterization; two pieces were fixed in formalin and
then embedded in paraffin (FFPE) for hematoxylin and eosin
staining (H&E) and IHC analysis. In addition, 2-6 tumor pieces
were placed in DMEM media supplemented with 1% antibiotic,
10% FBS, and 1% nonessential amino acids prior to engraftment.

Tumor engraftment

NOD.Cg-Prkdc™ 112rg™"7'/Sz] (NSG) mice from The Jackson
Laboratory (JAX) were maintained in the animal facilities of
MDACC and JAX following standard animal regulation and strict
health controls. Tumor specimens were collected at MDACC and
were engrafted into NSG mice at MDACC and JAX using similar
mouse host and method for implantation. Tumor specimens
engrafted at MDACC constituted the immediate engraftment
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Table 1. Baseline characteristics of patients involved in study (N = 90)

Characteristics Value (%)
Age (years)
Median + SD 54 +13.35
Range 20-86
Gender
Female 41 (45.6%)
Male 49 (54.4%)
Method of tumor acquisition
Surgery 50 (55.6%)
Biopsy 40 (44.4%)
Site of sampling
Primary 15 (16.7%)
Metastatic 75 (83.3%)

Time to engraftment
0-2 hours (immediate)
12-24 hours (delayed)
Parental tumor mutational status
KRAS mutant
BRAF mutant
PIK3CA mutant
Tumor grade
Moderately differentiated
Poorly differentiated
Prior therapy
Neoadjuvant therapy
No neoadjuvant therapy
Preoperative bevacizumab

59 (65.6%)
31 (34.4%)

47 (52.2%)
14 (15.6%)
21 (23.3%)

69 (76.7%)
16 (17.8%)

74 (82.2%)
13 (14.4%)
47 (52.2%)

cohort and were engrafted within 2 hours. Tumors engrafted at
JAX constituted the delayed engraftment cohort and were
engrafted between 12 and 24 hours of collection at MDACC.
Rodent care and housing were in accordance with institutional
guidelines and regulations as well as according to Institutional
Animal Care and Use Committee approved animal protocols.
Tumor fragments (~50 mm?) were subcutaneously placed into
the flanks of mice anesthetized by 2%-4% isoflurane/O, inha-
lation. One piece of tumor was implanted per mice. Tumor
growth was monitored and documented twice a week, with date
of first palpable growth noted. Mice were euthanized when tumor
burden was reaching 1,500 mm?,

Pathologic characterization

Samples were formalin-fixed, processed, paraffin-embedded,
sectioned, and stained with hematoxylin/eosin using standard
pathology techniques. Dual-color FISH assays were performed by
the Molecular Pathology Shared Resource Cytogenetics Labora-
tory at the University of Colorado Cancer Center. Unstained slides
with formalin-fixed paraffin-embedded tissue (FFPE) sections
from human primary tissue or PDX were subjected to a dual-
color FISH assay using the Human (SR)/Mouse (SG) DNA probe
set. The Human and Mouse probes were prepared by labeling 1 ug
of Cot-1 DNA of each species (commercial reagents obtained
from Invitrogen), respectively, with SpectrumRed- and Spectrum-
Green-conjugated dUTPs (Abbott Molecular) using the Vysis
Nick translation kit (Abbott Molecular), according to manufac-
turer's instructions. The assays were performed according to
standard laboratory protocol using reagents from FFPE pretreat-
ment kit IV (Abbott Molecular). The samples were incubated at
56°C for 4 hours, soaked in CitriSolv series 3 times for 5 minutes
each followed by dehydration in 100% ethanol and then allowed
to air dry. The tissue areas to be hybridized were marked with a
diamond pen. The slides were incubated in pretreatment solution
at 80°C for 10 minutes and in the protease solution at 37°C for 18
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minutes. After the specimens were washed and dehydrated in
EtOH series, the slides were allowed to air dry. Probe was applied
to the selected hybridization areas using 50 ng each of Human
Cot-1 and Mouse Cot-1 per 12-mm circular area and then covered
with a glass coverslip and sealed with rubber cement. DNA
denaturation was performed in a thermocycler for 5 minutes at
75°C and hybridization was allowed to occur at 37°C overnight.
Posthybridization wash was performed through incubations in
wash buffer I at 74°C and wash buffer IT at room temperature for 2
minutes each, followed by dehydration. Finally, DAPI/anti-fade
(0.3 pg/mL in Vectashield mounting medium) was applied to the
slide and the area covered with a coverslip. The quality of the
preparation regarding nuclear morphology and intensity of the
fluorescence signals was verified on epifluorescence microscope
using single interference filters sets for green (FITC), red (Texas
red, TR), and blue (DAPI). Monochromatic images were captured
in each channel and merged using CytoVision application (Leica
Microsystems).

