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A time-domain numerical model is presented for simulating the finite-amplitude focused acoustic
pulse propagation in a dissipative and nonlinear medium with a symmetrical source geometry. In
this method, the main effects responsible in finite-amplitude wave propagation, i.e., diffraction,
nonlinearity, and absorption, are taken into account. These effects are treated independently using
the method of fractional steps with a second-order operator-splitting algorithm. In this method, the
acoustic beam propagates, plane-by-plane, from the surface of a highly focused radiator up to its
focus. The results of calculations in an ideal~linear and nondissipative! medium show the validity
of the model for simulating the effect of diffraction in highly focused pulse propagation. For real
media, very good agreement was obtained in the shape of the theoretical and experimental
pressure-time waveforms. A discrepancy in the amplitudes was observed with a maximum of around
20%, which can be explained by existing sources of error in our measurements and on the
assumptions inherent in our theoretical model. The model has certain advantages over other
time-domain methods previously reported in that it:~1! allows for arbitrary absorption and
dispersion, and~2! makes use of full diffraction formulation. The latter point is particularly
important for studying intense sources with high focusing gains. ©1998 Acoustical Society of
America.@S0001-4966~98!02810-0#
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INTRODUCTION

Advances in the development of acoustic microscop1

high intensity focused ultrasound surgery,2 lithotripsy, and
cavitation-induced tissue destruction3 have generated re
newed concern about finite-amplitude effects in focus
sound beams. Each system is capable of transmitting foc
sound that is strongly affected by the combined influence
nonlinearity, absorption, and diffraction. Existing analytic
solutions fail to adequately describe these sound fields,
only recently have numerical solutions been developed
model the radiation of focused finite-amplitude sound fro
practical sources.

A series of theoretical models for studying the focusi
of intensive acoustic waves has been developed during
last two decades. A model which seems to be best suite
the study of moderately focused acoustic beams and w
accounts for diffraction, nonlinearity, and absorption is ba
on the Khokhlov–Zabolotskaya–Kuznetsov~KZK ! parabolic
equation.4,5 In the original KZK equation, the effect of ab
sorption is modeled by incorporating viscous and therm
conductivity losses, in which the absorption coefficient
assumed to be proportional to the square of frequency. H
ever, such an assumption is not appropriate to most biol
cal tissues which exhibit a nearly linear frequency dep
dence. Concerning the diffraction effect, the KZK mod
uses a so-called parabolic or quasi-optical approximat

a!Current address: Institute of Biomedical Eng., University of Toronto
Taddle Creek Road, Toronto, Ontario M5S 3G9, Canada.
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which means that the angular spectrum is supposed to
narrow or, in other words, the wave is very close to a pla
wave. This is not the case for strongly focused beams or
beams with strong irregularities in the transverse structu
e.g., near the edges or at the focal point of a focused sou
This limits the validity of the model to the cases in whic
diffraction effects are relatively weak and focusing gains
relatively low. In general, the KZK equation is an accura
model of the sound field produced by directional sou
sources (ka@1, wherek is the wave number anda the radius
of the source! at distances beyond a few source radii and
the paraxial region. A complete discussion of the domain
validity of the KZK equation for plane and focused sourc
is provided in Refs. 6 and 7.

A number of computer algorithms has been proposed
solve the KZK equation numerically. One of the most pop
lar algorithms for solving the KZK equation is a frequenc
domain technique, called the spectral method, introduced
Aanonsen8 and co-workers.9 Most studies, based on the spe
tral method, focused initially on monochromatic waves or
tone bursts. However, in many biomedical applications
acoustic wave consists of a small number of cycles or e
has the form of a single cycle. If, additionally, shock fron
are developed because of nonlinearity, the numerical an
sis requires large amounts of computer time. The situa
becomes even more complex if the absorption is freque
dependent and the beam is strongly focused.

To partially overcome these problems, Lee a
Hamilton10 developed a time-domain algorithm for solvin
the KZK equation. A marching scheme, based on
2061(4)/2061/12/$15.00 © 1998 Acoustical Society of America



e
,
tio
ts

ed
u
nd

a
pi
ry
n
in
ra

o
ec
a

t
h
g
r

rit
th

i-
is

o-
ex

o
p

m
a

tio
os
e
su
ar

.
ita
ra
d
o

he
p
is

ts
a

tim
h

re
d
de

o-
ro-

ga-
eal
to
r a
ous

in
hat

y
ral

ne
e-

on,
ss

f
is
-

the

tion
ce.
xi-

-
l

operator-splitting method,11,12 was used as the basis for th
algorithm. In this technique, as the code marches along
each step it takes separate account of nonlinear distor
absorption, dispersion, diffraction, and any other effec
Clevelandet al.13 used this algorithm to solve an augment
KZK equation that accounts for nonlinearity, thermovisco
absorption, relaxation, and diffraction in directive sou
beams. Moreover, Averkiou and Hamilton14 have recently
presented new results of this time-domain model for the c
of short pulses radiated by plane and focused circular
tons. Within the limits of the KZK model, they obtained ve
good agreement between their simulations and experime

In a related work, again based on the operator-splitt
method, Clevelandet al.15 presented a comparison of seve
time and frequency-domain codes for the propagation
sonic booms through idealized atmosphere. The main eff
considered in these codes were nonlinearity, absorption,
dispersion.

A model of nonlinear diffractive field propagation, no
based on the KZK equation, was developed by Christop
and Parker.16 In this model, using an operator-splittin
method, they solved the equations of diffraction and abso
tion in the frequency domain and the equation of nonlinea
in the time domain. This model has advantages over
KZK model in that it accounts for full diffraction and arb
trary absorption effects. Using a modified version of th
model, Christopher17 presented the modeling of an electr
hydraulic, extracorporeal shock wave lithotripter as an
ample of an intense highly focused sound source.

