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Abstract

Stimulated Brillouin scattering in a multimode step-index fiber can be used

to generate a counter-propagating, phase-conjugate beam that would prove useful in

many applications, such as near diffraction limited, double-pass high-power amplifiers

or coherent beam combination. Relatively little modeling of such a fiber-based phase-

conjugator has been done, making design decisions regarding type and length of fiber

largely guesswork. A numerical model was constructed with the aim of providing

educated predictions about the phase conjugate fidelity that could be expected from

a given pump intensity input coupled into a specific fiber. A numerical perturba-

tion algorithm was constructed to search for the Stokes modal arrangement with the

highest gain for a given pump input. The gain was calculated from the differential

equation for the Stokes power under the assumption that all pump/Stokes modes

decay/grow at the same rate, and that the fiber was lossless. The model proves to be

much more accurate in predicting experimentally observed phase conjugate fidelities

than previous efforts. In addition, the phenomenon of beam cleanup to higher order

fiber modes is predicted and explained.
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Modeling of SBS Phase Conjugation in Multimode Step

Index Fibers

I. Introduction

Lasers have found a myriad of applications since their initial experimental

demonstration nearly 50 years ago [1]. Many of the most common laser commer-

cial technologies involve relatively low power devices, milliwatts or less, that are used

to etch optical storage media such as compact discs, or to scan barcodes in store

checkout lines. High power lasers have also found use in industry for welding and

cutting tasks. While the military has adopted lasers for tasks such as targeting and

range-finding, stringent performance requirements have hampered their further inte-

gration. Most commercial lasers are either relatively low power or make significant

sacrifices in beam quality, system weight, size, and complexity to achieve higher pow-

ers. While a poor quality beam delivered from a very heavy and large laser may be

acceptable in an automobile factory where a controlled environment is available, and

the laser only needs to propagate a very small distance to target, such a device would

be unacceptable for most military uses.

Many defense applications simultaneously demand high power and good beam

quality in a laser system with a minimal logistical footprint. The requirement for

a high beam quality is rooted in the frequent need to propagate the beam through

a significant distance to target. A low quality beam will have a significantly higher
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divergence that will result in most of the light missing its intended destination. High

output powers are required partly to account for the losses involved in long range

propagation of even a near Gaussian laser beam, and even higher powers are needed

if the laser is intended as a weapon at such ranges. Sadly, these demands for high

power and good beam quality are usually countervailing. To understand why, one

must understand the basics of laser operation.

Lasers are energy conversion devices. They convert energy from one source,

whether it be from a chemical reaction, electricity, or even another laser, into coherent

light of a well-defined wavelength that often exhibits a low angular divergence. While

chemical lasers are the current focus of military systems, such as the Airborne Laser

(ABL), due to the high powers they can provide, their complexity, size, and large

logistical footprint have led investigators to search for alternatives. Solid-state and

fiber lasers have attracted interest for their reduced maintenance requirements, but

these operate at powers that are too low for military weapons-grade applications. To

achieve high powers, a large amount of pump power must be introduced somewhere

in the system, either in the lasing cavity or in an external amplifier. Since pumping

is never a perfectly efficient process, some heat will be introduced, and for very high

pump powers this heat can introduce prohibitively large thermal distortions to the

beam profile in a solid state laser or amplifier.

In a fiber laser or amplifier, thermal aberrations are limited because the waveg-

uide only permits a finite number of modes that, in general, cannot support the

arbitrary thermal distortions introduced in a solid state device. However, while sin-
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gle mode fibers are very common and easy to construct, they are generally not used

for high power amplifiers because of their small core size. To permit higher powers,

the core is typically enlarged to reduce the intensity below the threshold of damage

and parasitic nonlinear effects. However, by enlarging the core, higher order modes

are introduced and these modes will typically distort the input beam profile. While

special designs, such as photonic crystal fibers, can increase the range of single-mode

operation, there will still be an upper limit in core size at which good beam quality is

lost. Thus, higher powers typically imply larger distortions to the beam profile, which

will result in a much larger divergence to the beam and thus less power on target.

A phase conjugate mirror (PCM) can be used to maintain good beam quality

despite the use of multimode fiber amplifiers, to name one of many potential applica-

tions. To learn what a phase conjugate mirror is, one can consider a ‘probe’ electric

field:

~Ep(~r, t) =
1

2
Â(~r)ei(ωt−kz) + c.c. (1.1)

where Â(~r) is the complex amplitude, which is a function of the spatial position ~r and

contains both phase and polarization information, ω is the angular frequency, and c.c.

represents the complex conjugate of the first term. Now consider the wave equation

in a linear, source-less medium:

∇2 ~Ep − µǫ(~r)
∂2 ~Ep

∂t2
= 0 (1.2)
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where µ is the magnetic permeability, and ǫ(~r) is the dielectric constant of the

medium. If we break the Laplacian into transverse and longitudinal components,

∇2 = ∇2
T + ∂2/∂z2, and make the slowly varying envelope approximation (SVEA),

whereby ∂2Â(~r)
∂z2 ≪ 2k ∂Â(~r)

∂z
, then one obtains:

∇2
T Â(~r) + (ω2µǫ(~r) − k2)Â(~r) + 2ik

∂Â(~r)

∂z
= 0 (1.3)

Taking the complex conjugate of both sides does not change the validity of the equa-

tion, yielding:

∇2
T Â

∗(~r) + (ω2µǫ(~r) − k2)Â∗(~r) − 2ik
∂Â∗(~r)

∂z
= 0 (1.4)

One finds that this conjugated equation describes an electric field that is the complex

conjugate of only the spatial portions of the probe field:

~Ec(~r, t) =
1

2
Â∗(~r)ei(ωt+kz) + c.c. (1.5)

One immediately notices the relation between the probe field and its spatial

conjugate:

~Ec(~r, t) = ~Ep(~r,−t) (1.6)

that is, this spatial phase conjugate field acts like the probe field with time reversed [2].

Consider a laser that outputs a near Gaussian beam, which traverses an aberrating

4



medium. This medium could be nearly anything, from a multimode fiber amplifier to

the atmosphere. If one used a phase conjugate mirror to generate the time reversed

electric field at the far end of the aberrator, this field would be reflected backwards

such that its phasefronts would exactly mimic those of the incident wave. That is,

after a second pass through the aberrator, the original Gaussian beam profile would

be restored. Specifically addressing the divergent demands for high power and good

beam quality mentioned above, one can envision a low power Gaussian laser beam

that transits an amplifier, increasing both power and distortions to the irradiance

pattern. After amplification, the distorted beam can reflect off a PCM and transit

back through the aberrator a second time with the aberrations introduced in the first

pass being removed after this second pass. Thus, a high power Gaussian beam would

be output.

Such a perfect ‘time reversed’ field would be of enormous value in a variety of

applications beyond near distortionless amplifiers. These include beam combination,

correction for atmospheric aberrations, tracking of moving objects, image processing,

and novel laser cavity designs [3]. These applications all have obvious military utility.

However, the focus of this thesis is not a specific application or scenario, but on mod-

eling the performance of a multimode step index fiber as a PCM through Stimulated

Brillouin scattering (SBS). Throughout this thesis, the focus will be on the internal

workings of such an SBS PCM, not on the aberrator or the larger system design.

So far, the questions ‘What?’ and ‘Why?’ have been addressed. To answer

the former, the discussion is focused on generating the spatial phase conjugate of an

5



incident electric field. Regarding the latter, such a field could solve a host of problems,

though here we focus on near distortionless amplifiers that could provide a high power

near Gaussian laser beam suitable for military applications. The question ‘How?’ has

not yet been asked. Specifically, how does one construct a PCM with the properties

described above? There are two primary nonlinear optics based methods.

Degenerate four-wave mixing (DFWM) acts like a real-time hologram to gener-

ate a phase conjugate beam [3]. A traditional hologram is formed when a reference

beam is overlaid with a probe beam, resulting in an interference pattern which is

recorded on a photographic film. When the film is developed and reilluminated by

another reference beam, the probe beam is reproduced. The probe is often a reflection

from an object, and so illuminating the holographic film will produce a virtual image

of the object. In four wave mixing, three beams are overlaid on a nonlinear medium,

one being the probe beam, and two other pump beams that propagate through the

medium in opposite directions. Each of the pump beams interferes with the probe

beam, creating an interference pattern that is, in turn, read out by the other pump

beam in the form of the phase conjugate of the probe. While a normal hologram

is permanently recorded on film, the interference pattern created by the probe and

pump beams in four wave mixing will change in real time to consistently return the

phase conjugate of an evolving probe.

Stimulated Brillouin scattering can also produce a phase conjugate reflection,

and is the focus of this thesis. SBS occurs when pump photons scatter off lattice vi-

brations in a nonlinear medium. This can be visualized as the absorption of a pump

6



Figure 1.1. A schematic of SBS in a fiber. An incident pump photon scatters off a
forward propagating lattice vibration, or phonon, leading to the creation of a slightly
redshifted backscattered Stokes photon, and another phonon that increases the lattice
vibration. This increase leads to a positive feedback loop, and nonlinear behavior.

photon, and the creation of a phonon and a lower frequency Stokes photon. The

geometry of a fiber restricts this scattering to either the same direction in which the

pump is propagating, or the reverse, backscattered case. However, forward scatter-

ing is prohibited by the phase matching condition, so SBS in a fiber is limited to

backscattering, as seen in Figure (1.1). For each pump photon that scatters off the

lattice vibrations, another phonon is created that reinforces these vibrations, leading

to a positive feedback loop and a nonlinear increase in Stokes power after a certain

threshold is passed.

It will be shown in the next chapter that the rate of growth of the Stokes beam

is:

∂Is(r⊥, z)

∂z
∝ Is(r⊥, z)Ip(r⊥, z) (1.7)
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where Is(r⊥, z)Ip(r⊥, z) represent the irradiance ‘speckle’ patterns of the incident

pump and backscattered Stokes beams inside the multimode fiber. While the de-

tails will be left until later in this document, one can already qualitatively observe

that, of the infinite number of possible Stokes configurations that could grow from

spontaneous Brillouin noise, the Is(r⊥, z) pattern that most closely matches the pump

will give the largest product of intensities, and thus have the quickest growth. It is

this irradiance overlap discrimination in the stimulated scattering process that forms

the basis of an SBS PCM.

There are tradeoffs to consider when choosing whether to construct a DFWM

or SBS PCM [3]. It is illustrative to consider these top level design concerns before

delving into the details of a SBS PCM. A DFWM based mirror will give a phase con-

jugate beam that is of the same wavelength as the incident probe beam. Furthermore,

there is no threshold power that must be crossed before the mirror will work, and for

pump beams of sufficiently high power, the reflected phase conjugate can actually be

of higher power than the incident probe. That is, a DFWM PCM can simultaneously

serve as an amplifier. In fact, such amplifying DFWM PCMs have served as the basis

of novel laser cavities which are so forgiving that they will lase with any moderately

reflective surface nearby, including a metal spatula [3].

The alternative, an SBS device, has none of these advantages. The Stokes wave

is of a slightly longer wavelength than the incident probe, and so even if a phase

conjugate beam is formed, this beam will not be able to perfectly retrace the phase

fronts of the pump. For short propagation distances this error is negligible, but this
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effect usually precludes SBS PCM for applications such as correction of atmospheric

aberrations. SBS also has a power threshold that must be crossed for the mirror to

have an appreciable reflectivity, and this reflection coefficient will always be less than

one, at least for the case of the passive, undoped silica fiber waveguides considered

here. That is, an SBS PCM cannot simultaneously amplify.

With all the disadvantages previously mentioned, why would one ever resort to

an SBS PCM? The short answer is that their design requirements are relatively simple

[3]. All that is required is a nonlinear medium, of which there are many examples

ranging from the compressed methane cell in which phase conjugate beams were first

discovered [4], to solid silica fibers in which many modern experiments are performed,

and a pump beam with enough power to exceed the SBS threshold. In contrast,

DFWM requires three beams rather than one, and the two counterpropagating pump

beams, which simultaneously form the interference pattern hologram and read it out,

must have a high wavefront quality. Furthermore, the nonlinear medium in which the

three beams are mixed must be of high optical quality. Suffice it to say, the choice of

PCM will depend on the specific application, and one type is not inherently superior

to the other.

The stage has now been set. The definition of a phase conjugate beam has

been given in Equation (1.5), and a few of the many possible applications have been

mentioned in passing, enough to justify why this is a topic worthy of research interest.

The two methods for generating these beams, DFWM and SBS, have been discussed,

with a presentation of the relative advantages and drawbacks of each.

9



Now that it is known how this thesis fits into the bigger picture, the focus can be

narrowed to the research conducted here. Specifically, this thesis focuses on modeling

continuous wave (CW) SBS phase conjugation in a multimode step index fiber, and

predicting how the quality of the phase conjugate reflection (the fidelity) varies with

fiber core size, length, the number of modes it supports, and the incident pump power.

While theoretical investigations of SBS PCMs have been conducted by a num-

ber of authors, the model constructed here offers new insights. A significant amount

of theoretical work has been done on SBS PCM in a focused free space geometry,

as opposed to the waveguide analyzed here [5, 6]. Waveguide SBS phase conjugation

theory has attracted less interest, though there still have been some noteworthy ef-

forts. Lehmberg implemented a numerical solution of a SBS waveguide PCM, though

his treatment was limited to two dimensions and thus, while it was noteworthy for

accurately matching theoretical predictions of earlier researchers, is not applicable in

actually designing real world devices [7]. Hellwarth devised one of the earliest theo-

retical treatments of SBS phase conjugation in a waveguide, and concluded his article

with a prediction of the phase conjugate fidelity that could be obtained for a given

waveguide size and length [8]. While his results are significant and are one of the most

referenced works on this subject, they suffer from several limitations. These include

the lack of consideration for any pump depletion, and the use of perturbation theory

with a perfect phase conjugate starting point.

It will be shown later that the quality of the phase conjugate reflection from

a given fiber increases as the fiber is shortened. Unfortunately, the SBS threshold
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will also increase, meaning more power is required to generate a backscattered Stokes

beam. This obviously means that some tradeoff between the two variables must

take place. While SBS threshold in fibers is a well-studied topic, making predictions

about phase conjugate quality as a function of fiber length is very haphazardous, with

current models, such as Hellwarth, vastly understating the lengths required for a given

fidelity. This would imply very high threshold powers, and make device construction

impractical, which is not observed experimentally. This thesis was an attempt to

bridge this gap between theory and experiment.