Molecular characterization

Mutational status of the parental tumor performed as a stan-
dard of care under CLIA (Clinical Laboratory Improvement
Amendments) environment was collected and included mutation
status of KRAS, BRAF, and PIK3CA genes. Tumor cellularity was
determined by H&E staining of sections adjacent to those used for
DNA extraction. Standard laboratory procedures were used to
isolate sectioned tissue and then extract, purify, and quantify
DNA. The gene analysis was performed as a standard of care at
MDACC as described previously (34). Ion Ampliseq Cancer Panel
(Life Technologies) was used to identify hotspot mutations found
in 46 genes, which was expanded to 50 genes by adding the
following genes: EZH2, IDH2, GNA11, and GNAQ (34). Sequence
reading, alignment, and base calling were conducted using Tor-
rent Suite software V2.0.1 (Life Technologies) with reference
standards consisting of Human Genome Build 19 (Hg19). Geno-
mic variant detection was performed using Torrent Variant Caller
software V1.0 (Life Technologies)

Statistical analysis

Statistical analysis was performed to determine the association
of PDX establishment with covariates. The PDX establishment
was treated as a binary outcome and time to PDX establishment
was treated as a time-to-event outcome for the analysis. Fisher
exact test and logistic regression analysis were used to determine
the association of PDX establishment as a binary outcome with
covariates, and the log-rank test and Cox proportional hazards
model was used to determine the association of PDX establish-
ment as a time-to-event outcome with covariates.

Results

Tissue acquisition strategy affects PDX establishment

The majority of previous PDX establishment studies relied on
surgical samples (Table 1). Nevertheless, the use of biopsy sam-
ples can extend the application of the PDX models to a wider range
of patients and improve the ability to study changes in tumor
biology during the evolution of the disease (2). As a key focus, we
examined whether the method of parental specimen acquisition
affects PDX establishment. A total number of 50 (55.6%) surgical
and 40 (44.4%) biopsy specimens were transferred to mice and
used for analysis. We found that the PDX development success
rate was higher in surgical (36/50 = 72%) than biopsy (14/40 =
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35%) specimens [OR = 4.78; 95% confidence interval (CI): 1.79-
13.0; P = 0.001]. This difference remained statistically significant
even after adjusting for primary versus metastatic and immediate
versus delayed implantation (OR = 3.63, P = 0.048, Table 2).
Within surgical specimens, we found no association between the
size (maximal dimension) of the tumor resected during surgery
and rate of PDX establishment (P = 0.279; Supplementary Data).

Immediate and delayed implantations are feasible and equally
effective for PDX establishment

Prior studies and current practices in PDX development were
performed in collaboration with a specialized institution and
have focused on the need for early implantation (15, 35). How-
ever, little is known about the effect of delayed implantation in
PDX engraftment rates in colorectal cancer. To answer this ques-
tion, we perform both immediate and delayed implantation.
Immediate implantations were performed within 2 hours, where-
as delayed implantations were performed between 12 and 24
hours from tissue acquisition. This decision was based on logistic
factors, including the time of day that the procedure was com-
pleted. Overall 59 (65.6%) specimens were grafted immediately
and 31 (34.4%) were grafted within 24 hours (Table 2). We
recorded a development of PDX in 28 of 59 (47.5%) of immediate
and 22 and 31 (72%) of delayed implantations. While this
difference was statistically significant in univariate analysis
(OR = 0.37; P = 0.045), there was an imbalance of surgical and
biopsy samples with more surgical samples undergoing delated
implantation. As a result, this effect was not maintained in
the multivariate model that included surgery versus biopsy
(OR = 0.98, P = 0.970; Table 2).

