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Abstract—We investigate spatio-temporal event analysis using
point processes. Inferring the dynamics of event sequences spatio-
temporally has many practical applications including crime pre-
diction, social media analysis, and traffic forecasting. In particular,
we focus on spatio-temporal Hawkes processes that are commonly
used due to their capability to capture excitations between event
occurrences. We introduce a novel inference framework based
on randomized transformations and gradient descent to learn the
process. We replace the spatial kernel calculations by randomized
Fourier feature-based transformations. The introduced random-
ization by this representation provides flexibility while modeling
the spatial excitation between events. Moreover, the system de-
scribed by the process is expressed within closed-form in terms
of scalable matrix operations. During the optimization, we use
maximum likelihood estimation approach and gradient descent
while properly handling positivity and orthonormality constraints.
The experiment results show the improvements achieved by the
introduced method in terms of fitting capability in synthetic and
real-life datasets with respect to the conventional inference methods
in the spatio-temporal Hawkes process literature. We also analyze
the triggering interactions between event types and how their
dynamics change in space and time through the interpretation of
learned parameters.

Index Terms—Parameter estimation, time series, system
modeling, point processes, random Fourier features, event analysis.

I. INTRODUCTION

A. Preliminaries

W
E STUDY spatio-temporal event analysis using point

processes, which has several applications in signal pro-

cessing, computer networks, security and forecasting applica-

tions [1]–[5]. Most of the real-world events exhibit certain

spatio-temporal patterns such as correlation, causation, and exci-

tation, which can be modeled as a system whose latent structure

is reflected into real-world with their realizations. Modeling and

learning this structure is important due to its promising appli-

cations such as network analysis, event prediction and hotspot

detection [6]–[13]. In this context, we analyze the triggering
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relations between events in a given sequence, and how these

interactions evolve in space and time, which can be useful

for forecasting and policy planning for security and business

applications [7], [13]. To this end, we model the event sequence

using point processes, which directly represent the underlying

structure of spatio-temporal excitations by their internal param-

eters. Therefore, inferring these parameters provides an inter-

pretable and forthright way to analyze the given spatio-temporal

data.

Point processes are used to capture the dynamics of the

event sequence by expressing their rate of occurrences with

an intensity function conditioned on the history [14]. In our

problem, events are described by their locations, times and

types. Therefore, we consider a multi-dimensional form of point

processes called as spatio-temporal point processes [11], [15],

[16]. We particularly work on spatio-temporal Hawkes processes

that have a self-exciting nature by their default form, in which the

intensity value is triggered by past events. In this approach, the

excitation between events is usually modeled as to be decaying

exponentially in time with an exponential kernel, and in space

with a Gaussian kernel [11], [16].

Although modeling of temporal excitation with exponential

decay is shown to be effective in most scenarios, the assumption

that spatial excitation can be completely represented with a

Gaussian kernel may not hold in all cases. Hence, we introduce

certain degree of randomness to the spatial kernel by using

randomized kernel representation. We utilize random Fourier

features [17], which approximate the output of a shift-invariant

continuous kernel using the inner products of the embedded

vectors. Flexing the structure of the spatial kernel enables our

model to capture excitation without purely Gaussian decay in the

spatial domain. The number of dimensions in the transformed

feature space is a hyperparameter, which directly controls the

randomization effect, thus we can readily tune it depending on

the spatial characteristics of the given event sequence. In addi-

tion, replacing the pairwise kernel calculations with randomized

vector products enables us to formulate the problem in a neat

matrix form, which increases the scalability of the introduced

framework.

We optimize the parameters of the process using maximum

likelihood estimation (MLE) approach in terms of negative log-

likelihood, which is shown to be quite efficient, consistent and

asymptotically unbiased for point processes [16]. Therefore, we

define our evaluation metric in terms of negative log-likelihood

per event, which directly expresses the fitting performance. In or-

der to learn the parameters of a spatio-temporal Hawkes process,
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there exist several inference methods in the point process liter-

ature, most notably, expectation-maximization (EM) [11], [18],

[19] algorithm and stochastic declustering [20]–[23]. Recently,

gradient descent-based optimization methods has also been

preferred in the context of temporal point processes [24]–[26].

Nevertheless, employing gradient descent in the spatio-temporal

case is not as straightforward as in the temporal case. The diffi-

culty lies within the structure of the likelihood function, which

includes multi-dimensional integrals of kernel outputs. Hence,

maximum likelihood estimation with gradient-based methods

is not directly viable [16]. The conditional intensity function

of a temporal point process is only defined along the temporal

dimension, hence expressing likelihood objective in a differen-

tiable manner, and applying gradient descent-based optimization

is rather straightforward compared to the spatio-temporal case.

To address this issue, we analytically derive the intractable terms

in the likelihood function and their derivatives. We also employ

reparameterization techniques and projected gradient-descent to

handle the numerical constraints over the process parameters

properly.

