
RESEARCH Open Access

Modeling of smartphones’ power using
neural networks
Sameer Alawnah and Assim Sagahyroon*

Abstract

In the work presented in this paper, we use data collected from mobile users over several weeks to develop a

neural network-based prediction model for the power consumed by a smartphone. Battery life is critical to the

designers of smartphones, and being able to assess scenarios of power consumption, and hence energy usage is

of great value. The models developed attempt to correlate power consumption to users’ behavior by using power-

related data collected from smartphones with the help of specially designed logging tool or application.

Experiences gained while developing the model regarding the selection of input parameters to the model, the

identification of the most suitable NN (neural network) structure, and the training methodology applied are all

described in this paper. To the best of our knowledge, this is the first attempt where NN is used as a vehicle to

model smartphones’ power, and the results obtained demonstrate that NNs models can provide reasonably

accurate estimates, and therefore, further investigation of their use in this modeling problem is justified.

Keyword: Smartphone, Energy, Power models, Neural networks

1 Introduction
Recent advents in battery technology have not paralleled

the rapid advances in chip design and wireless telecom-

munication, and it is often the case that the computing

power is limited by the battery capacity. This has

brought the problems of power consumption, low power

design, energy-efficiency, and optimal power manage-

ment to the forefront of research issues pertaining to

portable electronics. This problem is further aggravated

for smartphones by the fact that today’s consumers are

expecting lighter devices that can run for long hours,

and hence, designers have to rely on smaller and lighter

batteries that typically have reduced energy storage

capabilities.

Thus, designers and manufacturers are keen on un-

derstanding the power consumption characteristics of

today’s smartphones where the primary objective is to

be capable of designing better future generations. De-

veloping power models for these devices is critical since

it provides designers with assessment capabilities early

in the design cycle, which in turn would lead to devel-

oping sound energy management policies, and assists

software developers in writing applications that are

energy-efficient.

The need to try and understand the role of users’ be-

havior and how it contributes to energy consumption

with the hope of designing better systems, and making

efficient use of the available energy is emphasized in two

recent papers [1, 2].

The authors of these two papers studied the smart-

phone usage activity of a large number of users. They

showed that the usage activity is quite diverse among

users. This extent of usage diversity implies that mecha-

nisms that work for the average case may be ineffective

for a large proportion of the users. In the case of power

modeling, usage diversity means average-case power

models that may be insufficient to accurately predict

power consumption for different users, and hence, a

usage activity-based power model is essential to accur-

ately predict power consumption.

The power modeling problem was addressed in [3]

using pattern analysis by first segmenting users’ logged

data into a number of small time windows called

“chunks.” A chunk is a set of power-related data col-

lected and computed during 1% of used battery capacity.

Chunk data includes components such as average power,

CPU utilization, frequency, and display activity. The* Correspondence: asagahyroon@aus.edu

American University of Sharjah, Sharjah, United Arab Emirates

EURASIP Journal on
Embedded Systems

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22

DOI 10.1186/s13639-017-0070-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13639-017-0070-1&domain=pdf
mailto:asagahyroon@aus.edu
http://creativecommons.org/licenses/by/4.0/

researchers grouped the chunks based on the hardware

components accessed. Chunks with standard small devi-

ations were kept, and others were discarded. Regression

analysis was then performed to generate a model. In the

reported work, only power models related to the CPU

and display unit were developed. Similarly, regression-

based techniques to model power were reported in [4].

