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ABSTRACT
Motivation: Signal transduction cascades governing cell functional
responses to stimulatory cues play crucial roles in cell regulatory sys-
tems and represent promising therapeutic targets for complex human
diseases. However, mathematical analysis of how cell responses are
governed by signaling activities is challenging due to their multivariate
and non-linear nature. Diverse computational methods are potentially
available, but most are ineffective for protein-level data that is limited
in extent and replication.
Results: We apply a decision tree approach to analyze the relation-
ship of cell functional response to signaling activity across a spectrum
of stimulatory cues. As a specific example, we studied five intracel-
lular signals influencing fibroblast migration under eight conditions:
four substratum fibronectin levels and presence versus absence of
epidermal growth factor. We propose techniques for preprocessing
and extending the experimental measurement set via interpolative
modeling in order to gain statistical reliability. For this specific case
study, our approach has 70% overall classification accuracy and the
decision tree model reveals insights concerning the combined roles
of the various signaling activities in governing cell migration speed.
We conclude that decision tree methodology may facilitate elucidation
of signal–response cascade relationships and generate experiment-
ally testable predictions, which can be used as directions for future
experiments.
Contact: sampsa@mit.edu

1 INTRODUCTION
Physiological cell behavioral functions, such as proliferation, death,
differentiation and migration, are governed to a large degree by
networks of signaling proteins whose activities are influenced by a
variety of extracellular cues: environmental agents such as chemical
ligands, mechanical forces, radiation, toxins, pathogens and so forth.
Dysregulation of these networks is often associated with inappropri-
ate cell and tissue behavior, so that signaling cascades are considered
to be promising therapeutic targets for complex pathologies such as
diabetes, cancer, and inflammatory diseases (Lodish et al., 2004).

Quantitative experimental measurement of cell signaling pro-
tein properties—i.e. their levels, states (phosphorylation, cleaveage,
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etc.), activities, locations—is more challenging, relative to gene-
level measurements, to undertake in highly multivariate fashion.
Consequently, while measurement of mRNA expression for hun-
dreds and thousands of genes across a spectrum of conditions has
become common place, analogous measurement of protein proper-
ties as listed above remains limited to the order of tens at best. A
critical consequence of this situation is that many of the informatics
methods by which computational analyses of genomic data are now
being typically pursued are not readily applicable to proteomic (if
that term can be used properly for coverage of only about tens of pro-
teins) data. This is the problem that our effort here is directed toward
addressing: finding appropriate computational techniques to elucid-
ate useful models of the relationships between protein signals and
cell functional responses to extracellular cues given the quantitative
data across diverse conditions.

As a motivating case study, we consider cell migration, which
is a central biological process in several pathological states such as
tumor invasion as well as physiological ones such as wound heal-
ing (Ridley et al., 2003). Migration can be strongly influenced by
both soluble environmental cues (e.g. growth factors and cytokines)
and insoluble substratum cues (e.g. extracellular matrix proteins). In
our specific experimental problem, we are studying the migration of
tissue fibroblasts in response to four levels of surface fibronectin (Fn)
concentrations in the absence or presence of epidermal growth factor
(EGF), offering eight cue conditions. Fn is a ligand for integrin adhe-
sion receptor-mediated signaling pathways and it has been shown to
significantly effect migration of fibroblasts as well as other cell types
including many tumor cells (Wells et al., 2002). EGF also exhibits
a strong influence on migration of normal tissue cells, including
fibroblasts, and various types of cancer cells, via signaling path-
ways mediated by EGF receptor (EGFR) (Maheshwari et al., 1999).
Indeed, the EGFR system has been associated with the develop-
ment and progression of a large number of tumors and is one of
the most prominent pathways for therapeutical targets in human can-
cers. Furthermore, integrin and EGF pathways have been identified to
crosstalk during cell migration, so it is highly relevant to study them
together. While a very large number (in the dozens, easily) of signal-
ing proteins downstream of integrins and EGFR potentially involved
in regulation of migration can be identified, our experimental meas-
urements focus here on the following five which have been shown
to be among the key molecular switches in the motility signaling
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cascades: EGFR itself, extracellular-regulated kinase (ERK), myosin
light chains (MLC), protein kinase Cδ (PKCδ) and phospholipase
Cγ (PLCγ ). These signaling proteins play significant roles in driv-
ing major biophysical processes, such as lamellipod protrusion,
cell/substratum attachment and detachment, and cell contractile force
generation and transmission, which underlie the net cell migra-
tion behavior (Lauffenburger and Horwitz, 1996). Our experimental
measurements are accomplished by quantitative immunoblotting, a
standard but laborious procedure that typically limits the number
of proteins and conditions which can be examined for any given
situation under normal (at least academic laboratory) circumstances.

Many data-driven modeling approaches aim at finding correlations
or cause–effect relations between genes or proteins. The result-
ing model is usually validated by comparing selected parts of the
modeled relations with the literature or with additional biological
experiments without considering how good the model is for predict-
ing outcomes of biological processes. In contrast, we are seeking
to achieve two objectives in our analysis of signal transduction
cascades. The first objective is to build a model from which the
most relevant signaling proteins in regard to response can be identi-
fied. The second objective is to assess prediction accuracy of the
model. The algorithmic methodology with which we propose to
accomplish these goals is decision tree modeling. Often, as in the
present case, the experimental data are noisy and the amount of
observations is inadequate for dependency modeling or prediction.
Therefore, before analyzing the data with decision trees, the data
should be preprocessed and, if the amount of the data is insufficient
for robust analysis, interpolative simulation of additional, internally
consistent data points might be considered as a computational aid.