Even though there exists a considerable amount of prior art

about spatio-temporal Hawkes processes, we, for the first time

in the literature, utilize random Fourier features based kernel

representation for spatio-temporal Hawkes processes. Our ap-

proach provides flexibility thanks to the introduced controllable

randomization over spatial modeling. We also introduce a novel

inference framework with well-organized matrix formulations

and gradient descent-based optimization, which provides scal-

ability. Furthermore, we investigate the fitting performance of

the introduced method through an extensive set of experiments

involving synthetic and real-life datasets. The results show that

our method provides significant improvements compared to the

EM algorithm and stochastic declustering, which are commonly

favored in the point process literature [11], [18]–[20], [27], [28].

Finally, we perform event analysis over real-life datasets by

interpreting the inferred parameters.

B. Prior Art and Comparisons

A significant amount of research has been conducted in signal

processing, applied mathematics, and machine learning litera-

tures to learn and apply spatio-temporal point processes [1], [4],

[7], [11]. The approach of spatio-temporal modeling with point

processes has been applied to various real-world scenarios such

as seismological modeling of earthquakes and aftershocks [13],

[27]–[29], criminological modeling of the dynamics of illegal

incidents [7], [26], forecasting of disease outbreaks [16], net-

work analysis [11], [18], [30]–[32], and so on. When carefully

analyzed, the behavior of underlying systems can vary among

different contexts. To this end, several forms of point pro-

cesses have been proposed with different characteristics, such

as Poisson process, Cox process, self-correcting processes [33],

and self-exciting processes [14]. In this study, we consider

spatio-temporal Hawkes process, which was first applied for

earthquake prediction [13] and then successfully adapted to

other applications such as crime analysis [7].

While modeling spatio-temporal Hawkes processes, there has

been several proposals for the form of spatial kernel such as

isotropic kernels [13], diffusion kernels [29], and Gaussian

kernels [7], [11]. Even though the proposed forms have the

common characteristic of having an inverse relation between

the excitation level and distance from the event center, their be-

haviors are considerably different. On the contrary, even though

we employ Gaussian kernel as well, we introduce randomization

to the spatial modeling of the problem through random Fourier

features based kernel representation. The introduced tunable

randomization while modeling the spatial excitation enhances

the performance in real-life scenarios, particularly when the

spatial dynamics of the underlying system deviates from pure

Gaussian behavior.

Random Fourier features have been used successfully to

increase the scalability of kernel-based methods such as support

vector machines (SVMs) [34]. Introducing randomization to

the learning process has also been studied in machine learning

literature [35]. From the neural network perspective, our repre-

sentation can be interpreted as a perceptron layer with randomly

initialized weights and sinusoidal activation function, where the

weights are not being updated and they are sampled from a

distribution related to the spectral distribution of the kernel [36].

This architecture is called as extreme learning machines (ELM)

that have universal approximation capability as the number of

nodes (embedding dimensions) goes to infinity [35]. Since we

only have to approximate the kernel outputs of two-dimensional

spatial vectors, low embedding dimensions suffice with neg-

ligible approximation errors [17]. This enables us to replace

complicated pairwise kernel calculations with scalable matrix

operations.

To increase the generalization power in point process models,

machine learning based approaches have also been proposed

in recent studies [24]–[26], [37]. In particular, recurrent neural

networks (RNNs) and variants such as long short-term memory

networks (LSTMs) are employed in the context of temporal point

processes [25], [37]. However in the spatio-temporal domain, in-

creased number of dimensions and sparsity may lead to unstable

and difficult training of machine learning models [38]. In [37],

authors employ LSTMs to model temporal Hawkes processes

and uses the Monte-Carlo estimation of the intractable terms

in the likelihood function and parameter gradients. However,

relying on Monte-Carlo estimation is also problematic due to

the increased space size after introducing spatial dimensions,

which would require a large number of samples and result in

degraded approximation performance [39]. Since we formulate

the problem in a tractable form, our approach does not need any

sampling based approximation.

In addition to the application and modeling perspectives,

there is also an extensive literature about estimating the param-

eters of a spatio-temporal Hawkes process. Several inference

methods were proposed for this problem. The most commonly

used techniques involve MLE approach, which can be solved

using expectation maximization (EM) as applied in various

studies [11], [18], [19]. EM algorithm exhibits certain nice

properties such as consistently increasing likelihood at each

iteration, and naturally producing valid estimations for desired
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parameters without any numerical constraints [40]. However,

it can suffer from instability due to bad initialization and slow

convergence in regions, where the likelihood function is flat [41].

Another method, stochastic declustering has shown success-

ful results particularly for earthquake modeling [20]–[23], [27],

[28]. This is a non-parametric approach and relies on the

branching structure of events, which assumes that the events

can be clustered into two separate groups: background events

and triggered events branching from the background. Bayesian

inference methods have also been studied for self-exciting tem-

poral point processes [31], [32], [42], [43]. Finally, gradient

descent-based numerical optimization methods are used in the

most recent studies [25], [26], [37]. In this study, we optimize

the parameters through likelihood maximization with gradient

descent-based algorithms since these methods are shown to be

simple yet effective, particularly for neural networks [24], [44].

C. Contributions

Our main contributions are as follows:

1) As the first time in the literature, we apply random Fourier

features based transformations to represent kernel opera-

tions in spatio-temporal Hawkes processes. This transfor-

mation increases the flexibility of our spatial modeling

due to the introduced randomization, and can easily be

controlled by tuning the number of embedding dimensions

depending on the application.

