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1 Introduction

Semi-competing risks is a variation of ordinary competing risks, apparently
first introduced and named in 2001 by Fine et al (2001). In semi-competing
risks, one considers two types of events: non-terminal and terminal. The dif-
ference from ordinary competing risks is that the focus is not restricted to the
first event that occurs in time.While a non-terminal event may be censored by
a terminal event, the non-terminal event does not prevent the occurrence of the
terminal event, as it would do in ordinary competing risks problems. Thereby,
more information regarding event times is obtained with semi-competing risks
than with ordinary competing risks.

lick here to view linked References
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Semi-competing risks are of particular interest in medical applications.
Here, a non-terminal event may for instance be disease recurrence, while the
terminal event typically is death, see, e.g., Fine et al (2001), where the fre-
quently studied bone marrow transplant data are analyzed. Varadhan et al
(2014) give an illlustration from gerontology. Here the event 'death’ will censor
other events under study, such as dementia (Alzheimer’s disease) or disability.

While competing risks theory is developed in fairly great detail, and has
been applied in a wide range of situations, semi-competing risks studies have
not yet become that common in the literature. Still, several semi-parametric
models have been developed and successfully applied to semi-competing risks
data, for instance in Fine et al (2001), Peng and Fine (2006) and Hsieh et al
(2008). Briefly, the models assume that the joint distribution of the time to the
non-terminal and terminal event times, in the present paper denoted Z and
X, respectively, is given by a known copula, for example the gamma frailty
copula (Clayton, 1978). The joint distribution of (X, Z) is identifiable in the
upper wedge where Z < X only, and the marginal distribution of the non-
terminal event Z is hence not identifiable without additional assumptions.
The corresponding approaches are based on latent variables, with results of
interest expressed by so called net quantities. Xu et al (2010) argued that
such models should be avoided, and they instead presented an approach based
on crude quantities (i.e., observable) only, considering a class of illness-death
models with shared frailty.

The semi-competing risks problem is essentially equivalent to the classical
illness-death model (Fix and Neyman, 1951), which in turn is considered to be
a special case of multi-state models. There is hence a considerable literature on
the subject, with a theoretical foundation given in, e.g., Andersen et al (1993).
A more recent review is found in Putter et al (2007). Typical assumptions are
that the transitions between states are of (semi-)Markov type, whereas Meira-
Machado et al (2006) considered estimation in a non-Markov illness-death
model. The already cited paper by Xu et al (2010) considers a Markov model
with a shared gamma frailty, and demonstrates the connection to the approach
of Fine et al (2001) who use the Clayton copula.

In survival analysis, a lifetime may in many cases conveniently be modeled
as a first passage time of a boundary or threshold state of a stochastic process,
either observable or latent. This kind of modeling seems to become more and
more popular. Aalen and Gjessing (2001) gave a review of such models, consid-
ering in particular the Wiener process as the underlying stochastic processes.
While the Wiener process is often seen in medical applications, the gamma
process seems to be more popular in engineering applications, see, e.g., the
comprehensive review by van Noortwijk (2009).

Lee and Whitmore (2006) give a thorough review of various types of thresh-
old models for survival analysis. Typically, an endpoint of interest occurs when
a process reaches an adverse threshold state for the first time. Heterogeneous
behavior among units, either measured via covariates or modeled via latent
variables, may then be modeled by differentitating the speed of the process
or the starting state (Aalen and Gjessing, 2001). Lee and Whitmore (2006)



O J o U W N

OO CTUIUTUIUTUIOTUTOTOT R DB BB DD DDA DWWWWWWWWWWNNNNNNNNNONNNNNEFE R R R R R
GO WNHFROWOJNTTDdWNROWVW®O-JAUTDWNROWOW®-JOAUDWNROWWTAUB®WNROWOW-IU DS WNRF O W

Modeling of semi-competing risks 3

show in particular how latent threshold models are used in studies involving
competing risks. As an example they let the underlying stochastic process be
a multidimensional Wiener process with dimension equal to the number of
competing causes, and with specific threshold levels for each dimension. De-
pendencies between the different causes may then be modeled by considering
correlated Wiener processes, and removal of causes may be considered as well.
In an earlier paper, Whitmore (1986) modeled independent competing risks
by considering first passage times of multi-dimensional Wiener processes.

While the above idea of using first passage times of correlated stochastic
processes can be adopted to the semi-competing risks case, we will in the
present paper assume a single univariate underlying stochastic process, D(t),
say. The main idea is then to let both the terminal event and the non-terminal
event correspond to hitting times at different threshold levels of this single
process. More precisely, we shall let the time to the terminal event, X, be
defined as the hitting time of D(t) to a fixed level ¢, while we let the time
of the non-terminal event, Z, correspond to the hitting time of a random
threshold S. Here, S is assumed to be independent of the process D(t), which
is sensible since it in some sense plays a similar role to the constant c. The
dependency between the non-terminal and terminal events is now obtained
because of their relations to the common underlying process D(t).

An advantage of this way of modeling semi-competing risks is that only
one underlying process is involved. Apparently this leads to a more parsimo-
nious and simply structured model than the approach using several correlated
processes, and may also imply an easier interpretation and improved insight.
In particular the marginal distribution of Z, which in many applications is the
interesting distribution (e.g., Fine et al (2001)), can now be identified as the
hitting time distribution of level S of the process D(t).