Source of tissue has little influence on colorectal
cancer PDX establishment

Next, we examined the influence of tissue acquisition site in
PDX establishment. A total number of 15 (16.7%) primary
tumors and 75 (83.3%) metastatic tumors were implanted. Over-
all, 13 of 15 (86.7%) primary and 37 of 75 (49.3%) metastatic
specimens developed PDXs (Table 2). While this was significantly
different in univariate analysis (OR = 6.68, P = 0.010), after
correcting for confounding variables, this difference was not
maintained (OR = 3.87, P = 0.104; Table 2).

Previous therapy affects time to establishment of PDX but not
overall establishment rates

Another factor that potentially affects PDX engraftment is
previous chemotherapy, as this may induce tumor volume shrink-
age and tumor cell death, affecting the number of tumor cells that
are engrafted alive. However, previous therapy also induces
molecular changes, such as epithelial to mesenchymal transition
and regional hypoxia that might also affect engraftment. For this
reason, we evaluated the role of any neoadjuvant chemotherapy
and anti-VEGF therapy specifically (bevacizumab) in PDX estab-
lishment. Overall, 74 (85.1%) patients received neoadjuvant
cytotoxic chemotherapy prior to implantation and 47 (62.7%)
patients received anti-VEGF therapy. As shown in Table 2, neither
prior chemotherapy nor bevacizumab specifically affected the
overall rate of PDX establishment. However, PDX models estab-
lished from patients with previous neoadjuvant therapy grew
significantly slower than those without previous therapy (median
time to establishment: 12.2 months vs. 3.8 months; HR = 0.38
(0.16-0.89); P = 0.026; Table 3). This effect was not attributed to
prior bevacizumab therapy.

Mol Cancer Ther; 16(7) July 2017
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Table 2. Univariable and multivariable analyses to determine the association between covariates and PDX establishment

Univariate analysis

PDX Establishment

Covariates No Yes OR (P)
Gender
Female 20 (48.8%) 21 (51.2%) 1.38 (0.525)
Male 20 (41.8%) 29 (59.2%)
Method of tumor acquisition
Surgery 14 (28.0%) 36 (72.0%) 4.78 (<0.001)
Biopsy 26 (65.0%) 14 (35.0%)
Site of sampling
Primary 2 (13.3%) 13 (86.7%) 6.68 (0.010)
Metastatic 38 (50.7%) 37 (49.3%)
Prior therapy?®
Neoadjuvant therapy 37 (50.0%) 37 (50.0%) 0.30 (0.129)
No neoadjuvant therapy 3 (23.1%) 10 (76.9%)
Preoperative bevacizumab?®
Yes 23 (48.9%) 24 (511%) 1.39 (0.633)
No 16 (57.1%) 12 (42.9%)
KRAS mutant®
Yes 10 (40.0%) 15 (60.0%) 1.71(0.329)
No 25 (53.2%) 22 (46.8%)
BRAF mutant®
Yes 8 (57.1%) 6 (42.9%) 0.72 (0.765)
No 26 (49.1%) 27 (50.9%)
PIK3CA mutant®
Yes 9 (42.9%) 12 (57.1%) 1.48 (0.589)
No 20 (52.6%) 18 (47.4%)
Time to engraftment
<2 hours (immediate) 31(52.5%) 28 (47.5%) 0.37 (0.045)
12-24 hours (delayed) 9 (29.0%) 22 (71.0%)
Tumor grade®
Poorly differentiated 7 (43.8%) 9 (56.3%) 0.88 (1.000)
Moderately differentiated 28 (40.6%) 41 (59.4%)
Multivariate analysis
Covariates OR 95% CI P
Surgery vs. biopsy 3.63 1.0-13.0 0.048
Primary vs. metastatic 3.87 0.8-19.8 0.10
Immediate vs. delayed 0.98 0.3-3.70 0.97

@Variables with missing values.

PDX models represent the broad spectrum of human colorectal
cancer genetic alterations

The ability of PDX models to represent with fidelity the
colorectal cancer biology relies on recapitulating the spectrum
of genetic alterations found in human disease. Thus, we exam-
ined the role of clinically relevant genetic alterations (36) in the
establishment of PDX models. Specifically, we analyzed the
status of KRAS, BRAF, and PIK3CA genes found in parental
tumors and correlate these results with PDX establishment. As
shown in Tables 2 and 3, genetic alterations found in parental
tumors did not affect either the rate of establishment or time to
establishment of PDX. These results suggest that, PDX models
represent the broad spectrum of genetic alterations found in
human disease.