2) We introduce a novel framework to formulate the problem

in terms of scalable matrix operations by utilizing the

vector products of transformed features instead of explicit

pairwise kernel calculations.

3) We employ gradient descent based optimization to learn

the parameters of the proposed model. To this end, we

analytically obtain the intractable terms of the likelihood

and properly handle the constraints over parameters by us-

ing reparameterization techniques and projected gradient

descent.

4) We propose a simulation algorithm that follows thinning

procedure to generate synthetic spatio-temporal Hawkes

process realizations with multiple event types.

5) Through an extensive set of experiments over synthetic

and real-life datasets, we demonstrate that our method

brings significant improvements in terms of fitting per-

formance with respect to the EM algorithm and stochastic

declustering, which have been extensively favored in the

point process literature [11], [16], [19], [20], [27], [28].

6) We demonstrate the practical applications of the proposed

method by performing event analysis over real-life spatio-

temporal event sequences through the interpretation of

inferred excitation coefficients.

D. Organization

The remainder of the paper is organized as follows. We

provide the form of the spatio-temporal Hawkes process and

introduce the optimization problem in Section II. Then we pro-

vide the matrix formulations to express the likelihood function

in a closed-form using random Fourier features in Section III-B.

Fig. 1. An example of a spatio-temporal event sequence with four events. Each
event is located inside the spatial domain S, and distributed along the temporal
axis. We use various shapes to represent different event types. Here, we have
two types of events.

Then, we analytically obtain the derivatives of the likelihood

with respect to process parameters and provide in Appendix A. In

Section III-C, we give the gradient-based optimization algorithm

for maximum likelihood estimation under parameter constraints.

We analyze the fitting performance of the proposed method over

simulated and real-life datasets and perform network analysis in

Section IV. We conclude the paper in Section V with several

remarks.

II. PROBLEM DESCRIPTION

In this paper,1 we study spatio-temporal event analysis with

point processes. We observe an event sequence E = {ei}Ni=1,

and model it with spatio-temporal Hawkes processes. Here,

N is the total number of events and ei = {ui, ti, si}Ni=1 is

the ith event in the sequence with type ui ∈ N, time ti ∈ T
and location si = [xi, yi]

T ∈ S .2 We visualize an example of a

spatio-temporal event sequence in Fig. 1. Our goal is to infer the

parameters of the process and perform analysis on the given

event sequence through investigating the excitation between

events in spatial and temporal domain. We model the spatial

dynamics of E by expressing the kernels with random Fourier

features-based kernel representations. The parameters of the

process are denoted as θ, and we optimize them using MLE

approach, in which the objective function is the log-likelihood

of the given event sequence. Then, we solve the underlying

optimization problem with gradient descent and properly handle

numerical constraints using reparameterization techniques and

projected gradient descent.

1All vectors are column vectors and denoted by boldface lower case letters.
Matrices are denoted by boldface upper case letters. x

T and X
T are the

corresponding transposes of x and X. ‖x‖ is the ℓ2-norm of x. ⊙ and ⊘
denotes the Hadamard product and division operations. |X| is the determinant

of X. For any vector x, xi is the ith element of the vector. xij is the element

that belongs to X at the ith row and the jth column. sum(·) is the operation
that sums the elements of a given vector or matrix. δij is the Kronecker delta,
which is equal to one if i = j and zero otherwise.

2We define temporal space T � {t | t ∈ [0,∞)}, and consider spatial space
S to be a rectangular subset of R2.
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A. Temporal Point Processes

A temporal point process is a stochastic process that consists

of realizations of subsequent events in discrete time ti ∈ R with

i ∈ Z. We can interpret a temporal point process by specifying

the distribution of the time distance between subsequent events

(inter-event times). Let f ∗(t) = f(t|Ht) be the conditional den-

sity function for the time of the next event given the time history

of events Ht. To express the past dependence in an evolution-

ary point process, conditional intensity function is defined as

follows [14], [16],

λ∗(t) =
f ∗(t)

1− F ∗(t)
, (1)

where F ∗(t) is the cumulative density distribution of t such that

F ∗(t) = 1− exp (−
∫ t

tn
λ∗(t)) and tn is the time of the last event

before t. We can express the conditional density function f ∗(t)
in terms of conditional intensity function λ∗(t) using (1) as

f ∗(t) = λ∗(t)e−Λλ∗ (t), Λλ∗(t) =

∫ t

tn

λ∗(τ)dτ , (2)

where tn is the time of the last event before t. Here, the con-

ditional intensity function can have many forms. As a simple

example, in the case of a Poisson process, λ∗(t) = λ(t) = λ, i.e

value of the conditional intensity function is constant through

time.

B. Hawkes Processes

Unlike the Poisson Process, Hawkes process has an evolu-

tionary nature, in which the events excite each other depending

on their types and distance as expressed in the following form:

λ∗
u(t) = µu +

∑

j|tj<t

kujug(t, tj , u, uj),

where µu denotes the background conditional intensity, kuju is

the excitation of event type uj over u for triggering conditional

intensity and g(t, tj , u, uj) is the output of the temporal trigger-

ing kernel evaluated at event times t and tj for given event types

u and uj . This form enables us to model the point processes that

show temporally clustered patterns.