On the other hand, the effect of acoustic nonlinearity
the focused beam can be predicted on the basis of sim
theoretical approaches. We have already proposed a si
model that makes it possible to study the focusing of
intense pulse on the basis of the spherical wave theory.18 In
this model, the focusing is associated with wave propaga
along a rigid-wall tube. The dependence of the tube cr
section on distance is chosen in such a way that the p
pulse pressure in the tube coincides with the peak pres
calculated by the Rayleigh diffraction integral in the line
regime. The nonlinear wave propagation along the tube
then described on the basis of a Burgers-type equation
course, such a simple model suffers from the same lim
tions as nonlinear spherical wave theory and is not accu
enough, especially in the focal region of a high-amplitu
focused source. For this reason, we present another, m
complete, model. As with the approach used by Christop
our model accounts for full diffraction and arbitrary absor
tion effects. A second-order operator-splitting algorithm
used to solve a set of equations that account for the effec
diffraction, absorption, and nonlinearity. To avoid numeric
errors associated with the transformations between the
and frequency domains, a pure time-domain approach
been adopted.15 The basic theoretical approach and the
sults obtained are presented below. The model was use
simulating the pressure field of a highly focused source
veloped for tissue destruction studies.19
2062 J. Acoust. Soc. Am., Vol. 104, No. 4, October 1998 Tav
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I. BASIC EQUATIONS

In general wave theory, differential equations of the ev
lution type are widely used to describe the propagation p
cess:

]v~t,z!

]z
[L̂•v, ~1!

where v is the particle velocity,z is the coordinate in the
direction of wave propagation,t5t2z/c0 is retarded time,
c0 is the wave speed, and the operatorL̂ accounts for the
effects changing the waveform. IfL̂•v50, we have v
5F(t), i.e., the waveform does not change during propa
tion, which is the case of a plane wave traveling in an id
linear medium. In reality, the waveform is distorted due
different effects. Consider, for instance, the equation fo
linear plane acoustic wave propagating in a thermovisc
medium:20

]v
]z

5
b

2r0c0
3

]2v
]t2 , ~2!

whereb is the dissipative coefficient of the medium andr0 is
the ambient density. In many practical situations, e.g.,
biological tissues, the attenuation operator differs from t
of Eq. ~2!. It can be written in the general form:21

]v
]z

5E
2`

t

K~z,t2t8!•v~z,t8!dt8[L̂A•v, ~3!

where the kernelK can be evaluated from the frequenc
dependence of the attenuation. The upper limit of the integ
accounts for causality.

Another example is the evolution equation for a pla
wave propagating in a lossless quadratically nonlinear m
dium:

]v
]z

5
b

c0
2 v

]v
]t

[L̂N•v, ~4!

whereb is the coefficient of nonlinearity of the medium.
The third example is the so-called parabolic equati

describing diffraction of acoustical beams in linear lossle
medium:

]v
]z

5
c0

2
¹'

2 E
2`

t

v dt8, ~5!

wherez is the distance along the beam axis,¹'
2 is a two-

dimensional transverse Laplacian, andv is the axial compo-
nent of particle velocity. Equation~5! describes the effect o
diffraction properly only if the wave angular spectrum
narrow~quasi-plane wave!. A more exact, wider-angle para
bolic evolution equation was proposed by Hill.22 On the
other hand, the diffraction effect can be described by
Rayleigh integral over the initial source surface.23 It is
known that the Rayleigh integral presents an exact solu
of the diffraction problem for the case of a plane surfa
When the surface is curved, the integral gives an appro
mate, but fairly accurate solution.24,25 Let us denote the cor
responding diffraction operator asL̂D and write a genera
form of the evolution equation for diffraction:
2062akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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]v
]z

5L̂D•v. ~6!

In all of the above examples, each evolution equation is
sociated with only one effect. In the presence of multip
effects, if each is fairly weak, the evolution equation can
derived simply by summing the corresponding operat
from the ‘‘one-effect equations’’:

]v
]z

5(
i 51

N

L̂i•v. ~7!

For example, the combination of Eqs.~2! and ~4! gives the
Burgers equation and the combination of Eqs.~2!, ~4!, and
~5! results in the KZK equation. A more exact result than t
KZK equation, accounting for the absorption and diffracti
effects, is possible on the basis of combining Eqs.~3!, ~4!,
and~6!. We write this combined equation in a general for

]v
]z

5L̂•v[L̂A•v1L̂N•v1L̂D•v, ~8!

which will be used for the development of our model f
finite-amplitude acoustic pulse focusing. Note thatL̂ is a
fairly complex integro-differential operator. One of the po
sible ways of solving it numerically is the use of the meth
of fractional steps with an operator-splitting procedure.11,12

According to this method, the solution of the Eq.~8! at each
stepDz is obtained on the basis of separate solutions of E
~3!, ~4!, and ~6!. This is why we will first consider each o
these equations separately.

II. SOLVING THE ABSORPTION EQUATION

A. Minimum-phase digital filter model for absorption
and dispersion

Here, a causal FIR~finite impulse response! digital filter
for simulating the effects of frequency-dependent absorp
and dispersion is presented. Let us consider Eq.~3! as ac-
counting for dispersion and frequency-dependent absorp
After passing through the layerDz, each spectral componen
eivt changes its amplitude by a factor:

Ga~Dz,v!5exp$2a~v!•Dz1 iv@c21~v!2c0
21#•Dz%, ~9!

where i is the imaginary unit,c(v) is sound speed,a~v! is
the absorption coefficient of the medium, andv52p f is
angular frequency. The waveformv at distancez1Dz can
be evaluated from the waveform at distancez by a convolu-
tion integral:

v~z1Dz,t!5E
2`

1`

v~z,t8!•g~Dz,t2t8!dt8, ~10!

where the impulse responseg is an inverse Fourier transform
of the factorGa :

g~Dz,t!5
1

2p E
2`

1`

Ga~Dz,v!eivt dv. ~11!