PDX establishment is not affected by the parental tumor
differentiation state

Equally important is the ability of recapitulating the morpho-
logic spectrum of the disease. Thus, we examined whether the
differentiation status in parental tumors affects PDX engraftment.
Pathology report was available for 85 cases. A total number of 69
(81.2%) moderately differentiated and 16 (18.8%) poorly dif-
ferentiated tumors were implanted into mice. Overall, 41 of 69
(59.9%) moderately differentiated and 9/15 (56.4%) poorly

1438 Mol Cancer Ther; 16(7) July 2017

differentiated specimens developed a PDX (Table 2). These results
show that the extent of parental tumor cell differentiation does
not affect the establishment of a PDX line. Furthermore, the
differentiation state also remains similar between the human
primary tissues and the established PDX (Supplementary Fig. S1).

Mouse stromal tissue in PDX growth

The human/mouse species—specific hybridization probe set
recognized human chromatin (red) and mouse chromatin
(green). Patient original tissue carried only cells of human origin
(Fig. 1A). In contrast, consistent with prior reports, PDX speci-
mens displayed a mixture of human and mouse cells by passage 2
(Fig. 1Band C). Mouse stromal in tissue migrates into the growing
human xenograft tissue and displayed a similar pattern of behav-
ior in multiple PDX samples examined.

Discussion

Preclinical evaluation of investigational agents has been inef-
ficient, which is reflected by the high rates of clinical trial failures.
Specifically, only 5% of chemotherapeutics and targeted agents
that qualify in vivo preclinical evaluation show efficacy in late-
stage clinical trials. These failures highlighting the need for novel
strategies of predicting clinical efficacy before drugs enter the
clinic (37). One such limitation is the use of animal models that

Molecular Cancer Therapeutics
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Table 3. Log-rank test and multivariable cox model to compare time to PDX
establishment

Univariate analysis
Median time to PDX

Covariates N® Event (months) (95% CI) P
88 41 12.2 (8.1-NA)

Method of tumor acquisition
Surgery 51 31 8.1(5.5-14.4) 0.053
Biopsy 37 10 NA

Site of sampling
Primary 12 n 3.8 (2.5-NA) 0.15
Metastatic 76 30 12.2 (1.97-NA)

Prior therapy
Neoadjuvant 74 31 12.2 (11.9-NA) 0.007
No neoadjuvant 10 7 3.8 (2.5-NA)

Preoperative bevacizumab
No 26 10 21.9 (8.1-NA) 0.64
Yes 50 20 12.2 (11.9-NA)

KRAS mutant
No 47 18 12.2 (1.9-NA) 0.81
Yes 25 12 14.4 (5.7-NA)

BRAF mutant
No 54 24 12.2 (1.9-NA) 0.26
Yes n 2 NA

PIK3CA mutant
No 38 14 12.2 (1.9-NA) 0.66
Yes 20 n 14.4 (3.7-NA)

Time to engraftment
<2 hours (immediate) 51 19 13.8 (12.2-NA) 0.0004
12-24 hours (delayed) 37 22 5.5 (3.8-NA)

Tumor grade
Moderately differentiated 68 35 12.2 (6.3-NA) 0.86
Poorly differentiated 12 6 11.9 (3.8-NA)

Multivariate analysis

Covariates HR (95% CI) P
Surgery vs. biopsy 0.98 (0.26-3.67) 0.98
Neoadjuvant therapy vs. No  0.38 (0.16-0.89) 0.026
Immediate vs. delayed 0.30 (0.09-1.01) 0.053

2Time to implantation was not available for some models.