C. Spatio-Temporal Hawkes Processes

In the spatio-temporal case, each event also has a spatial

vector (s) that describes its location. While expressing the

conditional intensity function, we consider the following form

in our problem:3

λu(t, s) = µu(s) + γu(t, s), (3)

where µu(s) denotes the base conditional intensity for spatial

vector s and event type u, and γu(t, s) denotes the triggering

conditional intensity for any time t, s and u. We can parametrize

3Note that ∗ sign, which denotes the conditionality on history will be dropped
from now on for the sake of notational simplicity.

the base and triggering conditional intensities in (3) as follows,

µu(s) =
1

T

N
∑

j=1

k(µ)uju
g
(µ)
2 (s, sj), (4)

γu(t, s) =
∑

j|tj<t

k(γ)uju
g1(t, tj , u, uj)g

(γ)
2 (s, sj), (5)

where g1 is the temporal kernel function and g
(.)
2 is the spatial

kernel function.4 These functions can be expressed as

g1(t, tj , u, uj) = wujue
−wuju

(t−tj) (6)

and

g
(·)
2 (s, sj) =

1

2π
|Σ(·)|−1/2e−

1
2 (s−sj)

T
Σ

(·)−1
(s−sj), (7)

where T is the duration of the event sequence, N is the number

of events, Σ(·) is the covariance matrix of the spatial Gaussian

kernel, and wuju ≥ 0 is the decay rate of the intensity triggered

by event type uj over u.

The excitation values (kij) and weight decays (wij) are ex-

pressed in form of matrices K and W, where kij , wij > 0. The

multivariate normal distribution is said to be non-degenerate

when the symmetric covariance matrix Σ(.) is positive definite.

In this case, g
(.)
2 (s, sj) will have an invertible covariance matrix

and density.

It is still possible to use the form in (2) to express the

conditional density function for the spatio-temporal case as

fu(t, s) = λu(t, s)e
−Λλ(t), (8)

where

Λλ(t) =
U
∑

u′=1

∫ t

tn

∫∫

s′∈S
λu′(t,′ s′)ds′dt′. (9)

To estimate the optimum parameter set θ =
{K(µ),K(γ),W,Σ(µ),Σ(γ)}, we follow maximum likelihood

estimation approach. The negative log-likelihood over the

real-life event sequence E = {ei}Ni=1 is minimized, where N
denotes the number of events. The objective is given below:

θ̂ = arg min
θ

L, (10)

where L is the negative log-likelihood and can be expressed as

L=−log

(

N
∏

i=1

fui
(ti, si)

)

=−
N
∑

i=1

log λui
(ti, si)+

N
∑

i=1

Λλ(ti),

(11)

where the second term involving Λλ(ti) can be interpreted as a

regularizer, which prevents producing high intensity values over

all space defined by T and S .

We point out that certain parameters included in θ are opti-

mized indirectly through reparameterization to handle numerical

4For any scalar, vector, matrix or function, we denote the belonging to the

intensity component (·) with power notation, e.g, g
(µ)
2 is the spatial kernel

parameterized for base intensity component.
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constraints such as positivity ofK(·) andW, and unique proper-

ties of covariance matrices. Methods to handle these constraints

during the optimization are explained in Sections III-C.

D. Random Fourier Features

Random Fourier features provide an efficient way to approx-

imate the output of a shift-invariant continuous kernel k(x,y)
withx,y ∈ R

d [17]. This technique embeds kernel inputs (x and

y) into a D-dimensional Euclidean inner product space using

a transformation matrix F ∈ R
d×D and approximates k(x,y)

through the inner product of embedded vectors. Although it is

widely used to scale up kernel based methods such as SVM for

large datasets, [45] we use it to increase the spatial flexibility and

replace complex kernel calculations with straightforward matrix

multiplications.

Random Fourier feature-based kernel representation relies on

Bochner’s Theorem, which states that any bounded, continuous

and shift-invariant kernel is a Fourier transform of a bounded

non-negative measure [46]. Assuming p(·) is the density func-

tion of the spectral measure, the corresponding shift-invariant

kernel can be written as

k(x,y) =

∫

Rd

p(w)ejw
T (x−y)dw = Ew[ζw(x)ζw(y)∗],

where ζw(x) = ejw
Tx, and c∗ denotes the complex conjugate

of c ∈ C. Finally, this expression is approximated by its Monte-

Carlo estimate as follows,

k̃(x,y) =
1

D

D
∑

i=1

zi(x)zi(y) = zT (x)z(y), (12)

where zi(x) =
√
2 cos (xTwi + bi) with wi ∈ R

d×1 sampled

from p(w) and bi ∼ U(0, 2π).

III. SPATIO-TEMPORAL HAWKES PROCESS WITH

RANDOMIZED KERNEL REPRESENTATION

In this section, we describe our method to express the spatial

kernels given in (4) and (5) with Random Fourier features using

(12), and obtain a neat matrix formulation for the objective

function given in (11). Then, we provide derivative calculations

for gradient descent and describe the optimization procedure.

