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Modeling of Porous Insertion Electrodes with Liquid Electrolyte

K. West, T. Jacobsen,* and S. Atlung*
Fysisk-Kemisk Institut, The Technical University of Denmark, DK-2800 Lyngby, Denmark

ABSTRACT

The dynamics of porous insertion electrodes during charge or discharge is described by a simplified mathematical
model, accounting for the coupled transport in electrode and electrolyte phases. A numerical method to evaluate the
response of this model to either controlled potential or controlled current is outlined, and numerical results for the
discharge of a porous TiS,-electrode in an idealized organic electrolyte are presented. It is demonstrated how electro-
lyte depletion is the principal limiting factor in the capacity obtained during discharge of this electrode system. This
depletion is a consequence of the mobility of the ions not inserted, hence the performance of this type of electrode is
optimized by choosing electrolytes with transport number as close to unity as possible for the inserted ion.

One of the consequences of the energy crisis is a
renewed inferest in secondary batteries for traction
purposes. As a partial electrification of the transport
sector would make the energy consumption pattern of
the community more flexible, and thus less sensitive
to changes in the availability of the different fuels,
much effort is invested in development of batiery sys-~
tems for this purpose.

Parallel to the continuous development of existing
battery systems, much research is devoted to alkali
metal batteries because of the high energy density
offered by these systems. One of the systems con-
sidered to have potential application as a high rate
battery is a negative lithium or lithium alloy elec-
trode couple with a positive insertion electrode! (1, 2).
The insertion materials under investigation for this
purpose are primarily layered transition metal di-
chalcogenides [e.g., TiS2 (3), VSes; (4)] and oxide
framework structures like V205 (5), VgOi3 (6), and
recently (Mo, V)205 (7), but also amorphous chalco-
genides (8) have received some interest,

Until now no entirely satisfactory combination of
electrodes and electrolytes has been found, although
it has been demonstrated (9) that a lithium/organic
electrolyte/titanium disulfide battery could be adapted
to electric vehicle propulsion. In any case, the develop-
ment of new electrode and electrolyte materials is pro-
ceeding very fast, and it is of importance to obtain a
better understanding of the transport processes in this

* Electrochemical Society Active Member.

Key words: intercalation, battery capacity, simulation.

1The term “insertion electrode” used here covers as well inter-
calation of a “guest” species in a “host” lattice, as the formation
of solid solutions during the electrode process.

type of batteries in order to anticipate the combina~
tions of electrode and electrolyte properties that can
meet the requirements corresponding to a given set
of battery specifications.

In a previous paper (10) thin, nonporous insertion
electrodes were treated in detail. In the present paper
a mathematical description of porous insertion elec-
trodes is presented to extend these calculations to
more realistic electrodes.

Porous electrode theory has been reviewed by
deLevie (11) and more recently by Newman and Tiede-
mann (12). The porous insertion electrode is, however,
different from the electrode types treated previously,
as it involves transport in both electrolyte and elec-
trode phases. These two transport systems are coupled
both through mass balances and through the variation
of the electrode potential with the surface composition
of the electrode phase. This variation is typically large
for intercalation compounds (hundreds of millivolts)
and current distribution in the pores due fo charge
transfer resistance is of minor importance compared
to the effect of the varying surface composition. The
transient behavior of porous electrodes with low
charge transfer resistance has been treated by Pollard
and Newman (14) for'the case where the equilibrium
electrode potential is not a function of the utilization
of the electrode material.

Model Formulation

An electrode with irregularly shaped pores and
cavities will be difficult if not impossible to describe
mathematically. Therefore, we have chosen to model
the porous insertion electrode with systems of much
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simpler geometry, but still possessing the important
functional features of the real electrodes. The geom-
etry of these models is shown in Fig. 1 and 2.

Each of these model systems consist of a porous
slab of electrode material of high electronic conductiv-
ity and of thickness . On one side (z = 0) this slab is
contacted by a metallic conductor serving as current
collector, and on the other (z = [) by an electrolyte
also filling the pores of the electrode. This electrolyte
is considered to be liquid with mobile anions and ca-
tions.

The three model geometries consist of equally sized
particles uniformly distributed in the electrode and
of one of the following shapes: parallel sheets (Fig. 1);
long cylinders (transport across the ends of the cylin-
ders should be negligible) (Fig. 2a); and spheres (Fig.
2b).