Similar models were considered by Lindqvist and Skogsrud (2008) in a
system maintenance application, and Horrocks and Thompson (2004) who
considered an application to health status for hospitalized patients. In the
former paper, the underlying process is a Wiener process modeling the state of
a degrading system, where the terminal event is a critical failure corresponding
to a certain threshold of the process. In order to possibly avoid critical failures,
a maintenance policy is introduced, where the system is repaired when the
degradation reaches a certain state S. The latter paper considers a Wiener
process model for health status for hospitalized patients, with two barriers,
corresponding to discharge and death, which here correspond to two terminal
events. The authors then suggested the extension where a decision to transfer
the patient is considered when the process reaches a certain intermediate level.
In our terminology this would correspond to the threshold S.

In threshold modeling for medical applications, the latent underlying pro-
cess D(t) is commonly thought of as the health condition of the person under
study (Lee and Whitmore (2006)), with the endpoint of interest correspond-
ing to the crossing of a given threshold c. Suppose then, as in semi-competing
risks, that another event is of interest which may or may not occur before
the terminal event. The proposed model makes the coupling of the two events
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through introducing another threshold S of the process D(t). The crucial as-
sumption is hence that both events are determined by crossings of the same
underlying process D(t).

One might argue that in many applications it will not be clear how to think
of a common underlying process governing both the terminal and non-terminal
event. This may for example be the case in the above mentioned case of semi-
competing risks in connection with Alzheimer’s disease, where one may think
of different processes that govern the onset of Alzheimer’s disease and death,
respectively. Furthermore, if there is one process, this process may change its
behavior at the occurrence of Alzheimer’s disease and hence again violate the
model. Still it is believed that a relatively simple model like the proposed
model may give useful insight also in such cases, although the interpretation
of the latent underlying process may not be straightforward.

The present paper is to the best of our knowledge the first to use the idea of
first passage times to study semi-competing risks problems. To be concrete, we
have chosen to consider gamma processes as the underlying stochastic process.
The most crucial property of the stochastic process in our approach appears
to be the independent increment property. Thus the modification needed to
replace the gamma process by, e.g., a Wiener process, appears to be essentially
straightforward. Although we will not study the case of observed covariates,
one may imagine modeling of the influence of covariates both on the underlying
process and on the distribution of S. For easy reference we shall denote the
model by the gamma threshold model, or simply the threshold model.

The rest of the paper is organized as follows. In Section 2 we first review
the basic notation of competing risks, and then give an introduction to the
gamma process and its first passage time distribution. The gamma threshold
model and the corresponding likelihood function are presented in Section 3,
while a simulated data set is analyzed in Section 4. In Section 5 we use the
threshold model to analyze the bone marrow transplant data set. Some final
remarks on the threshold model are given in Section 6, while we finally consider
some variations and possible extensions of the model in Section 7. The article
is ended by an Appendix presenting some technical derivations and formulae.

2 Preliminaries
2.1 Two competing risks
2.1.1 Notation and definitions.

We start by introducing notation and basic definitions from ordinary compet-
ing risks with two latent event times, X and Z. Later, X will be the time of
the terminal event, while Z is the time of the non-terminal event. Throughout
the paper we assume that (X, Z) is a pair of continuously distributed posi-
tive random variables such that P(X = Z) = 0. In the ordinary competing
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risks situation we observe (only) the pair (7, D) where T' = min(X, Z) and
D =I(X < Z), where I(A) is the indicator function of the event A.

We let Fx(t) = P(X < t) and Fz(t) = P(Z < t) be the cumulative
distribution functions of X and Z, respectively. The subdistribution functions
(also called cumulative incidence functions in the competing risks literature)
of X and Z are defined as, respectively, Fx(t) = P(X < t,X < Z) and
Fy(t) = P(Z <t,Z < X). Similarly, the subsurvival functions are K% (t) =
P(X >t X < Z) and K;(t) = P(Z > t,Z < X), while the subdensity
functions are f% (t) = Fi (t) = —K% (t) and similarly for f3(t). It is clear that
Kr(t) = P(T > t) = K%(t) + K;(t). From this we can define the so-called
cause-specific hazard rates A% (t) = f%x (t)/Kr(t) and A5 (t) = f5(t)/Kr(1).

The functions F% and F} are nondecreasing with F'%(0) = 0 and F';(0) =
0. Moreover, F'%(00) + F5(00) = 1. We will also use the notion of condi-
tional sub-distribution functions, defined by Fx(t) = P(X < t{X < Z) =
F%(t)/Fx(00) and Fz(t) = P(Z <t|Z < X) = F3(t)/F}(0).

2.1.2 Random signs censoring.

Random signs censoring was first introduced by Cooke (1993) as a notion
of age-dependent censoring. Considering X as the time of failure and Z as
the censoring time, the idea is that, whether a unit is censored or not, is
independent of the age of the unit. A precise definition can be given as follows
(Lindqvist et al, 2006): Let (X,Z) be a pair of positive random variables.
Then Z is called a random signs censoring of X if the event {X < Z} is
stochastically independent of X.

This means that a unit is censored independently of the time X where it
would have failed. As an interpretation, we can imagine that at some time be-
fore the unit fails, it will emit a signal indicating that a failure is emerging. The
crucial assumption is that the event that the emitted signal is discovered, and
hence censoring is executed, does not depend on the unit’s age. The assump-
tion of random signs censoring may in many cases be unreasonable. However,
for certain phenomena it gives a good description of reality. For instance, if
the unit in question is a machine, then typical signals may be excessive noise
and/or vibration. For a human being in a medical study, the signal may be
symptoms of disease.