The discrete analogy of the convolution integral~10! has the
form of a convolution sum:
2063 J. Acoust. Soc. Am., Vol. 104, No. 4, October 1998 Tav
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vn~z1Dz!5 (
k52`

1`

vk~z!•gn2k~Dz!, ~12!

where vn(z)5v(z,nT), gn(Dz)5T•g(Dz,nT), and T is a
uniform time-sampling period. In discrete regime, the Fo
rier integral~11! transforms to:

gn~Dz!5
1

2p E
2p

p

G~eiV!eiVn dV, ~13!

where

G~eiV!5
1

T (
k52`

1`

GaS Dz,
V12pk

T D
is a periodic function with a period of 2p, associated with
the frequency response.26 Supposing thatGa50 for v
.2p/T, we can therefore use within the interval2p<V
<p:

G~eiV!5
1

T
GaS Dz,v5

V

T D . ~14!

The complex functionG(eiV) can be considered to be
transfer function of a digital attenuater filter. Taking caus
ity into account, the argument ofG(eiV) is related to its
magnitude by the minimum-phase condition. It is we
known that for a minimum-phase filter, the log-magnitu
and phase characteristics form a Hilbert transform pair.26 Us-
ing the discrete-time Hilbert transform, the phase of the fil
is equal to:

arg@G~eiV!#5
1

2p
PE

2p

p

lnuG~eiu!u•cotS u2V

2 Ddu,

~15!

where the symbolP denotes the Cauchy principal value
the integral. It is to be noted that asT→0, Eq. ~15! trans-
forms into the Kramers–Kronig relation between the atte
ation coefficient and phase velocity.27 Integral ~15! can be
rewritten in the following form:

arg@G~eiV!#52
1

p E
0

p d@ lnuG~eiu!u#
du

• lnUsin@~u1V!/2#

sin@~u2V!/2#
Udu. ~16!

The logarithmic singularity here does not need the Cau
principal value integration. Using Eq.~16!, it is possible to
obtain the unit-sample response of the attenuater filter ba
only on the frequency dependence of the absorption co
cient a~v!. Indeed, according to Eq.~14!:

uG~eiV!u5
1

T
exp@2a~V/T!•Dz#. ~17!

According to Eq.~16!, the argument ofG is also related to
the functiona~v!:

arg@G~eiV!#5
Dz

pT E
0

p

ȧ~u/T!• lnUsin@~u1V!/2#

sin@~u2V!/2#
Udu,

~18!
2063akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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where ȧ(v)5da/dv. Equations~17! and ~18! give the
complex functionG(eiV). Based on this, the unit-samp
response can be calculated from Eq.~13!. The waveform
after passing the layerDz can be calculated from the convo
lution sum of Eq.~12!. As the unit-sample response is
causal sequence, this sum is started fromk50.

To minimize the numerical errors induced by the FF
operations,15 we chose to apply absorption by means o
convolution with an FIR filter in the time domain. For
waveform withM samples, the computation time for a co
volution operation is proportional toM2, whereas the time
for an FFT operation is proportional toM• log M ~if M is not
an integer power of 2, the computation time for an F
operation is slightly higher!. However, the absorption calcu
lation takes up only a small portion of the total computati
time in our algorithm~more than 80% of the total computa
tion time is for the diffraction calculation!. Using convolu-
tion for the absorption calculation does not, therefore, hav
major influence on the total computation time.

B. Acoustic absorption in biological tissue

The acoustic absorption coefficient of soft tissue, wh
expressed in logarithmic units such as dB/cm, has been
served to increase approximately linearly with frequency
order to simulate this absorption characteristic on a dig
computer, a minimum-phase digital filter model was dev
oped in Sec. II A. It has been argued that this filter mode
appropriate for describing a physical medium exhibiting
linear-with-frequency absorption such as soft tissues.28,29Let
the absorption coefficient of the medium, denoted bya( f ),
be a linear function of frequency~in MHz! with slopea0 :

a~ f !5a0• f dB/cm. ~19!

The log-magnitude transfer function of the attenuater fi
for a Dz cm thick section of the medium, denoted byL( f ),
is equal to

L~ f !52a~ f !•Dz52a0• f •Dz dB. ~20!

The resulting magnitude function, denoted byuG( f )u, is
then equal to

uG~ f !u510L~ f !/205102a0f Dz/20. ~21!

Now, using this magnitude function in Eq.~16! results in the
phase function, and consequently, the complex transfer fu
tion of the minimum-phase filter:

G~ f !5uG~ f !u•exp$ i •arg@G~ f !#%. ~22!

The unit-sample response of the filter which is used for
convolution sum is equal to the real component of the
verse Fourier transform obtained from Eq.~13!. Note that the
imaginary component should be zero for a physical filter

An example of implementation of this filter for simula
ing the absorption of acoustic pulses in liver tissue is sho
in Fig. 1. In this example, the coefficient of absorption in t
liver, a0 , was set equal to 0.5 dB cm21 MHz21, and the
distanceDz to 5 cm. Figure 1~a! and ~b! shows the magni-
tude of the filter transfer function in linear and in logarithm
units respectively, and Fig. 1~c! shows its phase obtaine
from the Hilbert transform. The unit-sample response of
2064 J. Acoust. Soc. Am., Vol. 104, No. 4, October 1998 Tav
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filter is shown in Fig. 1~d!. Verification of the results ob-
tained by applying this filter to a monochromatic sinusoid
wave demonstrated that it is possible to simulate exactly
frequency-dependent absorption of biological tissues.28,30

III. SOLVING THE NONLINEARITY EQUATION

The Eq. ~4! for a nonlinear medium has an analytic
solution, called the Poisson or the Earnshaw solution. T
solution, with a second-order approximation, can be writ
as ~see, e.g., Ref. 31, Chap. 4!:

v~z,t!5C~t1bvz/c0
2!, ~23!

whereC(t) is the waveform atz50. To describe the non
linearly induced wave distortion during its propagation fro
z to z1Dz, this solution may be rewritten as:

v~z1Dz,t!5vH z,t1
bDz

c0
2 v~z,t!J . ~24!