The model described in this thesis is a full three dimensional analysis of a step

index multimode fiber, where consideration for pump depletion effects is included and

compared to the no pump depletion case. The eventual aim of the model is to give

accurate predictions of how fiber type, length, and input pump power will affect the

performance of a step index multimode fiber PCM. This could be a valuable tool in

the hands of experimentalists and system developers attempting to make informed

decisions on design choices. Chapter 2 lays a more detailed framework of the theory

required in the construction of the model, including a description of the allowed

modes in a fiber and the origins of the SBS coupled differential equations describing

the changes in the pump and Stokes irradiances in the fiber and how these forms

can lead to a phase conjugate reflection. Chapter 3 moves from general theory into

the specifics of how the model works, the different categories of solutions that were

considered and what assumptions were made for each of these solutions. Chapter 4

moves on to the results obtained from the model, and a discussion of how these results
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factor into experimental results and previous theoretical predictions. Chapter 5 ends

with a suggestion for future work and conclusions.
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II. General Theory

Foundational Theory

The first step in modeling an SBS phase conjugate mirror in an optical fiber

is to model the multimode fiber itself. An incident field can be constructed from an

arbitrary linear combination of a finite number of fiber modes. After calculation of

the various propagation constants, each mode can be independently propagated down

the fiber. Knowledge of these propagation constants, along with the initial percentage

of power in each mode, allows a calculation of the irradiance distribution at any

given longitudinal distance down the fiber. Once this three-dimensional irradiance

distribution for the pump has been found, one can estimate the gain for a phase

conjugate Stokes beam produced through SBS. This SBS gain is a function of the

spatial overlap between the irradiance distribution of the Stokes and the pump. This

overlap will gradually degrade over the length of the fiber due to the multiple modes

present and the frequency shift inherent to SBS. Determining how the gain of the

phase conjugate form of the Stokes beam depends on input pump power and fiber

length forms the heart of this thesis.

Optical fibers confine light through total internal reflection due to the higher

index of refraction in their core relative to the neighboring cladding, as seen in Figure

Figure 2.1. Schematic of a step index fiber, with the indices of refraction in the
core and cladding shown on the left, and the coordinate system specified in the fiber.
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(2.1). However, multiple restrictions are placed on the fields inside such dielectric

waveguides. They must satisfy Maxwell’s equations:

∇× ~E = −µ0
∂ ~H

∂t
(2.1)

∇× ~H =
∂ ~D

∂t
(2.2)

∇ · ~D = 0 (2.3)

∇ · ~H = 0 (2.4)

which, in the form above, describe the nonmagnetic and source free environment

found in a typical fiber. The magnetic and electric fields, ~H and ~E, as well as

the magnetic flux density and electric displacement, ~B and ~D, are related by the

constitutive relations:

~D = ε0
~E + ~P = ε ~E (2.5)

~B = µ0( ~H + ~M) = µ ~H (2.6)

where ~P and ~M represent the induced dipole and magnetic moment per unit vol-

ume respectively, and the final equality in the constitutive relations applies in linear,

isotropic materials. Taking the curl of Equation (2.1), plugging in Equations (2.2),

(2.3) and the linear, isotropic form of (2.5) leads one to the linear wave equation:

∇2 ~E −
(n

c

)2 ∂2

∂t2
~E = 0 (2.7a)
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∇2 ~E = ∇2
T
~E +

∂2 ~E

∂z2
=

1

r

∂

∂r

(

r
∂ ~E

∂r

)

+
1

r2

∂2 ~E

∂θ2
+
∂2 ~E

∂z2
(2.7b)

where n is the index of refraction, n/c =
√
µ0ε in this nonmagnetic fiber, and Equation

(2.7b) gives the Laplacian in the cylindrical coordinates that are appropriate for the

optical fibers analyzed in this thesis. Note that the Laplacian can be broken out into

its transverse, ∇2
T , and longitudinal, ∂2

∂z2 , components. Equation (2.7a) is applicable

to each of the three scalar components of the electric field vector, r̂, θ̂ and ẑ, though

the unit vectors in the r̂ and θ̂ directions are not constant in space, leading to a

coupling of the three component wave equations when the Laplacian is taken [9].

While solutions can still be found for a step index fiber, the analysis is considerably

easier if the weakly guiding approximation is made, namely that:

ncore − nclad ≪ 1 (2.8)

where the indices apply in the regions labeled by the subscripts. Using this approx-

imation, only paraxial fiber modes, those propagating nearly parallel to the fiber

axis, will remain trapped. The longitudinal components of the electric and magnetic

fields are then very weak, and the guided modes are nearly transverse electromagnetic

(TEM) [9].

Previously, the polarization of the mode could have been a combination of all

three Cartesian components but, in the weakly guiding approximation, the longitudi-

nal component can be neglected, considerably reducing the complexity. While a de-
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tailed analysis is beyond the scope of the introductory treatment here, the transverse

electromagnetic (TEM) field that remains after neglecting the longitudinal polariza-

tion will be linearly polarized in the weakly guiding fibers discussed here. Anticipating

this linear polarization, the electric field will be decomposed into its Cartesian po-

larization components x̂, ŷ, ẑ, though the spatial dependence of these components, to

include the Laplacian, is still written in the cylindrical form given in Equation (2.7b)

due to the geometry imposed by the fiber [10]. One can then re-express Equation

(2.7a) in scalar form for any one of the Cartesian components of the electric field,

however only the two transverse components will be significant. Furthermore, as the

modes in this weakly-guiding fiber are linearly polarized, the entire electric field can

be described through a solution of Equation (2.7a) in one Cartesian direction [11].

Maxwell’s equations impose the boundary condition that the tangential com-

ponents of ~E must be continuous across the core-cladding dielectric interface. This

restriction, along with the limitation on propagation angles that preserves total in-

ternal reflection, allows only certain field distributions, or modes, to exist inside the

waveguide. We look for linearly polarized modal distributions that propagate down

the fiber with the scalar form:

E = E(r, θ) = R(r)Θ(θ)exp[i(βz − ωt)] (2.9)

where R(r) and Θ(θ) express the radial and azimuthal field dependence respectively,

and β is the propagation constant of the fiber mode. Inserting Equation (2.9) into
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the scalar form of Equation (2.7a), allows one to easily determine the azimuthal

dependence through separation of variables, yielding the result:

Θ(θ) = exp[iℓθ] (2.10)

where ℓ is an integer. Substituting this azimuthal dependence into Equation (2.9) and

the result into the scalar form of Equation (2.7a), while making use of the cylindrical

coordinate Laplacian in Equation(2.7b), yields:

(

∇2
T [R(r)Θ(θ)] −

(

β2 −
(nω

c

)2
)

R(r)Θ(θ)

)

exp[i(βz − ωt)] = 0 (2.11a)

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r
−
(

ℓ2

r2
+ β2 −

(nω

c

)2
)

R(r) = 0 (2.11b)

where, in moving from Equation (2.11a) to (2.11b), the transverse Laplacian has

been evaluated and the result divided by Θ(θ)exp[i(βz−ωt)]. Through a non-weakly

guiding analysis, one can show that in general:

ncorek0 > β > ncladk0 (2.12)

where k0 = 2π
λ0

and λ0 is the free space wavelength [9]. In a step index fiber, it is then

convenient to define two new propagation constants:

k2
T = n2

corek
2
0 − β2 (2.13)
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γ2 = β2 − n2
cladk

2
0 (2.14)

where it will be found that kT is the propagation constant in the transverse plane.

By separately writing Equation (2.11b) in the core and clad regions and including

Equations (2.13) and (2.14) in the appropriate regions, one can write:

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r
+

(

k2
T − ℓ2

r2

)

R(r) = 0, r < a (core) (2.15a)

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r
−
(

γ2 +
ℓ2

r2

)

R(r) = 0, r > a (clad) (2.15b)

where a is the radius of the step index fiber core. These are well-known differential

equations whose solutions are Bessel functions [12]. By restricting the solutions to

remain finite at r = 0 and as r −→ ∞, the solution for the radial dependence of the

electric field can be expressed as:

R(r) =



















CℓJℓ(kcr) r < a (core)

DℓKℓ(γr) r > a (clad)

(2.16)

where Jℓ and Kℓ are the ℓth order Bessel and modified Bessel functions respectively,

and Cℓ and Dℓ are constants whose value depends on the power in the ℓth mode [13].

In the weakly guiding case where the electric field is linearly polarized, both

the normal and tangential components must be continuous across the core-clad inter-

face [10]. Maxwell’s equations impose boundary conditions such that the tangential

component of the electric field must always be continuous at an interface. Using
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Equation (2.3) in a linear material, one can implement the divergence theorem to see

that the normal component of the electric displacement, ~D, is continuous across the

interface. However, in the weakly guiding case, the indices of refraction, and thus

the permittivities, of the core and cladding are almost the same. Since ~D = ǫ ~E, the

weakly guiding case lets us approximate the continuity of the normal component of

~D with the continuity of the normal component of ~E.

By inspection, the azimuthal and longitudinal dependence will satisfy this inter-

face continuity boundary condition. Performing a more detailed analysis on each of

the Cartesian electric and magnetic field components would show that their continuity

is equivalent to the continuity of R(r) and ∂R/∂r at the core-clad boundary [9]. Using

known properties of the derivatives of Bessel functions, this gives the characteristic

equation:

X
Jℓ±1(X)

Jℓ(X)
= ±

√
V 2 −X2

Kℓ±1(
√
V 2 −X2)

Kℓ(
√
V 2 −X2)

, (2.17)

where X = kTa and V = 2π a
λ0

√

n2
core − n2

clad [12].

In the work to be done, the wavelength λ0 and fiber parameters, ncore, nclad,

and a will be known, enabling a calculation of V . Choosing a value of ℓ gives a family

of linearly polarized modes, LPℓm, where m takes integer values from 1 up to the

maximum number of modes allowed for the given ℓ. The corresponding propagation

constants are determined by solving Equation (2.17) transcendentally for X which,

using Equation (2.13), leads to β.
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The above analysis is important because it provides, for a given random mul-

timode input, the irradiance distribution throughout the fiber. This is critical in

determining the SBS gain. SBS is a third order nonlinear interaction, whereby an

incident pump photon scatters off a retreating density variation, producing a red-

shifted Stokes photon and a phonon. In the above derivation of the functional form of

the fiber modes, a linear material was assumed in writing Equation (2.7a). While the

small core size greatly increases the irradiance inside these fibers, it simultaneously

drastically decreases the interaction length in the transverse direction for nonlinear

processes, essentially making these linear materials in this transverse dimension.

As we turn to the long distances that are possible along the fiber’s longitu-

dinal direction, this interaction length is no longer restricted and nonlinear effects

become important. In this latter case, we must re-write Equation (2.7a), where

one now includes the nonlinear polarization and as such ~D 6= ǫ ~E. The follow-

ing development closely follows that presented in Equations (1.1)-(1.3), except now

the nonlinear polarization term is included. If one expresses the polarization in

Equation (2.5) as ~P = ǫ0χ
(1) ~E + ~PNL, and considers the frequency domain where

~E(~r, t) =
∫

∞

−∞

~E(~r, ω)e−iωtdω (and similarly for P (~r, t)), then the nonlinear wave

equation can be derived from Maxwell’s equations (as shown for Equation (2.7a)) to

give:

∇2 ~E(~r, t) = −µ0
∂2 ~D(~r, t)

∂t2

∇2 ~E(~r, ω) +
ω2

c2
ǫL(ω) ~E(~r, ω) = −µ0ω

2 ~PNL(~r, ω) (2.18)
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where ǫL(ω) = 1 + χ(1) describes the portion of ~D that is linearly dependent on

the electric field [14]. Again breaking the Laplacian into longitudinal and trans-

verse components, making the slowly varying envelope approximation, and expressing

~E(~r, ω) = Êω(r, θ, z)eiβz, we find that:

[

∇2
T Ê

ω(r, θ, z) +2iβ
∂Êω(r, θ, z)

∂z
− β2Êω(r, θ, z) +

ω2

c2
ǫL(ω)Êω(r, θ, z)

]

eiβz

= −µ0ω
2 ~P ω

NL (2.19)

where the z dependence in Êω
i (r, θ, z) is due to the overall growth or decay of the elec-

tric field as it propagates along the fiber, and the much more rapid phase oscillations

of the field, eiβz, have been factored out.

One can simplify Equation (2.19) by going back and re-writing Equation (2.11a)

such that transverse terms are combined into the E(r, θ) defined in Equation (2.9),

to give:

∇2
TE(r, θ) −

(

β2 −
(nω

c

)2
)

E(r, θ) = 0 (2.20)

where it is noted that n2 = ǫL. At first glance, the electric field terms in Equa-

tions (2.19) and (2.20) do not appear to match. However, this is only because the

Êω(r, θ, z) term takes a more general form than was necessary for the E(r, θ) that

was used previously. However, these generalizations do not hinder the use of Equa-

tion (2.20) in cancelling the first, second and fourth terms in Equation (2.19). The

field E(r, θ) was written assuming a linearly polarized, monochromatic field with no
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power growth or decay in the z direction. The superscript ω in Êω(r, θ, z) defines this

as the monochromatic contribution of frequency ω to a more generalized polychro-

matic field, and if we again restrict ourselves to linear polarization then we can write

this more generalized field in scalar form Eω(r, θ, z). In addition, the three terms in

Equation (2.19) that cancel each other out involve the electric field multiplied by a

constant term, or derivatives with respect to the transverse coordinates, not z. Thus,

the slowly-varying z dependence in the Êω(r, θ, z) term can be separated out and,

Equation (2.20) can be used to cancel the first, second and fourth terms of Equation

(2.19).

These terms cancel each other because we solved for the modal propagation

constants β such that this would hold true. Making this simplification to Equation

(2.19), and now decomposing the total field into the contributions from various fiber

modes labeled by i, the nonlinear wave equation is further simplified to:

∑

i

∂Êω
i (r, θ, z)

∂z
eiβiz =

iµ0ω
2

2k
~P ω

NL (2.21)

where k is the average value of the modal propagation constants βi. Taking this

average is a good approximation because these values are relatively closely spaced,

and the small differences are most significant when in a phase term such as eiβiz.