The packing of the cylinders or the spheres should
ensure that all particles are in electronic contact with
the current collector, and they should be evenly dis-
tributed so the porosity does not change significantly
in any directions within the electrode. There are no
restrictions on the orientation of the cylinders, but as
the concentration will be taken to be constant around
a cross section of the particles, the diameter of the
cylinders or the spheres should be small compared to
the thickness of the electrode.

In order to keep the transport equations from getting
too involved and to keep the computational work at
a reasonable level, the model systems are simplified
further by the following assumptions:

1. The particle-particle distance (the width of the
pores) is so small compared with the thickness of the
electrode that the potential and concentrations in the
pores can be considered as varying in one dimension
only (i.e., along the length of the pore).

2. The ionic conductance of the electrode phase is
low compared with the conductance of the electrolyte,
so diffusion in the electrode phase parallel to the sur-
face of the electrode particle will not contribute sig-
nificantly to the overall transport. Solid-state diffu-
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Fig. 1. Schematic diagram of electrode model (plane geometry).
Arrows indicate directions of fluxes considered.
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Fig. 2. Schematic diagrams of electrode models: (a) cylindrical
geometry; (b) spherical geometry.
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sion in the electrode phase thus only removes the in-
serted species from the electrode/electrolyte interfaces
as indicated in Fig. 1.

3. Space charge accumulation is negligible. This
implies that the electroneutrality principle can be ap-
plied in the derivation of the transport equations in-
stead of the more involved Poisson-Boltzmann equa-
tion.

4. Charge transfer overvoltages are negligible.

5. The electronic conductivity of the elecirode phase
is so high that the Fermi potential (x) in this phase
is constant.

6. The electrolyte salt considered is mono-mono
valent.

7. Volume flow due to expansion of the solid matrix
and concentration changes in the electrolyte are neg-
lected.

Basic Equations

On the basis of these assumptions the equations
governing transport in the model pore system can be
formulated. As there is no significant transport parallel
to the surface of the electrode particles, the diffusion
equation for the solid phase will be one-dimensional
in the coordinate system belonging to the symmetry
class of the electrode particles (cartesian, cylindrical,
or spherical, respectively). The electric field in this
phase is small, and the diffusion can be treated ac-
cording to the Fick laws. With concentration and
chemical diffusion coefficient of the inserted species
designated by ¢s and Dy and the time by ¢, the diffu-
sion equation is -

des(y, z)
at

where Vy is the nabla-operator for the direction per-
pendicular to the particle surface. The boundary con-
ditions in the center (y = 0) and at the surface of the
electrode particles (y = r) are

Vycs(y,2) [y=0 =0 [2]
Vycs (Y, 2) |y=r = — iy (2) /FDy [3]

where iy is the current density across the particle/
electrolyte interface.

The transport in the electrolyte will be treated as
one-dimensional diffusion and migration according to
the Nernst-Planck equation. For the cations an addi-
tional term must be included in this equation to ac-
count for the flux of cations across the particle/electro-
lyte interface (given by the transfer current density
iy). Due to electroneutrality the anion and cation con-
centrations are equal (c¢;)

= V N DsVycs (y, z) [IJ

@@ _ 8 [lacl(z) . F  4¢(2) ]
at 9z L oz ! RT oz
[4]

dc1(2) 9 b [acl(z)
ot oz

oz a8z

+ afz) - F %)
! RT FiF

where D+ and D- are diffusion coefficients of cations
and anions, respectively, and ¢ is the electric potential
in the electrolyte. The geometric factor g is the aver-
age ratio between the circumference and the cross-
sectional area of the pore.

The boundary conditions for these equations at the
bottom of the pore (z = 0) and at the electrode sur-
face (2 = 1) are ‘

] + iy (2)g/F 5]

9o =9 =0 161
FF4 2=0 02 2=0
call) =cLo; o) =o* [71
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where ¢y and ¢* are constanis or specified functions
of time. Furthermore it is assumed that the electrode
initially is in equilibrium

t=0=>c=cy and ¢ = ¢° (all2)
(all ¥y and 2) [8]

where ¢° is given by the equilibrium electrode poten-
tial (x — ¢°) corresponding to the composition cyg,
Cs,0-

The last constraint necessary to couple the electrode
and electrolyte systems is the potential relation