The order of this study is as follows. First, we discuss an analysis
of variance (ANOVA)-based quality control approach, a minimum
description length (MDL)-based polynomial fitting method to sim-
ulate data points and prediction with decision trees. Second, we
apply these approaches to a case study, where we aim at classifying
cell migration speed using phosphorylation levels of five signaling
proteins.

2 APPROACH
In this section, a strategy to analyze a signal transduction cascade
in regard to a cellular outcome is presented. Depending on how the
signaling protein activation levels are measured, the resulting data-
set is practically always noisy. Therefore, data quality control and
normalization are imperative along the course of signal transduc-
tion cascade analysis. In Section 2.1 we present a quality control
protocol for replicate measurements. In Section 2.2, we create addi-
tional data points via interpolating polynomial models that are chosen
according to the MDL principle and undertake validation efforts in
Section 2.3. A procedure for constructing decision tree models is
described in Section 2.4 and the experimental methods including
data preprocessing are summarized in Sections 2.5 and 2.6.

2.1 Quality control
A topic that has been somewhat neglected in several systems biology
studies is data quality control. The objective of the quality control
step is to identify samples that are aberrant due to non-biological
reasons (e.g. technical or measurement errors). If such outliers are
not identified, they may confuse the analysis method and result in
wrong conclusions. On the other hand, a stringent quality control

criterion and discarding of outliers without careful consideration can
cause loss of valuable information. Therefore, measures taken after
identifying an outlier sample should be dependent on the reasons for
the sample’s aberrance.

Here, we present a statistical quality control algorithm for datasets
consisting of multidimensional samples with replicates. Let vector
pj

i ∈ R
n×1 contain i-th set of replicate measurements for j-th sample

and let rj denote the number of the replicate measurement sets for

j-th sample. Further, we define µ
j

i as the expected value of pj

i . Here
n is the same across all the samples but the algorithm below allows
missing values. In our case study, there are four fibronectin levels for
each EGF level and since the EGF levels are dealt with separately
until decision tree analysis, n = 4 for each pj

i . Now, outlier replicate
samples can be found using the following ANOVA-based algorithm:

For j-th sample
(a) Test H0 : µ

j

1 = µ
j

2 = · · · = µ
j
rj with a one-way ANOVA and

perform a multiple comparison for the ANOVA results using
the Tukey-Kramer test (Hochberg and Tamhane, 1987) with
significance level α.

(b) If any of the replicate samples is aberrant, flag it according to
the following rules:
R1 If a sample is statistically different from two or more

samples, flag the sample.

R2 If there are several samples that could be flagged with R1,
or two samples are statistically different, flag the sample
whose deletion gives the minimum standard deviation for
the means of the remaining samples.

Repeat (a) and (b) until H0 is not rejected.

Repeat until all samples are processed.

The crux of the above algorithm is the ANOVA with the Tukey–
Kramer multiple comparison test (Hochberg and Tamhane, 1987). In
general, the following assumptions are needed for the ANOVA:

(1) Samples are independent.

(2) Variances are constant across the samples.

(3) Observations are approximately Gaussian distributed.

As the quality control algorithm is applied to identify outliers
among replicates and the replicates are usually measured with the
same or similar kind of apparatus, it is reasonable to assume that
variances are approximately the same. Further, except in cases of
failures to clean or calibrate the measurement apparatus after use,
samples should be independent. The ANOVA is not very sensitive
to violations of the normality assumption, so the normality assump-
tion is not a major one. Moreover, often several independent sources
affect the measurements and inline with the central limit theorem
the data tend to be approximately normally distributed. The assump-
tions behind the ANOVA are usually fulfilled in biomedical research,
so ANOVA-based quality control algorithm could be applicable to
many experimental setups.

2.2 Parametric model for the data
An insufficient number of data points relative to the number of vari-
ables and interaction processes may impede or prevent identification
of dependencies among the variables. A solution to this problem is
to create a parametric mathematical model based on the data at hand,
which is then used to interpolatively simulate additional data points
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so that dependencies between variables can be modeled and used in
prediction. It is imperative to emphasize that the objective of this
approach is to merely generate multiple realizations of pseudomeas-
urements that are internally consistent with the statistical distribution
of the actual measurements, rather than creating new information in
an extrapolative manner.

If a preprocessed dataset consists of several replicates, it may be
worthwhile replacing replicate observations with a single value that
is the most plausible value given the data. This value is referred
to as a point estimate. Traditionally, the point estimator is chosen
to be (arithmetic) sample average because it is the best linear
unbiased estimator for Gaussian distributed data and error estim-
ates are straightforward to calculate. However, the breakdown point
for the sample average estimator is 1/n, where n denotes the number
of data points, meaning that even one outlier might drastically affect
the point estimate. This is highly undesirable and therefore we use
the median, which has a breakdown point of 1/2, as a point estimator.

One drawback with the median is that deriving error estimates
analytically may be difficult. This drawback can be overcome with
bootstrapping (Efron and Tibshirani, 1994): First, create B boot-
strapping samples and compute median value for each bootstrapping
sample. Error estimate for a point estimate is standard deviation of
the bootstrapped medians.