Using a logger application, data was collected from

different users and effective predictors were selected

to develop power models. A model for energy level

prediction is presented in [5]. Researchers collected

data from a set of Blackberry smartphone users and

then exploited energy traces within the collected data-

set to build an energy emulation toolkit. Users here

were divided into three groups depending on their en-

ergy consumption characteristics, that is, their daily

battery charge and discharge pattern or behavior. A

prediction algorithm was then used to predict energy

level. Using results from the energy emulation kit, de-

velopers could then modify their designs or fine-tune

certain parameters to optimize energy consumption. A

battery-based power model is discussed in [6]. Based

on measurement-oriented experiments, researchers

excluded the hardware components with negligible

power consumptions, such as the SD card, from being

used in the model. The modeled components were

CPU, display, GPS, Wi-Fi, cellular, and audio inter-

faces. A set of training programs was next used to de-

termine the relationship between a state variable and

the power consumption for each hardware component

selected for the model. The authors next proposed the

use of battery discharge behavior and the built-in bat-

tery voltage sensors in some smartphones to deter-

mine the average power consumption that resulted

from the varying power states of the different compo-

nents. The smartphone components were held in a

particular state for long periods of time while the state

of discharge of the battery was monitored using the

built-in voltage sensors, therefore providing an esti-

mate of the power consumption for the particular ac-

tivity state. The total consumed energy within that test

period or interval was then computed. This was re-

peated for different states, and regression techniques

were used to derive models based on battery behavior.

Additional work that sheds more light onto the prob-

lem at hand and discusses possible solutions or alter-

natives is reported in [7–10].

In this work, and in an attempt to contribute to better

designs of smartphones, we will approach the power

modeling problem from a user-behavior point of view.

We developed a logger application (running in the back-

ground) that tracks the users’ interaction with their

smartphones over a period of time. It creates and logs

power-related records by making use of the smart

battery interface built in the device. The datasets logged

over time are then used to develop power models using

neural network modeling approaches. To the best of our

knowledge, this is the first work that attempts to esti-

mate smartphone power using neural network tech-

niques. Furthermore, the large body of published work

on power modeling uses a utilization-based approach

where the focus is on estimating the power consumption

of individual hardware components that make up the

phone, using for example, performance counters, and

then estimating the power of the phone when these

components switch between different operating modes.

Instead, in our work, we use user activity as the basis for

developing the model. The only reported work that we

came across where users’ profiles are used as part of the

modeling process is reported in [5]. However, they used

regression-based techniques and selected a smaller and

different set of parameters when compared to the set

used in the work discussed here. Preliminary results re-

lated to this work are reported in [19].

In general, neural networks have some advantages

when compared to regression techniques such as [20]:

� Modeling using neural networks requires less formal

statistical training

� Neural network models have the ability to detect all

possible interactions between predictor variables

� Neural networks can be developed using multiple

and different training algorithms

� Neural networks are capable of identifying complex

non-linear relationships between dependent and

independent variables. Conventional regression

techniques typically assume a linear relationship.

The rest of the paper is organized as follows: in

Section 2 we introduce the logger application devel-

oped for this work and explain its usage; out of

many logged input parameters, we also discuss the

selection of the most influential parameters used to

develop the NN models. In Section 3, we present

the model development steps including training

phase and NN configuration selection; we also assess

the performance of the model. The paper is con-

cluded in Section 4.

2 Data logging and parameters identification
Most of the power consumed is typically broken down

between components that include the CPU, memory

banks and controller, GSM, GPS, Bluetooth, LCD panel

and touch screen, LCD backlight, Wi-Fi, audio (codec

and amplifier), internal NAND flash, SD card, and cam-

era. The system load or application heavily influences

the power needs of these components. For example, if

the load is a video game, more power will be drawn by

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 2 of 11

these components than, when for example, the load is

simply an editing session of a text file. Hence, usage pat-

terns and user behavior directly influence battery life.

We selected a sample of ten campus students (American

University of Sharjah, www.aus.edu) and monitored their

activity with the assistance of a data logger application

program installed in their Android-based smartphones.

The logger application continuously ran in the back-

ground without compromising the users’ privacy. It runs

continuously and starts when the mobile is turned on. We

collected the maximum amount of usage-related data for

synthesis and analysis as described in later sections.

The logger application logs power-related records

using the smart battery interface inside the device. The

datasets logged overtime are then used to develop power

models using neural network techniques.

The smartphone model (Sony Acro S—an Android-

based device) selected for this work contains modern

lithium-ion batteries with a smart battery interface that

monitors the charging and discharging process to pro-

tect it; additional information about battery capacity,

current, voltage, and temperature is also provided to the

power management program that is part of the operat-

ing system. It provides drivers to these interfaces as

Linux virtual files to read different parameters of the

battery status. Most of the recent Sony-Ericsson family

of smartphones is provided with this sensor interface

unit that is one of the main reasons for choosing the

Sony Acro S model as a testing platform for the work

discussed here. This model uses the Qualcomm

MSM8260 Snapdragon processor, which is an asyn-

chronous symmetric dual-core processor.

