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ABSTRACT. The class of stochastic non-gaussian positive-definite fields with minimal 
parameterization proposed by Soize (Soize, 2006) to model the elasticity tensor field of a 
random anisotropic material shows an anisotropy index which grows with the fluctuation 
level. This property is in contradiction with experimental results in geophysics where the 
anisotropy index remains limited whatever the fluctuation level. Hence, the main purpose of 
this paper is to generalize the Soize’s model in order to account independently for the 
anisotropy index and the fluctuation level. It is then shown that this new model leads to major 
differences in the wave propagation regimes. 

RÉSUMÉ. La classe de modèles stochastiques non gaussiens définis-positifs à paramétrage 
minimal proposé par Soize (2006) pour le champ du tenseur d’élasticité d’un matériau 
aléatoire anisotrope conduit à des niveaux d’anisotropie du milieu augmentant avec le niveau 
de fluctuation. Cette propriété étant en contradiction avec les résultats expérimentaux 
obtenus en géophysique, cet article propose un élargissement du paramétrage du modèle en 
ajoutant un paramètre contrôlant l’indice d’anisotropie moyen du milieu. On montre alors 
que ce nouveau modèle conduit à des différences majeures dans le régime de propagation des 
ondes. 
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1. Introduction

When attempting to build predictive models of the dynamic behavior of inhomoge-
nous and complex structures, the account of uncertainties on local properties requires
probabilistic approaches. Since the available data is often limited, it is essential to
build stochastic fields of elastic properties having a reduced number of parameters
so that they can be identified. On the other hand, such a reduced set of parameters
may lead to a class of models that is too wide and tend to hide the essential physi-
cal phenomena observed in reality. This is particularly salient when the propagation
of waves in random medium is of interest since the wave propagation regime can be
drastically modified by the type of fluctuation of the elastic properties at stake. The
class of non-gaussian positive-definite matrix-valued random field of minimal param-
eterization proposed by Soize in (Soize, 2006) allows for the modeling of a medium
randomly anisotropic. It is fully characterized by a minimal parameterization P con-
sisting of (i) a mean model (which can be chosen either as isotropic or anisotropic)
represented by a mean elasticity tensor C, (ii) a correlation length vector ℓℓℓ and (iii) a
fluctuation level δ.

One of the key features of this model is that even when considering an isotropic
mean medium, the obtained random heterogenous field is locally anisotropic, with a
level of anisotropy that can be characterized by the so-called anisotropy index (Arts,
1993; Carcione, 2007). However, statistical analyses on such fields of elastic tensor
show that the mean anisotropy index increases almost linearly with the dispersion
level. As a consequence, such models are not suited to model geophysical media
which can show high fluctuation levels with limited levels of anisotropy.

In this paper, we propose a refined model of non-gaussian random fields of
positive-definite elasticity tensors with minimal parametrization and given mean
anisotropy index. Section 2 is devoted to the construction of this new random field
δg and the characterization of its main properties. Using 3D spectral elements, it is
shown in section 3 that, given the same level of fluctuation of the elastic properties, the
wave propagation pattern is drastically modified when this anisotropy index remains
in a range compatible with geophysical data.

2. Probabilistic model of elastic property fields

2.1. Random elastic tensor

The linear elastic behavior of a material is characterized by the elasticity tensor
CCC, linking the stress tensor σσσ and the strain tensor εεε. Using Voigt’s notation this 4-
rank tensor can be represented by a 2-rank symmetric positive-definite matrix with 21
independent coefficients for general anisotropic materials. When the material shows
local symmetries the number of independent coefficients decreases and reduces to
2 independent coefficients in the isotropic case. Among other choices of that pair
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of coefficients, the tensor CCCiso of an isotropic material can be written using the bulk
modulus κ and shear modulus µ:

CCCiso = 3κSSS +2µDDD [1]

where SSS and DDD are respectively the so-called spherical tensor and deviatoric tensor de-
fined as: SSS = 1