To proceed further, we must solve for the nonlinear polarization, PNL, induced

by SBS. This effort starts by invoking the general principles of energy and momentum

conservation, in this case where an incident pump photon produces a phonon and a
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backscattered Stokes photon, yielding the relations previously seen in Figure (1.1):

ωp = ωs + ΩB (2.22a)

~kp = ~ks + ~kB (2.22b)

where the subscript p represents the incident pump, s represents the backscattered

Stokes, and B indicates the acoustic Brillouin phonon. There is a positive feedback

loop evident in Equations (2.22), whereby the scattering of the pump off the sound

wave increases the Stokes output, and the interference of the Stokes and pump has

a frequency component that matches, and reinforces, this same sound wave. In a

quantum description, for each pump photon that is annihilated a phonon and coun-

terpropagating Stokes photon are created, with the phonon reinforcing the sound wave

that initially caused the scattering. Under appropriate conditions, this feedback can

lead to exponential growth in the Stokes wave [14].

In the fiber, there is a coupling between phonons and photons. The previous

discussion of SBS took a quantum view of the scattering process. This is valid in

some related processes, such as Raman scattering, which involves the vibrational

modes within a single molecule, however Brillouin scattering arises from a distributed

lattice vibration that is described by the offset of one atom or molecule relative to its

neighbors [15]. Due to this distributed effect throughout the lattice, traditionally one

analyzes SBS more quantitatively by favoring a classical approach over the quantum

view introduced above.
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One must find a way to relate the density variations that create the phonon

to the electromagnetic energy in the photons. This is accomplished by equating the

work done to compress a material with the change in electromagnetic field energy due

to a change in its density, and thus permittivity. Proceeding in this manner, one can

find the electrostrictive pressure induced by an electromagnetic field:

<pst>= −1

2
γe < |E|2> (2.23)

where γe is the electrostrictive constant which describes how much the permittivity

changes for a given density change, and the brackets indicate a time average [14].

This pressure is then used as the source term in the acoustic wave equation, which is

not shown in this cursory look at the SBS polarization derivation. Making the slowly

varying envelope approximation (SVEA), one can analytically determine the density

variation in the fiber as a function of the material and electric field characteristics.

This density change gives rise to a permittivity change, which induces a nonlinear

polarization that is substituted into Equation (2.21). This nonlinear polarization

then couples the pump and Stokes fields together.

The specific terms in this nonlinear polarization, found by the method outlined

above, are not of immediate interest to the research conducted here and are largely

absorbed into the Brillouin gain mentioned below. However, it is worth noting that
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the SBS-induced polarization at the Stokes frequency will be proportional to:

~PNL−ωs
∝ ( ~E∗

p · ~Es) ~Ep (2.24)

This implies that the differential equation describing the Stokes growth, Equation

(2.21), can be written:

∂ ~Es(~r)

∂z
∝ ( ~E∗

p · ~Es) ~Ep (2.25)

where all the modal amplitudes Êi have been absorbed into the total electric field ~E.

By multiplying Equation (2.25) by ~E∗

s , and adding the resulting equation to its com-

plex conjugate, one can put the differential equation entirely in terms of irradiances.

After pursuing a similar strategy for the wave equation at ωp, one can write, for a

counterpropagating Stokes near resonance:

∂Ip(r⊥, z)

∂z
= −g(r⊥)

ωp

ωs

Ip(r⊥, z)Is(r⊥, z) − αpIp(r⊥, z) (2.26a)

∂Is(r⊥, z)

∂z
= −g(r⊥)Ip(r⊥, z)Is(r⊥, z) + αsIs(r⊥, z) (2.26b)

where g(r⊥) represents the Brillouin gain as a function of transverse position within

the fiber and serves as the proportionality constant that was left out above, and I

and α represent the irradiance and loss, respectively, in the appropriate beams. The

loss term was not included in the nonlinear wave equation, but can be added in at

the end as real waveguides always have a nonzero loss. It is worth noting here that

the focus of this thesis is step index fibers, where g(r⊥) assumes two values, one in
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the core and another in the cladding, with the former value being assumed as the

remaining analysis focuses on modes within the fiber core.

One can write the electric field distribution of either pump or Stokes beam in

terms of a set of orthonormal fiber modes:

Ep,s(r⊥, z, t) =
∑

f

Af
p,s(z)ψ

f
p,s(r⊥) cos (βf

p,sz − ωp,st+ φf
p,s) (2.27)

where the summation is over all the modes allowed by the fiber, and the specific mode

formerly described by ℓ and m is now described, for simplicity, by a single superscript

f . The term ψf
p,s(r⊥) includes both the radial and azimuthal dependence described

in Equation (2.9), φf
p,s is an overall modal phase factor, and the amplitude of each

mode, Af
p,s(z), is now a function of distance down the fiber due to possible SBS gain

and fiber loss [16]. These modes are labeled orthonormal because the radial and

azimuthal dependence of Equations (2.16) and (2.10) gives a ψ(r⊥) that, upon proper

normalization, has the property:

∫

ψa(r⊥)ψb(r⊥)dA = δab (2.28)

where δab is the Kronecker delta. In addition, the starting amplitudes are normalized

such that:

∑

i

A2
i (0) = 1 (2.29)
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It is then straightforward to write the corresponding intensity distributions with

such an electric field:

Ip,s(r⊥, z) = 2ε0cn〈Ep,s(r⊥, z, t)
2〉

= ε0cn
∑

f,q

Af
p,s(z)A

q
p,s(z)ψ

f
p,s(r⊥)ψq

p,s(r⊥) cos (∆βfq
p,sz + ∆φfq

p,s) (2.30)

where the brackets indicate a time average that eliminates terms oscillating at 2ω, ε0

is the permittivity of free space, c is the speed of light, and n is the index of refrac-

tion of the core. Included are new terms representing the difference in longitudinal

propagation constants and modal phases, given by:

∆βfq
p,s = βf

p,s − βq
p,s

∆φfq
p,s = φf

p,s − φq
p,s (2.31)

Equation (2.26b) must be solved to determine either the effective gain or back-

reflected power for a certain Stokes configuration. Given that many modern fibers

have very low loss, the main term of interest in Equation (2.26b) is the product of

intensities, Ip(r⊥, z)Is(r⊥, z). For the multimode fibers investigated in this thesis, it

is necessary to express the pump and Stokes intensities as shown in Equation (2.30).

The z dependence in this intensity resides in both the cosine phase terms, and in

the amplitude Ap,s(z). The cosine terms present no difficulty, as the propagation

constants can be determined by the methods outlined above, and the modal phase
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offset terms are constants, which usually take a known set of values depending on the

modal configuration being analyzed.

The longitudinal dependence of the amplitude, however, is much more compli-

cated. In reality, each mode of the pump and Stokes can grow or decay at a different

rate. However, these rates of change are not independent of one another, but coupled

together. For example, if the incident pump is largely in the fundamental LP01 mode,

the backscattered Stokes will favor a high growth for its LP01 content, which, in turn,

will lead to a more rapid decrease of the pump’s fundamental mode due to depletion

effects. Furthermore, coupling effects arise that allow higher order pump modes, such

as the LP02 or LP11, to alter the growth of the Stokes LP01 mode. One can easily see

how complicated this problem can become, and further detail is included in the next

section.

To greatly simplify the analysis, the rest of the work presented in this thesis

assumes that all the modes of either the pump or Stokes change at the same rate

down the fiber:

Af
p,s(z) = κp,s(z)A

f
p,s(0) (2.32)

where κp,s(z) represents this common rate of change for either the pump or Stokes

beam, and Af
p,s(0) represents the amplitude of mode f at the pump input end of the

fiber, where z = 0. As mentioned above, in reality each mode can grow at a different

rate, so this simplification introduces some error. However, attempting to include

a more rigorous approach would greatly complicate the analysis, with the introduc-
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tion of a boundary value problem involving a set of coupled differential equations.

Related modeling efforts of SBS phase conjugation in the focused geometry, that is

without a waveguide, encountered great difficulty in attaining a stable solution with

this approach [17]. The solutions that were reached eventually resorted to significant

simplifications and/or special launching conditions anyways. By assuming Equation

(2.32) holds true, these significant pitfalls are avoided in the construction of an initial

model. As will be shown later in this thesis, even with the common modal longitudinal

change simplification, this model predicts experimental trends much more accurately

than previous efforts. When discrepancies are observed between experiment and the

model, a quantitative explanation is given for why these errors are rooted in the

simplification of Equation (2.32).

With this common longitudinal change assumption, one can write out the full

modal dependence of the Ip(r⊥, z)Is(r⊥, z) term in Equation (2.26b):

Ip(r⊥, z)Is(r⊥, z) ∝
∑

f,q,j,ν

Afqjν
ppssκp(z)

2κs(z)
2ψfqjν

ppss (r⊥)×

cos(∆βfq
p z + ∆φfq

p ) cos(∆βjν
s z + ∆φjν

s ) (2.33)
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where the new variables are shorthand to describe the initial amplitudes and the

transverse spatial dependence:

Afqjν
ppss = Af

p(0)Aq
p(0)Aj

s(0)Aν
s(0)

ψfqjν
ppss (r⊥) = ψf

p (r⊥)ψq
p(r⊥)ψj

s(r⊥)ψν
s (r⊥) (2.34)

Solving Equation (2.26b) is now a more tractable problem, but it still has not

been specified what exact form κp,s(z) will take. There are multiple approaches to

this question, of varying complexity and physical authenticity, which form the basis

for the different categories of solutions found in the following chapters.

Comparisons to Previous Work

A significant amount of work has been done on SBS phase conjugation since

its discovery in 1972 [4]. Much of the early research was done in the former Soviet

Union and focused on phase conjugation in the ‘focused geometry,’ which implies a

waveguide was not used. Rather, an incident aberrated beam was focused down to

a small spot, with a correspondingly high intensity, inside a nonlinear medium such

as a compressed gas. In principle, these devices are very similar to the silica fiber

phase conjugators discussed here, but the interaction length in this focused geometry

is relatively short, forcing very high intensities to reach SBS threshold. Thus, pulsed

systems were typically used in the early days to meet these requirements. From

a modeling perspective, Equation (2.19) takes a different simplified form when a
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waveguide is no longer used. There are no waveguide modes, so the summation over

i is dropped, and the third and fourth terms cancel each other out as β2 = ǫL
ω2

c2
.

However, unlike before, the transverse Laplacian remains, complicating the analysis.

There are excellent summary articles of this early, and extensive, work and further

mention will not be made here [18].

In the literature of SBS phase conjugation in waveguides, there have been seem-

ingly contradictory results. Most authors see a clear reduction in the quality of the

backscattered phase conjugate Stokes as the fiber is lengthened [19]. This reduction

in conjugate quality is due to the small wavelength shift of the Stokes relative to the

pump, which gives an increasingly large phase error between the two as the fiber is

lengthened. Where good phase conjugation has been observed in longer step-index

fibers, it has been traced directly to a short coherence length of the pulsed pump,

which will severely restrict the nonlinear interaction length in the fiber, making the

physical length of the fiber largely irrelevant [20].

A quantitative analysis of the inverse relationship between the phase conjugate

fidelity and waveguide length was conducted by Hellwarth, in one of the most cited

theoretical works on the subject [8]. Starting with Equation (2.25), one can re-express

all of the electric fields in terms of their constituent modes. Then, by multiplying both

sides by ψm(r⊥) and integrating over the transverse dimensions, one can use Equation

(2.28) to eliminate all but the mth term on the left side of Equation (2.25). This

strategy is very similar to ‘Fourier’s Trick’ which is used to isolate a single Fourier

series coefficient. Returning to the result of the transverse integration, this makes the
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longitudinal integration in the z direction trivial on the side of the equation without

a summation, leaving the proportionality:

Am
s ∝

∑

ijn

Aijn
pps

∫

area

ψijnm
ppss dr⊥

∫ L

0

ei(βm
s +βi

p−βj
p−βn

s )zdz (2.35)

where the constants of proportionality have been left out for simplicity here, but are

included in Hellwarth’s analysis. Hellwarth rationalizes the omission of the majority

of the terms in the triple summation by noting that the integral over the complex

exponential often goes to zero, a realization that was independently reached in the

construction of the model for this thesis. He then uses stationary perturbation theory

on the remaining terms to solve the resulting coupled, linear differential equations to

find the Stokes amplitudes Am
s .

He examines a number of special cases, such as the perfect phase conjugate, or

a Stokes form where every mode is excited equally but has an arbitrary phase term.

However, he eventually concludes that the phase conjugate form of the Stokes will

have a significantly higher gain than other possible modal permutations as long as

the waveguide is short enough to satisfy:

L ≤ 6r
1/2
0

S

N∆λ
(2.36)

where L is the length of the waveguide, S is the area of the waveguide, N is the number

of excited modes, ∆λ is the wavelength separation between pump and Stokes, and
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r0 is the nonconjugated fraction of the backscattered power. Note that in Equation

(2.36), N indicates the total number of modes, including both transverse polarization

components. An r0 value of 0 indicates a perfect phase conjugate, while a value of 1

would indicate no phase conjugate content. Later in this thesis, there will be plots of

the phase conjugate fidelity, F , where F = 1 − r0.

Several caveats must be made before applying Equation (2.36) arbitrarily. It

was derived with a rectangular waveguide and equally excited modes in mind. Neither

case holds for the silica fibers in this thesis. However, as long as the area is calculated

with the correct formula, the S term poses no problems. The assumption that there

are N equally excited modes is more troublesome. Hellwarth states his belief that

the inequality can be applied even for unequally excited modes with arbitrary phase,

as long as r0 remains small, though he does not go into details on the justification.

This leads to the final applicability warning, Hellwarth’s entire analysis, by using

perturbation theory, quickly loses predictive value as the nonconjugated perturbation

grows larger. What values of r0 are prohibitively large is also not clear. Despite

these shortcomings, Hellwarth’s inequality remains a valuable asset in making rough

estimates of the tradeoff space between the multiple variables involve in SBS phase

conjugate waveguide devices.

By substituting in the area of a circle for S, re-expressing ∆λ in terms of ΩB,

and putting the number of modes in terms of the fiber’s numerical aperture, N ≈
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2(πa(NA)
λ

)2, Equation (2.36) can be written:

L ≤ 6r
1/2
0 c

ΩB(NA)2
(2.37)

where NA is the fiber’s numerical aperture. As an example, if one wants an 80%

phase conjugate Stokes beam with a 1064 nm source serving as the pump, and a

0.13 NA fiber is acting as the nonlinear medium, Equation (2.37) predicts the fiber

length must be no longer than 0.47 meters. The Stokes shift in silica is given by

ΩB

2π
= 16 GHz. Keeping the same parameters, but switching to an extremely low

NA of 0.06 only relaxes the length requirement to 2.22 meters. Russell used a lowest

versus highest order mode acceptable phase error approach to reach the relation [16]:

L ≤ 2ncorec∆φ

ΩB(NA)2
(2.38)

where ∆φ is the phase error. If one plugs in ∆φ = λ
10

, ncore = 1.48, and uses a 0.13 NA

fiber, a maximum length of 0.33 meters is obtained. If true, these limitations would

severely hamper the applicability of fibers in making phase conjugate reflectors, as

very high input powers would be required to excite SBS in such a short interaction

length.