The logger application makes valuable use of a built-

in Android mechanism called broadcast/receiver. The

operating system broadcasts messages about events that

are taking place, such as a battery status change, the

Wi-Fi connection being turned on, or the screens being

switched off. However, some relevant and power-

impacting usage parameters have no broadcast actions

or messages associated with them, and in this case, we

use polling as a means of sampling changes in these

parameters (examples, include “current” and “audio

utilization”).

Some of the parameters have Operating System coun-

ters associated with them, like CPU and memory usage,

reading the difference between these counters at prede-

fined time intervals will give us the values of them dur-

ing those intervals. Other parameters like electrical

current drawn from the battery and audio subsystem

utilization don not have any OS counters associated with

them; therefore, we need to sample their values at a rela-

tively high rate.

The power value at any time instant is defined by

P = V × I, where V and I are the voltage and current

at any instant in time, respectively. In an Android-

based smartphone, we can obtain the voltage value

at any time using an Android API; however, finding

the current value is not trivial.

The smartphone used here is equipped with a TI

BQ27520 Battery Fuel Gauge IC [11]. This gauge resides

on the system main board and uses a 400-kHz I2C™

interface for connection to the microcontroller port. It is

capable of measuring battery charge level, voltage,

current, and temperature. According to the datasheet,

we can read the instantaneous current and the average

current through the I2C interface. The value of the aver-

age current is updated every second, so sampling the

current at 1 Hz is enough to capture the overall average

current passing through the device.

The Linux kernel used by Android phones that sup-

port the BQ27520 such as the Acro model provides a

virtual file system driver for the phone through the:

“/sys/class/power_supply/bq27520/” folder. For example,

reading the file “current_now” will give us the instantan-

eous current, while reading “current_avg” will provide us

with the average current.

In the logger application, we define a timer (applica-

tion timer) to invoke a function every 1 s; using this

function, we sample the current measurements and

audio utilization since these variables do not have OS

counters.

Collected usage samples are saved on the file system

of the smartphone and then uploaded to a database ser-

ver for further analysis rather than being processed lo-

cally on the smartphone.

After parsing the log file, we next run an application de-

veloped to extract power usage samples from the stored

data. Some of the sample parameters are trivial, for ex-

ample, “screen brightness,” so no extra processing is

needed for this parameter. On the other hand, other pa-

rameters such as “Data Activity” require normalizing with

respect to the unit of time. We receive the information

per sample time but we normalize this value to a 1-s inter-

val. The processing required to extract power sample pa-

rameters can be divided into the following categories:

� No processing:

In this case, we use the parameter values exactly as

in the log file, for example, the “screen brightness”

parameter.

� Normalization per 1 s:

In this case, we have the parameter value per sample

window time, but since the sample window time is

not constant, we need to normalize the parameter

value per 1 s.

� Weighted averaging:

In this case, the parameter values may change

several times during the sample window; hence,

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 3 of 11

http://www.aus.edu

we calculate the weighted average of it, an example

is the RSSI (received signal strength indication)

parameter.

Using the logged data, we are able to extract power

data related to more than 30 parameters of a smart-

phone including brightness level, data activity, phone-

ringing, Wi-Fi connectivity, and SMS activity. For a

complete listing of the identified parameters, readers are

referred to Table 5 of [12].

In developing the neural network model, a critical step

is to determine if all possible input parameters are re-

quired or whether a subset would suffice to develop a

reliable model. The elimination of unnecessary inputs

that have negligible contribution to the prediction will

lead to a simplification in the data-gathering phase and

an enhancement to the model; it also eases the interpret-

ation of results. For example, nowadays, most students

are using Internet-based services, such as “Whatsapp”

and “Google Talk” for text messaging; hence, SMS activ-

ity is very low. We logged only 64 SMS activities in our

dataset. This number of samples is not sufficient for

modeling this activity therefore we did not include SMS

activity as an input to our model. Similarly, Bluetooth is

rarely used in our dataset so we did not include any

Bluetooth predictors in our model. We next grouped pa-

rameters together using functionality as a criterion, and

then corresponding heat maps are used to eliminate

some of input parameters that strongly correlate to one

another within the group. For example, the heat map of

Fig. 1 is used to reduce parameters that relate to data ac-

tivity functionality of the device.