Common trends for biological processes include linear, biphasic or
asymptotically plateauing dependencies on a given variable. Several
of these trends can be captured using polynomial models that have
several benefits:

• Reliable polynomial modeling can be done with a relatively
small sample size while still capturing highly non-linear trends.

• Polynomial modeling is not confounded by a few missing
values.

• Discontinuous trends can be modeled with piecewise polyno-
mials.

• Polynomial fitting procedures, such as least squares and
maximum-likelihood methods, are included in practically every
statistical modeling software.

• Simulation of the polynomial model is straightforward and fast.

For data simulation we assume the following model for i-th value
of j -th observed variable such as the migration speed or a signaling
protein:

g2(yi(j)) = fp(j)(g1(xi(j))) + εj , (1)

where xi(j) denotes i-th experimental condition (e.g. the level of
fibronectin and the absence or presence of EGF) for j -th variable,
fp(j)(·) is p-th order polynomial for j -th variable with paramet-
ers βT

p(j) = [βp(j), βp−1(j), . . . , β0(j)], g1,2(·) are transformation
functions and εj is an error term. For example, when p = 2
and g1 and g2 are identity functions, yi(j) = f2(j)(xi(j)) + εj =
β2(j) · x2

i(j) + β1(j) · xi(j) + β0(j) + εj . Although transformation
functions are usually identity functions, sometimes it is benefi-
cial to perform the fitting in log-space (g1(xi(j)) = log(xi(j))) or
in log–log space (g1(·) = g2(·) = log(·)). In general, experimental
conditions may vary between the variables and, therefore, quantities
in Equation (1) depend on j . In the subsequent discussion, however,
the subscript j is dropped for notational convenience.

The challenge with polynomial modeling is to choose the order of
the polynomial (p) that describes the data best without overfitting.
In order to solve this problem we use the MDL principle (Rissanen,
1978). The basic idea behind the MDL principle in model selection is
to find the model that gives the minimum stochastic complexity rel-
ative to the model class (Rissanen, 1998). Stochastic complexity can
be understood as a measure of the goodness-of-fit of a model based
on the model’s ability to compress the data, given a model class. As
statistical inference is viewed as a data compression problem, there
is no need to assume underlying, ‘true’ data generating distributions.
Therefore apart from choosing the model class, there is no need to
make subjective assessments.

To be more precise, we use normalized maximum-likelihood
(NML) approach (Rissanen, 2000), which follows when the MDL
principle is applied to the maximum-likelihood estimation. Let
γ ∈ � be a restricted set of indices for the current polynomial order
k and Xγ ∈ R

n×k be a matrix of predictor values with indices γ . For
example, when k = 2 (line fitting) in our case study, the first column
of Xγ is [0.1 0.3 1 3]T and the second, 1.

We assume that εj ∼ N (0, τ), so the response data (y =
y1, . . . , yn) are also Gaussian distributed with density function
f (y; γ , β, τ) = 1/(2πτ)n/2 exp(−1/(2τ)

∑
i (yi − βTxi )

2). Thus,
maximum-likelihood solutions for a fixed γ are

β̂(y) = Z−1XT
γ y, (2)

τ̂ (y) = 1

n

∑
i

(yi − β̂(y)Txi )
2, (3)

where Z = XT
γ Xγ = n

∑
γ . In the subsequent discussion the

subscript γ is dropped.
The maximum-likelihood estimates are used to obtain the NML

density function

f̂ (y; γ ) = f (y; γ , β̂(y), τ̂ (y))∫
Y (τ0,R)

f (z; γ , β̂(z), τ̂ (z))d(z)
, (4)

where y is restricted to the set Y (τ0, R) = {z|τ̂ (z) ≥ τ0,
β̂(y)T ∑

β̂(y) ≤ R}. Parameters τ0 and R are determined so that
the maximum-likelihood estimates are within Y (τ0, R).

The NML density function is unique solution to the minmax
problem

min
q

max
y

ln
f (y; γ , β̂(y), τ̂ (y))

q(y)
, (5)

where q range over any distributions (Rissanen, 2000). Therefore,
solving f̂ (y; γ ) results in the best model for the data relative to the
chosen model class. Evaluation of Eq. 4 (for details, see Rissanen,
2000) gives the final decomposition for finding the best polynomial
order:

min
γ∈�

{
(n − k) ln(τ̂ (y)) + k ln(nR̂)

+ (n − k − 1) ln

(
n

n − k

)
− (k + 1) ln(k)

}
, (6)

where R̂ = β̂T(y)	β̂(y). In our case study, the NML criterion
[Equation (6)] is used to find the best polynomial order (p).
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After finding the best polynomial order, the parameters for that
model are derived from Equation (2) and these are taken to estimate
β. In addition to estimating the parameters for fp in Equation (1), it
is necessary to have an estimate for the standard deviation for εj . One
way to get this is to first pool individual bootstrap error estimates:

s
(pooled)

j =
√∑n

i (ri − 1) · s2
i∑n

i ri − n
, (7)

where si is a bootstrap error estimate and then either use s
(pooled)

j

directly or squared.

2.3 Validation of the parametric models
After a parametric polynomial model is constructed with the NML
procedure, it is useful to check how good the model is for the ori-
ginal measurements. Since we assume the data to be approximately
Gaussian, the goodness of the model can be checked by consider-
ing a Gaussian distribution whose mean is the simulated value and
the standard deviation is obtained via Equation (7). If each point
estimate is located close to the mean and, for example, not above or
below 2.5% of the right and left tails, the model can be considered
statistically feasible.