This thesis can be thought of as an attempt to produce a more accurate pre-

diction of the tradeoff between fiber length and phase conjugate fidelity. In addition

to waveguide area and the number of modes, which Hellwarth also included, the final
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stages of this model include a rudimentary pump depletion weighting term, introduc-

ing a power dependence that is absent from Hellwarth’s analysis. While the detailed

analysis of the results is presented later, the model constructed here predicts that

Hellwarth’s analysis tends to severely underestimate the fiber length required. For

example, while Equation (2.37) requires less than 2.22 meters of 0.06 NA fiber for

r0 = 0.2, the model predicts a 15 meter length of fiber is still adequate. This longer

fiber will require a much lower pump power to cross SBS threshold, making device

construction much easier and practical than it would initially appear from Hellwarth’s

inequality. These relaxed fiber length restrictions have been verified experimentally.

In addition, another phenomenon, step index beam cleanup, is predicted, explained,

and experimentally verified [21].
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III. Modeling and Specific Theory

Foundations of the Model

The objective of this thesis was to generate theoretical predictions, based on

a numerical model constructed in Matlab, of how the Stokes gain or backscattered

power varies in a multimode fiber as one of many variables, including fiber length,

input pump power, and number of excited modes, are varied. Specifically, this model

was geared towards investigating the behavior of phase conjugate forms of the Stokes,

and how these configurations compare to other arrangements, such as the fundamental

mode or random modal distributions. The previous chapter started from basic prin-

ciples and worked through to the critical term in this Stokes gain/power dependence,

given in Equation (2.33). There are many terms in this expression, including ampli-

tudes, phases, propagation constants, and transverse profiles, each of which changes

depending on the mode being described. In addition, there are longitudinal change

terms, κp,s(z), which have been assumed, for simplicity, to be common to all modes.

The amplitude and phase terms for the pump are user inputs, depending on what

sort of pump is being considered. The amplitudes and phases of the Stokes beam are

easily determined from the pump input if a phase conjugate beam is being considered.

If not, then the Stokes configuration is again under the user’s control. This leaves the

longitudinal propagation constant, transverse profiles, and κp,s(z) terms to quantify.

The propagation constants of the allowed modes can be found from the fiber’s

physical parameters, including core size and indices of refraction in the core and

cladding. This is accomplished by using the fiber parameters to calculate its normal-
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ized frequency, the V parameter. Noting that Equation (2.17) is a function only of

V and kT , the transverse propagation constant, a numerical root-finder was used to

find all the allowed kT values for a given V . The longitudinal propagation constant,

β, is related to kT by Equation (2.13). The algorithm was constructed such that

two matrices were created, one each for β and kT , where the row and column of each

propagation constant indicated the ℓ+1 and m values, respectively. Forbidden modes

were given entries of zero. Note that ℓ is not simply the row value itself because ℓ

takes integer values beginning with zero, whereas Matlab indexes its arrays beginning

with one.

For many multimode fibers, hundreds of modes are allowed, which would give

prohibitively long computation times, so functionality was included in the model to

input a given pair of arrays representing the kT and β propagation constants, and only

keep the values for a user input number of ‘lowest’ modes, N. Since the lower order

longitudinal propagation constants have larger numerical values, this amounted to a

simple numerical sorting routine. However, those modes with odd values of ℓ have

a non-degenerate companion mode formed by a 90◦ rotation in the transverse plane

which shares the same β value, and thus copies of these propagation constants must

be created before the numerical sorting is performed so that these values are double

counted. In addition, if the user inputs a certain number of modes, say N = 10, but

the 10th mode actually has a rotated companion, then both modes will be included for

completeness. The output of this algorithm was two matrices of a form similar to that

described above, except higher order modes have been eliminated until the user input
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value of modes was reached. Due to the ambiguity mentioned above, the number of

modes actually included, counting rotated companion modes, was also output, where

this value is either N or N + 1. It is worth noting that when the model is being

used to compare to experimental results, using this routine to cut out the higher fiber

modes could introduce significant error. Therefore, in the later results of the model

that were intended to aid in experimental work, low NA fibers were used where the

model could easily handle all the fiber modes.

With the transverse propagation constant it is possible to find the transverse

electric field dependence, ψ(r⊥), which is formed from the product of the radial and

azimuthal dependence described by Equations (2.10) and (2.16), and is normalized

such that Equation (2.28) is satisfied. A grid of x and y values is created that covers

the fiber core, where the number of gridpoints is a user input. A higher number of

gridpoints gives finer detail in the transverse irradiance profiles, but requires longer

computation times. For all the work presented in this thesis, a 40 x 40 pixel grid was

used to depict the fiber core, which was more than adequate to capture the irradiance

pattern detail while preserving reasonably short computation times. The product of

Equations (2.10) and (2.16) is then taken at each grid point. As this is an irradiance

profile, the imaginary exponential in the azimuthal dependence becomes a cosine.

The output is a four dimensional array: the first two dimensions describe the x and

y coordinates of the transverse intensity profile for the LPℓm mode, ℓ is given by the

third dimension coordinate minus one, and m is given by the fourth dimension.
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Table 3.1. A summary of the three categories of solutions that are explored in this
thesis. They are distinguished by the varying forms that the decay/growth of power
in the pump/Stokes beams takes as one moves along the fiber.

κP (z)2 κS(z)2

No pump depl. 1 N/A - separate var.
Decoupled no pump depl. 1 e−g∗IP0∗z

Pump depl. f(IP0) N/A - separate var.

With the amplitudes and phases, propagation constants, and transverse inten-

sity profiles of each mode, the only pieces still missing from Equation (2.33) are the

κp,s(z) terms describing the longitudinal rate of change of the amplitudes. How these

terms are handled forms the basis for the different categories of solutions, as summa-

rized in Table (3.1).

While a detailed analysis of each solution is presented in the sections below, it

is instructive to briefly review the rationale for why these three solutions were con-

sidered. If one plugs the pump and Stokes intensity product, Equation (2.33), into

the lossless form of Equation (2.26b), one will see that to obtain a total backscat-

tered Stokes power, an integration in the transverse plane and along z will have to

be performed. Integrating in the transverse plane poses no difficulty, as this trans-

verse dependence is isolated in the ψijnm
ppss term. However, integrating along z poses a

challenge. It has already been mentioned that a full solution to this problem would

involve a coupled set of differential equations, which have caused serious difficulties

for previous authors exploring SBS phase conjugation in free space [17]. To avoid this

issue, we assumed a common longitudinal rate of change for all the modes, as writ-

ten in Equation (2.32). To proceed further, one must still specify what form these
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(a) κP (z)2 in the no pump deple-
tion solution.

(b) κP (z)2 in the decoupled no
pump depletion solution.

(c) Example of κS(z)2 in the de-
coupled no pump depletion solu-
tion.

(d) Example of κP (z)2 in the
pump depletion solution.

Figure 3.1. The κp,s(z)
2 weighting terms in the three different model solutions.

simplified versions of κp,s(z)
2 take. At first, simplicity was the goal, so κp(z)

2 = 1

was assumed, with κs(z)
2 not specified due to a separation of variables solution. In

this solution, the pump experiences no loss throughout the fiber, as shown in Figure

(1(a)). Obviously this is not true as, even in a lossless fiber, the power for the grow-

ing Stokes beam comes from the pump, which must be depleted to conserve energy.

However, the resulting integration along z can now be done analytically, and even

this simplified form makes some accurate predictions, as will be shown below.
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The drawback to this initial solution was that all parts of the fiber are weighted

equally. In reality, above SBS threshold the Stokes beam experiences the vast majority

of its growth near the pump input end of the fiber. Since the Stokes irradiance is much

larger at the front end of the fiber, it seemed logical to weight this end of the fiber

more heavily. To this end, a simple exponential form for κs(z)
2 was introduced,

with κp(z)
2 = 1 still holding true, as shown in Figures (1(b)) and (1(c)). Again, a

closed form integration along z can be performed. It turns out that this exponential

dependence gives too much weighting to the pump input end of the fiber. That is, the

far end of the fiber contributes virtually nothing to the final result because κs(z)
2 ≈ 0,

an observation that is not born out experimentally [19,21].

In an attempt to bridge the gap between these two extremes, a plane wave pump

depletion approach was introduced. If we ignore the multimode nature of the fiber

and treat it as single-mode, one can follow a standard derivation of how, for a given

fiber and pump input power, the pump power will decay and the Stokes beam will

grow throughout said fiber [14]. As can be seen in Figure (1(d)), the resulting κP (z)2

does more heavily weight the front end of the fiber, but does not decay to zero at

longer fiber lengths, allowing the solution to change as the fiber is lengthened. It will

be seen that this solution comes the closest to matching the experimental data.

The No Pump Depletion Solution

The simplest approach is to ignore pump depletion altogether, such that κp(z) =

1, and treat the multimode fiber as lossless, such that −αsIs(r⊥, z) in Equation (2.26b)
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can be ignored. With these assumptions, one can plug Equation (2.33) into what

remains of Equation (2.26b). Experimentally, the more easily observed quantities are

usually powers, not irradiances, so one can integrate the resulting equation over the

transverse spatial dimensions to give:

∂Ps(z)

∂z
= − g(ε0cn)2Ps(z)×
∑

f,q,j,ν A
fqjν
ppssγ

fqjν
ppss cos(∆βfq

p z + ∆φfq
p ) cos(∆βjν

s z + ∆φjν
s )

Ps(0)
(3.1)

where the substitution κs(z)
2 = Ps(z)

Ps(0)
has been made, and:

γfqjν
ppss =

∫

ψfqjν
ppss (r⊥) dr⊥ (3.2)

describes the integrated product of four modal transverse electric field terms. One

can now easily separate variables in Equation (3.1) by dividing through by Ps(z) and

multiplying by dz, which, after integrating both sides, eventually yields [16]:

Ps(z) = Ps(0)e−Geff (z) (3.3)
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Geff (z) =
g(ε0cn)2

Ps(0)

∑

f,q,j,ν

Afqjν
ppssγ

fqjν
ppss

∫ z

0

cos(∆βfq
p z′ + ∆φfq

p ) cos(∆βjν
s z

′ + ∆φjν
s ) dz′

=
g(ε0cn)2z

2Ps(0)

∑

f,q,j,ν

Afqjν
ppssγ

fqjν
ppss ×

{

sinc

[

1

2
(∆βfq

p − ∆βjν
s )z

]

cos

[

1

2
(∆βfq

p − ∆βjν
s )z + (∆φfq

p − ∆φjv
s )

]

+ sinc

[

1

2
(∆βfq

p + ∆βjν
s )z

]

cos

[

1

2
(∆βfq

p + ∆βjν
s )z + (∆φfq

p + ∆φjv
s )

]}

(3.4)

It has already been discussed how one can determine the propagation constants that

lead to ∆βp,s, as well as the transverse field profiles which give γppss. The amplitude,

App, and phase, ∆φp, terms are user inputs while Ass and ∆φs are either user inputs

or found by a Stokes gain maximization algorithm described later in this thesis. In

either case, these latter amplitude and phase terms are not determined a priori by

the physical characteristics of the fiber.

It is now relatively straightforward to use Equation (3.4) to compare the effective

gain of the Stokes for various amplitude and phase configurations. Typically, a ratio of

two different Geff (z) terms is taken so that the constants in front of the summation in

Equation (3.4) cancel. The advantage of this no pump depletion approach is obvious

simplicity. The longitudinal integration down the length of the fiber yields a closed

form solution, and thus modeling of the gain for various fiber lengths can proceed

very quickly. The downside is that this solution ignores pump depletion, and thus

quickly loses validity as the SBS threshold is approached and exceeded.
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The Decoupled No Pump Depletion Solution

A closed form solution has been described above that ignores pump depletion

effects in the fiber, that is κp(z)
2 = 1. While straightforward, in developing this

approach it was anticipated that it would lead to an underestimation of the phase

conjugate fidelity that was attainable with a given fiber length. This is the same

problem that has been encountered with previous models [8]. In an attempt to fix

this problem, but maintain the simplicity found in an analytic solution, this section

forces κs(z)
2 to take a decaying exponential form such that the pump input end of

the fiber, where a good phase conjugate Stokes will have maximum overlap with the

pump, is weighted much more heavily than the back end of the fiber. The physical

rationale for this weighting is that the counterpropagating Stokes beam grows very

rapidly in the final section of fiber near the pump input, and that the pump-Stokes

overlap in this high power region should be more important than in the far end of

the fiber, where the Stokes power is negligible. This weighting will artificially favor a

phase conjugate, even at long fiber lengths.

If one again considers the no pump depletion case and ignores loss in the fiber,

Equation (3.1) describing the longitudinal rate of change of the Stokes power can be

rewritten, though this time κs(z)
2 6= Ps(z)

Ps(0)
, leaving:

∂Ps(z)

∂z
= −g(ε0cn)2

∑

f,q,j,ν

Afqjν
ppssγ

fqjν
ppss κs(z)

2 cos(∆βfq
p z + ∆φfq

p ) cos(∆βjν
s z + ∆φjν

s )

(3.5)
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In the previous section, the κs(z)
2 was eliminated at the cost of introducing a Ps(z)

Ps(0)

term, but it was easy to perform a separation of variables leading to a solution for

the gain of the Stokes. Now, κs(z)
2 will be forced to take a certain form on the right

side of Equation (3.5), while solving for Ps(z) on the left side. Thus, the Stokes z

dependence is specified on the right side, while it takes a different, unknown form on

the left side. This is what is meant by a ‘decoupled’ no pump depletion solution.