A. Random Fourier Features for Kernel Representation

We start with expressing the spatial Gaussian kernel functions

of the base and triggering intensity components in (4) and

(5) using random Fourier features. For given two locations

si = [xi, yi]
T and sj = [xj , yj ]

T , the result of the Gaussian

kernel output in (7) can be approximated with the following

D dimensional random Fourier approximation [17]s

g2(si, sj) ≈
1

2π
|Σ|−1/2zi

Tzj , (13)

where zi
T =

√

2
D cos (si

TF+ bT ) with F ∈ R
2×D, fd ∼

N (0, Σ̃) and bd is sampled uniformly from [0, 2π], and Σ̃ =
Σ−1.

Fig. 2. (a) Gaussian kernel with σx = 3, σy = 1, and ρ = 0.8, (b)-(c)-(d)
Approximated kernels with 20, 50 and 100-dimensional random Fourier fea-
tures.

To analyze the behavior of the random Fourier features given

in (13), we construct a Gaussian kernel with σx = 3, σy = 1
and ρ = 0.8, and perform three approximations with various

embedding dimensions (D = 20, 50, 100). We visualize the re-

sults in Fig. 2. As the number of dimensions in random Fourier

features increases, the approximation becomes more accurate.

In the cases when D is small as in Fig. 2(b), some randomly

repeating artifacts are visible around the kernel.

Since Σ is a positive definite and symmetric matrix as men-

tioned in the previous section, Σ̃ is also positive-definite and

symmetric. Therefore, we can decompose Σ̃ using the Cholesky

decomposition. and express as Σ̃ = C̃C̃T , where C̃ is a unique,

invertible, lower triangular 2× 2 matrix with real, and positive

diagonal entries. Using this decomposition, we obtain the fol-

lowing form for vector embedding:

zi
T =

√

2

D
cos (si

T C̃U+ bT ), (14)

where U ∈ R
2×D, and ud ∼ N (0, I).

We emphasize that C̃ introduces certain numerical constraints

because of being lower triangular and having positive, real diag-

onal entries that should be considered during optimization. To

handle this issue, we use eigendecomposition of the covariance

matrix Σ to express C̃ in a simpler form still with constraints

but more straightforward to handle:

Σ−1 = (VΛVT )−1 = (VΛ−1/2)(Λ−1/2VT ), (15)

where VΛ−1/2 = C̃.

Now, we have two components: the eigenvector matrix V ∈
R

2×2 with orthonormality, and the diagonal matrix of eigenval-

uesΛ ∈ R
2×2 with positivity constraints. These components can

be interpreted as the descriptors of the direction and magnitude

of excitation caused by an event. As a result, we obtain the
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following final form for the vector embedding:

zi
T =

√

2

D
cos (si

TVΛ−1/2U+ bT ). (16)

In addition, we can express |Σ|−1/2 in (13) in terms of the

the diagonal elements of Λ such that |Σ|−1/2 = 1√
ℓ1ℓ2

, where

ℓ = [ℓ1, ℓ2]
T � [Λ11,Λ22]

T is the vector that consists of the

diagonal elements of Λ. Since any term including covariance

matrices Σ(µ) and Σ(γ) or their corresponding Cholevsky com-

ponents can be expressed using V(µ), V(γ), ℓ(µ), and ℓ(γ),

we update the notation given for the parameter set as θ =
{K(µ),K(γ),W,V(µ),V(γ), ℓ(µ), ℓ(γ)}.

B. Matrix Formulations

After representing the spatial kernel with the random Fourier

feature-based approximation, we formulate the problem in a

well-organized matrix form. First, we define the following

matrices:5

Z
(·)
J(t) �

⎡

⎢

⎢

⎢

⎣

...

−− z
(·)T
j −−
...

⎤

⎥

⎥

⎥

⎦

N ′×D

, (17)

dJ(t) �

⎡

⎢

⎢

⎢

⎣

...

wujui
exp (−wujui

(t− tj))
...

⎤

⎥

⎥

⎥

⎦

N ′×1

, (18)

Y J(t) �

⎡

⎢

⎢

⎢

⎣

...

−− yT
j −−
...

⎤

⎥

⎥

⎥

⎦

N ′×U

, (19)

N(µ)(t) �
1

2π
|Σ|−1/2Z

(µ)T

J(t) YJ(t), (20)

N(γ)(t) �
1

2π
|Σ|−1/2Z

(γ)T

J(t) diag(dJ(t))YJ(t), (21)

where yT
j is the one-hot vector form of an event type for the jth

event.

Using (4), (5), (13) and (16), base and triggering conditional

intensity function values for the ith event can be factorized as

µui
(si) =

1

T
zi

(µ)TN(µ)(T )k(µ)
ui

, (22)

γui
(ti, si) = zi

(γ)TN(γ)(ti)k
(γ)
ui

, (23)

where k(·)
ui

is the uth
i column of K(·), which contains the effects

of other event types over the event type of the ith event. Finally,

using (20) and (21), the conditional intensity values for E given

5We use J(t) = {j|tj < t} to notate the rows that belong to the events
occurred before t.

in (11) can be expressed in the following matrix form:

A �

⎡

⎢

⎢

⎢

⎣

...