3

(
I2 ⊗ I2

)
and DDD = Id6 −SSS with I2 = [1 1 1 0 0 0]T and Id6 the identity

matrix of M6(R). Since {SSS,DDD} are orthogonal projectors in the space of real symmet-
ric matrices M

s
6(R) (SSS2 = SSS, DDD2 = DDD and SSSDDD = 0) and an orthogonal pair for scalar

product associated to the Frobenius norm (‖SSS‖F = 1; ‖DDD‖F =
√

5), equation [1] also
reads:

CCCiso =
(√

3κSSS +
√

2µDDD
)2

[2]

Based on equation [2], we propose to write a random anisotropic elasticity tensor as:

CCC(δ,δg) =
(√

3κ(δ)SSS +
√

2µ(δ)DDD
)

GGG(δg)
(√

3κ(δ)SSS +
√

2µ(δ)DDD
)

[3]

in which GGG(δg), κ(δ) and µ(δ) are random variables and (δ,δg) a pair of dispersion
parameters. This model is detailed in sections (2.1.1-2.1.2).

2.1.1. The anisotropy kernel GGG

Following (Soize, 2006), the so-called anisotropy kernel GGG belongs to the set SG+

of all normalized, symmetric, definite-positive real random matrices. This random
variable is defined on the probability measure space (A ,F ,P), with values in M

+
6 (R),

parameterized by a unique real positive dispersion parameter δg. According to (Soize,
2005), the construction by maximizing the entropy leads to the following form of the
kernel:

GGG(δg) = LLLT(δg)LLL(δg) [4]

where LLL is an upper triangular matrix with entries defined as:

LLLij(δg) =





δg√
7

Gk, for upper extra-diagonal entries j > i

δg√
7

√
2h(Gk,αi), for diagonal entries j = i

[5]

with:

– k is a reindexing : k = (14−i)(i−1)
2 + j− i+1

– Gk for k = 1..21 are 21 independent copies of a normalized centered Gaussian
random variable G ,

– h(•,αi) is a non-linear isoprobabilistic transformation that maps a Gaussian
scalar variable (•) into a Gamma distributed one.
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– αi are the parameters of h(•,αi) satisfying: αi = 7
2δ2

g
− i−1

2

The dispersion of random matrix GGG(δg) explicitly depends on δg (see (Soize, 2005)):

E
{
‖GGG(δg)− Id6‖2

}

6
= δ2

g [6]

2.1.2. Random isotropic elasticity moduli

As far as random isotropic elasticity moduli are concerned, the bulk and shear
moduli have been chosen since they are the eigenvalues of the elasticity tensor (see for
instance (Helbig, 1994; Basser et al., 2007)) and thus lead to a diagonal representation.
These moduli are then modeled as independent random variables of strictly positive
real value. Applying the maximum entropy principle with given mean values (κ,µ)
and mean logarithm, leads to two Gamma distributed random variables. In addition,
they can be modeled using transforms of 2 independent copies of the Gaussian scalar
variable G . It should be noted that, the Gaussian G is the same as the one constituting
the entries of GGG. Hence, by extending the k−subscription used in equation [5] beyond
k = 21, we can write the 2 elasticity moduli as follows:

κ(δ) = δκh(G22,δ) and µ(δ) = δµh(G23,δ) [7]

It is worth noticing that other probability laws such as lognormal could have been
chosen, together with correlations between these two gaussian germs.

2.1.3. Properties of matrix-valued random variable CCC

Thanks to the knowledge of κ(δ), µ(δ) and GGG(δg), the random elastic tensor
CCC(δ;δg) defined in equation [3] has the following properties:

(i) CCC(δ;δg) has an isotropic mean given by:

C = 3κSSS +2µDDD, [8]

(ii) CCC(δ,δg) is a second order random variable:

E
{
‖CCC(δ,δg)‖2

F

}
≤ +∞ [9]

(iii) CCC−1(δ,δg) is a second order random variable when δ2 < 1
2 and δ2

g < 7
11

(iv) The anisotropy level is linearly controlled by δg.