Multivalued solutions are avoided if

Dz,
c0

2/b

max~]v/]t!
. ~25!

Solution~24! can also be easily obtained using the nonline
theory of acoustic waves.32 The nonlinearity equation~4! can
be solved in discrete regime via a time-base transforma
on the basis of Eq.~24!:

tm
n115tm

n 2
bDzn

c0
2 •vm

n , ~26!

wherem marks themth sample of the temporal waveform
andn denotes thenth stepDzn in z. The discrete analogy o
the inequality~25! has a form of:

Dzn,T•
c0

2/b

max~vm
n 2vm21

n !
, ~27!

FIG. 1. Characteristics of the minimum-phase digital filter witha0

50.5 dB cm21 MHz21 and Dz55 cm. ~a! Magnitude of the filter transfer
function; ~b! log magnitude of the filter;~c! phase of the filter obtained from
Hilbert transform;~d! unit-sample response of the filter.
2064akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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n11, linear inter-

polation is used to resample the waveform and thus rees
lish a uniform time sample spacingT.33

The necessary condition for avoiding multivalued so
tions requires a trade-off between the maximum of part
velocity variation and the propagation lengthDz. It means
that as the degree of wave distortion increases during
propagation in the medium, smaller distances are needed
fulfill this requirement a nonuniform plane spacing w
adopted in our model. Detailed description of the grid ge
eration is presented in Sec. V.

IV. SOLVING THE DIFFRACTION EQUATION

From the classical theory of sound for a linear and n
dissipative medium, the instantaneous pressurep(r ,t) and
particle velocityv(r ,t) at a pointP(r ) and timet in the field
of an ultrasound source can be expressed as:23

p~r ,t !5r
]f

]t
~r ,t !, ~28!

v~r ,t !52“f~r ,t !, ~29!

wherer is the equilibrium density of the surrounding m
dium,

“5
]

]x
i1

]

]y
j1

]

]z
k

is the gradient operator, andf(r ,t) denotes the velocity po
tential.

For the case of a uniformly excited planar radiator
areaS in an infinite rigid baffle,f(r ,t) is given by the Ray-
leigh integral:

f~r ,t !5
1

2p E E
S

v0~ t2r 8/c0!

r 8
ds, ~30!

wherev0(t) is the instantaneous normal particle velocity
the source andr 8 is the distance between the observati
point P and the surface elementds at the source.

When the shape of the source is not plane, but conve
concave, the wave radiated by the source is diffracted by
own surface. This secondary radiation contributes theor
cally to the pressure field but is not taken into account by
~30!. However, this equation can be used as an excel
approximation for most practical applications, where the
ameter of the source is large compared to the ultraso
wavelength, and the source is only slightly curved.24,25 Un-
der these conditions, for a spherical focused source, the R
leigh integral has to be evaluated over the spherical conc
surface of the source. The geometry used for applying
Rayleigh integral is shown in Fig. 2 with the origin of coo
dinates at the focal point of the source. Let pointP belongs
to a planar intermediate surface that is normal to thez axis.
Based on Eq.~30! for the Rayleigh integral, we can calcula
the velocity potential at each point on this plane. Then, us
Eqs.~28! and~29!, the values of pressure and particle velo
ity can be calculated for each point.

Further, for implementing our fractional-step metho
we need the value of normal particle velocity at each poin
2065 J. Acoust. Soc. Am., Vol. 104, No. 4, October 1998 Tav
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the intermediate plane. Based on Eqs.~29! and ~30! we can
derive the Rayleigh integral for normal particle velocityvn at
point P of the observing plane as follows:

vn~r2 ,t !52
]f

]n

52
1

2p E E
S

]

]n F 1

r 8
•vnS r1 ,t2

r 8

c0
D Gds

52
1

2p E E
S
F S 1

r 8D • ]

]t
vnS r1 ,t2

r 8

c0
D

•

]

]n S 2
r 8

c0
D1vnS r1 ,t2

r 8

c0
D • ]

]n S 1

r 8D Gds

5
1

2p E E
S
H F 1

c0r 8
•

]

]t
vnS r1 ,t2

r 8

c0
D

1
1

r 82 •vnS r1 ,t2
r 8

c0
D G ]r 8

]n J ds, ~31!

wherer 85ur 8u5ur22r1u.
The surface elementdsat the source surface in spheric

coordinates is given asds5ur1u2 sinu du dw, whereu is the
angle betweenr1 andz axis andw is the angle between th
projection ofr1 on thexy plane and thex axis. As is shown
in Fig. 2, (]r 8/]n)5cosg, whereg is the angle between th
r 8 and thez axis. Therefore, the normal particle velocity
given by:

vn~r2 ,t !5
1

2p E E
S
H F 1

c0r 8
•

]

]t
vnS r1 ,t2

r 8

c0
D

1
1

r 82 •vnS r1 ,t2
r 8

c0
D G•cosgJ ds. ~32!

For this geometry, the Rayleigh integral for instantaneo
pressure at pointP of the intermediate plane can be rewritte
as:

p~r2 ,t !5
r

2p E E
S
F 1

r 8
•

]

]t
vnS r1 ,t2

r 8

c0
D Gds. ~33!

Equations~32! and ~33! form the basic set of equations fo
simulating the effect of diffraction in our model. In discre
regime, the double integrals in Eqs.~32! and ~33! were

FIG. 2. Focused sound geometry used for calculation of the Rayleigh
fraction integral.
2065akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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solved numerically using a standard rectangular method34

To obtain exact results, all calculations must be p
formed inside an extended volume which is a function of
geometrical characteristics of the source. This volume is
fined as the envelope of a set of ellipsoids whose first foci
all placed on the source focal point and whose second
are placed on different points of the source circular bord
The eccentricity of these ellipsoids depends on the des
pulse length observed at the focal point~about 5ms in our
simulations!.