fail to represent the molecular biology of the cancers that will be
enrolled in the proof-of-principle clinical trials. To overcome this
barrier, basic and translational research is trending toward the
development of animal models that recapitulate the molecular
and genetic complexity of human disease with more heterogenic
tumor target fidelity relative to traditional cell lines. Currently,
four major categories of mouse models have been developed,
including carcinogenesis models, genetically engineered mouse
models (GEMM), cultured tumor cell xenografts and patient-
derived xenograft (PDX) models (14, 38-41). Each approach has
specific advantages and disadvantages. The most common carci-
nogenesis model involves azoxymethane (AOM) initiation and
dextran sodium sulfate (DSS) promotion (40, 41). This approach
recapitulates the various steps of tumor progression, especially
inflammation-associated colorectal cancers. The AOM/DSS
approach using immunocompetent mice is reproducible and
recapitulates the spontaneous adenoma-carcinoma sequence,
but is typically more appropriate for chemoprevention studies
not therapeutic discovery for advanced disease (40, 41). Similarly,
rodent GEMM models utilize genetically enforced expression of
cancer predisposition properties or deletion of suppressor genes,
resulting in spontaneous tumor formation (38, 39). Rodent
GEMM models typically examine a single gene or limited series
of genetic lesions that in many cases do not capture the complexity
or diversity of the human heterogeneous colorectal cancer disease

www.aacrjournals.org
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state. As another simplistic mainstay human/rodent model by
contrast, subcutaneous or orthotopic injection of colorectal can-
cer tumor cells has long been used for preclinical drug testing
(42, 43), but, as mentioned, lacks the molecular and genetic
complexity found in colon tumors (6-14). Orthotopic studies
in colorectal cancer have been limited by reproducibility and
complexity of the cecal injections, and are rarely used in qualifying
novel therapies for clinical trial development. The power of a
tumor cell-centric focus is harnessed by restricted genetic manip-
ulation of the human cellular component in xenograft models,
which holds a significant advantage for altering specific signal
transduction pathways during drug testing but is heavily influ-
enced by a limited genetic context. These xenograft models using
immunocompromised mice inherently do not include complete
immune responses. Lack of human immune or stromal responses
can in some cases be partly addressed through the use of human-
ized mouse models (44-46).

Our studies endeavor to overcome certain deficiencies associ-
ated with testing drugs using other mouse models by developing a
significant cohort of PDX models to represent the broad biologic
and clinical spectrum of colorectal cancer. This achievement was
feasible using patient tumor samples from both surgery and
guided biopsies. In this discovery setting, we were able to shed
light on poorly understood intrinsic or extrinsic factors that affect
PDX engraftment rates. This is particularly important to under-
stand whether transfer of human colorectal cancer samples into
the murine background selects for specific tumor characteristics
that might not be relevant to human disease.

We systematically addressed these questions by examining the
role of (i) tumor acquisition method, (ii) site of sampling, (iii)
time to engraftment, (iv) parental tumor mutational status, (v)
degree of tumor cells differentiation, and (vi) previous therapy in
the development of a PDX model. To our knowledge, this is the
first such systematic study that focuses on whether these para-
meters influence colorectal cancer PDX engraftment rates from
both surgical and biopsy specimens.

Our analyses identified three factors affecting engraftment:
method of tumor acquisition, site of sampling, and previous
chemotherapy. Specifically, we showed that surgery specimens
have higher rates of engraftment relative to biopsy specimens. The
engraftment rate of surgery specimens was approximately 70%, in
agreement with previous reports (22, 25). In contrast, only 35% of
biopsy specimens led to a PDX model. In the multivariate model,
this corresponded to a 4.8-fold lower odds of engraftment com-
pared to the surgical specimens. This result was expected due to
differences in tissue sample size, percentage of tumor cells relative
to normal tissue and viability of tumor cells between surgical and
biopsy samples that have been previously documented (23, 47).
Variations in the tissue bulk, technical challenges of tissue col-
lection and tumor initiating cell content within the samples may
also account for some of these differences. Nevertheless, the
proportion of biopsy specimens leading to the development of
a PDX model remains high enough for feasibility for many of the
proposed uses. Utilizing biopsy specimens is crucial to increase
the range of disease biology that is represented in PDX models. For
example, serial biopsy-derived models can recapitulate changes
that occur within the same tumor during the evolution of the
tumor with treatment and time (48, 49). Recent studies have
shown that metastatic foci have a large percentage of necrosis;
however, tissue in the periphery of these lesions maintains high
levels of viability (50-52). Thus, guided biopsies targeting the

Mol Cancer Ther; 16(7) July 2017
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periphery of metastatic foci might increase the possibility of
acquiring living tissue and improve the engraftment rates of the
biopsy group.