Random signs censoring implies that the marginal distribution of X is
identifiable from ordinary competing risks data (Cooke, 1993). In fact, the
definition of random signs censoring leads to the following conditional sub-
distribution function for X,

Fx(t)=P(X <t|X < Z) = P(X <t) = Fx(t). (1)

Thus, the marginal distribution of X is actually the same as the distribution
of the observed failure times X, discarding all the observations where Z is
observed. The distribution of Z is, however, in general not identifiable under
random signs censoring.
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Cooke (1993) showed that a necessary condition for a joint distribution of
(X, Z) to satisfy the random signs censoring conditon, is that

Fz(t) > Fx(t) for all t > 0. (2)

In our data application in Section 5 we will check this condition by plotting
the corresponding estimated functions.

The model considered in the present paper has the random signs censoring
property. Until now, the random signs censoring has been considered mainly in
applications to engineering reliability, e.g., Cooke and Bedford (2002); Lindqvist
et al (2006); Christen et al (2011); Lindqvist and Skogsrud (2008).

2.2 The gamma process and its first passage distribution
2.2.1 The gamma process

A continuous time stochastic process {D(t),¢t > 0} is a gamma process with
shape function v(¢) > 0 and scale parameter u > 0 if

1. D(0) = 0 with probability 1,

2. {D(t),t > 0} has independent increments,

3. D(t) — D(s) is gamma distributed with shape parameter v(t) — v(s) and
scale parameter u for every 0 < s < t.

It follows that the probability density function of D(t) is the gamma density
fow (z) = Ga(z;v(t),u); = >0, (3)

where Ga(x;v,u) = u¥(I'(v)) '~ exp(—uz).

In empirical studies involving the gamma process, particularly in engineer-
ing applications, it has been seen that the expected deterioration, E(D(t)) =
v(t) /u often follows a power function in ¢ (van Noortwijk, 2009). This suggests
the form v(t) = atf, for constants o > 0 and # > 0, which will be used later
in this paper. The gamma process is called stationary if the expected value is
linear, i.e., 8 = 1 and non-stationary if 3 # 1.

2.2.2 The first passage time distribution

Let D(t) be a gamma process with shape function v(¢) and scale parameter w.
The first passage time of the process D(t) over a fixed threshold d > 0, denoted
Ty, is defined as the time until the process crosses the level d, i.e., Ty = inf{¢ :
D(t) > d}. The cumulative distribution function of Ty is found from

I'(v(t),d - u)
I(v(t))

where I'(a,z) is the upper incomplete gamma function defined by I'(a,z) =
[ 207 lem2de.

P(Ty<t)=P(D(t)>d) = (4)
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Since the scale parameter u only appears together with the threshold level
d as the product d-u in (4), it follows that we may, without loss of generality,
let v = 1. This will be done in the following, where we define the survival
function and cumulative distribution function of Ty, respectively, by

(), d)
T0(0) ©)

If v(t) is differentiable, then the probability density function of T} is (Park
and Padgett, 2005; Paroissin and Salami, 2014)

K(t;v(t),d)=1— F(t;v(t),d) =1 —

Ft0(t),d) = o (1) D(0(1)) — log ] (1 BEACUL)

+ &d”(t)gFQ(U(t),v(t); o(t) + 1,0(t) + 1; —d).

Here, ¥(a) = d%ln[‘(a) = 1;((;)) is the digamma function, and 2F3() is the
generalized hypergeometric function of order (2,2). Recall that he generalized

hypergeometric function of order (p, q) is defined as

(@) (ap) 2
F vy Q3 by, by 2) = —
o tib b 2) = ) G, G,
where (), = % is the Pochammer symbol.

We will also need the joint density of (T, T.) when d < ¢, defined as
f(tl, tQ; U(tl), U(tg), d, C)dtldtQ = P(tl S Td S tl + dtl,tQ S TC S t2 =+ dt2)

Since the gamma process is a pure jump process, the calculation of this density
has to take into account the fact that the threshold d is crossed by a jump,
so that D(T;) is almost surely strictly above d (Kahle et al (2016)). The
derivation of this density is deferred to the Appendix (Section 8.1).

3 The gamma threshold model
3.1 The ordinary competing risks setting

Consider a gamma process D(t) with shape function v(t) as considered above.
Let X be the first passage time to a fixed level ¢ > 0, i.e., X = T¢. Let further
S be a positive random variable which is stochastically independent of the
process D(t), and define Z = Tg. Assume also that P(S = ¢) = 0.

It follows that if X, Z are the latent variables of an ordinary competing
risks situation, we observe Z (and not X) if and only if S < ¢. An illustration
is given in Figure 1. Here X = T, and we observe Z = T, in case S = s1 < ¢,
while we observe X if § = s5 > c.

The assumption that S is independent of the gamma process D(t) implies
that (X, Z) satisfies the requirement of a random signs censoring (see Section
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Fig. 1 Illustration of the case of a gamma process D(t) with a fixed level ¢ and a lognormally
distributed S

2). In fact, the event {X < Z} now is equivalent to S > ¢, which is independent
of X =T,.

The model can be viewed as an extension of the single-threshold problem
considered by Paroissin and Salami (2014), who in our notation considered
Z =Ts.