−− λ(ti, si) −−
...

⎤

⎥

⎥

⎥

⎦

= Q(µ)K(µ) +Q(γ)K(γ), (24)

where

Q(µ) �

⎡

⎢

⎢

⎢

⎣

...

−− 1
T zi

(µ)TN(µ)(T ) −−
...

⎤

⎥

⎥

⎥

⎦

N×U

contains the relation between the ith event and other events for

base intensity, and

Q(γ) �

⎡

⎢

⎢

⎢

⎣

...

−− zi
(γ)TN(γ)(ti) −−

...

⎤

⎥

⎥

⎥

⎦

N×U

contains the relation between the ith event and past events for

triggering intensity at each row.

Once obtaining the matrix-form expression for the conditional

intensity in (24), we analytically derive the integral output to

obtain the closed-form expression for the second term in (11) as

Λλ(ti) =

U
∑

u′=1

ti
∫

ti−1

∫∫

s′∈S

λu′(t,′ s′)ds′dt′

≈
U
∑

u′=1

ti
∫

ti−1

∫∫

s′∈R2

µu′(s′)ds′dt′

+

U
∑

u′=1

ti
∫

ti−1

∫∫

s′∈R2

γu′(t,′ s′)ds′dt′

≈
U
∑

u′=1

ti
∫

ti−1

∫∫

s′∈R2

1

T

N
∑

j=1

k
(µ)
uju′g

(µ)
2 (s′, sj)ds

′dt′

+

U
∑

u′=1

ti
∫

ti−1

∫∫

s′∈R2

∑

j|tj<t′

k
(γ)
uju′g1(t

′, tj , u
′, uj)

× g
(γ)
2 (s′, sj)ds

′dt′

≈ ti − ti−1

T

N
∑

j=1

U
∑

u′=1

k
(µ)
uju′

+
∑

j|tj<ti

U
∑

u′=1

k
(γ)
uju′(e

−wuju
′ (ti−1−tj) − e

−wuju
′ (ti−tj)),

(25)

where we approximate S with R
2 since the boundary effects

will have a negligible effect over the integral value. Then, the
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summation of Λλ(ti) for consecutive events is expressed as

n
∑

i=n−k

Λ(ti) =
tn − tn−k−1

T

N
∑

j=1

U
∑

u′=1

k
(µ)
uju′

−
∑

j|tj<tn

U
∑

u′=1

k
(γ)
uju′(e

−wuju
′ (tn−tj))

+
∑

j|tj<tn−k−1

U
∑

u′=1

k
(γ)
uju′(e

−wuju
′ (tn−k−1−tj))

+
∑

j|tn−k−1≤tj<tn

U
∑

u′=1

k
(γ)
uju′ (26)

for 0 ≤ k < i and t0 = 0. Here, we utilize the relation between

consecutive terms, which cancels out most of the intermediate

outputs. Inserting n = N and k = N − 1 into (26) yields the

following:

R �

N
∑

i=1

Λ(ti) =
N
∑

j=1

U
∑

u′=1

k
(µ)
uju′ + k

(γ)
uju′(1− e

−wuju
′ (T−tj)),

(27)

where R is defined as the second term in (11), and has a

suppressing effect over excitation matrices.

Finally, using (11), (24), and (27), we can express the negative

log-likelihood as

L = −sum(log (A)⊙Y) +R. (28)

In order to minimize the negative log-likelihood

expressed in (28), we employ gradient descent

through the back propagation of derivatives ∂L
∂θ =

{ ∂L
∂K(µ) ,

∂L
∂K(γ) ,

∂L
∂W , ∂L

∂V(µ) ,
∂L

∂V(γ) ,
∂L

∂l(µ) ,
∂L

∂l(γ) }. We provide

the equations for these gradients in Appendix A.

C. Optimization Algorithm

Here, we detail the optimization procedure to minimize the

negative log-likelihood L expressed in (28). We adapt mini-

batch gradient descent into our problem with a slightly modified

batch generation procedure as explained in Algorithm 1. We

also follow a training procedure with early stopping that stops

the iterations if the model does not improve during k consecutive

steps in terms of negative log-likelihood.

As mentioned before, certain parameters inθ have constraints.

The elements of the excitation matrices K(µ) and K(γ), the

decay matrixW, and the eigenvalue vectors of covariance matri-

ces, ℓ(µ) and ℓ(γ) have to be positive. To satisfy these conditions,

we simply introduce the following intermediate variables and

perform gradient descent over the unconstrained parameters

K̃(·), W̃ and ℓ̃
(.)

:

K(·) = φ(K̃(·)) =
1

s
log (1 + esK̃

(·)
),

W = φ(W̃) =
1

s
log (1 + esW̃),

Algorithm 1: Mini-Batch Gradient Descent With Random

Fourier Features (RFF-GD).