(. — ¢(2)) = h(cs*(2),1(2)) (9]

where ¢s*(2) is the local surface concentration of the
inserted ion. As local electrochemical equilibrium at
the electrode/electrolyte interface is assumed (no
charge transfer overvoltage), h is a single valued func-
tion of ¢s* and c¢; only. The exact form of this func-
tion h will depend on the electrode material chosen.
In many instances, however, a function of the follow-
ing type will give a reasonable good approximation
(13) '

RT
—9) =(r—9¢)?+ T (In((es® — cs*) /cs*)

Cs = Cs5,0

+1n (¢1) — fles*/es®) — 0.5) [10]

where c;° is the saturation concentration of the in-
serted species in the electrode phase. (n — ¢)? and §
are characteristic constants of the electrode material.
Applying this expression implies that the insertion
process is equivalent to an adsorption process with
linear interaction term (Frumkin isotherm).

As x is constant in space, 9¢(2)/9z in Eq. [4] and
[5] can be replaced by —d(x — ¢(2))/92, and the
space and time variations of concentrations and poten-
tial in the model pore system are thus determined by
[1], [4], [5], and [9] together with the appropriate
boundary conditions.

Dimensionless Parameters.

In the limited universe of a numerical model it is
often inconvenient to measure quantities relative to
standards (e.g., SI-units) which are not part of the
model. Often it is an advantage to measure the quan-
tities relative to some of the characteristic parameters
of the system and transform the equations into dimen-
sionless forms. With a proper choice of reference pa-
rameters, the dimensionless variables can give a
simpler description of the state of the system than the
corresponding dimensioned variables.

A dimensionless form of Fick’s laws where time is
measured relative to a time constant of diffusion and
length relative to the dimension of the diffusion re-
gion is often used (15). Considering diffusion in the
electrode phase, this transformation gives the di-
mensionless time and length

T =tDso/r% Y =y/r [11]

where Dy is a characteristic value of the diffusion co-
efficient of the inserted ion.

Measuring the concentration of the inserted ion rela-
tive to its saturation concentration X = cs/cs°, the
transport equation for the electrode phase [1], assumes
the following form

%—X(Y) =V U VX (Y) [12]

where U; is a dimensionless mobility
Us = Ds/Ds° [13]

The dimensionless electrode current density or ca-
tion flux density across the electrode/electrolyte in-
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terface corresponding to this transformation is defined

as
Iy=iy -1 ng/F:c- Dy [14]

Noting that the surface to volume ratio of the three
types of electrode particles considered is ng/r, where
ng is 1, 2, or 3 for planar, cylindrical, or spherical
geometry, respectively, it can be seen that I; is the
transfer current density measured relative to the spe-
cific charge density available in the electrode phase
and to the time constant of diffusion.

The transport equations for the electrolyte [4] and
[5] must be transformed in a slightly different way,
utilizing the dimensionless time T already defined in
Eq. [11]. Introducing the dimensionless variables

E = (x—¢)F/RT; Z=2/1 [15]
and the dimensionless mobilities
Uy = (D4/Ds0) (I/7)2; U~ = (D-/Ds°) (I/7)2 [16]

the equations governing transport in the electrolyte
assume the following nondimensional forms

C=c/c;

C { c E
9 = 9 U- ( 0 +C 4 ) [17]
oT ~ oZ oz oZ
and
oC F] ( aC oE )
= U ~C I,G [18]
oT 9z " \oz oz )T

The dimensionless geometric factor G = g *+ r * ¢/
(¢1,0 - 1g) contains information on the ‘‘shape” of the
pores. For the simple geometries described above, g is
equal to ng(1 — P)/(r - P), and G’s dependence on
system parameters is given by G = (1 — P)cso/(P - cy0).
Parallel to the definition of I, the dimensionless over-
all electrode current I, is defined as the total electrode
current relative to the stoichiometric capacity of the
electrode and the time constant of the electrode par-
ticles

iy r2

F-co(1—P)-1 Dp

[I, is identical to 1/@Q as defined in Ref. (10).]

Length is measured in different units for directions
parallel and perpendicular to the pore surface in order
to obtain length parameters that always vary between
0 and 1, regardless of the physical dimensions of the
pore system. Also concentiration is measured relative
to different standards in the electrode and the electro-
lyte phases.