3.2 The semi-competing risks setting

The competing risks model considered in the previous subsection is easily
extended to the semi-competing risks case. We then assume that if S < ¢,
then after Z is observed, the gamma process D(t) continues until level ¢ has
been crossed, i.e., until X is observed. On the other hand, if S > ¢, then the
process is stopped when level c¢ is crossed, so Z will not be observed. This
defines a semi-competing risks situation with terminal event at time X and
non-terminal event at time Z, which as indicated in the Introduction will be
called the the gamma threshold model or the threshold model.

By the construction, it is clear that the random variables X and Z are
dependent random variables. Moreover, since Z is a random signs censoring
of X, as shown in the previous subsection, the relation (2) holds. In the data
examples, we will start the analyses by plotting the corresponding estimated
functions as given by (15) in order to empirically verify the possibility of an
underlying threshold model.
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In practice one is often interested in the marginal distributions of X and Z.
While the distribution of X is identifiable in semi-competing risks, this is not
the case of Z. Key quantities related to Z are hence what we in the introduction
have called net quantities, and their relevance are therefore strongly connected
to the assumptions we have made. Since X = T, the distribution of X has
been completely described in the previous section. For Z, on the other hand,
we have

Kz(t) = P(Ts > t)
= / P(Ts > t)fs(s)ds

= [ Koo 955 (©
where fs(s) is the density of S. The marginal hazard rate for Z is from this

fo ) )fS()
foOOK( v(t),s)fs(s)ds

Thereby, parametric estimates of Kz (t) and Az(t) can be found by inserting
parameter estimates into the expressions in (6) and (7), respectively.

We will also later consider the corresponding crude quantities under the
assumed model assumptions.

Az(t) = (7)

F;(t)=P(Z<t,Z<X)
=P(Ts <t,S<c)

/OCP(TS < 1) fs(s)ds

_ / Pt 0(t), 5)fs(s)ds (®)

The cause-specific hazard rate for Z can from this be expressed as

ftv(t),s s)ds
Ny (t) = BLLCvD ) s(e)a

where K (t) = F%(t) + F(t). Here the latter term in the sum is given in (8),
while the former is P(T, > t,S > ¢) = K(t;v(t),c)(1 — Fs(c)).

3.3 Representation of data from semi-competing risks

Consider the semi-competing risks situation with (X, Z) given as above, and
let 7 > 0 be a possible censoring time. In the present paper we shall assume
that censoring is random, and that 7 is independent of (X, Z).

For a unit under study we observe the following variables, Y1 = min{Z, X, 7},
Y2 = min{X,7},61 = I{Z < Ys} and d; = I{X < 7}. With n units under
observation we hence have the i.i.d. data (Yi;, Ya;, 014, 09;) for i =1,2,...,n.
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10

In order to write down the likelihood function we find it convenient to
consider the six possible orderings of (Z, X, 7), as given in Table 1. It follows
that the essential observations will be of four different types, in the table
named Case 1 to Case 4.

Table 1 Possible orderings of variables in semi-competing risks data. X = time of terminal
event, Z = time of non-terminal event, 7 = censoring time.

Order (Y1,Y2,01,02) Case

7, X, 7 (X L1 1
X, Z,7 (X, X 0,1) 2
X, 7,72 (X, X 01) 2
Z, 1, X (z,7,1,0) 3
T, Z, X (r, 7,0, 0) 4
7, X, Z (1, 7,0, 0) 4

The likelihood function in the case of illness-death models for semicompet-
ing risks have been derived, e.g., by Putter et al (2007) and Xu et al (2010). As
will become clear in the next subsection, the special structure of the threshold
model requires a somewhat different way of deriving the likelihood.

3.4 The likelihood function

The contributions to the likelihood function corresponding to each case are
considered separately below. Since we have random censoring, with censoring
times being independent of the process X (t) and the variable S, we may by
conditioning on the censoring times assume that they are given by constants.

In the derivations below we use notation and results for the gamma process
from Section 2.2.

Case 1: Observe both Z and X.
The data are Z = Tg = t1, X =T, = to with t; < t3. Thus S < cis a
consequence, and we have

P (t1 <Tg <ty +dty,to <T. <ty+dts)

= / P(tl S TS S tl +dt1,f2 S TC S tQ + dtg)fs(s)ds
0

= [/cf(tlat%U(tl),U(tz),&C)fs(s)ds]dtldtQ (9)
0

The expression in square brackets is now the contribution to the likelihood
function.
Case 2: Observe X only.
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Suppose we have observed X = T, = t5, when we know that S > ¢. Since
S is independent of the process, we have

P (tg < T, < tg+dts,S > ¢)
= P(ty < T, <ty +dts)P(S > ¢)
= [f(t2;v(t2), c)(1 — Fis(c))]dtz

where the expression in square brackets defines the contribution to the
likelihood function for this case.
Case 3: Observe Z and a censoring time 7.
In this case we observe Z = t; and a censoring time 7 with ¢; < 7.
Furthermore, we have necessarily S < c¢. Thus

Pty <Tg < t1+dt;, T, > 7) = / Pty <Ts <ty +dty, T. > 7)fs(s)ds
0
= / P(tl < TS <t + dtl)P(Tc > T|T5 = t1)f5’($)d8

0
= ; ft1,v(tr), s)K(T —t1;0(1) —v(t1),c — s) fs(s)ds]dty

which defines the contribution to the likelihood function.
Case 4: Observe a censoring time 7 only.
The contribution to the likelihood function is clearly

PTs>71T.>7)=PT.>7,8>c)+PTs>71,5<c)

= P(T. > 7)(1 - Fs(c)) + /OC P(Ts > 7)fs(s)ds

— K(r;0(r).c)(1 - Fs(c)) + / " K(r;0(r). 5) fs(s)ds.