For modeling mobile data communications, we have

Data Activity, Data Activity On, DataConOn, and

GSMRSSI predictors. Figure 1 shows the heat map for

the previously mentioned predictors. It is clear that

Data Activity On and DataConOn are correlated. Logic-

ally, Data Activity, and Data Activity On are also corre-

lated, since there will be no Data Activity unless Data

Activity On is greater than 0. We prefer to remove Data

Activity On since it is correlated with the two other

predictors.

After excluding unnecessary input parameters to the

model, the subset selected and used for power model

generation is given in Table 1. It consists of 17 inputs or

predictors. The first column of the table includes the

parameter or predictor name, followed by a brief de-

scription of it in column 2; the “Generation Method”

describes the technique used to obtain the value of the

input parameter, either using Android broadcast

Actions/Receivers or polling OS counters at a low rate

or polling device information at a high rate. The range

of values is specified in column 4.

The logger application is implemented in Java using

more than 2300 lines of code. Figure 2 shows the cumu-

lative distribution function (CDF) of the logger CPU

time. In terms of CPU time, the average logger overhead

(logger CPU time/total CPU time) is 0.62%. We also

conclude that 78.14% of the samples have logger over-

head less than or equal to 0.6667%, and 99.5% of the

samples have logger overhead less than or equal to 5%.

3 A neural network for power estimation

The origin of the modern neural networks (NN) science

was the work published by Warren McCulloch and

Walter Pitts [13], who showed that neural networks

could, in principle, compute an arithmetic or logical func-

tion. The elementary element of the NN is the artificial

neuron. Figure 3 is a depiction of an artificial neuron.

The individual inputs p1, p2, …, pR are each weighted

by corresponding elements w1,1, w1,2, …,w1,R of the

weight matrix W. The net input n can be computed

using Eq. (1) below:

n ¼ w1;1p1 þ w1;2p2 þ…þ w1;RpR þ b ð1Þ

where b is the bias of the neuron. Equation (1) can be

written in a matrix form as:

n ¼ Wpþ b ð2Þ

Now, the neuron output can be written as a = f(Wp + b)

where f is the transfer function.

The transfer function f may be a linear or non-linear

function of the net input n. Our power model generation

Fig. 1 Heat map relating to data activity parameters

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 4 of 11

is considered to be a fitting problem. Usually, three types

of transfer functions are used for these kinds of prob-

lems; others are usually used for classification problems.

Table 2 lists the three transfer functions investigated in

the work discussed here.

The selection of the transfer function and the number

of inputs will define the structure of the neuron; the

process of choosing weights and bias to generate the

right output is called the training of the neuron. A single

neuron has very limited modeling capabilities. Usually,

Table 1 Input parameters to the model

Predictor name Description Generation method Range

MF utilization CPU utilization while operating at the median frequency rang Variable polling with OS counters 0–1

HF utilization CPU utilization while operating at the high frequency range Variable polling with OS counters 0–1

Screen on Fraction of time screen was on Broadcast receivers 0–1

Screen brightness Average screen brightness Variable polling 20–255

Call ringing Fraction of time smartphone was ringing Broadcast receivers 0–1

Call off-hook Fraction of time smartphone was in call Broadcast receivers 0–1

Data on Fraction of time smartphone was connected to some mobile network Broadcast receivers 0–1

Data traffic Average number of bytes sent/received through mobile network
per second

Variable polling with OS counters ≥0

WIFI on Fraction of time phone is connected to some WIFI network Broadcast receivers 0–1

WIFI traffic Average number of bytes sent/received through WIFI interface
per second

Variable polling with OS counters ≥0

SD traffic Average number of sectors read/written per second Variable polling with OS counters ≥0