The porous insertion electrode is thus described by
the local variables C(Z), E(Z), I,(Z) and X(Y,2),
and transport in this system is governed by Eq. [12],
[17], and [18] together with an expression for the
dependence of E on C and X*

E=FEo 4+ In((1 — X*)/X*) + In(C) — f(X* — 0.5)
[20]

The transport equations are subject to the following
boundary equations:

1
I, = fo I,(Z)dZ = [19]

VyX|y=o =0 [21]
VyX|y=1= — I/Us + ng [22]
c oE

gE Z=0 = a—Z— Z=0 =0 [231

C(Z=1 =1 [24]

E(Z=1) =E* [25]

where E* is the (dimensionless) potential difference
between the electrode phase and the electrolyte just
outside the pore.
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Computational Methods

This set of coupled, nonlinear differential equations
cannot be solved analytically in the general case. Nu-
merical approximations to the solution can, however,
be obtained by finite difference methods
where the continuous variables are replaced by a set
of approximate values defined at certain mesh points,
and where the differential operators are replaced with
difference operators.

A linearization of X*(Z) on T and I,(Z) is obtained
at each time step from the numerical solution of Eg.
[12] together with the boundary conditions specified
above. The resulting set of coupled, nonlinear equa-
tions in C, X*, E, and Iy is solved simultaneously with
no further decoupling or linearizations, following the
iterative scheme proposed by Brumleve and Buck (18).
Using this technique, very stable numerical solutions
are obtained, which are only slightly affected (less
than 2%) by changing the number of discretization
points between 10 and 100 in any dimension.

The boundary condition [25] used above, represents
the potentiostatic case, where the charge or discharge
of the electrode proceeds at controlled potential. In
practice, however, batteries are operated at conditions
more similar to the galvanostatic case, where the elec-
trodes are charged or discharged with a controlled
current. To account for this case, an iterative loop is
added to the calculations at each time step, in which
the potential just outiside the pore (E*) is adjusted
until the specified value of the electrode current (I,) is
obtained.

Results

The salient features of the model electrode system
under load are illustrated with results from constant
current simulations. The material properties used in
these simulations are those of a porous titanium disul-
fide electrode filled with an ideal organic electrolyte.

Lithium transport in TiSs; crystals is anisotropic as
there is virtually no mobility for lithium ions in the
direction of the crystallographic c-axis (23). Con-
sequently, transport in the typically disk shaped TiS;
particles is adequately described by the cylinder
model, as they fulfill the requirements of no sig-
nificant transport across the ends of the cylinders, even
though the “cylinders” are very short.

A reasonable approximation to the emf of Li,TiSs
vs. a lithium reference electrode (¢; = ¢;°) as mea-
sured at this laboratory is given by

RT 1—X*
ALiyTiSs — ALicer=cpo) = 2.1TV + + In X+

+ In (C) — 16.2(X* — 0.5)] [26]

This expression does not reproduce the fine structure
of the emf curve [see (19) and (20)], but the overall
approximation is satisfactory for practical purposes.

The values of the transport parameters used in the
simulations are listed in Table I. D+ and t4+ are ex-
perimental values for a 1M solution of LiClOy4 in pro-
pylene carbonate. All transport parameters are taken
to be independent of the composition of the phases
although this condition is hardly ever met by prac-
tical electrode systems. Detailed experimental deter-
minations of the variation of these parameters with
concentration are, however, not available at present,
and as this variation is only considered to introduce
second-order effects, the idealized case is chosen to
illustrate the behavior of the model.

The magnitude of the geometrical parameters also
listed in Table I are characteristic values of a battery
optimized for traction purposes (9).

On Fig. 3 the equilibrium emf curve is compared
with a simulated constant current discharge. The con-
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Table 1. Simulation parameters
Transport data, electrolyte:
Transport number: t. = 0.20 Ref. (21)
(16,17), Salt diffusion coefficient D+ = 2.58 x 10-6 cm®/sec  Ref. (22)
D+ = 1.61 x 10-% cm¥/sec
D- = 6.45 x 10-% cm?/sec
Transport data, electrode:
Chemical diffusion coefficient of Li in Li:TiS:
Du° = Ds = 1010 ¢cm?/sec Ref. (23)

Geometrical data:*

Electrode thickness

Particle diameter

Porosity

Discharge current density
Electrolyte concentration (start)

Saturation concentration of elec-
trode

0.1 cm (I = 0.05 cm)
1:10¢cm (r =5 10-5 cm)
0.35

iz = b mA/cm®

cio = 1 x 10-3 mol/cms?