The complete likelihood for the data is now the product of the contributions
from each of the n observations, as given above.

3.5 Identifiability of the threshold model

In the following we will parametrize v(¢) by introducing parameters o > 0, § >
0 such that

v(t) = ot?, (10)
as suggested in Section 2.2. Let ¢ be the threshold corresponding to the ter-
minal event at time X. As already mentioned, the distribution of X is non-
parametrically identifiable in the semi-competing risks case. This is because X
is either observed or is censored by an independent censoring mechanism. In
Appendix (Section 8.2) we first prove identifiability of the parameters ¢, «, 8
from the distribution of X. Precisely, this means to show that the function
t — P(X > t) uniquely determines ¢, o, 3. We furthermore prove in the Ap-
pendix that the distribution of S conditional on S < ¢ is identifiable when ¢
and the parameters of the process X (t) are given.
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4 Analysis of a simulated data set

In order to illustrate the model, notation and method, we simulated a data set
using the threshold model with v(t) = at®, with o = 5,3 = 1, and threshold
¢ = 7. We further let S be lognormally distributed with log S being normal
with expectation g = 2 and standard deviation og = 0.25. We simulated n =
1000 realizations of the model. The distribution of the censoring time 7 was
chosen to be a gamma distribution with parameter values giving approximately
10% observations with X censored.

The resulting data consisted of 385 observations from Case 1, 494 from Case
2, 16 from Case 3 and 105 from Case 4 (see Section 3.3). Maximum likelihood
estimates and corresponding estimated standard errors (using a standard ap-
proach based on the Hessian matrix) are given in Table 2. As is seen from the
table, the estimated parameter values are quite close to the true ones.

Table 2 Simulated data. Maximum likelihood estimates of the parameters in the model
with lognormal S. In addition, the true values and estimated standard errors calculated
from the Hessian matrix.

Parameter  True value ML estimates  St. error

a 5 4.6975 0.5861
B8 1 1.0109 0.0522
c 7 6.7394 0.7506
us 2 1.9440 0.1113
os 0.25 0.2564 0.0195

== &)

o8

Fig. 2 Simulated data. True and estimated marginal survival functions Kz (¢) and Kx (t)
(left) and marginal hazard functions Az (t) and Ax (¢) (right).
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In the left panel of Figure 2 we have plotted the estimated and true
marginal survival functions, Kx (t) = K(¢t;v(t),c) and Kz(t), where the latter
is given by (6). The estimated curves are based on the estimated parameter val-
ues from Table 2. In the right panel of Figure 2 we plotted the estimated and
true marginal hazard functions, Ax(t) = f(¢;v(t),c)/K(t;v(t),c) and Az(t)
from (7). The true curves are close to the estimated ones.

Next, we plotted the nonparametrically estimated crude quantities F(t)
and A% (t), i.e., the estimated sub-distribution function and cumulative sub-
hazard rate of Z, in Figures 3 and 4, respectively. Here we used standard
methods from the literature, as reviewed in the Appendix (Section 8.3), see
(14) and (16). These curves, which do not depend on the choice of model, are
compared to the true functions, (8) and (9), respectively, as well as the ones
using estimated parameter values. As we can see from both figures, the curves
all match each other very well.

DE

Fig. 3 Simulated data. Parametric and nonparametric estimates of the sub-distribution
function for Z, F(t).

5 Case study: Analysis of the bone marrow transplant data

These data are collected from Klein and Moeschberger (1997), while they are
originally from a study by Copeland et al (1991). The dataset contains ob-
servations of 137 patients that have undergone allogeneic bone marrow trans-
plantation as treatment for acute leukemia. The terminal event in this case is
death, while the non-terminal event is cancer relapse. For more information
about the data and the study, see Klein and Moeschberger (1997). All times
are measured in days from the time of transplantation. In the dataset there
are 40 observations in Class 1, 41 in Class 2, 2 in Class 3 and 54 in Class 4.
Thus this data set is also small compared to the simulated data set.
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Fig. 4 Simulated data. Parametric and nonparametric estimates of the cumulative sub-
hazard rate for Z, A% (t).

In order to demonstrate that the threshold model may be an appropriate
model, we started by checking whether the data indicate that condition (2) is
reasonable. This is done in Figure 5, where the conditional survival functions

(15) are plotted. It can be seen that Sz(t) (thick line) < Sx(t) (thin line)
for most values of time, except possibly for ¢ < 100, where the difference is
however not very large. Thus we judge this to be a sufficient indication for
using the threshold model.

EN

Bty

|

T T T T
o 500 1000 1500 2000 2500

1

Fig. 5 Bone marrow transplant data. Nonparametric conditional sub-survival functions
gz(t) and gx(t)

The bone marrow transplant data were also studied by Fine et al (2001),
who assumed that the bivariate distribution of X and Z is a known copula,
more specifically a gamma frailty copula. Among other quantities, they esti-
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mated the marginal survivor function for the time to relapse. We will below
compare their curve with the one obtained by our model.