(v) The global fluctuation of the norm of CCC(δ,δg) depends explicitly on on δg and δ
as:

δ2
|C| =

E
{
‖CCC−C‖2

F

}

‖C‖2
F

= δ2 +
δ2

g

7

(
1+

tr
2(C)

‖C‖2
F

)
[10]
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The three first properties can easily be worked out and only the last two need to be dis-
cussed here. As far as anisotropy level is concerned, several measures can be defined
(Arts, 1993; Carcione, 2007). The usual definition uses the distance in the Frobenius
norm between the elasticity tensorCCC and the closest isotropic one denoted byCCCiso

eqv and
defined by:

CCCiso
eqv =

(
SSS⊗SSS +

1
5

DDD⊗DDD

)
CCC [11]

The anisotropy index, belonging to [0,1] is then defined as:

Ia =

√
‖CCC−CCCiso

eqv‖2
F

‖CCC‖2
F

[12]

Since the mean of this quantity is rather difficult to evaluate analytically, another
anisotropy index Ia is introduced in this paper. Based on decomposition [3], it is
defined as the mean square distance between GGG(δg) and its projection on the isotropic
subspace of M

+
6 (R):

CCC(δg) =
(
SSS⊗SSS +

1
5

DDD⊗DDD
)
GGG [13]

normalized by the square of the norm of the mean value of GGG:

Ia =

√
E
{
‖GGG−CCC‖2

F

}

6
[14]

This new index can be explicitly calculated as a function of δg and satisfies the fol-
lowing bounds:

0 ≤ Ia =

√
19
21

δg ≤
√

19
33

< 0.76 [15]

Finally, property (v) is obtained using the expression of the 4th-order tensor of covari-
ance of GGG(δg) given in (Soize, 2005).

REMARK 1. When Ia = 0 the material is almost surely isotropic. When δ = 0, the
results on the general random anisotropic tensor given in (Soize, 2005) are retrieved.

EXAMPLE 1. In order to illustrate properties (iv) and (v), a numerical study show-
ing the evolution of the anisotropy index and the global fluctuation δC as functions
of the pair (δ,δg) has been performed. The mean elastic tensor CCC corresponds to an
isotropic medium with compression wave speed vp = 1730m/s and shear wave speed
vs = 1000m/s. The statistic evaluations performed using 1000 samples for each con-
figuration of (δ,δg) are shown to be in good accordance with the theoretical estimates.
For instance, only the comparision of δ|C| is displayed in (Figure 1-a). On the other
hand, (Figure 1-b) shows that the new index Ia is almost equivalent to the mean of
the classical one (although the fact that the one given by equation [12] seems to be
slightly dependent on δ).
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Figure 1. (a) Fluctuations δ|C| of elasticity tensor: theorical estimates (dark) and

statistic ones (light). (b) New index Ia (black solid line) and mean values of the clasical

one (gray dash line for δ = 0.65, gray solid line for δ = 0.05)

2.2. Stochastic field of elasticity tensor

Up to now, only the variability of the elasticity tensor at a given point has been
accounted for. In order to introduce the spatial variability of this mechanical prop-
erty, the present section discusses the construction of a model of the stochastic field
of elasticity tensor based on the probabilistic model developed in the previous sec-
tion. Let ΩΩΩ = {xxx|xxx ∈R

3} be the physical domain, equipped with a Cartesian reference
frame {iii1,iii2,iii3}, and occupied by an inhomogeneous elastic material. The associated
stochastic field model of elasticity tensor {C(δ;δg;ℓℓℓ)|xxx ∈ ΩΩΩ}, defined on the prob-
ability measure space (A ,F ,P), indexed on ΩΩΩ, with values in M

+
6 (R), can then be

formulated as follows:
{

C(xxx;δ,δg;ℓℓℓ) =
(√

3κ(xxx;δ;ℓℓℓ)SSS +
√

2µ(xxx;δ;ℓℓℓ)DDD
)

GGG(xxx;δg;ℓℓℓ)