The Rayleigh integral gives an exact solution to the d
fraction problem for the case of a planar radiator in an in
nite rigid baffle. Using this integral to simulate the effect
diffraction in our geometry therefore causes two kinds
errors: inherent and methodical. The inherent error relate
the geometry we used, i.e., a nonplanar source shape a
finite-baffle configuration. This source of error is not redu
ible. The methodical type of error is introduced by means
our fractional-step method. We studied the rate of this e
for two different types of intermediate planes. In the fi
case, in our algorithm, we used the spherical-surface in
mediate planes with the same center of curvature as
source, and in the second case, planar-surface interme
planes were used. Comparison between these two diffe
configurations revealed the superiority of the planar-surf
intermediate planes. In fact, for this configuration, there
ists a constant methodical error~about 3%! which is inde-
pendent of the number of steps used, whereas for
spherical-surface plane configuration, this error is an incre
ing function of the number of steps~about 0.5% per step!.
The difference in the errors introduced by the two config
rations of the intermediate planes is related to the fact
the solution of the Rayleigh integral over a curved surfa
introduces an error. When the planar-surface intermed
planes are used, this error is introduced only once, occur
only at the first step, i.e., from the source surface to the
intermediate plane. When the spherical-surface intermed
planes are used, however, a cumulative error is introduce
each step.

All simulations presented in the next sections were p
formed using the planar-surface intermediate planes.

V. FRACTIONAL-STEP METHOD WITH A
SECOND-ORDER OPERATOR-SPLITTING
ALGORITHM

The method of fractional steps with an operator-splitti
algorithm has widely been used in numerical solutions to
problem of finite-amplitude sound beam propagation.10–17

Besides, the technique was used in other physical proble
especially in optics.35 A complete description of the tech
nique can be found in Refs. 11 and 12. Using this meth
we have developed a time-domain model for propagation
highly focused finite-amplitude ultrasonic beams by tak
into account the effects of absorption, nonlinearity, and d
fraction as independent phenomena. In this model, the ac
tic beam propagates, plane-by-plane, from the surface
highly focused spherical transducer up to its focus. The
termediate planes, all planar-surface type, are placed
tween the focused source and its focus. In each step,
2066 J. Acoust. Soc. Am., Vol. 104, No. 4, October 1998 Tav
-
e
e-
re
ci
r.
d

-
-

f
to
d a
-
f
r

t
r-

he
ate
nt
e
-

e
s-

-
at
e
te
g

st
te
at

r-

e

s,

d,
of

-
s-
a
-
e-
he

abovementioned effects are applied sequentially:~1! by
implementing the Rayleigh integral over the surface of
previous plane, the pressure and normal particle velocity
derived for each point of the current plane;~2! the effect of
frequency-dependent absorption is applied to the pres
and normal particle velocity;~3! nonlinearly induced distor-
tion is introduced to the resulted pressure and normal par
velocity to obtain the final values of these quantities for ea
point of the current plane;~4! code marches to the next ste
and the same procedure repeats.

The model was used to calculate the pressure field o
axisymmetric spherical highly focused piezocompos
shock-wave generator with an aperture diameter of 172
and with a 190-mm focal length~linear focusing gainG
'30, when driven by a sinusoidal pulse with a center f
quency of 360 kHz!. This source was developed in our lab
ratory for tissue destruction studies.19,30Because of the sym
metry around the acoustical axis, in each observing plan
is sufficient to calculate the acoustic field variables~instan-
taneous pressure and particle velocity! on a radial line, e.g.,
on x or y axes only.

In all simulations presented, the number of intermedi
planes placed between the source front face and its f
point was set to be 23. This choice is a trade-off between
accuracy of calculations and the program run time. To h
little changes of variablen along each stepDz, as well as to
avoid the problem of multivaluedness caused by nonlin
waveform steepening a nonuniform spacing was adop
Axial step sizes were reduced by approaching the foc
Moreover, to satisfy inequality~27!, especially in the region
near the focus, after the first intermediate plane, each
was divided into 40 equally spaced substeps used only
nonlinearity calculation. Using this griding scheme, the mi
mum axial step sizes in the focal region were 2.02 mm
diffraction and absorption, and 50.5mm for nonlinearity cal-
culations. The number of surface elements,ds, for covering
the surface of the source and each intermediate plane,
set to be 393 200, which is large enough to exactly calcu
the Rayleigh integral: The minimum lateral step size in t
focal region was about 2mm.

The proper modeling of the shock fronts often require
very dense temporal sampling. In our model, 5-ms pulses
were sampled in 512-point vectors, i.e., with a sampling
riod less than 10 ns.

In the Appendix, we have proved a second-order ac
racy operator-splitting algorithm used to solve numerica
Eq. ~8!. In this algorithm there is a spatial shift between ste
used for diffraction operation,L̂D , and those used for ab
sorption, L̂A , and nonlinearity,L̂N , operations. Using this
algorithm, it is possible to achieve a second order of ac
racy with a running time not significantly higher than a firs
order accuracy method. Figure 3~a! shows the basic geom
etry of nonuniform griding. Spatially shifted griding used fo
different operations in our second-order operator splitt
method are shown schematically in Fig. 3~b!.

At this time there is no analytical solution of the pro
lem of beam propagation when multiple effects~diffraction,
nonlinearity, absorption, etc.! are present. There is, therefor
no a priori reference to be used to assess the error from
2066akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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numerical model. However, we investigated the stability
the code as a function of the number of steps. This st
showed that the algorithm is convergent when the numbe
steps are increased~up to 79 intermediate planes!. A similar
study done by Lee and Hamilton to demonstrate the stab
of their time-domain model for solving the KZK equation.10

An important characteristic of the operator-splittin
method is that the final result is independent of the orde
the effects when the stepsDz are small enough. To show thi
characteristic, we changed the order in which the effects~dif-
fraction, absorption and nonlinearity! are applied in each
plane. Specifically, we used two different orders:

Case 1: diffraction→absorption→nonlinearity

Case 2: absorption→nonlinearity→diffraction.