We first fitted the threshold model to the data again using a lognormal
S, obtaining the estimates fig = 2.490, g = 0.0401. Since 65/fis << 1 we
concluded that S might be better modeled by a normal distribution. In fact,
this led to much more trustworthy estimates of standard errors when using
the Hessian. The results from the maximum likelihood estimation procedure
in the normal case are shown in Table 3.

Table 3 Bone marrow transplant data. Maximum likelihood estimates of the parameters
in the model with normally distributed S. In addition, standard errors calculated from the
Hessian matrix

Parameter Estimate Standard error

o 1.9218 0.6373
8 0.1382 0.006
c 12.1376 1.3475

s 12.1620 1.3453

o5 0.5000 0.0799

In the same way as for the simulated data, we plotted in Figure 6 the esti-
mated marginal survival functions Kz(t) and Kx(t), as well as the estimated
marginal hazard functions Az (t) and Ax (¢). Unlike the plots in Figure 2, the
curves for X and Z are very close, which we believe is a coincidence to be
further discussed below.

The estimated density fs(s) is shown in Figure 7. From this we estimated
the probability Fs(c) of experiencing a relapse to be 0.4831. The fact that
this value is close to 0.5, and in addition the symmetry of the normal density
fs(s), may explain the strong similarity of the curves in Figure 6.

We next consider plots of the parametric and nonparametric estimates of
the crude quantities F(t) and A% (t), following the same procedure as for the
simulated example. The plots are given in Figures 8 and 9.

In general, the parametric curves seem to fit fairly well to the nonpara-
metric curves, although not as good as in the simulated example. We can see
that the nonparametric curves for both F;(t) and A% (¢) flatten out relatively
early, since the majority of the observations are for smaller values of ¢. Hence,
it might be difficult for the parametric estimates to match the nonparametric
ones very closely.

We finally compare the estimated marginal distribution of Z to the one
displayed by Fine et al (2001), see left panel of Figure 10. The survival function
estimated by Fine et al. flattens out more than the curves estimated with our
lognormal S model, which is probably caused by the relative lack of data with
t > 1000. Still, our estimated function is mostly inside the estimated 95%
confidence interval in the black dashed lines.

The right panel of Figure 10 is intended to give an indication of the variance
of the estimated curve. The purple curves are the estimates of Kz (t) obtained
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Fig. 6 Bone marrow transplant data. Estimated marginal survival functions Kz(t) and

Kx (t) (left) and hazard functions Az () and Ax (t) (right) with normal S
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Fig. 7 Bone marrow transplant data. The estimated density fs ©
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Fig. 8 Bone marrow transplant data. Parametric and nonparametric estimates of F(t)
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Fig. 9 Bone marrow transplant data.. Parametric and nonparametric estimates of A% (t)
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Fig. 10 Bone marrow transplant data. Estimated marginal survival function for the time
to relapse, Z, compared to the nonparametric estimate and 95% confidence intervals from
Fine et al (2001) (left). The same estimated curves, together with 50 estimated parametric
curves obtained by nonparametric bootstrapping (right).

from 50 nonparametric bootstrap samples. As is seen, we get a bunch of curves
with approximately the same width as the estimated confidence interval by
Fine et al.

To summarize, the comparison of the parametric and nonparametric esti-
mates for F}(t) and A% (¢) gave us some indication that the fit of the para-
metric threshold model is satisfactory. Further, we have seen that our estimate
for the marginal survival function of time to relapse, Z, was visually consis-
tent with that obtained by Fine et al (2001). This may be interpreted as an
indication of the usefulness of the suggested model.
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6 Some final remarks on the threshold model
6.1 Comparison to the illness-death model

An illness-death model is given by the three states, 0 = “Healthy”, 1 = “Dis-
eased”, 2 = “Dead”. Consider the threshold model given by a process D(t).
At time 0 we have D(0) = 0, and we can think of the unit starting in state 0
in the illness-death model. In order to explain the threshold model, we may
think that the random variable S is drawn at the start of the process. This
is non-problematic since S is independent of the process by definition. After
starting the process, the unit will remain in state 0 until time min(7Ts,T:),
when it moves to state 1 if S < ¢ and to state 2 if S > ¢. If it moves to 1, it
stays there until D(¢) crosses the level ¢. The sojourn time in state 1 (time to
death) will hence depend on the value of S, as well as the process D(t).

6.2 The role of the random threshold S

We may think of the threshold model as a model for the lifetime X of a unit,
with the possibility of a non-terminal event happening at time Z < X. The
occurrence or non-occurrence as well as the time of occurrence of the non-
terminal event are governed by the random variable S which hence can be
viewed as a way of modeling the tendency of the non-terminal event. Consider
now two different distributions for S, represented by two variables S; and .S5.
Then if S; is stochastically smaller than Sy we have P(S; < ¢) > P(S2 < ¢),
so the non-terminal event would have a larger probability of occurrence for
the distribution S; than for S, whatever be the threshold c. Moreover, in this
case we would have Tg, stochastically smaller than T,.