(√
3κ(xxx;δ;ℓℓℓ)SSS +

√
2µ(xxx;δ;ℓℓℓ)DDD

)}
a.s. [16]

where ℓℓℓ = (ℓ1, ℓ2ℓ3) is a vector of correlation lengths in the three spatial directions.
The evolution from equation [3] to equation [16] is done by replacing, in the formu-
lation of the kernel GGG and of the isotropic elastic modulus κ,µ, the 23 independent
copies

{
Gk|k ∈ {1,2, ...,23}

}
of a Gaussian normalized random variable by 23 in-

dependent copies
{

GGGk(xxx;ℓℓℓ)|xxx ∈ ΩΩΩ;k ∈ {1,2, ...,23}
}

of a stochastic Gaussian field
{GGG(xxx;ℓℓℓ)|xxx ∈ΩΩΩ} indexed on ΩΩΩ with values in R. This germ Gaussian field is of second-
order, homogeneous with a correlation structure defined by the following correlation
function (see, (Soize, 2006; Arnst, 2007; Popescu, 1995), for more details):

RG (ηηη;ℓℓℓ) = E {GGG(xxx;ℓℓℓ)GGG(xxx+ηηη;ℓℓℓ)} = ρ(η1, ℓ1)ρ(η2, ℓ2)ρ(η3, ℓ3) [17]
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where ρ(η;ℓ) is chosen as a squared cardinal sine:

ρ(η;ℓ) =
4ℓ2

π2η2 sin2
(πη

2ℓ

)
[18]

This stochastic field {C(xxx;δ,δg;ℓℓℓ)} is mean-square continuous with almost surely
continuous samples. Following (Soize, 2006), it can be shown that taking the restric-
tion of this field on a bounded domain leads to a second order solution of the related
stochastic boundary value problem.

EXAMPLE 2. As an example, a soil cube filling the physical domain {xxx ∈ ΩΩΩ0 ⊂
ΩΩΩ| − 200m ≤ x1,x2 ≤ 200m;−400m ≤ x3 ≤ 0m} is considered now. The material
has a constant bulk density ρv = 2000kg/m3. The mean model consists in a ho-
mogeneous isotropic elastic material defined in (Example 1). A simulation by the
spectral representation approach (see, (Shinozuka et al., 1996), for instance.) is then
performed. The mapping of term C11 of a sample of the field C(xxx;δ,δg;ℓℓℓ) with
δ = 0.6; δg = 0.15; ℓ1 = ℓ2 = 50m and ℓ3 = 20m is shown in (Figure 2-a). The shorter
correlation length along the vertical axis is clearly visible on this chart. In Figure2-b,
a fair matching between the theorical unidimensional correlation function given by
equation [18] and the ones obtained by spatial mean is observed. Another remark is
that despite the isotropic mean behavior, the elastic tensor is anisotropic almost every-
where. For instance, the elasticity tensor at the point {x1 = x2 = x3 = 0} of the given
field sample is:

C(000, ...) =




6.369 0.461 0.880 0.671 −0.303 −0.178
− 3.949 1.403 0.039 −0.405 −0.513
− − 4.394 −0.142 −0.152 −0.662
S − − 3.091 −1.072 −0.081
− Y − − 2.036 0.224
− − M. − − 2.047


 [×109Pa] [19]
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Figure 2. A sample of stochastic elasticity tensor field: (a) Mapping of C11. (b) Theo-

rical (solid lines) and observed (circles) correlation structures in iii1− (black) and iii3−
(gray) directions
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3. Effect of the random field model on wave propagation pattern

In this section, the influence of the stochastic model of a random anisotropic media
on the wave propagation pattern is characterized by means of numerical simulations.
Since the goal is to characterize the wave propagation pattern in a random media
beyond the mean free path, a numerical method is required, that is able to account for
several wavelengths and correlation lengths in all spatial directions. Moreover, since
the multiple scattering pattern drastically changes between two and three dimensional
cases, 3D simulations are targeted. In order to meet both a high efficiency and a
controlled numerical error, the Spectral Finite Element Method has been chosen. In
particular, the SPEC software developped by the Seismology Group of Institut de

Physique du Globe de Paris (Festa et al., 2005) has been modified in order to account
for anisotropic heterogeneous fields of elastic tensors. It is worth noticing that in
this section only samples of random media will be considered and no real statistical
analyses will be performed. However, since the elastic waves are traveling through
a statistically homogeneous random media, the wave pattern obtained after several
wavelengths and correlation lengths is expected to show common statistical properties
weakly dependent on the sample of the random media. In particular, this property has
been observed when considering the multiple scattering of seismic wave fields on a
random distribution of buildings (Clouteau et al., 2001).