Audio on Fraction of time audio device was active Broadcast receivers 0–1

GSMRSSI Average mobile received signal strength indication Broadcast receivers (−113)–(−48) dBm

NET HSDPA Fraction of time mobile connected to HSDPA network (3G) Broadcast receivers 0–1

NET EDGE Fraction of time mobile connected to EDGE network (2.5G) Broadcast receivers 0–1

NETGPRS Fraction of time mobile connected to GPRS network (2G) Broadcast receivers 0–1

GPS on Fraction of time GPS adapter is on Broadcast receivers 0–1

Fig. 2 CDF for the logger CPU time

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 5 of 11

multiple layers of many neurons are used for modeling.

The number of layers and neurons per layer and the

type of connections between them defines the neural

network architecture. In recent years, neural networks

have been applied to model and solve various problems

in the engineering field [15–18].

A. Neural network architecture and training

In this work, we will use MATLAB Neural Network

Toolbox (included in the MATLAB Environment)

which supports different neural network

architectures. In an effort to identify the most

suitable architecture, we experimented with different

types of neural network architectures using various

training algorithms while computing the RMSE

(root mean squared error). These architectures

included feed-forward back-propagation (FFBP),

cascade feed-forward back-propagation (CSFFBP),

and feed-forward time delay (FFBPTD). The results

of the comparison are listed in Table 3. The Neural

Network Toolbox has a number of training functions

to train a network. For a description of these training

functions, readers are referred to Table 11 of [12]. All

neural network power models developed and tested in

this study have 17 inputs (identified in Table 1) with

one or more hidden layers with different transfer

functions and one output layer. For any dataset, 70%

of it is randomly selected as a training dataset, 15% is

selected as validation dataset, while the rest (15%) is

used as the testing dataset.

Table 3 contains the RMSE values computed using

various architectures and training methods. In the

table, the first column specifies the training

algorithm used to train the neural network, columns

2 and 3 are for the FFBP network structure with

10 and 20 neurons in the hidden layer, respectively,

and columns 4 and 5 are for the CFFBP network

structures with 10 and 20 neurons in the hidden

layers, respectively. The same order is applied for

the FFBPTD.

It is clear that trainbr and trainlm training

algorithms have the best performance over all other

algorithms. The FFBPTD network architecture did

not perform well with any training algorithm

(high and not-improving RMSE); hence, we will

not include it in any further analysis.

Table 4 contains the training time required to train

each network. The organization of this table is the

same as Table 3 except that the entries in this table

are the training time in seconds, not the RMSE

values. Table 3 shows that trainbr has better

performance over trainlm; however, results in

Table 4 show that trainbr requires two times the

training time of trainlm with an RMSE maximum

improvement of only 3.5%. Finally, traingdm not

only requires the least time to train the network but

also has the worst performance.

Thus, FFBP and CSFFBP networks trained with

either trainlm or trainbr produce the best

Fig. 3 Artificial neuron [14]

Table 2 Transfer functions

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 6 of 11

performance. Next, we study all the combinations of

these network structures and training algorithms

using different transfer functions. The main goal

here is to select the neural network that yields the

most accurate power model.

We keep the transfer function of the output layer

(purelin) while changing the transfer function of the

hidden layer to either logsig or tansig and changing

the number of neurons in the hidden layer for both

FFBP and CFFBP networks. We plot the RMSE of

the final model and its training time in Figs. 4 and 5,

respectively. In these figures, LS denotes the logsig

transfer function, TS denotes the tansig transfer

function, BR denotes trainbr training algorithms,

and LM denotes the trainlm training algorithm.

It is clear from the figure that trainlm has some

random nature; the RMSE did not improve with

increasing number of neurons. Furthermore, trainbr

is more stable than trainlm; the RMSE improves

with increasing number of neurons. We also note

that FFBP has a slightly better performance than

CSFFBP. We therefore select as the best NN the

FFBP networks trained using trainbr with a hidden

layer consisting of 85 neurons each, and using

logsig as the transfer function.