6.3 Dependence of the terminal and non-terminal event

We have earlier pointed to the dependency of X and Z. We are in fact able to
show that X and Z possess the strong property of positive dependence named
association (Esary et al, 1967). To see this, we use (Lindqvist, 1988, Theorem
6.1) to show that the process {D(t)} is an associated stochastic process. The
clue here is that the process has independent increments. Next, since for given
values s,¢ > 0, the pair (Ts,T,.) is decreasing as a function of the process
{D(t)}, we have that (Ts,T.) is associated. Finally, since (Ts,T.) is stochas-
tically increasing in s, we can conclude from (Lindqvist, 1988, Theorem 4.1)
that (Ts,T.) = (Z, X) is an associated pair. By the definition this means that
for any real functions f(t1,t2), g(t1,t2) which are increasing in each argument,
we have Cov(f(X, Z),9(X,Z)) > 0 and hence in particular Cov(X, Z) > 0.
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7 Variations and extensions of the model

In this paper we have presented a new approach to modeling of semi-competing
risks by means of first passage times of a stochastic process {D(¢)}. The time
to the non-terminal event equals to the first passage time to a stochastic level
S,while the time to the terminal event is represented by the first passage time
to a fixed level c¢. The two crucial assumptions are that S is independent of
the process {D(t)} and that the process {D(¢)} has independent increments.

To be explicit, we chose to consider a fully parametric model where the
process {D(t)} is a gamma-process and S is lognormally distributed. The
approach may be successfully modified by replacing these by other choices. For
example, the given model is close to the model considered in Lindqvist and
Skogsrud (2008) which considers a Wiener process with drift for {D(¢)}. Since
the distribution of S (conditional on S < ¢) is nonparametrically identifiable
(Section 11), we might in principle use any distribution for S. An interesting
project for the future would be to estimate the distribution of S (conditional
on S < ¢) nonparametrically.

A possibility that would flip the situation around, is to let S = s be fixed
while ¢ is random. This problem would be very similar to the one considered,
but the model interpretation would be different. For example, the conditional
sub-survival curve of Z would now need to dominate that of X, which was
not very likely in the two data examples. We have therfore not pursued this
option.

A different way of incorporating a random effect in the model, would be to
replace the scale parameter u by wu where w is a random effect (but which is
set to 1 in our model). Actually, this would not be too different from letting
one of the thresholds ¢ or s be random, since (4) shows that u always appears
together with the threshold in the distribution of the first passage time. On
the other hand, the randomness would affect both f7 (%) and f%(z), not just
one of them as in our case where only S is random. Thus, such a modification
would only affect the speed of the underlying process {D(t)} itself. Lawless
and Crowder (2004) and Paroissin and Salami (2014) study models of this
type.

For practical use it is of interest to include covariates in the model. There
are several ways in which this could be done. Aalen and Gjessing (2001) distin-
guish between two types of covariates: (i) those that only represent measures
of how far the underlying process has advanced (e.g., threshold level) and (ii)
those that have causal influences on the development (e.g., drift parameter in
a Wiener process). An option, studied by Lawless and Crowder (2004), is to
let the scale parameter u depend on a vector of covariates x, u = u(x). Alter-
natively, Bagdonavicius and Nikulin (2001) included covariates in their model
via an accelerated life test model, in our notation replacing v(t) by v(tepr).
This is however computationally more demanding. By letting u be a function
of covariates, the covariates affect the scaling of the degradation process only,
and not the shape function. A natural choice might be u(x) = exp(p’x) where
p is a vector of regression coefficients.
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Putting the covariates multiplicatively on wu is effectively the same as
putting them on the critical threshold ¢ or on s. As mentioned above in the
discussion of random effects, u and ¢ or s always appear together as the prod-
uct uw - c or u - s in the first passage time distribution. The scale parameter
u is the same in both f%(z;) and f5(z;), while the critical threshold is ¢ in
fx(z;) and sin f}(z;). Therefore, the covariates have quite different meanings
depending on which parameter they are assigned to.

For instance, consider including covariates in the parameter c. If we let
0 be the starting point of the underlying process for all units, we may use
covariates on ¢ to vary the threshold for the terminal event. For example it
might be natural to assume that a smoking patient with a heart disease may
reach the critical level faster than a non-smoker.

Covariates put on the threshold s on the other hand, provide information
about the treatment policy of the item. For example in medicine this level may
describe the level where a disease is diagnosed and treatment is started. Then,
patients who are examined more often are more likely to be diagnosed at an
early stage and have a lower level s than those that only rarely are examined.

To let v depend on covariates, has yet another implication. If the thresholds
¢ and s are both fixed, as well as the probability P(S < c), the covariates in
u tell us something about the overall speed of the process, i.e., both the time
until s is reached and until c¢ is reached.

There is a large number of other possibilities that may be explored. A pos-
sibility is to experiment with different shape functions for v(¢). An alternative
is for instance v(t) = e8¢ or even let the v(t) be a nonparametric function.
One could also let the parameters « or 3 in the shape function v(¢) be random
quantities. This is more computationally demanding and does not provide a
similar intuitive interpretation as letting a threshold parameter be random.
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8 Appendix
8.1 Joint density of (Ty,T.) for d < ¢
We will first calculate the joint density of (Ty, D(Ty)). This is done by integra-

tion of the joint density of (Tq, D(T, ), D(Ty)), which is given in (Kahle et al,
2016, Theorem 2.37). The result is, in our notation,

~ B e—zvl(t) v(t)—1
ft,z) = ) / dz

I'(v(¢) z—x
e () d*® (v(t)d o F1 (1, 0(t) + L;0(t) + 2;d/2) +v(t)z + 2)
- I(u(t)) v(t)(v(t) +1)z2

From this we get the joint density of (Ty, T.) for d < ¢,
f(tl, t2 y U(tl), U(tg), d, C)dtldtg) = P(tl S Td S tl + dtl,tg S Tc S t2 + dtg)