A simple weighting factor can be obtained by solving Equation (2.26b) in a

lossless singlemode fiber where we assume the mode uniformly fills the entire core,

and the pump is not depleted, giving the starting equation:

∂Is(z)

∂z
= −gIp(0)Is(z) (3.6)

which can easily be solved by separation of variables to give:

Is(z)

Is(0)
= κs(z)

2 = e−gIp(0)z (3.7)

One can plug this plane wave expression for κs(z)
2 into Equation (3.5) and integrate

along the fiber to yield:

Ps(z) − Ps(0) = − g(ε0cn)2
∑

f,q,j,ν

Afqjν
ppssγ

fqjν
ppss ×

∫ z

0

e−gIp(0)z′ cos(∆βfq
p z′ + ∆φfq

p ) cos(∆βjν
s z

′ + ∆φjν
s ) dz′ (3.8a)
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Ps(0) = Ps(z) + g(ε0cn)2
∑

f,q,j,ν

Afqjν
ppssγ

fqjν
ppss

{

e−ξz

2
×

[

kfqjν
− sin(kfqjν

− z + φfqjν
− ) − ξ cos(kfqjν

− z + φfqjν
− )

ξ2 + (kfqjν
− )2

+

kfqjν
+ sin(kfqjν

+ z + φfqjν
+ ) − ξ cos(kfqjν

+ z + φfqjν
+ )

ξ2 + (kfqjν
+ )2

]

−

1

2

[

kfqjν
− sin(φfqjν

− ) − ξ cos(φfqjν
− )

ξ2 + (kfqjν
− )2

+
kfqjν

+ sin(φfqjν
+ ) − ξ cos(φfqjν

+ )

ξ2 + (kfqjν
+ )2

]}

(3.8b)

where several terms have been introduced to simplify Equation (3.8b):

ξ = gIp(0) (3.9a)

kfqjν
± = ∆kfq

p ± ∆kjν
s (3.9b)

φfqjν
± = ∆φfq

p ± ∆φjν
s (3.9c)

For input pump powers above the SBS threshold, the Ps(z) term on the right side in

Equation (3.8b) is negligible compared to Ps(0) and can be dropped. It is also noted

that, because a separation of variables was not performed, Equation (3.8b) gives the

backscattered Stokes power, not an effective gain like Equation (3.4), though the

power and gain are obviously related.

Previously in Equation (3.4), the z dependence was found only in trigonometric

terms, including a sinc, that could remain appreciable at large z values if ∆βfq
p ±∆βjν

s

was small. Thus, making the fiber arbitrarily long had consequences for the final

result. Now, Equation (3.8b) contains a power dependence in the e−ξz decaying ex-
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ponential term that is absent in Equation (3.4). This exponential has no modal

dependence, and will greatly decrease the importance of all the z dependent trigono-

metric terms in the summation as z is increased. Thus, it is expected that solutions

obtained with this equation will taper off to a constant value for large fiber lengths,

where this constant is found from the z independent terms in Equation (3.8b).

The Pump Depletion Solution

The previous section introduced a rudimentary power dependence by forcing

the Stokes to grow exponentially in the counterpropagating direction, while the pump

remained constant throughout. There are two main problems with this approach that

counter its simplicity. First, while for low pump input powers that are well below

SBS threshold this no pump depletion approximation is a good one, these conditions

are of little interest in modeling a practical SBS phase conjugate mirror, as there

will be almost no backscattered power far below SBS threshold. As the pump power

is increased, the backscattered Stokes power will increase, especially at the pump

input end of the fiber. To conserve energy, the pump power must be depleted as

it propagates through the fiber, that is κp(z)
2 6= 1. Neither of the above solutions

includes this physical aspect of the problem.

Secondly, the exponential dependence of κs(z)
2 in the decoupled solution will

strongly weight the pump input end of the fiber above SBS threshold, virtually ig-

noring the impact of the majority of the fiber’s length. This would imply that high

quality phase conjugation is possible in an arbitrarily long fiber length, as long as the
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pump input power is above SBS threshold, a conclusion that is not supported by the

majority of the experimental evidence [19, 21]. As will be shown below, it is more

mathematically rigorous to not assume an expression for κs(z)
2, but rather introduce

a pump depletion term, such that κp(z)
2 6= 1.

If one again starts with Equation (3.1), except now including pump depletion,

one obtains:

∂Ps(z)

∂z
=

− ηPs(z)

∑

f,q,j,ν A
fqjν
ppssγ

fqjν
ppss κp(z)

2 cos(∆βfq
p z + ∆φfq

p ) cos(∆βjν
s z + ∆φjν

s )

Ps(0)
(3.10)

where η = g(ε0cn)2. By dividing through by Ps(z) and integrating both sides over z,

one finds:

Ps(z)=exp

[

−η
∑

f,q,j,νA
fqjν
ppssγ

fqjν
ppss

∫ z

0
κp(z

′)2cos(∆βfq
p z′+∆φfq

p ) cos(∆βjν
s z

′+∆φjν
s )dz′

Ps(0)

]

(3.11)

To proceed further, an expression for κp(z)
2 is required.

A logical starting point in estimating this new form of κp(z)
2 is to again look

at a lossless, singlemode fiber whose core is uniformly filled by the mode, the same

assumption made above in writing Equation (3.6), except now we look at the depleted

pump case. In this situation, Equations (2.26a) and (2.26b) can be written:

∂Is,p(z)

∂z
= −gIp(z)Is(z) (3.12)
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where the r⊥ dependence is not required in a singlemode fiber, and the ωp/ωs term

in Equation (2.26a) is very close to one with SBS. The two equations represented by

(3.12) imply that Ip(z) = Is(z) + C, where C is a integration constant. This allows

one to re-write the differential equation in terms of just the Stokes intensity, and after

a separation of variables one finds that the Stokes intensity is given by [14]:

Is(z) =
Is(0)[Ip(0) − Is(0)]

Ip(0) exp{gz[Ip(0) − Is(0)]} − Is(0)
(3.13)

The pump takes a similar form because Ip(z) = Is(z) + C = Is(z) + Ip(0) − Is(0).

After dividing through by Ip(0), one finds that:

κ2
p(z) =

Is(0)[Ip(0) − Is(0)]

I2
p (0) exp{[gz[Ip(0) − Is(0)]} − Is(0)Ip(0)

+ 1 − Is(0)

Ip(0)
(3.14)

The problem with this form of the longitudinal intensity dependence is that it is in

terms of Ip(0) and Is(0) when, in the conditions of interest here, only Ip(0) is under

one’s direct control in the lab.

SBS originates in spontaneous Brillouin scattering at the far end of the fiber

where z = L, opposite the pump input. This spontaneous scattering is linear with

respect to the pump intensity, so that one can write:

Is(L) = fIp(L) (3.15)
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If we consider z = L then Equation (3.13) can be written as:

Is(L)

Ip(0)
=

R(1 −R)

exp[G(1 −R)] −R
(3.16)

where R ≡ Is(0)/Ip(0) represents the SBS reflectivity, and G = gIp(0)L gives the

theoretical SBS gain along the full length of the fiber with an undepleted pump. The

Is(L) on the left side of Equation (3.16) is not an easily observed quantity, and would

ideally be eliminated from the final result. Using the fact that Is(z) and Ip(z) differ

only by a constant, one can write:

Ip(L) − Is(L) = Ip(0) − Is(0) (3.17)

Since f in Equation (3.15) is typically very small, on the order of 10−12 to 10−11, the

Is(L) term on the left side of Equation (3.17) can be neglected. By writing Ip(L) as

Is(L)/f and rearranging terms, one finds that Is(L)/Ip(0) = f(1 − R). Substituting

this result into Equation (3.16) one finds:

G

Gth

=
G−1

th lnR + 1

1 −R
(3.18)

where Gth = − ln f [14]. If one knows the input pump power and fiber length, one can

calculate G. Gth typically takes a value of approximately 20−30 in most fibers, though

it can easily be determined for a specific fiber by experimentally observing that fiber’s

SBS threshold and then adjusting Gth until Equation (3.18) gives an appreciable R.
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With G and Gth determined in this way, it is trivial to solve transcendentally for R,

which gives Is(0) since one already knows Ip(0). This value of Is(0) can then be used

in Equation (3.14) to give the z dependence of the pump along the fiber, which then

allows one to solve for the exponential gain term of the Stokes in Equation (3.11).

Unlike the two no pump depletion solutions given above, the integral in Equation

(3.11) does not have an analytic solution and is evaluated numerically in the model.

This numerical integration can take a prohibitively long time if all of the modal

permutations in the quadruple summation are included.

Thankfully, to a very good approximation, many of the terms can be thrown

out in a manner similar to that employed in Hellwarth’s perturbation treatment [8].

If one uses the product to sum trigonometric identities, one can express the cosines

in Equation (3.11) by:

cos(∆βfq
p z + ∆φfq

p ) cos(∆βjν
s z + ∆φjν

s ) =

1

2

{

cos[(∆βfq
p − ∆βjν

s )z + ∆φfq
p − ∆φjν

s ] + cos[(∆βfq
p + ∆βjν

s )z + ∆φfq
p + ∆φjν

s ]
}

(3.19)

Consider a typical multimode silica fiber with a numerical aperture of 0.14 at a wave-

length of 1064 nm, and core radius of 20µm. Such a fiber supports approximately 55

LP modes of a single polarization. Looking at all the modal permutations that give

rise to the ∆βfq
p terms, the magnitude of the smallest nonzero ∆βfq

p is approximately

71 m−1. This case is exceptionally low, and most of the terms are much higher, into
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the thousands of inverse meters. The large magnitude of these ∆β terms implies

that, unless there is a special relationship between f, q, j and ν, (∆βfq
p ±∆βjν

s )z will

oscillate very rapidly as one moves z along the fiber, and integrate to nearly zero.

These special cases are explored below.

When f = q and j = ν the arguments of the cosines go to zero, meaning the

cosines go to one and the integral along the fiber degenerates to an integral of κ2
p(z).

The ∆β terms can also go to zero even when f 6= q and j 6= ν because distinct modes

that are related by a 90◦ rotation in the transverse plane share a common propagation

constant, though the starting phases will generally not be the same. However, these

terms generally make a negligible contribution to the overall result, and are thus left

out of the model, due to the γfqjν
ppss term. By rotating these modes 90◦ and taking the

product, the maxima of one mode will multiply the minima of its counterpart, leading

to a much smaller result, on average, when the integration in the transverse plane is

taken [8].

For the final special permutation of propagation constants, consider only the

cos[(∆βfq
p −∆βjν

s )z+∆φfq
p −∆φjν

s ] beat frequency. Isolating one specific difference of

propagation constants ∆βab
p , where f = a and q = b in the multimode fiber described

above, one can numerically evaluate all the possible permutations of ∆βfq
p and show

that the closest value to ∆βab
p is still several hundred inverse meters off. That is,

the chances of the difference between two propagation constants happening to be

nearly equal to the difference of two other propagation constants are virtually zero,

so we need only consider the situation where the two different pump modes match
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the Stokes modes. Due to the very small wavelength shift of the Stokes relative to the

pump, the propagation constants of these two wavelengths are nearly equal, revealing

that ∆βfq
p −∆βfq

s yields a small result, typically a fraction of an inverse meter. This

gives a cosine that varies slowly enough that it will lead to a non-zero result from the

integration in Equation (3.11).

This same argument can be applied to the cos[(∆βfq
p + ∆βjν

s )z + ∆φfq
p + ∆φjν

s ]

term, except the ordering of the indices of the pump propagation constants relative

to the Stokes are reversed. That is, the above sum frequency cosine term will vary

slowly when f = ν and q = j so that ∆βfq
p + ∆βqf

s = ∆βfq
p − ∆βfq

s which can again

be less than an inverse meter.

Thus, summarizing the above arguments, the remaining analysis assumes:

cos(∆βfq
p z + ∆φfq

p ) cos(∆βjν
s z + ∆φjν

s )

≃















































1
2
cos[(∆βfq

p − ∆βjν
s )z + ∆φfq

p − ∆φjν
s ] , if f = j and q = ν 6= f

1
2
cos[(∆βfq

p + ∆βjν
s )z + ∆φfq

p + ∆φjν
s ] , if f = ν and q = j 6= f

1 , if f = q and j = ν

0 , otherwise

(3.20)

Plugging Equations (3.20) and (3.14) into (3.11) gives the backscattered Stokes

power, within the limit of the approximations mentioned above.
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IV. Results and Analysis

The No Pump Depletion Solution

The no pump depletion model can be used to calculate the effective gain, Geff ,

that was described in Equation (3.4). Remember that this solution ignores depletion

of the pump power, and thus gives equal weighting to what is happening at the far

end of the fiber as to what occurs at the pump input end. The absolute value of

Geff would be hard to interpret, and so all the results presented below are ratios

of Geff for one form of the Stokes to another, thus all the terms in front of the

summation in Equation (3.4) cancel. A result greater than one indicates that the

backscattered Stokes would resemble the modal configuration in the numerator, given

the two options represented by numerator and denominator.

The notation zPC is used throughout this thesis to indicate which phase conju-

gate is being discussed, specifically, where along the fiber the Stokes irradiance pattern

matches that of the pump. To the experimentalist, a perfect phase conjugate would

have a zPC = 0 m, because the backscattered Stokes would match the pump as the

fiber ends and the pattern can be observed in free space with a camera. This is the

meaning of phase conjugate that is assumed in most of the literature. As another ex-

ample, a zPC = 50 m would indicate that, if one could observe the irradiance pattern

inside the fiber, the Stokes would match the pump 50 meters down the fiber relative

to the pump input. Due to the small redshift of the Stokes relative to the pump, this

Stokes will not match the pump at z = 0 m. The unspecified term ‘phase conjugate’

refers to the traditional zPC = 0 m case, while other phase conjugate forms will al-
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Figure 4.1. Sample irradiance patterns at different points within the fiber for Stokes
beams with different zPC values.

ways be specified with their zPC value. For any zPC value, the amplitudes of a given

mode match in the pump and Stokes beam, that is Ai
p = Ai

s for mode i. Changing

zPC just varies the modal phases.

Figure (4.1) clarifies this concept. A multimode pump beam is shown at the

top, which evolves, due to the varying propagation constants for each mode, such that

the irradiance pattern varies as one moves along the fiber. Two sample backscattered

Stokes beams are shown below the fiber. The first is the ‘perfect’ phase conjugate,

with zPC = 0 m, such that the pump and Stokes irradiance patterns match at the

pump input end of the fiber. Due to the small wavelength shift between pump and

Stokes, as one moves through the fiber the Stokes irradiance pattern diverges from

the pump, such that at 10 m a small discrepancy is apparent, and at 50 m there is

little or no resemblance to the pump. For the zPC = 50 m Stokes beam, at the front
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end of the fiber the Stokes bears no relation to the pump, but as one moves through

the fiber to z = 50 m, the Stokes begins to more closely resemble the pump, and at

50 m they exactly match. All three beams have the same amplitudes for each mode,

it is only the phases that differ from one beam to the other.