The strong formulation of the elastic wave propagation in an anisotropic media Ω
consists in solving for uuu the Navier equation ∀t ∈ [0;T ]:

Div
(
CCC(xxx)εεε(uuu(xxx; t))

)
+ fff (xxx, t) = ρv

∂2

∂t2 uuu(xxx; t) [20]

together with proper boundary and initial conditions. CCC is a sample of the random field
of anisotropic elastic tensor and ρv is the bulk density. As far as the Spectral Finite
Element Method is concerned, the related weak formulation is considered ∀t ∈ [0;T ]
and ∀www ∈V (Ω):

Z ∗

Ω

(
ρv

∂2uuu

∂t2 (t) ·www +CCC∗(xxx)εεε(uuu(t)) : εεε(www)− fff (xxx, t) ·www
)

dΩ = 0 [21]

where CCC∗ = CCC in the domain of interest Ω and where CCC∗ corresponds to a modified
divergence operator D̃iv inside the so-called PML (i.e. Perfectly Matched Layer)
Ω∗ \Ω. Indeed, the PML can be viewed as an anisotropic dispersive material. In
addition, it is worth noticing that such PML are applicable to inhomogeneous me-
dia but can become instable for anisotropic materials (Bécache et al., 2003). As a
consequence, they have to be modified using a multiaxial damping (Meza-Fajardo et

al., 2008) leading to stable but not perfectly matched layers. This is a serious draw-
back when homogeneous material are sought for. It is less important for a strongly
inhomogeneous media since perfectly or non perfectly matched layers are both wrong
in this case. The development of equivalent boundary conditions in such media is still
a pending question to the authors’ knowledge.
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3.1. Elastic waves in homogeneous anisotropic media

In order to validate the Spectral Finite Element code for anisotropic media, the
wave propagation in a homogeneous anisotropic medium is first studied. Indeed, for
homogeneous physical properties in R

3, equation [20] can be analytically solved for
plane waves solutions:

uuu(xxx, t) = ûuu±(sss,ω)exp(iω(sss ·xxx± t)) [22]

where sss is the slowness vector and ω the circular frequency. It leads to the Christof-
fel eigenvalues problem (Auld, 1973) for sss. These solution vectors belong to three
slowness surfaces which represent the inverses of phase velocity as functions of the
wave propagation direction. These 3 surfaces stand for 1 quasi-longitudinal mode (qP-
mode) and 2 quasi-transverse modes (qS-modes). Apart from the slowness (or phase
velocity), each of these propagation modes can be characterized by a group velocity
with a closed-form expression, which lead to a set of three group velocity surfaces.
This analytical solution can be used to validate the wave propagation in an unbounded
homogenous elastic tridimensional domain under a point source excitation. Indeed,
the instantaneous wavefronts are obtained by multiplying group velocity surface by
travel time.

EXAMPLE 3. We consider in this example an unbounded homogenous domain with
an elasticity tensor given by formula [19]. Slowness surfaces are then shown in (Fig-
ure 3). In this picture, some key characters of the anisotropy can be revealed. The
two qS-modes differ leading to a shear wave splitting which does not occur in the
isotropic case. Moreover, the 3 surface sheets have irregular shapes corresponding to
an a priori triclinic elasticity tensor. On the other hand, simple wavefront predictions
can be represented by wavefront curves in (Figure 4). These curves are peformed by
intersecting group velocity surfaces with the 3 planes x1 = 0, x2 = 0, x3 = 0 and then
scaling by the travel time (t = 0.59s in this case). We can remark that qS-mode group
velocity surfaces are multi-valued along directions corresponding to locally concave
slowness surfaces (Auld, 1973; Cerveny, 2001). Also in (Figure 4), theorical wave-
fronts are then superposed with the velocity module snapshots of a wave propagation
simulated by spectral finite elements approach. In the simulation, the physical domain
defined by −1000m≤ x1,x2 ≤ 1000m and −2000m≤ x3 ≤ 0m, is surrounded by PML
domains.