:/ Pty <Ty <t1+dt1,2 < D(Ty) < z+dz,ta < T, <ty +dia)

- {/ Pty < T. <to+dta| D(Ty) = z)dz} ditq

Il
\0

2 — fl; ’U(tQ) — ’U(tl), C — Z)d2:| dtldtQ

There is, however, also a possibility that the process crosses both d and c
at the same time, giving a tie between Ty and T.. In this case, the relevant
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density is

fltitr 5 v(t),v(th),d, c)dtidty) = P(ty < Tq < t1 +dt1,t1 < T, <ty +dty)
—P fl <Ty <t1+dt1,D(Td) >C)

U Fty, 2 dz] dty

In our computer calculations we have used the simplifying approximation
of the joint density of (Ty,T.), which assumes that D(Ty) = d and D(T.) = c.
In this case we have, for d < ¢,

f(ti,t2 5 v(ty),v(te),d,c)dtidts) = Pty < Ty <ty +dty,ta < T, <ty +dts)
=Pty <Ty <ty +dt)P(ta <T. <to+dta|Ty =t1)
= f(tl; ’U(tl), d)dtlf(tg — tl; ’U(tg) — ’U(tl), C — d)dtldtQ

8.2 Identifiability of the model

We first prove identifiability of the parameters c, o, 5 from the distribution of
X. Note that we have X = T,. Thus, from (4) we have,

P(X >t) = P(T. > t) = ~(v(t),¢)/T'(v(t)) (11)

where y(a,c) = foc 2% te=2dz. We first show as a digression that if ¢ is un-
known, then the function v(t) is not nonparametrically identifiable. This fol-
lows since in the right hand expression of (11) we may for any given ¢ > 0
solve for v(t) for cach fixed ¢. To see this, note from (11) that P(X > t)
equals P(W > ¢) where W ~ gamma(v(¢),1). Since the gamma distribution
is stochastically increasing in the shape parameter, here v(t), we may always
adjust the v(t) to get a given value for P(W > c¢).

Thus suppose instead that (10) holds. Now we use a result from Temme
(1975) to see that as a — oo we have

cte ¢

v(a,c)/I'(a) ~ Tata)

~ (27Ta)—1/26a—c <§)a '

Here the last expression is obtained by using Stirling’s formula. Letting a = at?
and taking the logarithm we get for large ¢,

log P(X >t) ~ —(1/2)log 2m — (1/2)loga — (1/2)Blogt + at® — ¢ + atP log ¢
— atPloga — atP Blogt (12)

Suppose now there is another combination of ¢, «, 3, denoted c*, o™, 8*, for
which the same P(X > t) is obtained for all ¢. Then letting ¢ — oo, the
dominant term in (12) is at®logt which hence must be equal for the two
parametrizations, implying 5 = 8* and hence also @ = a*. Finally, this clearly
implies ¢ = ¢* and we are done.
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For identifiability of the full threshold model, it remains to show that the
distribution of S conditional on S < c is identifiable when ¢ and the param-
eters of the process D(t) are given. We are in fact able to show that this
distribution is nonparametrically identifiable for any given v(¢) and ¢, which
we for simplicity will assume to be strictly increasing and continuous, with
v(0) = 0, v(0c0) = oo. Suppose first that ¢ = 0o, so that T is always observed.
We will show that the distribution of Tls uniquely determines the distribution
of S. Now

P(Ts > t) = P(S > D(t)) = E[P(S > D(t)|D(1))] = E[Fs(W)]  (13)

where W ~ gamma(v(t),1) and Fs(s) = P(S > s). Since this is to hold for
all t > 0, from the fact that the family of W ~ gamma(6, 1) is a complete
family of distributions, it follows that Fg is uniquely given and hence that
the distribution of Ts uniquely determines the distribution of S (Casella and
Berger, 2002, Chapter 6.2).

Next, for a given ¢ < co we need to show that the (observable) distribution
P(Ts > t|S < ¢) uniquely determines the distribution P(S > s|S < ¢). This
follows directly from the above argument which had ¢ = oo by considering
only distributions for S with support in (0, c).

Note finally that (13) is a result of interest in itself if the distribution of
the threshold S is given and one wants the distribution of Tg. Paroissin and
Salami (2014) consider the cases where S is, respectively, exponentially and
gamma distributed.

8.3 Nonparametric estimation of crude quantities.

Consider competing risks with latent variables X and Z. Suppose that n units
are observed, either until (independent) right censoring or until time 7' =
min(X, Z), whatever comes first. Let ¢; < ... < t; be the sorted event times,
i.e., observations of T Let further S(-) be the Kaplan-Meier estimator of the
survival function of T'. Then the so-called Aalen-Johansen estimator of the
sub-distribution functions are (Borgan, 1998):

15t <t i
. G, 0iZ
P = 3 80 (14)
it <t v
Here n; is the number at risk at time ¢; while d;x = 1 (d;z = 1) if the

observation at time ¢; is an X (Z). The natural estimates of the conditional
sub-distribution functions Fx (t) and Fz(t) are hence

F(t) = F*X((t)) and  Fy(t) = et (15)
x o0 zZ\©
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With the same notation we have nonparametric estimates of the cumulative
cause-specific hazard functions for the two risks given by

I= Y 2

n
it <t ¢

=3 %2 (16)

n
it <t