Although we expected that metastatic tumors are more aggres-
sive biologically and would adapt more successfully as subcuta-
neous implants than primary tumors, this was not the case.
Primary tumor samples engrafted PDX lines more effectively
relative to metastatic tumors in our cohort, with an almost 7-fold
higher odd of model establishment. We believe that this differ-
ence is related to tissue accessibility and viability of tumor cells
engrafted. Indeed, improving biopsy techniques would be impor-
tant to access live tumor cells from metastatic sites and develop-
ment of a PDX line. Sample bulk and the tumor-initiating cell
content within these different samples may also account for these
differences. Notably, time to implantation did not adversely affect
rate of PDX establishment. This finding is encouraging as it allows
for a more liberal time in protocols from biopsy to implantation.
This can promote studies with remote biopsy acquisition without
the concern of decreased rate of PDX establishment.

Interestingly, previous therapy significantly delayed the time to
engraftment of PDX model, without any significant effect in
overall engraftment rate. Untreated tumors are more likely to be
actively proliferating and have higher tumor-cell content relative
to stroma. We hypothesize that this advantage may be offset by a
greater resistance to environment stress and reduced metabolic
requirements. Furthermore, the impact of therapy on dormancy,
or senescence, might influence the sample and thereby require
additional time for the emergence of tumor-initiating cells during
engraftment (53-55). Nevertheless, our anecdotal association of
delayed development with rapid growth after that point suggests
that PDX models from pretreated tumors might be more aggres-
sive once established. To answer this question, we suggest study-
ing the growth rates of the next PDX generations and comparing
the two groups. Importantly, none of the clinically relevant
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Figure 1.

Dual-color FISH on FFPE tissue
sections from established PDXs shows
mixture of human and mouse cells. A,
Single DAPI filter showing nuclear
chromatin; B-D, Merged DAPI, FITC,
and TR filters highlighting the nuclei
from human (painted in red) and from
mouse (painted in green) origin. A and
B, low magnification microscope field
(10x objective); C, high magnification
(40x objective); D, high magnification
(100 objective).

genetic mutations tested (KRAS, BRAF, and PIK3CA) affected the
development of a PDX line. This result is critical for the further use
of PDX models as an unbiased preclinical research tool, and
specifically as a screening strategy for the development of novel
investigational agents. However, we acknowledge that these three
genes are not sufficient to fully recapitulate the spectrum of
colorectal cancer biology, and additional undetected selection
bias may still exist.

The main limitation of our study is that although we have
looked at key factors, there are additional factors that may impact
rate of model establishment, such as tumor viability, proliferative
rate, time from last dose of chemotherapy, time from vascular
clamping to tissue harvesting in surgical specimens, postcollec-
tion preservation techniques, among others, which remain unac-
counted for and merit further investigations. In addition, as size
(and weight) of biopsy specimens are often lower than those
obtained by surgery, we cannot reliably rule out the possibility of
similar PDX establishment rate with biopsy specimens of equiv-
alent size.

In conclusion, our study provides evidence supporting that
genetic selection during the transfer of human tumors into the
murine background does not appear to occur. In addition, we
identified three factors that affect the PDX engraftment rates and
our ability to develop biologically relevant tools for the preclinical
evaluation of investigational agents. More important, these fac-
tors are amendable to improvement through better sampling
technique and manipulations throughout tissue transfer. Further-
more, as both PDX and humanized mouse model technologies
are emerging simultaneously, one might envision combining
them in the future. A potential scenario might call for establishing
PDX tumors initially and/or subsequent placement into a mouse
with the appropriate human stroma for even more effective drug
discovery and testing. This would be particularly critical for
combining chemotherapy and immunotherapy in an adjuvant
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setting. For now, we submit that our PDX platform is the most
immediate and effective approach forward for uncovering more
active therapeutic agents as we target heterogeneous colorectal
cancer disease. Ultimately, the inherent tumor heterogeneity
found in PDX modeling constitutes a better representation of
the original tumor and thereby is expected to provide a more
biologically relevant platform for testing therapeutic drugs.
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