Figure 5 shows the time required to train different

network configurations. We observe that training

time when using trainlm is lower than when using

Table 3 RMSE comparison of different architectures and

training algorithms

Training
function

FFBP CFFBP FFBPTD

n = 10 n = 20 n = 10 n = 20 n = 10 n = 20

trainbfg 0.209797 0.206758 0.216204 0.199763 0.632268 0.632285

trainbr 0.193328 0.175663 0.184413 0.174294 0.632267 0.632267

traincgb 0.218694 0.217632 0.21954 0.217823 0.632268 0.632271

traincgf 0.229647 0.226134 0.227723 0.213663 0.632267 0.632267

traincgp 0.225715 0.219247 0.227335 0.217196 0.632269 0.632268

traingd 0.353894 1.192112 0.336454 5.590423 0.632267 0.63227

traingdm 0.966383 0.845086 3.510545 5.550865 0.883342 0.654927

traingda 0.332997 0.39005 0.454985 0.482595 0.632267 0.632568

traingdx 0.286482 0.284275 0.306612 0.317421 0.632344 0.632833

trainlm 0.188031 0.176105 0.190761 0.180157 0.632267 0.632283

trainoss 0.233728 0.236423 0.223991 0.234473 0.632361 0.632269

trainrp 0.231186 0.239729 0.242783 0.247439 0.632274 0.806998

trainscg 0.22851 0.229321 0.232129 0.218688 0.632267 0.632268

Table 4 Training time comparison

Training
function

FFBP CFFBP

n = 10 n = 20 n = 10 n = 20

trainbfg 560.1874 577.9164 488.3009 885.5299

trainbr 529.1933 661.35 709.0895 944.2664

traincgb 685.6228 715.9561 686.6167 762.2569

traincgf 728.115 640.3829 1034.791 1118.346

traincgp 683.7995 674.8491 507.0572 1003.557

traingd 252.4434 9.03335 397.8197 9.829319

traingdm 10.21414 19.31096 8.943479 23.59974

traingda 73.37219 124.8304 168.5904 186.7978

traingdx 149.7136 160.7029 137.9587 162.3984

trainlm 268.3789 380.7035 576.4763 929.8259

trainoss 375.6005 345.4326 854.437 658.3433

trainrp 253.1726 268.0829 407.9637 418.6255

trainscg 393.1616 483.8855 295.2382 835.7505

Fig. 4 RMSE of the neural network power model for various

network configurations

Fig. 5 Training time of neural networks power models for

various configurations

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 7 of 11

trainbr, but it exhibits some randomness. For our

selected configuration, the time required to train

the network is about 3000 s (50 min); this is an

affordable time when we want to build the model

once using a typical computer. If we want to build

the model for each user using his/her own mobile

as computation platforms, it is better to use simpler

and lower-training-time configurations even at

the cost of expected accuracy.

B. Neural network performance

Drawing from the experimental exercises described

above, the selected structure for our final neural

network power model is depicted in Fig. 6. The

training algorithm for this network is trainbr.

The hidden layer consists of 85 neurons each

using the logsig transfer function, while the output

layer contains only one neuron that uses the

purelin transfer function.

Figure 7 shows the performance of our neural

network power model when compared to the

measured. It is clear that the accuracy achieved is

acceptable, with an R value of 0.96747 which is

very close to the ideal value of unity.

In the selected architecture of Fig. 6, we used a

neural network with one hidden layer to model the

smartphone power consumption. Next, and to

examine the effect of adding another hidden layer

to the neural network, we added another layer and

experimented by varying the number of neurons in

each layer and the used transfer functions as well,

while computing the RMSE for the different

configurations. Results in Table 14 of [12] show

that we achieve the best estimates using the

network configuration where the first transfer

function is tansig and second is logsig. We choose

the number of neurons in the hidden layers to

be 45 and 25 in the first and second hidden layers,

respectively. The time required to train this

networks was 3776 s (63 min).

Figure 8 depicts a performance comparison

between the two-hidden-layer neural network

and one-hidden-layer neural network. We note

that the performance of the two-hidden-layer

networks is slightly better than that of the

one-hidden-layer network.

These neural network configurations are next tested

by comparing estimates obtained using the model

against measured power for different users.