It may also be useful to perform statistical tests such as the Z-test
to test whether the point estimate (or original measurements) could
originate from the model. If several point estimates belong to the
extreme ends of the distribution, doubt may be cast over the validity
of the model.

2.4 Finding dependencies between variables with the
decision tree analysis

The majority of the studies in the field of systems biology aims at
finding dependencies between variables. These models are, however,
rarely used to predict the outcomes of cellular processes. In this
section, we provide means to achieve both of these objectives with
decision trees (Breiman et al., 1984). Decision trees have several
advantages used in biomedical research:

(1) Decision trees can be effectively applied to any data structure,
in particular to discrete, continuous or mixed data.

(2) Decision trees are capable of resulting in good prediction
accuracies for highly non-linear prediction problems.

(3) Prediction rules are easy to interpret.

(4) Decision trees perform a stepwise variable selection and
complexity reduction.

(5) Decision trees are very robust against outliers.

The basic idea behind the decision trees is to first identify pre-
diction rules from the data and then illustrate them as a binary tree
where each terminal node (leaf) corresponds to a class and the other
nodes represent measured variables. An example of a rule is ‘IF the
phosphorylation level of ERK is high AND the phosphorylation level
of MLC is high THEN cells migrate at medium speed.’ This rule can
be readily seen in Figure 5. The rules are constructed by recursively
splitting the data into smaller and smaller regions so that after each
split the new data subset is ‘purer’ than the old data subset (Breiman
et al., 1984). A pure decision tree predicts all the classes in the train-
ing set correctly. In real world applications a pure (or close to pure)
decision tree is very large and almost surely suffers from overfit-
ting. Thus, a decision tree is usually constructed in two phases. The

first phase, tree growing, is done until splitting does not significantly
improve the measure of purity. The second phase, tree pruning, is
done in order to avoid overfitting. Here, we use the cost–complexity
pruning approach (Breiman et al., 1984) because we are able to cre-
ate a separate pruning dataset. Briefly, the tree pruning phase starts
with a very large (overfitted) decision tree. The cost–complexity
pruning method selectively produces a sequence of subtrees until
only the root node is included in the subtree. In the cost–complexity
pruning approach the sequence of subtrees is achieved by minimiz-
ing the sum of misclassification cost and the complexity of the tree.
For detailed discussion on the tree growing and the cost–complexity
pruning methods we refer to Breiman et al. (1984).

In general, decision trees suffer from two drawbacks: masking
and instability (Breiman et al., 1984). Masking may occur if the
relation between class (migration speed) and measured variables
(signaling proteins) is very complex. In this case a variable may
be partially duplicated by another variable and if two variables result
in almost equally pure subsets, the level of noise may govern which
variable is used in the splitting. If this happens in the early phase
of tree growing, the two decision trees may look dissimilar poten-
tially impeding the interpretation of the results. In addition, masked
variables may not show in the decision tree thereby hindering the
understanding of the results. These drawbacks are further discussed
in Section 3.2.

2.5 Signaling protein experiments
We used NR6 mouse fibroblasts for our studies. These cells are
derived from the 3T3 lineage and are devoid of endogenous EGFR.
We have overexpressed human EGFR in these cells, hence referred
to as NR6 wild type (NR6 WT), and they provide an excellent model
system to study EGFR mediated signaling events as well as cellu-
lar biophysical processes like migration. An equal number of NR6
WT cells were plated on fibronectin coated surfaces and allowed
to grow in alpha modified eagle’s medium containing 7.5% fetal
bovine serum (FBS) for 24 h, by which time cells reached about
90% confluence. Fibronectin coating concentrations of the surfaces
were 0.1, 0.3, 1 and 3 µg/ml (Fn ∈ {0.1, 0.3, 1, 3}). Subsequently,
cells were quiesced in a medium containing 0.5% dialyzed (with
minimum growth factors) FBS for another 24 h, to remove the effect
of exogenous growth factors present in the serum. Cells were either
lysed in the quiescent medium without any exogenous human EGF
or stimulated with 10 nM (saturating concentration) of human EGF
for 5 min. In the subsequent discussion, 0 nM EGF and 10 nM
EGF conditions are denoted with EGF = 0 and EGF = 1, respect-
ively. After stimulation, cells were washed once with ice-cold PBS,
and then lysed in lysis buffer containing 50 mM HEPES, pH 7.4,
150 mM NaCl, 1% Triton X-100, 1 mM Na Vanadate and 10%
glycerol supplemented with protease inhibitors including 1 µg/ml
Leupeptin, 1 µg/ml Aprotinin and 1 mM Phenylmethylsulfonyl-
fluoride (PMSF). Cell lysates were quantified using Biorad protein
assay. An equal amount of total proteins were mixed with the loading
buffer containing 4% SDS (w/v), 0.1 M Tris–HCl, pH 6.8, 20% gly-
cerol, 0.2% Bromophenol blue and 5% β-mercaptoethanol, boiled
for 5 min and then loaded on either 7.5% (for analysis of pPKCδ,
pERK, pEGFR, pPLCγ ) or 15% (for pMLC) SDS polyacrylamide
gels. Cell lysates were resolved by electrophoresis and subsequently
transferred onto nitrocellulose membranes, after which membranes
were immunoblotted with specific antibodies to detect the specific
proteins or their activated phospho-protein forms.
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Fig. 1. Two immunoblotting bands for MLC. All Fn and EGF conditions
with the non-normalized values are shown.