3.2. Waves in random anisotropic media

We now consider two samples of a random media having the same: mean homo-
geneous isotropic elastic properties, fluctuation level δ|C| and correlation length vector
ℓℓℓ, but different values for the dispersion parameters δ and δg in order to observe the
influence of these parameters on the wave propagation pattern.

EXAMPLE 4. The domain of interest is such that −1500m ≤ x1,x2 ≤ 1500m and
−400m ≤ x3 ≤ 0m. The mean wave velocities are vp = 1730m/s and vs = 1000m/s.
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Figure 3. Slowness surface. From left to right: 2 qS-modes and 1 qP-mode

(a) (b) (c)

Figure 4. Snapshots of the simulated velocity module vs. theorical wavefronts at t =
0.59s: (a) Plane x3 = 0. (b) Plane x2 = 0. (c) Plane x1 = 0 in which the qS1-, qS2-,

qP- theorical modes are displayed respectively in dash line, solid line and o-marked

curves

Free surface boundary conditions are applied on top x3 = 0 and PML conditions on
the other sides of the box. A point source is located at point xxxo = (−1400,0,0) on the
free surface. The time history of the force is a Ricker with a characteristic frequency
equal to 10Hz. The three correlation lengths are equal to 100m. As a consequence,
the dominant wavelength is of the order of the correlation length and the domain
characteristic size is about ten times the wavelength. As far as the amplitude of the
fluctuation is concerned, the global fluctuation level on the elastic tensor is set to δ|C| =
0.49. The dispersion parameters are set to δ = 0;δg = 0.6 for the first model, which
corresponds to the original model proposed in (Soize, 2006). These parameters are
set to δ = 0.47;δg = 0.17 for the second model which corresponds to the upper limit
of the anisotropic index observed in geophysics (Vernik et al., 1997). The amplitudes
of the particle velocity on the free surface are shown in (Figure 5) for three different
time steps and for the two models. Although δ|C| is the same in the two cases, the
wave propagation patterns are very different. In the case of a high anisotropic level
(δg = 0.6) the diffusion pattern corresponds to a strong diffusion of the wave field
whereas in the weakly anisotropic case (δg = 0.17) the wave field seems much more
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localized in space and in time. Scattering at given locations can be observed. These
results indicate that these two models lead to different propagation regimes which
have to be charaterized in more details.

Figure 5. Time evolution (downward) of wavefronts on the free surface for δ|C| = 0.49:

(left) δ = 0;δg = 0.6, (right) δ = 0.47;δg = 0.17

4. Conclusions

In this paper a refinement of the non-gaussian random field of anisotropic elastic
tensor with minimum parameters (Soize, 2006) has been proposed in order to control
the anisotropy index independently from the fluctuation level. This new model is
based on the splitting of the elastic tensor into isotropic and anisotropic parts which
are modeled independently. This new model introduces a single new parameter which
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has been shown to depend linearly on a modified mean anisotropy index. Monte Carlo
simulations have shown that this modified index is almost equivalent to the classical
one.

Numerical simulations have been performed using time domain 3D Spectral Finite
Element on large samples of the proposed random fields. It has been demonstrated that
given a large fluctuation level, the pattern of the wave field after a few wavelengths
is highly dependent on the mean anisotropy index which can now been controlled
independently from the fluctuation level.

It is worth noticing that correlations between the isotropic elastic moduli and the
bulk density can easily be accounted for in the proposed model together with different
correlation lengths for the random anisotropy and the isotropic elastic moduli.
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