The discrepancy between the results of these two cases
reduced by increasing the number of planes. The maxim
of the cross-correlation function was used as a criterion
comparing the waveforms obtained in each case. We stu
the maximum of cross-correlation function applied to t
pressure waveform as a function of number of the interm
diate planes and for two different input pressures at sou
surface, i.e., Pin50.1 MPa ~linear regime! and Pin

50.5 MPa~nonlinear regime!. This study showed that: eve
in nonlinear regime, by choosing a large enough numbe
planes, the maximum of the cross correlation would be cl
to 1 which shows that the algorithm is independent of
order of the effects. For example, forPin50.5 MPa and 17
intermediate planes, the maximum of cross correlation
tained was 0.991.30

FIG. 3. ~a! Axial griding scheme with nonuniform spacing;~b! spatially
shifted griding for different operators in the second-order operator-split
method.
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VI. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTS

In this section, the results of implementing our nume
cal model and their comparisons with experimental res
are presented. The initial version of the program was writ
in Matlab and then translated to C language and run o
Sun-UltraSparc workstation. For 23 intermediate planes
the griding scheme explained in the previous section,
program run time was about 3 h.

In Sec. VI A, the result of simulation for an ideal me
dium ~linear and nondissipative! is presented. This simula
tion shows the validity of our model in linear regime. Afte
verifying our algorithm in linear regime, we will present
series of simulation for real media by taking into account
effect of diffraction, absorption, and nonlinearity. The sim
lations, as well as experiments, were made for two differ
medium configurations. In the first configuration, an acous
beam propagates from the source surface to its focus in
gased and deionized water. In the second configuration,
propagation distance between the source front face and
focus is comprised of two parts. In the first part, the acou
beam propagates from the source surface up to 5 cm from
focus in degased and deionized water, and in the second
beam propagates the distance of 5 cm up to the focu
degased 1,3-Butandiol~ALDRICH, Steinheim, Germany!
which is a tissue-mimicking liquid. These two medium co
figurations are called water and water-butandi
respectively.30 The relevant room temperature acoustical p
rameters of these media, as used in our simulations,
given in Table I.

A. Beam propagation in a linear and nondissipative
medium

Here we present the simulation results for the propa
tion of a focused beam in an ideal medium, when only
effect of diffraction was accounted for. For this reason,
operator of nonlinearity,L̂N , was set to be zero, and only
small amount of absorption,L̂A , was introduced to provide
stability of the numerical algorithm. In this simulation, inp
pressure at the surface of the transducer was considered
Gaussian-modulated sinusoidal waveform with central f
quency of 360 kHz and bandwidth of 120%@Fig. 4~a!#. The
pressure calculations at the focus were made in two diffe
cases. In the first case, using the linear wave theory,
pressure at the focus was calculated directly; i.e., without
intermediate plane; and in the second case, this pressure
calculated by means of our fractional-step method with
intermediate planes. These two pressure waveforms are
sented in Fig. 4~b! and ~c!, respectively. The discrepanc

g

TABLE I. Main acoustical parameters of water and 1,3-Butandiol.

Water 1,3-Butandiol

Coefficient
of attenuation (a0)

0.0022
dB cm21 MHz22

0.33
dB cm21 MHz21

Frequency dependency ofa f 2 f 1

B/A 5.2 7.3
c0 1500 m s21 1546 m s21

r 1000 kg m23 1000 kg m23
2067akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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FIG. 4. Verifying the operator-splitting algorithm for the effect of diffraction.~a! Input pressure at the source surface;~b! calculated pressure waveform at th
focus without any intermediate plane; and~c! with 23 intermediate planes.
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between these two waveforms is about 3% for peak press
which shows that it is possible to simulate the effect of d
fraction quite accurately by means of our operator-splitt
algorithm.

B. Pressure at the focal point in real media

Pressure-time waveforms at the focal point were cal
lated for different input pressure amplitudes at the sou
surface. For all of the simulations presented here and th
that follow, the input pressure is the same as that measur
the surface of the generator using a PVDF bilaminar shiel
membrane hydrophone.19,30 Figures 5 and 6 show the calcu
lated and measured pressure-time waveforms at the focu
the second configuration of the medium, i.e., wat

FIG. 5. Calculated and measured pressure-time waveforms at the focal
for Pin50.476 MPa.
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butandiol, and for two different input pressure amplitud
~Pin50.476 and 0.85 MPa!. The presence of the nonlinearl
induced shock fronts are notable in Fig. 6. For pressure m
surements at the focus, a homemade PVDF shock-wave
drophone was used.36

Comparison between the calculated and measured w
forms shows a very good agreement in the shape of wa
forms. However, there exists some discrepancy between
pressure amplitudes. The maximum of this discrepancy
around 20% for positive pressure amplitudes. In the conc
sion and discussion section, the sources of this discrepa
will be discussed.

Figure 7 shows the variations of the positive peak pr
sure at the focus as a function of input pressure amplitud

intFIG. 6. Calculated and measured pressure-time waveforms at the focal
for Pin50.85 MPa.
2068akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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the source surface for two medium configurations. For e
medium, the results of theory and experiments have b
shown. Both the theoretical and experimental results sh
three distinct regions of variations as:~1! acoustic pressure a
the focus varies as a linear function of input pressure for v
low input excitation levels (Pin,0.1 MPa);~2! for moderate
levels of input pressures, there is an increase in slope of
variation (0.1 MPa,Pin,0.4 MPa);~3! and finally for high
levels of input excitation, this slope decreases (Pin

.0.4 MPa). The discrepancy between the theory and exp
ment increases by increasing the input pressure amplit
This discrepancy may be explained by the pressu
averaging effect over the surface of the hydrophone ac
element that is larger than the real focus size. Increasing
input pressure amplitude leads to amplification of the non
earity effect with creation of the higher harmonics, and co
sequently to contraction of the focus size. The pressu
averaging effect over the surface of the hydrophone ac
element, therefore, becomes more important for higher in
pressures.