2.6 Data preprocessing
Immunoblots were quantified with the NIH image analysis densito-
metry software. The software generates a plot area for each protein
band, the density of which represents the amount of the protein in
each lane. In the signaling protein experiments, the quantitative val-
ues generated represented the activated status of a protein since the
proteins detected were in their activated or phosphorylated state.
Examples of two immunoblotting bands are given in Figure 1.

For the NML and decision tree analysis, the band densities were
normalized by the value of the first lane (Fn = 0.1 and EGF = 0)
for each immunoblot (between-band normalization). After this nor-
malization, results become comparable between immunoblots since
the experimental conditions in each of the experiments were kept
constant. For quality control, the bands were within-band normal-
ized: all protein conditions in a band without exogenous EGF were
normalized by the value with EGF = 0 and Fn = 0.1, while all
protein conditions in a band with exogenous EGF were normalized
by the value with EGF = 1 and Fn = 0.1. The within-band normal-
ization ensures that proteins under the same EGF condition within a
band are comparable. Prior to normalization all basal values <250
were converted to 250 in order to prevent division by a small value
that is likely due to noise. After normalization, all the values were
log2-transformed.

Normalization was followed by the ANOVA-based quality control
approach (Section 2.1) with α = 0.05. An example of a quality
control plot for MLC is given in Figure 2. Replicate 8 (marked with a
star) is aberrant from the seven other replicates and is discarded. Also
replicate 2 is discarded due to rule R1 given in Section 2.1. Replicates
1 and 8 correspond to bands A and B in Figure 1, respectively. The
numbers of the replicates before and after the quality control are
given in Table 1.

3 RESULTS
Cell migration is a crucial cellular function that contributes, for
example, to wound healing and normal immune responses. On the
other hand, migration drives progression of diseases such as tumor
invasion and metastasis (Ridley et al., 2003). In general, migration
consists of a complex assembly of five biophysical processes: polar-
ization, protrusion, adhesion, contractility and retraction. While the
effects of biophysical processes to migration speed are somewhat
well-known, the effects of signaling proteins that govern these pro-
cesses and their dependencies are less so. In this section, we explore

Fig. 2. An example of quality control plot for MLC (EGF = 0). A circle
denotes a mean and a line corresponds to a comparison interval. Replicate 8
(marked with a star) is aberrant from all the other replicates and is discarded.
Replicates 1 and 8 correspond to bands A and B, respectively, in Figure 1.

Table 1. The number of the replicates for signaling proteins before and after
the quality control

Protein EGF = 0 EGF = 1 Total

EGFR 7 7 8
ERK 5 8 8
MLC 6 5 8
PKCδ 7 6 8
PLCγ 5 5 5

how five signaling proteins (EGFR, ERK, MLC, PKCδ and PLCγ )
affect cell migration speed under combinations of two extracellular
cues using the methods discussed in Section 2.

The cues used here are four different surface fibronectin concen-
trations with or without additional stimulation with EGF. Earlier
studies (Maheshwari et al., 1999) have shown that if migration speed
is measured as a function of fibronectin levels, presence or absence
of EGF has a dramatic impact on migration speed. If EGF is present,
migration speed is biphasic, while in the absence of EGF, cells
migrate at a constant speed. The data in Maheshwari et al. (1999)
consist of four fibronectin-levels for 0 and 25 nM EGF, resulting
in eight measurements. Accordingly, we measured the phosphoryla-
tion levels of the five signaling proteins using the same condition for
EGF = 0 (0 nM EGF) as in the study by Maheshwari et al. (1999).
For condition EGF = 1, we used 10nM EGF for the signaling pro-
teins, while it was 25 nM (Maheshwari et al., 1999). Since both 10
and 25 nM EGF are identical in motility and both are saturating, the
data for signaling proteins and cell migration speed are comparable.

3.1 Parametric model for the signaling proteins and
migration speed

Having four observations per one EGF-level is not enough for reli-
able identification of dependencies between the signaling proteins
and migration speed. Therefore, we applied the procedure given in
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Table 2. Polynomial estimates (β̂) and standard deviation estimates (σ̂ )
for signaling proteins under presence and absence of EGF using the NML
criterion

Protein β̂EGF=0 σ̂EGF=0 β̂EGF=1 σ̂EGF=1

EGFR 0.24x − 0.02 0.10 1.9 0.15
ERK 0.51 0.25 4.1 0.20
MLC 0.20 0.04 0.08x + 0.48 0.04
PKCδ 0.06 0.06 0.32 0.04
PLCγ 0.36x − 0.86 2.6 0.22x + 2.38 0.38

Section 2.2 to generate additional, interpolative data using simu-
lation. Before applying the NML approach, we computed median
phosphorylation levels for the signaling proteins using the replicate
measurements. Each median value was accompanied with an error
estimate that was computed with bootstrapping (B = 5000).

Due to the small number of the data points we restricted the max-
imal polynomial degree in the NML approach to 2, i.e. � = {0, 1, 2}.
Further, the polynomial models were constructed separately for the
values under the conditions of EGF = 0 and EGF = 1. Polynomial
orders for the signaling proteins using the NML criterion are given in
Table 2. An example of the polynomial models and associated point
and error estimates for MLC and ERK is given in Figure 3.