Beam cleanup is an effect whereby a multimode pump input yields a single mode

backscattered Stokes output. In graded index fibers, where the index of refraction

varies continuously in the core, beam cleanup to the fundamental mode is observed

in long fibers, while phase conjugate outputs may be seen with shorter fibers. For the

step index fibers that are the focus of this thesis, phase conjugation is still obtained

for short fibers, but beam cleanup is generally not observed as the length is increased,

except under very special launching conditions. The discussion of this specialized case

of beam cleanup will be deferred to the end of the chapter. The ratio of the effective

gain of the ‘traditional’ zPC = 0 m phase conjugate form of the Stokes to a Stokes

beam in the fundamental mode was taken to see how these two special Stokes beams

compare to one another.

The plot shown in Figure (4.2) clearly indicates that for short fibers the phase

conjugate has a higher gain than the fundamental mode, but as the fiber length is

increased this advantage quickly decreases. For fibers longer than 20 meters the

phase conjugate has a gain roughly equal to that of the fundamental mode, and thus

loses its advantage in dominating the output. In Lombard’s work, it was observed

that in short step index fibers, good phase conjugation was obtained, while in longer

step index fibers, neither phase conjugation nor cleanup to the LP01 fundamental
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Figure 4.2. Comparison of the ratio of phase conjugate to fundamental mode effec-
tive gains in the no pump depletion approximation as a function of fiber length

mode was seen [19]. While the fiber modeled here does not match the one used in

Lombard’s work, the model still correctly predicts the qualitative trend that the phase

conjugate is favored in shorter fibers, and the difference in gain between these two

Stokes outputs averages out as the fiber lengthens, with no clear preference. However,

there is nothing special about the fundamental mode, which begs the question, how

does the phase conjugate Stokes compare to other Stokes arrangements besides a

perfect fundamental mode?

One can compare the zPC = 0 m Stokes gain to that of nonzero zPC values,

as shown in Figure (4.3). Specifically, the effective gain for zPC = 1.5 m or 3 m was

compared to zPC = 0 m for various fiber lengths. This was done for both the 12 and

24 lowest modes to simultaneously observe what effect, if any, higher order modes

have on the results.
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Figure 4.3. Comparison of effective gains for various forms of the Stokes phase
conjugate in the no pump depletion approximation. zPC represents the point along
the fiber where the pump and Stokes would have matching intensity patterns. All
results are normalized to the gain of the zPC = 0 m Stokes beam at the given fiber
length.

The results for the 12 lowest modes indicate that for very short lengths, zPC =

1.5 m has a greater gain than zPC = 3 m, but both fall short of zPC = 0 m because

the ratio is less than one. This is not surprising. For very short fibers, the zPC = 0

m Stokes will almost exactly match the pump throughout the fiber, and give a high

gain. It should be noted that when the value for zPC is greater than the fiber length,

the Stokes phases are chosen such that the pump and Stokes fields would match if

the fiber were long enough.

As zPC is increased, the Stokes irradiance pattern will diverge from the pump

at the input end of the fiber, decreasing the gain, which explains why zPC = 3 m has

the lowest ratio for short fibers. As the fibers are lengthened, the zPC = 0 m Stokes

gain grows more slowly than that for the other Stokes configurations because these

latter forms of the Stokes more closely match the pump at these longer lengths of
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1 − 3 meters. Eventually, the ratio of effective gains for both phase conjugate forms

grows to slightly more than one. However, as the fiber is lengthened even more, both

ratios quickly approach one, indicating that there is no clear advantage of one phase

conjugate form over the other. Each point along the fiber is weighted equally and, as

the fiber is lengthened, differences amongst various modal arrangements average out.

The results for the 24 lowest modes follow a similar pattern, with two principle

differences. The initial performance of both the zPC = 1.5 and 3 m configurations

relative to zPC = 0 m is worse, and the peak performance and subsequent averaging

to near one occurs at shorter fiber lengths than was seen for the 12 lowest modes.

The more modes one includes, the more rapidly the multimode irradiance pattern

changes along the fiber. This implies that, as the number of modes is increased for

a given nonzero zPC, the corresponding intensity pattern will diverge more rapidly

from that of the pump at the z = 0 m end of the fiber. This leads to a lower ratio of

effective gains for short fibers. This same rapid evolution of the intensity also means

that differences among various starting Stokes arrangements will average out more

quickly as the fiber is lengthened, leading to ratios of approximately one for shorter

fibers than for the 12 mode case.

Comparisons of the traditional phase conjugate to the fundamental mode and

to phase conjugates at a nonzero distance into the fiber have now been made with

similar results. For very short fibers, the traditional phase conjugate has the highest

gain, but as the fiber is lengthened the effective gains of all the possibilities approach

the same value. The examples presented above are representative, but somewhat
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Table 4.1. Statistics on backscattered Stokes gains, normalized to the phase conju-
gate, obtained with the no pump depletion solution for 1000 random Stokes configu-
rations relative to a single input pump.

fiber length mean max min std dev
1 m 0.521 0.7493 0.4368 0.0434
10 m 0.7562 0.9342 0.6483 0.0426
100 m 0.8534 0.8823 0.7384 0.0446

contrived. There are an infinite number of permutations of modal amplitudes and

phases one can adjust, obviously not all of them can be explored.

To give a balance between practicality and investigating less contrived Stokes

arrangements, the effective gain for multiple random Stokes patterns was calculated

for a given pump input, and compared to the gain of the phase conjugate. For a 0.14

NA fiber of varying length, with a core radius of 20 µm, and considering only the 12

lowest modes, a single random pump input was created and the gain of the perfect

phase conjugate at zPC = 0 m was calculated. A thousand random Stokes config-

urations were then generated, that is a thousand different sets of randomly chosen

normalized amplitudes, Aj
s, and phase terms, φj

s. The effective gain was calculated

for each random arrangement and normalized to the single gain of the zPC = 0 m

Stokes found previously. The same set of random Stokes beams was used for each

fiber length, with the results listed in Table (4.1).

It is clear that, as the fiber is lengthened, the mean normalized gain approaches

unity, implying that an arbitrary combination of phases and normalized amplitudes

will perform nearly as well as the phase conjugate. This is due to the same averaging

effect previously mentioned. If equal importance is given to each point along a fiber
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that is getting longer, then the differences between different Stokes patterns quickly

average out.

Having considered the effective gain, described in Equation (3.4), of a variety of

Stokes beams, several conclusions can be drawn. First, despite the many approxima-

tions made in this solution, Equation (3.4) still correctly predicts that beam cleanup

to the fundamental LP01 mode will not dominate the Stokes output, even in long

fibers. This is due to the second observed result, that the gains of all the possible

Stokes configurations approach the same value as the fiber length is increased, as

shown in Table (4.1), such that the backscattered Stokes would increasingly appear

to have little relation to the pump input.

The Decoupled No Pump Depletion Solution

The previous section weighted all the points along the fiber’s length equally,

leading to the averaging effects discussed above. By forcing the Stokes to grow in

the backscattered direction, while assuming the pump remains constant throughout

the fiber, one can derive an equation for the backscattered Stokes power, shown in

Equation (3.8b). Forcing the backscattered Stokes to grow while ignoring depletion

in the pump is obviously a significant simplification. However, it has the major

advantage of introducing some weighting to the pump input end of the fiber, yet

retaining simplicity in the form of an integration along the fiber that yields a closed

form result. This weighting introduces a new variable to investigate, the input pump

power. To investigate the effect of this power dependence, the same three analyses
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considered for the unweighted no pump depletion solution above will be repeated,

now in the context of Equation (3.8b).

Again consider the comparison of the phase conjugate to fundamental Stokes.

Previously, it was found that the phase conjugate enjoyed a higher effective gain for

shorter fibers, though this difference decreased as the fiber was lengthened until the

ratio of the two gains approached unity. Figure (4.4) shows a similar analysis except

now two different pump powers are shown. Note that, due to the methods employed in

its derivation, Equation (3.8b) gives the backscattered Stokes power, not an effective

gain.

A low and high pump input of 0.1 and 5 W were both considered for the fiber

analyzed in Figure (4.2). The low input power shows similar behavior to that of

the unweighted NPD solution above, the phase conjugate enjoying a clear advantage

for short fibers that quickly decreases to approximately one for longer fiber lengths.

The higher input power of 5 W shows a similar trend, with the maximum ratio of

phase conjugate to fundamental gain at the shortest fiber lengths. This maximum

ratio matches the low power result because, for very short fibers, the SBS threshold

is larger than the powers considered here, and so both powers degenerate to the same

below threshold, equal weighting regime.

As the fiber is lengthened, the SBS threshold decreases and the weighting effects

of the 5 W pump input are clearly seen. The front end of the fiber becomes more

heavily weighted than the end opposite the pump. The irradiance pattern of the phase
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Figure 4.4. Comparison of the ratio of phase conjugate to fundamental mode effec-
tive gains, in the decoupled no pump depletion approximation, as a function of fiber
length

conjugate Stokes closely matches the pump at the front end of the fiber, leading to a

higher product of these two intensities in Equation (2.26b). Weighting the fiber where

the phase conjugate enjoys this advantage increases its backscattered power relative

to other Stokes patterns. This is observed at the longer fiber lengths in Figure (4.4),

where the high power result trails off to a Stokes power that is still approximately

1.35 times that of the fundamental mode. Thus, the phase conjugate now enjoys

a performance advantage even at longer fiber lengths, where previously all Stokes

patterns degenerated to a similar performance.

Analysis of the performance of one phase conjugate form to another was also

repeated in Figure (4.5), which is very similar to Figure (4.3), except now the analysis

is limited to the zPC = 3 m, 12 mode case, with the input pump power, PP0, being

varied. All results are again normalized to the zPC = 0 phase conjugate Stokes.

Again, remember that the results are now ratios of backscattered Stokes powers, not
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Figure 4.5. Comparison of effective gains for various forms of the Stokes phase
conjugate in the weighted no pump depletion approximation. zPC represents the
point along the fiber where the pump and Stokes would have matching intensity
patterns.

effective gains. For very short fibers, the results for all the input pump powers are

comparable, which is not surprising because for these very short fibers there is not

much space for a Stokes beam to grow.

As the fiber lengthens, all of the normalized powers increase, though as the

pump power is lowered, the zPC = 3 m Stokes power increases relative to zPC = 0

m. This is again because the product of the Stokes and pump irradiance patterns

for the zPC = 3 m case reaches a maximum 3 m into the fiber. For very low pump

powers, the 3 m point is weighed nearly equal to the front end of the fiber, but as the

pump is increased, the importance of this area of the fiber is lessened by the weighting

factor in Equation (3.7) in favor of the pump input end of the fiber. This causes the

decrease in the maximum of each curve, shown in Figure (4.5), as the pump power

is increased. For very high pump powers, this ratio is always less than one, implying
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that the zPC = 3 m Stokes beam always performs worse than the phase conjugate at

the front of the fiber. For longer fibers, a very low pump power of 0.1 W gives a ratio

that approaches one, similar to the unweighted case shown in Figure (4.3), due to

the same averaging effects that are still present here, when well below SBS threshold.

For long fibers with high pump powers, the ratio quickly approaches a constant value

because the back end of the fiber has a negligible effect on the final result.

The model was also used to evaluate the gain of numerous random Stokes con-

figurations, again normalized to the performance of the zPC = 0 Stokes, the results

of which are seen in Table (4.2) and Figure (4.6), which are analogous to the data

presented in the unweighted no pump depletion section except for the new power de-

pendence. Six trials were considered: 1, 10, and 100 meter fibers, each of which was

analyzed for an input pump power of 0.1 and 10 W. All trials were subjected to 1000

random Stokes inputs. The same pump input and set of 1000 possible random Stokes

configurations were used for all of the analysis presented below, though a different

1000 arrangements were used for the analysis previously presented in Table (4.1).

Table 4.2. Statistics on backscattered Stokes powers, normalized to the phase
conjugate, obtained with the weighted no pump depletion method for 1000 random
Stokes configurations relative to a single input pump.

fib. length PP0 mean max min std dev
1 m 0.1 W 0.5512 0.7219 0.4809 0.0409
10 m 0.1 W 0.7773 1.0096 0.6779 0.045
100 m 0.1 W 0.8891 0.9823 0.7899 0.0317
1 m 10 W 0.5508 0.7204 0.4806 0.0409
10 m 10 W 0.6286 0.8009 0.5517 0.0404
100 m 10 W 0.6332 0.8036 0.5565 0.0401
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Figure 4.6. The intensity patterns of an incident pump and the three Stokes beams
that experienced maximum gain from 1000 random Stokes configurations. The 12
lowest modes in a 0.14 NA, 20µm radius core fiber were considered. A perfect Stokes
phase conjugate would exactly match the pump input.

Multiple insights can be drawn from this data. First, the data for PP0 = 0.1 W

is very similar to that presented in Table (4.1) for the unweighted no pump depletion

approximation. This is not surprising, because an input pump power of only 0.1 W is

very low and will not be sufficient to excite a Stokes wave in any of the fiber lengths,

implying a relatively uniform weighting will occur. For a 10 W pump power, the

statistical results for the 1 m fiber are very similar to those of the lower power case,

again because 10 W is not high enough to excite a significant Stokes wave in so short

a fiber. However, for the two longer fibers there are clear differences between high

and low pump powers. All of the results, except for the standard deviation, drop in

the high power case. This is to be expected because these results originally rose, as

discussed in relation to Table (4.1), because of averaging effects in the longer fibers
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Figure 4.7. Stokes weighting term as a function of distance along the fiber. Note
exponential decrease to nearly zero.

which are now eliminated. Furthermore, there is very little difference between the 10

and 100 m fibers, and these fibers also share the same maximum performing Stokes

beam, as shown in Figure (4.6).

The reason for the similarities between the 10 and 100 m fibers is obvious by

plotting the κs(z)
2 used in this class of solutions, given in Equation (3.7), for 10 W of

pump input power. The result is seen in Figure (4.7), where only the first 20 meters

along the fiber are shown. It is obvious that the weighting term, κs(z)
2, declines to

a very small value around the 10 m point, and thus lengthening the fiber past this

point has little effect on the final results. In addition, κs(z)
2 ≈ 0.7 at 1 m, which

is indicative of the small effect weighting has on such a short fiber. In this class of

solutions, κs(z)
2 is a simple decaying exponential and thus, for a long enough fiber,

can become arbitrarily close to zero. Taking pump depletion into account will change

this behavior such that, while the end of the fiber opposite the pump input is weighted

less heavily than the front end, the weighting does not approach zero.
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The Pump Depletion Solution

As mentioned above, while the exponential κs(z)
2 dependence described above

introduces some power dependence into the model, it does so in a very artificial

manner. It ignores pump depletion effects and assumes that the longitudinal rate

of change of the Stokes beam on the left and right hand sides of Equation (3.5) are

different. The κs(z)
2 term on the right side is forced to assume the exponential form

in Equation (3.7) while, on the left side, the rate of change is left unspecified. It was

shown in the previous chapter that a more natural mathematical solution involves

making no such assumption about κs(z)
2 and simply separating variables to solve the

differential equation, though now with a κp(z)
2 derived from a plane wave model, that

accounts for pump depletion.