C. On- and off-axis pressure distributions

Using our model, it is possible to simulate the plane-b
plane beam propagation in a medium. This simulation
linear regime shows that the waveform is mainly affected
diffraction which leads to a linear amplification of pressu
during its propagation. In nonlinear regime, however,
situation is not so simple. Here, the nonlinearly induc

FIG. 7. Output pressure amplitude at the focus as a function of input p
sure amplitude at the source surface for two medium configurations~a!
water; and~b! water-butandiol.
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wave distortion which leads to the creation of very ste
shock fronts with higher harmonics in the signal spectru
causes nonlinear amplification of the pressure. Also, the
fect of frequency-dependent absorption becomes more
portant in this case.

Figures 8 and 9 show the theoretical and experime
on- and off-axis pressure distributions around the focus
water. These distributions are presented for both the lin
(Pin50.056 MPa) and nonlinear (Pin50.85 MPa) regimes.
Again, a good agreement between the theory and experim
is obvious. These distributions reveal the contraction of
focus dimensions in nonlinear regime.

VII. CONCLUSION AND DISCUSSION

In this work, we have presented a time-domain mo
for calculating the acoustic field of a finite-amplitude, high
focused source in pulsed regime. In this model, the m
effects responsible in finite-amplitude beam propagation
dissipative medium were taken into account. These effe
considered as independent phenomena, are: absorption,
linearity, and diffraction. Using general wave theory, we d
rived separate evolution-type differential equations for ea
of these effects and by combining these separate equat
the final evolution equation was derived in the form of E
~8!. This equation was solved numerically, using t
operator-splitting method.

s-

FIG. 8. On-axis pressure distributions in water.~a! Pin50.056 MPa~linear
regime!; and ~b! Pin50.85 MPa~nonlinear regime!.
2069akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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To solve the frequency-dependent attenuation equat
a minimum-phase digital filter model was developed. To b
causal filter, the log-magnitude and phase characteris
form a Hilbert transform pair. Using this filter model, th
frequency-dependent attenuation and dispersion were ex
simulated without any waveform distortion even for a sho
wave pulse.

To simulate the effect of nonlinearity, we used the ev
lution equation for a plane wave propagating in an id
quadratically nonlinear medium. Based on the analytical
lution of this equation, the nonlinearly induced wave dist
tion was simulated via a simple time-base transformation

To obtain an exact formulation of diffraction, we use
the Rayleigh integral. The results of calculation in an ide
linear, and nondissipative medium show the validity of o
algorithm to simulate exactly the effect of diffraction. Fu
diffraction formulation enables our model to be used
simulating the finite-amplitude acoustic field of highly fo
cused sources.

In a real medium, i.e., by taking into account the effe
of diffraction, absorption, and nonlinearity, very good agre
ment was obtained in the shape of theoretical and experim
tal pressure waveforms. The discrepancy in the amplitu
may be explained by existing sources of error in our m
surements from one hand and in the theoretical model on
other hand. The main sources of uncertainty in our meas
ments are: pressure-averaging effect over the surface o
hydrophone active element, error in the measured valu

FIG. 9. Off-axis pressure distributions in water.~a! Pin50.056 MPa~linear
regime!; and ~b! Pin50.85 MPa~nonlinear regime!.
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the shockwave hydrophone sensitivity,36 and error in the
measurement of the generator electro-acoustical conver
factor at its source surface.30,37Among these, we believe tha
the first one, i.e., the effect of pressure averaging over
surface of hydrophone active element, has had the most
portant influence on our measurements, especially in non
ear regime when the focus dimensions become compar
with, or even smaller than, the hydrophone active elem
size (F51 mm in our measurements!. To obtain an idea of
the influence of this averaging effect on our results, we m
a simple simulation in nonlinear regime and in water. In th
simulation, based on calculated off-axis pressure distribu
presented in Fig. 9, we derived the pressure amplitudes a
equally spaced points in the focal plane and on thex-axis,
from the focus to a distance of 0.5 mm from the focus. W
consider a circular-shape hydrophone active element wi
radius of 0.5 mm. If the center of the hydrophone act
element is placed at the focus, by dividing the active elem
area into 20 concentric and equal-width annuli, we can c
culate the averaged value of the pressure by averaging
pressures at different annuli with the scaling factors prop
tional to the surface of each annulus. Using this method,
averaged pressure over the hydrophone active elemen
nonlinear regime (Pin50.85 MPa) and in water was found t
be about 11% smaller than the calculated pressure. As a
sult, we can conclude that a major part of the 20% discr
ancy observed between the theory and experiments ma
related to the averaging effect over the hydrophone ac
element.

The time-domain numerical model presented in t
work can be used as a fairly simple theoretical tool for stu
ing the intensive highly focused acoustic beam propaga
in different medium configurations with a symmetric
source geometry. The technique has some advantages
other time-domain methods in the literature in that it allo
~1! for arbitrary absorption and dispersion, and~2! does not
make use of the parabolic approximation for diffraction. T
latter point is particularly important because the trend in b
medical research is toward highly focused, intensive sour
and many current models cannot account for high focus
gains.

In the model presented, we have not considered the
fects of reflection and refraction. These effects may have
important influence on wave propagation especially in mu
layered media which cause an overestimation in the res
of the simulation. The media used in this study~water and
butandiol! have practically the same values of acoustic i
pedances and sound velocities: This source of error is th
fore negligible in the results presented here.