Standard deviations and point estimates for migration speed are
given in Maheshwari et al. (1999). We computed pooled standard
deviation with Equation (7), where we made a conservative approx-
imation that rj = 70 since the estimates were based on 70–100
cells. The pooled standard deviations were 3.0 for EGF = 1 and
3.4 for EGF = 0. Polynomial fitting for migration speed was done
in log–log space based on the model validation procedure depic-
ted in Section 2.3. For EGF = 1 the polynomial order was two
(−0.49x2 + 0.07x + 5.8), while for EGF = 0 it was zero (4.1). As
our objective is to predict slowly, at medium speed or fast migrat-
ing cells, the values were further discretized into three categories
({slow, medium speed, fast}) using the Lloyds algorithm (Lloyd,
1982), where the training data were obtained from the noise-
less polynomial model. The model, discrete categories, simulated
data and the original measurements for migration speed are shown
in Figure 4.

3.2 Decision tree for migration speed
Using the polynomial models we simulated observations between
Fn = 0.1 and Fn = 3 using � = 0.0001 resulting in 58 002
observations per variable. The protein phosphorylation values were
discretized with the Lloyds algorithm so that the number of the
discrete categories equaled the number of parameters in the poly-
nomial models for each protein: EGFR = {0, 1, 2}, ERK = {0, 1},
MLC = {0, 1, 2}, PKCδ = {0, 1} and PLCγ = {0, 1, 2, 3}. With
this discretization approach the proteins that are affected more by
the extracellular stimuli, and thereby considered more informative,
are described with more discretization categories than the proteins
with lower polynomial degrees. Discrete categories reflect relative
phosphorylation levels. For example, ERK and MLC have two and
three discrete categories, respectively. Thus, ERK = 1 denotes that
ERK is highly phosphorylated, while MLC = 1 means that the
phosphorylation level of MLC is medium.

In order to overcome the instability problem with the decision
trees we first constructed 10 000 decision trees without pruning. The
parameters for growing the decision trees were as follows. Splitting
criterion was Gini-index (Breiman et al., 1984), prior probability for
i-th class was obtained by dividing the number of the cases of i-th
class by the total amount of observations and the minimum number of
observations for impure nodes to split was set to be five. We defined
the misclassification costs to be such that for misclassifying a slow
(medium) speed to medium speed (fast) the cost is one, but if slow
speed is misclassified to fast, the cost is two. This resulted in the
following cost matrix


0 1 2

1 0 1
2 1 0


 ,

where each row and column corresponds to a migration speed
category.

After the tree growing phase, all 10 000 trees were pruned with the
cost–complexity pruning method (Breiman et al., 1984). For the val-
idation step we created 1000 datasets. For computational reasons �

was set to be 0.001, so each validation and pruning dataset consisted
of 5802 observations. The following criterion was used to choose the
best tree model:

D = 1

T

T∑
i

|yi − ŷi |, (8)

where yi denotes true classes for i-th test dataset, ŷi denotes predicted
classes and T is the number of test datasets (here 1000). After the
pruning and validation, there were 23 separate decision tree models
and the best decision tree was the one that minimized Equation (8).
Although the best decision tree is chosen using Equation (8), we
report also the mean classification accuracy (CA), which is the mean
of the classification accuracies across 1000 test cases. Classification
accuracy corresponds to the number of correct classifications divided
by all cases.

The best decision tree (CA = 70%) is given in Figure 5. Round
nodes correspond to the signaling proteins and square nodes to the
migration speed classes. Classification rules and their relative import-
ance can be seen easily from the decision tree in Figure 5. For
example, IF ERK = 1 AND MLC = 1 THEN cells migrate fast,
and 62% of the measurements for the fast migration class (in the
training set) can be explained by this rule.

If the signaling proteins were not discretized, the best decision
tree consists of only MLC and PLCγ (data not shown) and CA was
slightly below 70%. Based on this decision tree graph, it could be
argued that cell migration speed is dependent only on MLC and
PLCγ and ERK is irrelevant when predicting cell migration speed.
However, earlier studies have shown that ERK is one of the key sig-
nals governing migration speed (Glading et al., 2000; Matsubayashi
et al., 2004; Webb et al., 2004), so its absence in the decision tree
model was unexpected. When we looked for explanations for the
exclusion of ERK we found that ERK was masked by MLC. This
can be seen by comparing data for ERK and MLC in Figure 3.
When EGF = 0, both ERK and MLC are constant with approxim-
ately the same level of phosphorylation. However, when EGF = 1,
phosphorylation levels for ERK are again almost constant but very
high, whereas MLC activity is increasing linearly. Thus, the decision
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MLC (EGF = 1)

MLC (EGF = 0)

ERK (EGF = 1)

ERK (EGF = 0)

Fig. 3. Point estimates, cross; upper, triangle and lower, inverted triangle error estimates and fitted polynomial for ERK and MLC across the fibronectin levels.

tree growing algorithm considered ERK was not of use in migration
speed classification given MLC, which was undesirable. While some
guidelines for detecting masked variables are given in Breiman et al.
(1984), these are not helpful in getting the masked variable into the
model.