Require: θ (Initial parameter set), Etrain (Event sequence

for training), Eval (Event sequence for validation), b
(batch size), η (learning rate), max_epoch (number of

maximum epochs) and π = False (early stopping flag)

while epoch < max_epoch do

step ← 0
while step < Ntrain/b do

Sample is uniformly from {1, 2, . . . Ntrain − b}.

ie ← is + b
X ← {etraini

}iei=is
for all θk ∈ θ do

Update θk using (34)-(42).

end for

step ← step+ 1
end while

Calculate L over Eval with (11), and update π based on

early stopping criteria.

if π then

return θ

end if

epoch ← epoch+ 1
end while

return θ

ℓ(.) = φ(ℓ̃
(.)
) =

1

s
log (1 + esℓ̃

(.)

),

where φ is the soft-plus function parametrized by s. Soft-plus

function provides a differentiable and smooth approximation of

rectified linear unit function (σReLU(x) = max(0, x)) such that

as s → ∞, φ → σReLU [47].

Other constrained parameters are the eigenvector matrices

V(µ) and V(γ), which have to be orthonormal due to the eigen-

decomposition in (15). We employ projected gradient descent

to meet this limitation by using the following update rule:

V
(.)
t+1 = Πχ

(

V
(.)
t − η

∂L
∂V

(.)
t

)

, ∀t ≥ 1,

where χ = {X | X ∈ R
2, XTX = I} is the convex set of or-

thonormal matrices. Here, Πχ projects the updated parameter to

χ through solving the following minimization problem known

as orthonogal Procrustes problem [48]:

Πχ(X̃) = arg min
X

(||X− X̃||F ) subject to X ∈ χ

= UVT , (29)

where || · ||F denotes the Frobenius norm, and X̃ = UΣVT .

IV. EXPERIMENTS

In this section, we report the results of our method in terms

of fitting performance on synthetic and real-life datasets. We

generate three synthetic datasets to analyze the behavior of the
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proposed approach in a controlled manner. Then, we demon-

strate the performance of our method in two real-life datasets

and compare it with the EM algorithm [11] and stochastic

declustering [20]. We also analyze the effect of the randomized

feature space size on our performance. Finally, we perform

event analysis through the interpretation of the inferred process

parameters.

A. Synthetic Dataset Experiments

We first introduce a thinning-based algorithm to simulate syn-

thetic event sequences according to given process parameters.

Then, we evaluate two simple baseline approaches in addition

to our method over three different simulations.

1) Spatio-Temporal Thinning Algorithm for Simulations: In

order to simulate a spatio-temporal Hawkes process, we use

the thinning algorithm [49], which applies rejection sampling

over pre-sampled points. Unlike the extension of the thinning

algorithm for spatio-temporal case in [50], we have multiple

event types. The details are given in Algorithm 2.

To apply rejection sampling, we need an upper bound for the

conditional intensity function,

λ̄ � max

(

U
∑

u=1

λu(t,
′ s′)

)

for t′ ∈ [t,+∞) and s′ ∈ S

such that λ(t,′ s′) < λ̄ for all t ≥ t′ and s′ ∈ S . Since the con-

ditional intensity decreases in time exponentially, upper bound

will take place at time t, so we can express λ̄ as

λ̄ =

U
∑

u=1

max(µu(s
′) +

∑

j|tj<t

k(γ)uju
g1(t, tj , u, uj)g

(γ)
2 (s′, sj))

(30)

for s′ ∈ S . We perform calculations for densely sampled spatial

points over S at time t, and take the maximum value due

to the non-monotonous structure of the conditional intensity

function over the spatial domain. Moreover, older events will

have significantly less effect over the total sum in (30) due to the

exponential decay kernel. Thus, to make the simulation process

computationally efficient, we ignore the triggering effects of

the events that occurred before a particular temporal offset

(τ = 100). We observe no difference in the simulation with this

modification and the algorithm is robust to the selection of this

parameter.

To generate the type of the thinned event in Algorithm 2, we

apply the thinning procedure over the total conditional intensity

and then draw the event type stochastically from the generated

p(u) for the generated spatio-temporal point. Instead of running

rejection sampling for each event type separately, this procedure

provides an efficient and convenient way to generate spatio-

temporal Hawkes process with multiple event types.

We simulate realizations with T = 100000 and S =
[[−1, 1], [−1, 1]]. Each simulation is set to different parameters

to analyze the behavior in different cases. Table I shows the

parameter sets used for simulations.

2) Synthetic Dataset Performance: We also evaluate two

baseline processes with more basic forms compared to the

Algorithm 2: Thinning Algorithm for Spatio-Temporal

Hawkes Process Simulation.

Require: λ (Conditional intensity function), T (Temporal

space) and S (Spatial space), t = 0, i = 1, E = {}
while True do

Estimate λ̄ = max(
∑U

u=1 λu(t,
′ s′)) for t′ ∈ [t,+∞)

and s′ ∈ S by (30).