Wowuoan

ce? = 2.5 x 10-2 mol/cm3

]

* The geometrical data correspond roughly to those of Ref. (9).

stant current load chosen, 5 mA/cm?, is equivalent to
a stoichiometric discharge time of 4:21 hr, which is
reasonable for traction purposes. The maximal coulom-
bic efficiency predicted for this load is 80%. The rea-
son for this limitation is the evolution of an electrolyte
depletion region during discharge, as shown in Fig.
4, where some of the dimensionless parameters of the
model are depicted as functions of the length co-
ordinate (Z) at the three different degrees of dis-
charge indicated on Fig. 3. Figure 4a shows how the
electrolyte concentration in the center of the electrode
approaches zero during discharge, as the transport of
lithium jons from the bulk electrolyte cannot keep
pace with the lithium ion consumption. This is a con-
sequence of the relatively high anion mobility, Simul-
taneous with this electrolyte depletion, the surface of
the electrode particles in the outer parts of the elec-
trode gradually becomes saturated with lithium (Fig.
4b). When the surface concentration cannot be in-
creased further, the discharge current in this region is
limited to a value just large enough to support the
equilibration process until all the underlaying elec-
trode material eventually becomes saturated. The elec~
trode current is thus limited both in the depletion re-
gion, due to the low lithium ion concentration, and in
the saturation region. As these regions approach each
other during the discharge, the major part of the elec-
trode reaction is confined to a narrowing zone (Fig.
4c), until it finally becomes impossible to discharge the
electrode further with the chosen current.

The charge transfer resistance of a titanium disul-
fide electrode in LiCl04/PC electrolyte is less than
150 © em? for vaules of X between 0 and 1 (23). From
the current distributions of Fig. 4c, it can be seen that

Fig. 3. Equilibrium emf curve (broken line) as given by Eq. [26]
compared with a simulated constant current discharge curve.
Simulation parumeters are given in Table I.
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Fig. 4. Spatial variation of: (a) efectrolyte concentration (C),
(b) surfoce concentration at electrode/electrolyte interface (X*),
and (c) current density at electrode/electrolyte interface (Iy). The
curves correspond to the different degrees of discharge indicated
on Fig. 3 (t; ~ 10%, ta ~ 50%, ts ~ 79%).

inclusion of charge transfer resistance in the model
would change the electrode polarization less than 20
mV, which is in agreement with the initial assumption
of negligible influence of the charge transfer over-
voltage on the electrode performance.

For low current loads or thin electrodes this deple-
tion phenomenon will not occur, but still the electrode
utilization can be limited due to the loading of the
electrode particles as described in Ref. (10). This is
illustrated in Fig. 5, where the electrode utilization is
shown as function of the electrode thickness (1) and
the constant current load (i;). The loci of 90%, 50%,
and 10% maximal coulombic utilization is shown both
as they emerge from the porous electrode simulations
and as predicted from plane insertion electrode theory
(10). For a fixed electrode current density it can be

X
|\

cm[7

\¢

J. Electrochém. Soc.:. ELECTROCHEMICAL SCIENCE AND TECHNOLOGY

001 i
0% < h0%
/ / iz
o 1 10 100 mAlcm?
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20

0 05 1

Fig. 6. Simulated discharge curves for vdrying anion diffusion
coefficients [D— = 6.45 X 1076 cm2/sec (a); 1.79 X 107 cm?/
sec (b); 1.63 X 10—8 cm2/sec (c)]. Electrode thickness | — 0.1
cm, electrode current i; = 4.2 mA/cm?2, all other parameters as
given in Table . The cation transport numbers are: t+ = 0.2 (a);
0.9 (b), 0.99 (c).

seen that increasing the electrode thickness first in-
creases the electrode utilization as the average loading
of the individual electrode particles decreases. Later,
when electrolyte depletion limits the electrode utiliza~
tion, further increase of the electrode thickness only
decreases the average utilization, as the added material
is not utilized.

As mentioned above, changes in the cation transport
number (t;+) are expected to influence the maximal
electrode utilization. This is illustrated in Fig. 6, where
three simulated discharge curves are compared. The
only parameter varied between the simulations is the
anion mobility, whereas the cation mobility, geometri-
cal parameters, and current load are kept constant. It
can be seen that even though the overall electrolytic
conductivity is decreased, a substantial increase in
electrode utilization can be obtained when the cation
transport number is raised toward unity. From these
examples it is concluded that the porous insertion elec-
trode with conventional organic electrolyte is mainly
limited by diffusion either in the pore or in the elec-
trode particles. Optimization of these electrodes there-
fore requires careful consideration of the coupled
transport in both the electrode and the electrolyte
phases, Furthermore it can be concluded that better
utilization can be obtained using electrolytes with
unity transport number of the active cation (e.g., solid
electrolytes), if a satisfactory solution to the contact
problems between a.solid electrode phase and a non-
liquid electrolyte can be found.
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LIST OF SYMBOLS