The conclusions of the previous sections pointed out many of the relevant issues

in modeling SBS phase conjugation. These included the relative performance of phase

conjugate, fundamental, and random modal distributions, as well as the effects one

encounters when varying fiber length and input pump power. While useful in laying

the groundwork and getting a feel for the phenomena involved, these concerns are now

left behind in favor of a more practical model output that can easily be compared to

experimental observations.

One of the most common measurements of phase conjugate performance makes

use of the design shown below in Figure (4.8). Consider a Gaussian input beam that

is focused such that it is incident through a pinhole just large enough to give a high
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transmission. After the pinhole, an aberrator is introduced to distort the beam and

then another lens, or combination of lenses, is used to focus the distorted beam into

the SBS active medium. Here we focus on a silica fiber waveguide as the nonlinear

material. If a perfect phase conjugate is reflected, it will be distorted upon exit from

the fiber, but will regain its Gaussian form after a second pass through the aberrator

and will experience a 100% power transmission through the pinhole. If some other

non phase-conjugate Stokes configuration is reflected, it will be further distorted after

a second pass through the aberrator, and will experience a very low transmission

through the pinhole. By taking the backscattered power after the pinhole and dividing

by the power before the pinhole, one will find the ‘phase conjugate fidelity,’ F , a very

common experimental measure of whether phase conjugation is present. A perfect

phase conjugate would have F = 1, though this is unrealistically high in practice.

Figure 4.8. A schematic of a pinhole experiment to measure phase conjugate fi-
delity. An incident Gaussian beam is focused through a pinhole, experiencing high
transmission, and is distorted by an aberrator before being focused into a fiber which
serves as the phase conjugating medium. A high quality phase conjugate will be
‘cleaned up’ upon a second pass through the aberrator and again experience high
transmission through the pinhole, which can be measured by the two beam pickoffs.
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So far, an ‘in fiber’ model has been described. That is, a certain starting pump

input modal distribution, or ‘speckle’ pattern, is assumed at the front end of the fiber

such that calculations about various backscattered Stokes beams can be made. To

make predictions about fidelity, the model was expanded to include free space Fourier

propagation. A starting Gaussian beam was focused through a thin lens, propagated

through a pinhole, transmitted through a second thin lens, and propagated a certain

distance to the fiber tip. Including an aberrator, as mentioned above, introduced

modeling difficulties that are beyond the scope of this discussion. As an alternative,

the aberrator was omitted but the resulting Gaussian beam was purposely focused

off-center onto the fiber tip. Thus, multiple modes were excited in the fiber despite the

‘clean’ single-lobed incident beam. Even with the lack of an aberrator, this off-center

focus thus preserves the pinhole power transmission as a measure of phase conjugate

fidelity.

Once the incident beam was propagated through this simple optical system,

and focused, off-center, onto the fiber tip, one must determine what fiber modes this

electric field will excite. To do this, a simple algorithm was used whereby, with a

random starting field, the product of the incident electric field and the fiber field was

integrated in the transverse plane, with the amplitudes and the phases of the fiber

field adjusted to maximize this integral. This algorithm serves as the ‘link’ between

the free space Fourier propagation and the in-fiber model by translating a given free-

space electric field distribution into the modal distribution of amplitudes and phases,

Ai
p and φi

p, that are needed to proceed with calculations inside the fiber. As shown in
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Figure 4.9. A comparison of the Gaussian beam incident on a fiber core (left), and
the closest match that the finite number of fiber modes can support (right). This
example is for a 0.06 NA fiber with a 20 µm radius core (white outline) and with a
focus 10 µm off-center onto the fiber tip. This fiber supports 12 LP modes.

Figure (4.9), this algorithm can produce excellent results where a certain distribution

of modal amplitudes and phases inside the fiber can produce an irradiance pattern

that very closely matches that incident from free space. It is very important that this

match be as close as possible because a poor fit would produce a fidelity less than one

even if a perfect phase conjugate were produced by the fiber. The pixel resolution

in Figure (4.9) is only 1 µm. While a finer resolution is possible, it increases model

computation time. For the weakly multimode fibers considered here, the irradiance

pattern in the fiber varies slowly enough that this resolution is more than adequate.

For the 0.13 NA fiber that is discussed later, a resolution of 0.5 µm was used.

The electric field fit shown in Figure (4.9) produced a distribution of the electric

field amongst the 12 fiber modes of the 0.06 NA fiber as shown in Figure (4.10). Note

that while a Gaussian beam is being coupled into the fiber, the fact that it is off-

center implies that multiple higher order modes are excited, as desired. Knowing
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Figure 4.10. The distribution of the electric field amongst the various allowed
modes of a 0.06 NA fiber with a 20 µm radius core when a Gaussian input beam is
coupled in 10 µm off-center. Note some LP modes are repeated because they have a
nondegenerate 90◦ rotation.

these modal amplitudes, as well as the corresponding phase shifts for each mode (not

shown here), there is enough information to proceed with the in-fiber model.

The pump depletion portion of the model can now implement Equation (3.11),

where the cosine terms can be simplified as described in Equation (3.20), κp(z)
2 is

given by Equation (3.14), and Is(0) is found by the plane wave methods detailed in the

previous chapter. The modal distribution found by the algorithm mentioned above,

which produced the right-side of Figure (4.9), gives us the Afq
pp and ∆φfq

p terms.

In previous sections, the Ajν
ss and ∆φjν

s terms were found by assuming a specific

Stokes form, such as the fundamental LP01, a phase conjugate, or random modal

distributions. In this section, no such assumption about the Stokes is made. Rather,

a perturbation algorithm similar to that mentioned above and used to produce Figure

(4.9) is implemented to find the arrangement of Stokes amplitudes and phases that

gives the maximum backscattered Stokes power from Equation (3.11). A flowchart

detailing this algorithm is given in Figure (4.11).
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Figure 4.11. A flowchart detailing the perturbation algorithm used to find the
best performing Stokes configuration for a given pump input. Note that whenever
an amplitude is adjusted, the whole set of amplitudes is re-normalized such that
∑

iA
2
i = 1. All Stokes powers are calculated according to the plane wave pump

depletion weighting method.

Implementing this algorithm, by following the steps in Figure (4.11) and using

Equation (3.11) to calculate the Stokes power whenever needed will give, for a given

pump input, the Stokes modal configuration that would maximize the backscattered

power. An example output of this algorithm is given in Figure (4.12). One can clearly

see that as the fiber under consideration is lengthened, the Stokes output looks less

and less like the pump input. To put it more specifically, the phase conjugate fidelity

drops.

Taking these predicted Stokes outputs, such as those pictured on the bottom

row of Figure (4.12), and carrying out the same free space Fourier propagation, now

in reverse back through the pinhole, one can easily find the phase conjugate fidelity

by finding the power after and before the pinhole and taking the ratio. An optical
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Figure 4.12. Predictions of the best performing Stokes modal configurations for a
40 µm core diameter, 0.06 NA fiber using the plane wave pump depletion weighting.
The four outputs on the bottom row are all Stokes irradiance patterns as they exit
the pump input end of the fiber.

setup similar to that of Figure (4.8) was used, except without an aberrator and with

the pinhole placed at the Gaussian starting point on the left rather than in-between

the lenses. A starting Gaussian beam radius of 20 µm was assumed with a pinhole

of 30 µm radius, and the left and right lenses having focal lengths of 2 and 0.9 cm

respectively. The resulting Gaussian was focused down onto the 0.06 NA fiber as

shown in Figure (4.9), with the center of the fiber core shifted 10 µm away from the

optical axis in one direction.

The resulting fidelity curve for this 0.06 NA fiber is shown in Figure (4.13), and

compared to experimental data from the same fiber [21], and the fidelity predictions of

Hellwarth [8]. As expected, the fidelity tends to drop with increasing fiber length in all

cases. However, one can see that, though the assumptions made in this development

have introduced some error, this model comes much closer to experimental data than
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Figure 4.13. Modeled (dashed) vs experimental (solid) fidelity curves for a 40 µm
core diameter, 0.06 NA fiber. For the pump depletion curve, the Brillouin gain was
taken to be 5 ∗ 10−11 m/W and the input pump power was PP0 = 20 W. Also shown
is the prediction of Hellwarth’s earlier model (dotted). Note that the curves do not
account for whether the SBS threshold has actually been crossed.

the efforts of previous researchers, such as Hellwarth. Note that the Hellwarth fidelity

curve is obtained using Equation (2.36).

The increase in fidelity that starts at a length of 120 meters is at first counter-

intuitive. However, this effect arises because a large number of mode-sets accumulate

an integral number of 2π in phase at this fiber length. Recalling the reasoning that

led to Equation (3.20), and ignoring the case where f = q and j = ν, because this

leads to an infinite beat length, one can plot the length required for the f = j and

q = ν propagation constant differences that appear in the cosine terms to accumulate

2π in phase. That is, one can plot 2π/(∆βfq
p −∆βjν

s ) for all the possible permutations

where f = j and q = ν. The results are shown in Figure (4.14).

There are very few data points beyond 140 meters, and so they are not plotted

in Figure (4.14). The mode-sets beat at distances that tend to cluster together, with
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Figure 4.14. An analysis of the distance required for the various modesets to ac-
cumulate 2π in phase in a 0.06 NA, 40µm diameter core fiber. The distances are
found from 2π/(∆βfq

p − ∆βfq
s ), where ∆βfq

p,s = βf
p,s − βq

p,s, and β is the longitudinal
propagation constant.

the most noticeable groups being centered at approximately 15, 40, 60, and a large

group at approximately 105 meters. For a fiber length of 120 meters, nearly all of

these modes will accumulate close to an integral number of 2π in phase. As a fiber

is lengthened to 120 meters, the Stokes configuration that matches the pump near

the input will actually be, neglecting the pump depletion weighting, double weighted

because this ‘speckle’ pattern will nearly reproduce itself at the far end of the fiber.

It is worth noting that for fibers supporting a larger number of modes, this effect

quickly disappears as there are so many modal permutations that the clustering effect

disintegrates.

A very similar analysis to that presented above was carried out in Figure (4.15),

this time for a 0.13 NA fiber with a 20 µm core diameter. While the numerical aperture

is higher, the core diameter is halved, and so this fiber supports approximately the

same number of modes as the 0.06 NA, 40 µm core diameter fiber analyzed above.

However, the larger NA means that the propagation constants, βi, for ‘neighboring’
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modes are more disparate, implying a more rapid evolution of the speckle pattern

down the fiber. Thus, it was anticipated that the phase conjugate fidelity would drop

more quickly as the fiber was lengthened. This behavior was indeed observed in Figure

(4.15), where the fidelity has dropped roughly to its lowest value for a 25 meter long

fiber, while it took a 100 meter 0.06 NA fiber for the fidelity to reach its minimum.

Again, Hellwarth’s predictions and the experimental data are shown, though this time

additional model curves are given for the first two solutions considered in this thesis,

the no pump depletion and decoupled no pump depletion cases. One can see that, as

expected, the pump depletion fidelity curve comes closest to the experimental data

and is the preferred solution from this model. Also note that the decoupled no pump

depletion consistently predicts a very high fidelity regardless of length, because for an

input pump power of 20 W the decaying exponential κs(z)
2 very heavily weights the

front of the fiber, and thus the phase conjugate.

For this 0.13 NA fiber, the experimental data used a Gaussian that was input

7 ± 2µm off-center, while the model used 5.5 µm because the electric field matching

algorithm at the front fiber face could not produce a close match too far from the

center of the fiber core. This means that a slightly different set of modes may have

been excited experimentally than in the model. Also, the free space lens arrangements

and pinhole size had to be adjusted in the model for both the 0.06 and 0.13 NA

fibers to keep the free space beam from becoming too large, because the numerical

Fourier propagation of a large beam with a 0.5-1 µm pixel resolution throughout was

computationally prohibitive. Despite the different lenses, the spot-size on the fiber
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Figure 4.15. Comparison of experimental (solid) vs predicted phase conjugate fi-
delity curves for a 20 µm core diameter, 0.13 NA fiber using the no pump depletion
(dash-dot), decoupled no pump depletion (dash-dot), and pump depletion (dash)
methods developed in this thesis. For the model, the Brillouin gain was taken to
be 5 ∗ 10−11 m/W and the input pump power was PP0 = 20 W. Also shown is the
prediction of Hellwarth’s earlier model (dot). Note that the curves do not account for
whether the SBS threshold has actually been crossed.

tip was close to the experimental value and the pinhole in both model and experiment

was just large enough to give a high transmission of the incident beam.

With these caveats in mind, the pump depletion model still makes a much more

accurate prediction of the experimental data than previous efforts such as Hellwarth.

Similarly to the 0.06 NA results in Figure (4.13), the model still tends to underpredict

the experimental data, with an erroneous prediction of an increase in fidelity after

a certain length of fiber. The underprediction error could be attributed to multiple

causes. First, despite a best effort in model construction, the experimental condi-

tions almost certainly do not match the model exactly, either in size of the coupled

beam, or how far offcenter it was relative to the fiber core. This will change what
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modes are excited, and thus the irradiance pattern along the fiber that determines

the all-important Stokes gain. In addition, the electric field matching algorithm that

produces plots similar to Figure (4.9) is not perfect, which means fidelities slightly less

than one are predicted even for very short fibers, which gives a downward vertical off-

set to the modeled fidelity curves. Even if these launching conditions and field fit were

perfectly replicated, there are other effects such as mode-mixing or mode-dependent

loss that could introduce error into the model.