For brevity, in Fig. 9, we show results for the first

three users. Readers are referred to Appendix A

of [12] for the rest of graphs.

Figure 9 shows that the two-hidden-layer performance

is better than the one-hidden-layer for the three

users. This is true for all the users as depicted in

Appendix A of [12].

Additionally, we developed user-level power models

for each user using his/her power samples only.

The samples are divided randomly into a training

dataset (70%), validation dataset (15%), and testing

dataset (15%). We build the power models using

previously identified one-hidden-layer NN architecture

and two-hidden-layer architecture. Figure 10

shows the plots of the estimated power

(estimated) vs. measured power (measured)

for the first three users using a one-hidden-layer

NN and a two-hidden-layer NN.

From Fig. 10, the two-hidden-layer NN’s perform-

ance is slightly better than the one-hidden-layer

Fig. 6 Selected network structure

Fig. 7 Performance plot of single-hidden-layer neural network

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 8 of 11

Fig. 8 Performance comparison between one-hidden-layer (a) and two-hidden-layer (b) neural networks. FFBP neural network structure is used

in both a and b, the used training function is trainbr. In a, logsig function is used as transfer function to train the 85 neurons. In b, we have two

layers of neurons; the first layer consists of 45 neuron with tansig transfer function, while the second layer consists of 25 neurons with logsig

transfer function

Fig. 9 Device-level performance plots for the first three users. a–c are one-hidden-layer NN performance for users 1, 2, and 3, respectively.

d–f are two-hidden-layer performance for users 1,2, and 3, respectively

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 9 of 11

NN for users 1 and 3 (the R value we got when

using the two-hidden-layer models is a little higher

than when using the one-hidden-layer model). For

user 2, the one-hidden-layer NN model performance

is better than the two-hidden-layer NN model.

Hidden layers help the neural network to recognize

more patterns. Choosing the size of the hidden

layers can be difficult and most of the time is based

on empirical observations. In this work and from

the results shown in Figs. 9 and 10, we can conclude

that the two-hidden-layer NN power models are

more accurate but require more training time. On

the other hand, one-hidden-layer NN models have

accuracy that is comparable to the two-hidden-layer

NN models but with less training time.

Comparing the plots in Figs. 9 and 10, we can say

that user-level power models have higher accuracy

than device-level power models. This is expected

since in user-level power models, we used only

the user data in order to construct separate model

for each individual user of the device, while in

device-level power models, we construct the model

using data from all users and test it on each user

individually. Device-level power model is a general

model that can be used to model power consumption

behavior of all users included in the dataset and can

be generalized to model power consumption behavior

of any user of the device.

4 Conclusions
The power consumed by a smartphone is highly influ-

enced by end-user usage patterns and interest. Battery

energy life is very dependent on the nature of applica-

tions running on the device and other activities invoked

by the user. In this work, we described an attempt to

model smartphone power using input parameters that

are derived from power-related data that is in turn col-

lected in real time when the devices were on use. We

were able to study the feasibility of using neural network

techniques in generating reliable power models.

From the results, we can conclude that the two-

hidden-layer NN power models are the most accurate

models, but they require more training time. It also ob-

served that one-hidden-layer NN models have accuracy

Fig. 10 User-level performance plots for the first three users. a–c are one-hidden-layer NN performance for users 1, 2, and 3, respectively. d–f are

two-hidden-layer performance for users 1, 2, and 3, respectively

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 10 of 11

that is comparable to the two-hidden-layer NN models

with less training time. User-level power models are

built based on the usage patterns for each user while

device-level power models are built based on the usage

patterns of all users of a smartphone model. User-level

power models perform better than device-level models.

This is expected, since only the user data is used to con-

struct and test the model, this data is more representa-

tive of the user’s behavior than the general data.

However, device-level power models are still useful in

providing an insight into the consumption characteris-

tics of the device.

Competing interests

The authors declare that they have no competing interests.