This case study provides a proof-of-principle that the proposed
data-driven modeling approach is applicable to biomedical research.
Accordingly, detailed discussion on biological implications of the
results is out of the scope of this study and will be elaborated else-
where (manuscript in preparation). Briefly, ERK and MLC regulate
the adhesion/contraction ratio (Iwabu et al., 2004; Webb et al., 2004),
which is one of the most important biophysical processes during the
migration cycle (Lauffenburger and Horwitz, 1996). Thus, it is not
surprising that these two proteins together represent useful predictors
for migration speed. This result also suggests that in further studies,
ERK and MLC should be studied together rather than individually.

4 DISCUSSION
Analysis of signal transduction cascades is an important application
in several biomedical research studies. In this study we have presen-
ted a data-driven modeling approach to perform such analysis. In
our case study we have applied the modeling approach to model and
predict whether cells are moving slowly, at medium speed or fast,
using a set of intracellular signaling proteins under various levels of
fibronectin and EGF cues. The resulting decision tree graph indic-
ates that the phosphorylation level of ERK alone shows whether cells
are migrating slowly. In order to obtain higher classification accur-
acy for the cells migrating at medium speed or at fast speed, MLC,
PLCγ and PKCδ are also needed. These results highlight the central
idea of systems biology, i.e. complex biological processes cannot be
analyzed by perturbing only one component at a time but there is a
need to study several components simultaneously. However, usually
it is not known what these components are. Our results indicate that
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Fig. 4. Polynomial fit (solid line), discretization categories (dotted line),
original observations (cross) and simulated, noisy data (dots) for migration
speed. The change from EGF = 1 to EGF = 0 is marked with an arrow.
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42%
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Fig. 5. The best decision tree for classifying migration speed using signaling
proteins. Round nodes denote variables, while square nodes represent estim-
ated migration speed categories. Integers attached to the arcs correspond to
the splits of the parent node. Under each migration speed category the frac-
tion of cases explained by that classification rule is given. For example, if
ERK = 0, the migration speed category is 0, and 90% of the observations (in
the training set) for migration speed category 0 can be explained by this rule.

the decision tree analysis can be used to suggest what components
should be studied together.

Based on Table 2 it can be argued that the information content
of the signaling protein dataset is low. Degrees of the polynomial
functions, however, do not tell the whole story. For example, ERK
has zero order polynomial in the presence and absence of EGF, but
the absolute difference between these constants is large (3.6). That
is, ERK acts like a switch triggered by the EGF status and clearly
brings in information to the analysis. Further, after inducing EGF,
cell migration measurements were performed after 8 h in order to

observe maximal migratory response for the cell type used in this
study (Maheshwari et al., 1999). Therefore, it was expected that in
5 min the changes in the signaling proteins phosphorylation levels
may not have been visible at the migration speed level. From another
standpoint, the conclusion that a dataset is not rich in its information
content may be valuable information and the NML modeling with
decision tree analysis provides means to assess this issue. One of our
future goals is to measure signaling protein activities in regard to cell
migration speed at different time points, and the methods given here
can be used to approximate the time it takes for extracellular stimuli
to have an effect on the signaling proteins. These results may be used
when estimating rate constants for temporal mathematical modeling.

Quality control is an inevitable part of biomedical research; stud-
ies not performing quality control implicitly state a 100% confidence
in the measurements. In this study we applied a statistical quality
control approach for replicate measurements with 95% confidence
level. We also tested 80% confidence level and no quality control
and the resulting decision trees resulted in 62 and 67% classification
accuracies, respectively (data not shown). Detailed discussion on
quality control issues and choice of the confidence levels is beyond
the scope of this study, but it would be an interesting topic for further
study. In essence, one of our aims for the future is to first identify qual-
ity features, learn a classifier with them and use the trained classifier
to assess quality control as described in Hautaniemi et al. (2003).

The overall classification accuracy for simulated data, 70%, is
quite good given that original signaling protein measurements were
done at one time point of only 5 min after stimulation, whereas
cell migration was measured at 8 h. Furthermore, cell migration
speed data and signaling protein measurements originate from dif-
ferent studies: The cell migration dataset was done in 1999 while
the signaling protein dataset was done in 2004. As a consequence,
there are some differences between the experimental setups caus-
ing noise to the analysis. Classification accuracy can also be used
as a yard stick for sufficiency of the measured dataset in regard to
modeling a biological process. If classification accuracy is poor, it
could be an indication that the dataset does not comprise enough
variables or information in order to model the biological process in
question. In our case study, the classification accuracies for medium
and high migration speeds are fair. The most likely reason for this
is that our measurements cover only a limited portion of the signal-
ing network components critically involved in governing migration.
Merely as one relevant facet of this highly multi-variate system, for
instance, there is accumulating evidence that virtually all of the key
MAP kinases influence cell motility in diverse ways (Huang et al.,
2004). This shortcoming can, of course, be addressed by enlarging
the scope of the measured signaling component space to the extent
cost-effective. Accordingly, the decision tree results can be help-
ful to determine what components should be measured in future
experiments, and whether there is a need to measure additional com-
ponents. On the other hand, our results demonstrate that decision
trees are applicable to studies where several key components are not
observed.

To our knowledge, this is the first study where cell migration speed
is quantitatively predicted using phosphorylation levels of signal-
ing proteins. Several other modeling approaches such as Bayesian
networks (Pearl, 1988; Woolf et al., 2004), neural networks or
support vector machines (Haykin, 1999) have their own benefits
and drawbacks. The two latter methods are very good classifier
approaches in various applications but they suffer from a major
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drawback—dependencies between the variables and their relevan-
cies are practically impossible to obtain from the model. In contrast,
Bayesian networks have been mainly used to obtain dependencies
between variables but it is not self-evident that a Bayesian network
that describes dependencies between the variables performs well
when predicting cellular outcomes. Moreover, the variables used
in learning a Bayesian network are usually required to be discrete or
Gaussian distributed, which may be an impractical requirement.