Regarding the rise in fidelity at longer fiber lengths, this was attributed previ-

ously to a common mode-beat length for the majority of the modal permutations. If

the current assumption of constant growth/decay across all the Stokes/pump modes

is lifted and individual modal change rates are included, then an improved prediction

would result. When coupling into the fiber, only a subset of the available modes are

appreciably excited, as shown in Figure (4.10). Thus, only a subset of the modal com-

binations beat distances, represented in Figure (4.14), are important. When all the

modes grow/decay at the same rate, these important contributors remain the same

throughout the fiber, and will all accumulate an integral 2π in phase at the least

common multiple of all their beat distances. However, if each mode grew or decayed

at an independent rate, then the important subset of modal combinations in Figure

(4.14) could change along the fiber as the modes evolved. That is, one would expect

an increase in fidelity at the least common multiple of these mode beat distances, but

these modal distances keep changing along the fiber as some modes decay, and others

that may not have been initially appreciably excited can gain more power farther
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into the fiber. The least common multiple then loses meaning, and may result in the

elimination of this erroneous fidelity increase in the model.

Another interesting behavior, beam clean-up, was seen in many of the fiber

simulations that used the Stokes performance maximizing algorithm of Figure (4.11).

Traditionally, beam clean-up has been associated with graded index fibers, where

the varying index across the core tends to favor modes with a high irradiance in

the center [19]. As the fiber is lengthened, this discrimination against higher order

modes becomes dominant, and the backscattered Stokes moves almost exclusively to

the fundamental mode. However, the model predicts that a step index fiber can also

exhibit beam cleanup, though now the modal discrimination occurs because of the

launching conditions into the fiber, rather than being built directly into the fiber

itself. This simultaneously makes step-index fiber beam cleanup more versatile, as

well as haphazard.

As an example, consider the predicted backscattered Stokes irradiance patterns

which were counterpropagated to obtain the modeled pump depletion fidelity curve

(green dashed line) in Figure (4.15). A subset of these Stokes beams are shown in

Figure (16(a)), where it it easily observed that, as the fiber is lengthened, phase

conjugation gives way to beam cleanup to the LP11 rather than the LP01 mode. This

occurs because for a longer fiber, the Stokes modal arrangement with the maximum

overlap with the pump is the LP11 mode by itself, thus this mode alone experiences

the maximum gain and dominates the output. While the pump input pictured at the

top of Figure (16(a)) will excite multiple fiber modes, which will move at different
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(a) Model predictions of the best performing
Stokes modal configurations using the plane
wave pump depletion weighting with PP0 = 16
W. Images are Stokes irradiance patterns as
they exit the pump input end of the fiber.

(b) Experimental verification of transition from
Stokes phase conjugation to beam clean-up to
the LP11 mode with approximately 16 W input
pump power

Figure 4.16. Modeled vs experimental irradiance patterns for LP11 beam cleanup
in a step index fiber. A 0.13 NA fiber, with a 20 µm diameter core, was used in both
model and experiment.

speeds and thus change the irradiance pattern, every so often the modes in the fiber

will beat together, reproducing the single-lobed pattern seen at the beginning. Every

time this happens, one half of the LP11 mode will have very high overlap with the

pump, giving it the advantage mentioned above. This was confirmed experimentally,

though at longer fiber lengths than the model predicts, as shown in Figure (16(b)) [21],

with the length discrepancy likely due to the same sources of error mentioned above.

As was already mentioned, beam cleanup in step-index fibers is highly depen-

dent on the launch conditions of the pump into the fiber. To test this, the Stokes

maximizing algorithm was run on an input Gaussian beam that was coupled into

a 0.13 NA, 20 µm fiber at varying distances from core center. As seen in Figure
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(4.17), going from 3 to 4 µm off-center produced a dramatic change in Stokes beam

cleanup from the LP01 to the LP11 mode. Thus, while this form of beam cleanup

could potentially be very versatile in its ability to produce higher order modes, it

is also haphazard in its sensitivity to launching conditions. Such higher order mode

converters have attracted research interest from other groups, though their strategies

typically employ the manufacture of specialty fibers at considerable cost [22], making

this SBS-based conversion in a conventional step-index fiber of potential practical

interest.

Figure 4.17. An example of the importance of the launching conditions in step-
index fiber beam cleanup. Launching a Gaussian just one micron farther off-center
changes the Stokes output from LP01, to largely LP11. Model was run on a 20 m
long, 0.13 NA, 20 µm diameter core fiber with a pump input power of 20 W.

The results shown here indicate Hellwarth’s adapted relation, Equation (2.37),

incorrectly requires extremely short fiber lengths for a decent phase conjugate. Taken

at face value, such a design requirement might immediately lead to the abandonment
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of a step-index fiber approach due to the extremely high power that would be required

to excite SBS in such a short length. However, the numerical analysis conducted here,

backed up by experimental evidence, indicates the requirements are much looser than

it would initially appear. While the model still tends to underestimate the attainable

fidelities, it comes much closer to experimental evidence, and represents a significant

step forward in understanding the workings of these step-index fiber based SBS phase

conjugate mirrors. Sources of error, especially the common modal longitudinal change

term, Equation (2.32), were explored with their effect, such as the common modal

beat distance leading to a rise in fidelity at long fiber lengths, explained. Lastly,

the novel phenomenon of step-index fiber beam cleanup was predicted in the model,

explained, and later experimentally verified [21].
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V. Conclusion

Suggestions for Future Work

The work done here constitutes a significant step forward in the modeling ca-

pabilities of phase conjugation in a fiber waveguide. However, there are multiple

improvements that would significantly increase the validity and applicability of the

model.

The first and most important improvement would be to eliminate the assump-

tion that all the modes of the fiber will grow or decay at the same rate. Referring

back to Equation (2.25), the derivation previously proceeded by multiplying by ~E∗

s ,

adding the complex conjugate form of the resulting equation, which put everything

in terms of irradiances. The model was then constructed to assume that the various

modal amplitudes, for example mode f of the Stokes beam Af
s , all grew/decayed at

the same rate. That is, the LP01 mode of the Stokes beam had to grow just as fast

as the LP11 or LP32 modes. The LP01 mode of the pump would be depleted just as

quickly as the LP21 mode. This was done for no other reason than it vastly simplified

the analysis.

To eliminate this assumption, one could return to Equation (2.35). This form is

essentially identical to that used by Hellwarth in his stationary perturbation theory

approach in a rectangular waveguide. A relaxation method approach is recommended.

As a starting point, assume a given pump input that is undepleted throughout the

fiber, that is, Aij
pp is known and unchanged in the entire waveguide. One could start
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with a random Stokes modal distribution, as SBS starts from spontaneous noise, and

implement Equation (2.35) to update the Stokes amplitudes throughout the fiber. An

equation very similar to (2.35) exists for the pump amplitudes, and this form would

be used to take the resulting Stokes amplitudes and alter the pump amplitudes, in-

troducing depletion effects. This procedure is repeated until a steady state is reached.

In this way, not only is each mode allowed to longitudinally change at its own rate,

but pump depletion and Stokes growth effects are introduced ‘naturally,’ not by a

construct such as a plane wave assumption.

As mentioned previously, attempts to implement this strategy have been made

in the past, though they almost always used a free space SBS phase conjugate media,

such as a compressed gas in a relatively large glass cylinder. This complicates the

coupled SBS equations because the transverse Laplacian must be included due to

the lack of a waveguide, and thus the above approach may be simpler in the case

of a fiber. In addition, many of the attempts occurred 20 or more years ago and

cited insufficient computer memory and processing power as a significant obstacle

to success. These problems, obviously, may have self-resolved. Lehmberg was able

to numerically model an SBS phase conjugate mirror in a waveguide using a similar

method to that described here, but, for reasons he does not mention, limited his

analysis to two dimensional waveguides, thus severely hampering the applicability of

his work to practical devices [7]. Lehmberg, and multiple other authors, mention that

the primary difficulty in solving the coupled differential equations is implementing

conditions such that a stable solution is eventually reached [17].
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This is the main, and potentially most exciting and far-reaching, improvement to

the work considered here. However, other less arduous updates could also be made.

The most obvious is to include the loss term in Equation (2.26b) in the analysis.

Dropping this term for the short, silica fibers considered here is easy to rationalize

as loss is usually negligible in these cases. However, chalcogenide fibers, which might

be used for their much higher nonlinear gain coefficient, also exhibit much higher loss

than silica at near infrared wavelengths, and including this term should be seriously

considered if these wavelengths are to be used experimentally.

Another interesting experiment would be to repeat the fidelity curve calculations

made in Figure (4.13) and (4.15), though with an aberrator introduced such that the

beam being coupled into the fiber is not a Gaussian. This is how the majority of the

phase conjugate experiments in the literature are conducted, but there was insufficient

time to work out the modeling difficulties for this thesis. It was found that introducing

a random number generated pattern for an aberrator produced a beam with very high

spatial frequency content, which introduced high loss when being coupled into the

fiber. When a ‘smoothing’ routine was introduced to the modeled aberrator, whereby

each pixel was adjusted to the average of its neighbors, the problem lessened but was

still present.

An aberrator is needed that introduces some sort of distortion, but does not vary

extremely quickly across the transverse plane. One approach that held promise was to

use a short segment of multimode fiber, of the same type as the SBS generating fiber,

that would have several modes excited and thus output a non-Gaussian, ‘aberrated,’
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intensity pattern. This intensity would be Fourier propagated through free space and

focused down onto the phase conjugating fiber. As the fibers are of the same type,

they possess the same set of modes, and thus one can expect that the coupling loss

into the second fiber would be low. If a true phase conjugate was generated, the short

aberrating fiber would clean up the backscattered beam, but otherwise the beam

would remain distorted.

Lastly, while the model uses the SBS threshold in terms of the longitudinal

weighting term κp(z)
2, the fidelity curves make no mention of whether, at a certain

power and fiber length, the backscattered power will actually be appreciable. Thus,

even though the fidelity for a 5 meter device at 5 W may be high, such a device will

be well below threshold and there will be no stimulated scattering. It would be useful

to build some estimation of threshold into the model and plot only those points that

actually exceed a user-defined SBS reflectivity coefficient. Even if the threshold was

estimated from a plane-wave model, it would still be useful for a rough estimation.

Summary of Work and Results

A model was constructed to numerically analyze SBS phase conjugation in mul-

timode step index fibers. Specifically, the goal was to determine how variables such

as fiber size, numerical aperture, length, and input pump power affected the Stokes

output. Multiple specific test cases were analyzed.

First, the no pump depletion case was considered, as it was the most simple.

An analytic form of the effective SBS gain was obtained, and this form was used to
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see how the phase conjugate Stokes performed compared to the fundamental mode,

random Stokes modes, and to zPC 6= 0 phase conjugate patterns that occured within

the fiber. As there was no pump depletion, all portions of the fiber were weighted

equally. This accounted for the observed averaging effects that led to all Stokes

configurations giving increasingly similar gains as the fiber was lengthened. Even

this rudimentary model correctly predicted, as shown in Figure (4.2), that step index

fibers do not generally give beam cleanup to the fundamental mode, except for special

launching conditions. A comparison of different phase conjugate forms, Figure (4.3),

as well as random Stokes configurations, Table (4.1), reinforced this averaging trend

at longer fiber lengths.

Second, the decoupled no pump depletion solution was implemented. It was

decoupled in that the κs(z)
2 term on the right side of Equation (3.5) takes an ex-

ponential form, while the κs(z)
2 on the left side, which is hidden in Ps(z), is left

unspecified. This simple exponential form for κs(z)
2 still yielded a closed form solu-

tion, though now it was for the Stokes power, not the gain. This difference yielded

no problems in practice, as all the analysis involved taking the ratio and looking for

qualitative patterns rather than absolute values. For low pump powers, the weighting

effect was marginal and the resulting data was very similar to the simple no pump

depletion case. For higher input pump powers, the weighting clearly showed its effect

in multiple ways. In Figure (4.4), the phase conjugate was clearly favored over the

LP01 mode, even at long fiber lengths. As one zPC form of the phase conjugate

was compared to another in Figure (4.5), the dominant effect was observing that as
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the pump power increased, the zPC = 0 m form increasingly dominated all other

options. For the random Stokes modal data in Table (4.2) and Figure (4.6), the best

performers at longer fiber lengths and higher pump powers clearly bore some resem-

blance to the pump input, while lowering the pump power resulted in the highest gain

corresponding to a Stokes with little resemblance to the pump.

Finally, the pump depletion case was analyzed. The κs(z)
2 term was left unspec-

ified, and treated equally on both sides of the differential equation. However, rather

than setting κp(z)
2 = 1, as was done in the two previous cases, a plane wave model

was used to find what κp(z)
2 would be in a single-mode fiber, and then this weighting

was applied equally to all the modes the pump excited inside the fiber. This was

done for simplicity. Implementing a more rigorous analysis, as detailed above in the

future work suggestions, would be the most far-reaching improvement to the model.

However, even with this simplification, interesting results were obtained that appear

to match the available experimental data.

Rather than repeating the same comparisons that were considered for the two no

pump-depletion cases, here the model was geared towards producing curves of phase

conjugate fidelity as a function of fiber length, which matches what is most easily

measured experimentally. To do this, Fourier free space propagation was considered

of an incident Gaussian through a pinhole and incident off-center on a fiber, as shown

in Figure (4.8), though without an aberrator. The incident field was then run through

a matching algorithm, whereby the overlap integral of the free-space electric field was
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maximized as the field inside the fiber was adjusted. For incident Gaussians, this

often produced very good results, as seen in Figure (4.9).

From here, the ‘in-fiber’ model took over and used the algorithm detailed in

Figure (4.11), with the gain being calculated by Equation (3.11), to predict the output

Stokes beam. These output beams were then free-space Fourier propagated back

through the pinhole, with the ratio of powers after and before the pinhole giving

the fidelity curves for various fibers seen in Figures (4.13) and (4.15). The fidelity

predictions for from this model proved to be much closer to experimental data than

previous theoretical efforts. The erroneous prediction of an increase in fidelity at

longer fiber lengths was attributed to a common mode-beat effect that likely has its

origins in the simplifying assumption of Equation (2.32).

Furthermore, it was shown, in Figures (16(a)-16(b)), that for long fibers and

certain off-center pump coupling conditions, beam cleanup can be observed. While

this is more versatile than graded-index fiber beam cleanup, which favors only the

LP01 mode, it is also more haphazard as the specific ‘cleaned mode’ is very sensitive

to the launch point into the fiber, as seen in Figure (4.17).

The numerical model constructed for this thesis has thus been successful in

explaining previously observed phenomena, as well as making accurate predictions

that were later born out by experimental evidence. It could prove a valuable tool

for researchers trying to build SBS phase conjugate mirrors from step-index fibers,

especially when trying to make design decisions about fiber NA, core size, length, and
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required input pump power. By enabling near-aberration free high power amplifiers

or coherent beam combination, these mirrors could be of great utility in military

applications simultaneously requiring high power and good beam quality.
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