Fig. 5. Maximal electrode utilization as function of electrode
thickness (), and electrode current (iz). All other parameters are
as given in Table I. The dashed lines are utilizations predicted
from plane electrode theory (10).

cL anion and cation concentration in electrolyte

c,0 anion and cation concentration in electrolyte at
timeT =0oratz=1

Cs concentration of inserted species in electrode

cs,0 concentration of inserted species in electrode at
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¢® saturation concentration of inserted species in
electrode

cs*  value of ¢, at electrode/electrolyte interface

C di/mensionless concentration in elecirolyte =
C1/CLo

D, diffusion coefficient of inserted species in elec-
trode phase

D¢ reference value of Dg

D+ diffusion coefficient of cation in electrolyte

D_  diffusion coefficient of anion in electrolyte

E dimensionless potential difference between elec-
trode and electrolyte = (x — ¢) - F/RT

Ee  constant in Eq, [20]

E* dimensionless potential difference between elec-
trode phase and electrolyte just outside the pore

f “Interaction” parameter in Eq. [10]
F Faraday’s number
g ratio between circumference and cross-sectional

area of pore

G dimensionless geometric factor =

) g T-edleg g

iy current density at particle/electrolyte interface

I, dimensionless current density at electrode/elec-
trolyte interface = iy - r - ng/F - ¢s® - Dg©

iz overall electrode current density

I, dimensionless current density at electrode surface

=i, 12/F - ¢ - Ds°(1 — P) -1

l distance from center to surface of electrode

ng  geometry type (1, 2, 3)

P porosity

r distance from center to surface of electrode
particle

fT groduct of gas constant and absolute temperature
ime

t+  cation transport number

T dimensionless time = t - Ds0/r2

U, dimensionless mobility = (D /D) (1/7)2

U. dimensionless mobility — (D~/Dg°) (1/r)2

Us  dimensionless mobility = Ds/Dg°

X di;nensiontess concentration in electrode phase =
cs/cg®

*  value of X at electrode/electrolyte interface
mean value of X
spatial variable across electrode particle (per-
pendicular to electrode/electrolyte interface)
dimensionless spatial variable = y/r
spatial variable across electrode (parallel to
the pore)
dimensionless spatial variable = z/1
potential in electrolyte

SN N =N

POROUS INSERTION ELECTRODES

1485

¢*  potential in electrolyte just outside the pore
.o potential in electrode phase (Fermi potential)
(x — ¢)¢ constant in Eq. [10]
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Use of Liquid Chromatography for Studying Interfacial Properties of

Inorganic Solutes Relevant to Reverse Osmosis Separations

Yutaka Taketani, Takeshi Matsuura, and S. Sourirajan

National Research Council of Canada, Division of Chemistry, Ottawa, Ontario, Canada K1A OR9

ABSTRACT

High performance liquid chromatography (HPLC) offers a means of investigating the properties of inorganic
solutes at polymer (cellulose acetate)-aqueous solution interfaces. Equilibrium constants of solutes distributed between
interfacial- and bulk-phases and restricted diffucion of solutes in the interfacial region can be evaluated using reten-
tion volume and half-width data from HPLC experiments. These data offer a means of correlating and predicting the
differences in free energy parameters governing the reverse osmosis separation of inorganic solutes.

The study of the properties of water at the polymer-
solution interfacial region (interfacial water) is funda-
mental for understanding the transport of solute and
solvent water in a reverse osmosis membrane. This is
particularly so since the properties of water in the
membrane pore are practically the same as those in
the interfacial water, as long as the membrane pore
size is sufficiently small. It is considered that high

Key words: reverse osmosis, cellulose acetate, inorganic solutes,
interfacial properties, HPLC.

performance liquid chromatography (HPLC) in which
solvent water flows through a column packed with a
polymer material simulates the interfacial phenomena
taking place during the reverse osmosis transport in-
volving membranes made of that polymer material. By
applying the already well-established {heories of
chromatography to the analysis of the experimental
retention time and related data, quantities characteriz-
ing interfacial properties, such as the equilibrium con-
stant for the solute distributed between the bulk and
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