Received: 10 October 2015 Accepted: 4 January 2017

References

1. Hossein Falaki et al., “Diversity in smartphone usage,” in Proceedings of the

8th international conference on Mobile systems, applications, and services,

San Francisco, CA, USA, 2010, pp. 179–194

2. Qiang Xu et al., “Identifying diverse usage behaviors of smartphone apps,”

in Proceedings of the 2011 ACM SIGCOMM conference on Internet

measurement conference, Berlin, Germany, 2011, pp. 329–344

3. Jaymin Lee, Hyunwoo Joe, and Hyungshin Kim, “Smart phone power model

generation using use pattern analysis,” in IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, NV, USA, 2012, pp. 412–413

4. Alawnah, S. and Sagahyroon, A., “Modeling smartphone power,” in Proceedings

of IEEE EUROCON Conference, Zagreb, Croatia, 2013, pp. 369–374

5. Alex Shye, Benjamin Scholbrock, and Gokhan Memik, “Into the wild:

studying real user activity patterns to guide power optimizations for mobile

architectures,” in Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, New York, NY, USA, 2009, pp. 168–178

6. Lide Zhang et al., “Accurate online power estimation and automatic battery

behavior based power model generation for smartphones,” in Proceedings

of the eighth IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, Scottsdale, AZ, USA, 2010, pp. 105–114

7. Rajesh Palit, Ajit Singh, and Kshirasagar Naik, “Modeling the energy cost of

applications on portable wireless devices,” in Proceedings of the 11th

international symposium on Modeling, analysis and simulation of wireless

and mobile systems, Vancouver, Canada, 2008, pp. 346–353

8. Mian Dong and Lin Zhong, “Self-constructive high-rate system energy

modeling for battery-powered mobile systems,” in Proceedings of the 9th

international conference on Mobile systems, applications, and services,

Bethesda, MD, USA, 2011, pp. 335–348

9. Abdulhakim Abogharaf, Rajesh Palit, Kshirasagar Naik, and Ajit Singh, “A

methodology for energy performance testing of smartphone applications,”

in 7th International Workshop on Automation of Software Test (AST), Zurich,

Switzerland, 2012, pp. 110–116

10. A Naci et al., Adaptive and flexible smartphone power modeling. Journal of

Mobile Networks and Applications 18, 5 (2013)

11. TI. (2013, March) BQ27520-g3 Fuel gauge with integrated LDO. [Online].

http://www.ti.com/product/bq27520-g3. Accessed Mar 2013

12. Sameer Alawnah, “Modeling smartphone power”, MSc thesis, Computer

Engineering Program, American University of Sharjah, 2013; available at:

https://dspace.aus.edu. Accessed Mar 2013

13. WS McCulloch, W Pitts, A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics 5, 115–133 (1943)

14. MT Hagan, HB Demuth, MH Beale, Neural network design (Pws Pub, Boston, 1996)

15. A. Suissa, O. Romain, J. Denoulet, K. Hachicha, and P. Garda, “Empirical

method based on neural networks for analog power modeling”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Volume: 29, Issue: 5, 2010, pp. 839–844

16. M Carolin, E Fernandez, Estimation of energy yield from wind farms using

artificial neural networks. IEEE Transactions on Energy Conversion 24, 2

(2009)

17. Nwulu, N.I., and Agboola A., “Modeling and predicting electricity

consumption using artificial neural networks”, Proceeding of the 11th Intl.

Conference on Environment and Electrical Engineering, 2012.

18. K Youngseo et al., Artificial neural network model of SOS-MOSFETs based

on dynamic large-signal measurements. IEEE Transactions on Microwave

Theory and Techniques 62, 3 (2014)

19. Alawnah, S., and Sagahyroon, A, “Smartphones power”, in Proceedings of

the International Conference on Electrical and Information

Technologies, Marrakech, Morocco, 2015

20. J Tu, Advantages and disadvantages of using ANN versus logic regression for

predicting medical outcomes. Journal of Clinical Epidemiology 94, 11 (1996)

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Alawnah and Sagahyroon EURASIP Journal on Embedded Systems (2017) 2017:22 Page 11 of 11

http://www.ti.com/product/bq27520-g3
https://dspace.aus.edu

	Abstract
	Introduction
	Data logging and parameters identification
	A neural network for power estimation
	Conclusions
	Competing interests
	References