The decision tree based modeling is not supported by a unique
and solid mathematical background. Thus, it is imperative to report
parameter settings in detail so that the results can be reproduced.
Furthermore, decision trees require a relatively large training data-
set, which may not be feasible. This requirement, however, is not
unique to decision trees but is present with the other classification and
modeling approaches as well. Here we have expanded the dataset via
interpolating polynomial functions whose order was determined with
the MDL principle. Parameters for polynomial functions are straight-
forward to estimate and several well-established methods exist for
this purpose. When polynomial functions do not yield satisfact-
ory results, the alternative might be Monte Carlo based techniques.
In some cases, however, it may be difficult to identify probability
density functions that describe the system to be modeled. Addition-
ally, Monte Carlo methods are notorious for being computationally
demanding. Therefore, we argue that the polynomial models should
be applied before considering more complex methods.

When additional data are simulated, it is important to choose the
extracellular conditions so that they span a large range because it
is safer to interpolate than extrapolate. Another requirement is that
there should be enough data points so that non-linear trends can
be captured. The methods presented in this study do not pose upper
limits for the extracellular cues but in its current form the decision tree
analysis can be applied to only one biological process at a time. One
of our future goals is to develop a multidimensional decision tree that
is capable of predicting several cellular outcomes simultaneously.
A multidimensional decision tree would be able to, for example,
identify signaling proteins that are associated with high cell migration
speed and absence of apoptosis.

5 CONCLUSIONS
We have presented a decision tree-based modeling approach for ana-
lysis of complex and multidimensional signal transduction cascades.
Our case study demonstrates that decision trees can provide several
insights to signal transduction cascades. We conclude that decision
tree methodology may facilitate elucidation of signal–response

cascade relationships and generate experimentally testable predic-
tions, which can be used as directions for future experiments.

ACKNOWLEDGEMENTS
We thank Dr Fei Hua for constructive suggestions regarding the
manuscript. This work was supported by the NIGMS Cell Migra-
tion Consortium, NCI grant CA88865 to DAL and the Academy of
Finland and Emil Aaltonen Foundation.

REFERENCES
Breiman,L., Friedman,J., Olshen,R. and Stone,C. (1984) Classification and Regression

Trees. Wadsworth.
Efron,B. and Tibshirani,J. (1994) An Introduction to the Bootstrap. Chapman & Hall,

London.
Glading,A. et al. (2000) EGF receptor activation is required for fibroblast motility and

occurs via an ERK/MAP kinase signaling pathway. J. Biol. Chem., 275, 2390–2398.
Hautaniemi,S. et al. (2003) A novel strategy for microarray quality control using

Bayesian networks. Bioinformatics, 19, 2031–2038.
Haykin,S. (1999) Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice

Hall, Inc., Upper Saddle River, NJ.
Hochberg,Y. and Tamhane,A. (1987) Multiple Comparison Procedures. John Wiley &

Sons, New York.
Huang,C. et al. (2004) MAP kinases and cell migration. J. Cell Sci., 117, 4619–4628.
Iwabu,A. et al. (2004) Epidermal growth factor induces fibroblast contractility

and motility via a protein kinase cδ-dependent pathway. J. Biol. Chem., 279,
14551–14560.

Lauffenburger,D. and Horwitz,A. (1996) Cell migration: a physically integrated
molecular process. Cell, 84, 359–369.

Lloyd,S. (1982) Least square quantization in PCM. IEEE Transactions on Information
Theory, IT-28, 129–137.

Lodish,H., Berk,A., Matsudaira,P., Kaiser,C., Krieger,M., Scott,M., Zipursky,S. and
Darnell,J. (2004) Molecular Cell Biology. W.H. Freeman & Co, New York.

Maheshwari,G. et al. (1999) Biophysical integration of effects of epidermal growth
factor and fibronectin on fibroblast migration. Biophys. J., 76, 2814–2823.

Matsubayashi,Y. et al. (2004) ERK activation propagates in epithelial cell sheets and
regulates their migration during wound healing. Curr. Biol., 14, 731–735.

Pearl,J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Interference. Morgan Kaufmann Publishers Sam Mateo, CA.

Ridley,A. et al. (2003) Cell migration: Integrating signals from front to back. Science,
302, 1704–1709.

Rissanen,J. (1978) Modeling by shortest data description. Automatica, 14, 465–471.
Rissanen,J. (1998) Stochastic Complexity in Statistical Inquiry. World Scientific,

Singapore.
Rissanen,J. (2000) MDL denoising. IEEE Transactions on Information Theory, 46,

2537–2543.
Webb,D. et al. (2004) FAK–Src signalling through paxillin, ERK and MLCK regulates

adhesion disassembly. Nat. Cell Biol., 6, 154–161.
Wells,A. et al. (2002) Growth factor-induced cell motility in tumor invasion. Acta

Oncologica, 41, 124–130.
Woolf,P. et al. (2004) Bayesian analysis of signaling networks governing embryonic

stem cell fate decisions. Bioinformatics (in press).

2035