Adding the effects of reflection and refraction, th
model can be used to simulate the wave propagation
multi-layered media, such as a simplified model for the h
man body. Another field of application is to study electron
focusing along the acoustical axis of a high-amplitude tw
dimensional focused source. Our method can easily be
tended to asymmetrical sources, that makes it possibl
simulate the focused finite-amplitude wave propagation i
medium with presence of arbitrary obstacles in the path
2070akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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propagation, as well as simulation of on- and off-axis el
tronic beam steering.
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APPENDIX

Here, we describe and prove a second-order accu
operator-splitting algorithm. For this reason, we calculate
solution of Eq. ~8! at distancez1Dz on the basis of the
waveformn at distancez within three steps:

Step 1.We consider the evolution equation~6! for dif-
fraction:

]n1

]z
5L̂Dn1 , ~A1!

with initial conditionn1(z)5n0 . As the first step, we calcu
late the waveformn1 at the distancez1Dz/2. Using a Taylor
series expansion, it is possible to write:

n1S z1
Dz

2 D5n1~z!1
Dz

2
•

]n1~z!

]z
1

Dz2

8
•

]2n1~z!

]z2

1O~Dz3!. ~A2!

Note that within the Rayleigh integral approximation, t
differential operator]/]z commutes with the diffraction op
eratorL̂D :

]

]z
L̂Dn1~z!5L̂D

]n1~z!

]z
. ~A3!

Indeed, the Rayleigh integral~32! represents an exact solu
tion of the wave equation

¹2n2
1

c0
2 •

]2n

]t2 50

in case of the plane surface of integration, when the nor
to the surface does not depend on coordinates. In our mo
all intermediate observing planes are parallel with thexy
plane, so]/]z5]/]n over the surface of these planes~Fig.
2!. In the case ofnW 5const, we obtain from the wave equ
tion that the derivative]v/]z is also a solution of the wave
equation, so the integral~32! is valid for it. This proves that
the diffraction operatorL̂D commutes with the differentia
operator]/]z. Using the result~A3!, we obtain from Eqs.
~A1! and ~A2!:

n1S z1
Dz

2 D5n01
Dz

2
L̂Dn01

Dz2

8
L̂D

2 n01O~Dz3!.

~A4!

Step 2.Consider the following evolution equation for th
effects of absorption and nonlinearity:

]n2

]z
5L̂An21L̂Nn2 , ~A5!
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with initial condition n2(z)5n1(z1Dz/2). As the second
step, we calculate the waveformn2 at distancez1Dz. The
Taylor series expansion gives:

n2~z1Dz!5n2~z!1Dz
]v2~z!

]z
1

Dz2

2
•

]2n2~z!

]z2

1O~Dz3!. ~A6!

Note, that according to Eq.~3! the differential operator]/]z
commutes with the operatorL̂A , i.e.:

]

]z
L̂An2~z!5L̂A

]n2~z!

]z
. ~A7!

However, this is not the case for operators]/]z and L̂N in
Eq. ~4!. Let us introduce a linear operatorL̂N5(b/2c0

2)
3(]/]t), such that:

L̂Nn25L̂Nn2
2. ~A8!

The operatorL̂N commutes with]/]z, therefore:

]

]z
L̂Nn2~z!52L̂NFn2

]n2~z!

]z G . ~A9!

Equations~A4! to ~A9! give the following expansion for the
waveformn2 at distancez1Dz:

n2~z1Dz!

5n01Dz•@ 1
2 L̂Dn01L̂An01L̂Nn0

2#

1
Dz2

2
•F1

4
L̂D

2 n01L̂AL̂Dn012L̂N~n0L̂Dn0!1L̂A
2n0G

1
Dz2

2
•@ L̂AL̂Nn0

212L̂N~n0L̂An0!12L̂N~n0L̂Nn0
2!#

1O~Dz3!. ~A10!

Step 3.Consider Eq.~A1! again:

]n3

]z
5L̂Dn3 , ~A11!

with initial conditionn3(z1Dz/2)5n2(z1Dz). As the third
step, we calculate the waveformn3 at distancez1Dz. Using
the Taylor series expansion, it is possible to write:

n3~z1Dz!5n3~z1Dz/2!1
Dz

2
•

]n3~z1Dz/2!

]z

1
Dz2

8
•

]2n3~z1Dz/2!

]z2 1O~Dz3!.

~A12!

Taking into account Eq.~A3!, we obtain from Eqs.~A10! to
~A12!:
2071akkoli et al.: Modeling of pulsed finite-amplitude sound beams
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v3~z1Dz!5v01Dz•@ L̂Dv01L̂Av01L̂Nv0
2#

1
Dz2

2
•@ L̂D

2 v01L̂DL̂Av01L̂AL̂Dv0

1L̂DL̂Nv0
21L̂A

2v01L̂AL̂Nv0
2#

1
Dz2

2
•@2L̂N~v0L̂Dv0!12L̂N~v0L̂Av0!

12L̂N~v0L̂Nv0
2!1O~Dz3!. ~A13!

Let v(z)5v0 , the following expression for the waveform a
distancez1Dz results from the evolution equation~8!:

v~z1Dz!5v~z!1Dz
]v~z!

]z
1

Dz2

2
•

]2v~z!

]z2 1O~Dz3!

5v01Dz•@ L̂Dv01L̂Av01L̂Nv0
2#

1
Dz2

2
•@ L̂D

2 v01L̂DL̂Av01L̂AL̂Dv01L̂DL̂Nv0
2

1L̂A
2v01L̂AL̂Nv0

2#

1
Dz2

2
•@2L̂N~v0L̂Dv0!12L̂N~v0L̂Av0!
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Comparing Eqs.~A13! and ~A14!, we conclude:

v~z1Dz!5v3~z1Dz!1O~Dz3!, ~A15!

which proves the operator-splitting algorithm with th
second-order of accuracy.
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