Draw q ∼ U(0, 1)
∆t ⇐ − log(q)/λ̄
t ⇐ t+∆t
if t > T then

return E
end if

Draw s ∼ U(S), v ∼ U(0, 1).
Calculate λ(t, s) =

∑U
u=1 λu(t, s).

if λ(t, s) > vλ̄ then

Draw u ∼ p(u), where p(u) = e−λu

∑U
u′=1 e−λu′

ei ⇐ [t, s, u]
E ⇐ E ∪ ei
i ⇐ i+ 1

end if

end while

TABLE I
SIMULATION CONFIGURATIONS. K(µ)

AND K
(γ) ARE THE EXCITATION

MATRICES FOR THE BASE AND TRIGGERING INTENSITIES, Σ(µ)
AND Σ

(γ)

ARE THE COVARIANCE MATRICES OF THE SPATIAL KERNELS FOR THE BASE

AND TRIGGERING INTENSITIES, AND W IS THE WEIGHT DECAY MATRIX OF

THE TEMPORAL KERNEL

spatio-temporal Hawkes process to analyze the behavior of the

proposed framework under different scenarios. First, we con-

sider the Poisson process, where each event type has a constant

intensity (λu) over the spatio-temporal space:

λu(t, s) = µu, (31)

where µu is the base intensity for the uth event type.

Second, we allow the conditional intensity to be locally

variant, but temporally constant by setting K(γ) to be a zero

matrix. This can be interpreted as a spatially inhomogeneous

Poisson process. For this baseline, the conditional intensity has

the following form:

λu(t, s) = µu(s) =
1

T

N
∑

j=1

k(µ)uju
g
(µ)
2 (s, sj). (32)

For all experiments, we divide each event sequence into training

(80%) and test (20%) sets. We use 10% of the training set for the

hyperparameter search and early stopping. We obtain maximum

likelihood estimates of the process parameters using Algorithm
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TABLE II
TRAINING PERFORMANCE OF OUR ALGORITHM WITH POISSON (31), SPATIAL

POISSON (32) AND SPATIO-TEMPORAL HAWKES (3) PROCESS MODELING ON

SYNTHETIC DATASETS. SYNTHETIC DATA ARE SIMULATED WITH THE

PARAMETER CONFIGURATIONS GIVEN IN TABLE I (p: NUMBER OF

PARAMETERS, L: NEGATIVE LOG-LIKELIHOOD PER EVENT)

1 and report the negative log-likelihoods on the training and

test sets. We also investigate the Akaike’s Information Criterion

(AIC) [51], which is also shown to be a consistent measure while

evaluating point process models and preferred in numerous

studies in the point process literature including [42], [52], [53].

AIC is defined as follows [51]:

AIC = 2L+ 2 k (33)

whereL is the negative log-likelihood and k is the number of pa-

rameters. Although these criteria are maximum likelihood driven

and tend to choose the model which fits to the data best, they

also penalize the number of parameters to address complexity.

Since spatio-temporal Hawkes modeling have more parameters

as provided in Table II, AIC penalizes it more heavily. Both

measures indicate better performance at lower values.

The results for all model-simulation pairs are shown in

Table II. All experiments are repeated 10 times. We highlight

that synthetic event sequences are scaled temporally before

training to prevent numerical instability issues related to very

low/high temporal space size, and report comparable results

among all simulations. We shrink the event times such that the

average temporal distance between consecutive events becomes

1 unit. We also normalize the resulting negative log-likelihood

by dividing it by the number of events, and consider the neg-

ative log-likelihood per event to provide comparability across

datasets.

As seen in Table II, all models perform similarly in the first

simulation since the conditional intensity function is spatio-

temporally homogeneous. In the second simulation, the simple

Poisson process performs worse because the spatial triggering

effect is not included in its modeling. In the third simulation,

due to the introduced temporal excitation, spatio-temporal (ST)

Hawkes performs significantly better than others thanks to its

capability to express spatial and temporal inhomogeneity in

the conditional intensity function. Hence, we conclude that our

algorithm performs consistent with different modeling choices.

In Table III, we provide the negative log-likelihood per event

values obtained on the test set. The results demonstrate the gener-

alization capability of our method since there is no considerable

gap between training and test performances. We also provide

the recovered intensity function parameters for the synthetic data

experiment, which simulates a spatio-temporal Hawkes process,

in Table IV.

TABLE III
TEST PERFORMANCE OF OUR ALGORITHM WITH POISSON (31), SPATIAL

POISSON (32) AND SPATIO-TEMPORAL HAWKES (3) PROCESS MODELING ON

SYNTHETIC DATASETS IN TERMS OF NEGATIVE LOG-LIKELIHOOD PER EVENT

TABLE IV
ESTIMATED PARAMETERS FOR THE 3 RD SIMULATION

B. Real-life Dataset Experiments

To investigate the fitting performance of our method in real-

life datasets, we investigate the negative log-likelihood per event

values and AIC as we have done in synthetic data. After learning

the process parameters, we perform event analysis by examining

the interactions between different event types in terms of excita-

tion relations and spatio-temporal effects. We also investigate

the effect of the number of dimensions in the randomized

feature space. To this end, we have chosen the following two

datasets. These datasets have been studied in the context of point

processes, with applications on spatio-temporal prediction, and

hotspot analysis [7], [13]. They both exhibit certain characteris-

tics such as having spatiotemporally clustered structures, which

makes their modeling by spatio-temporal Hawkes processes

plausible.

1) Datasets:

a) Chicago crime dataset: Chicago Crime Dataset in-

cludes the reported incidents in the City of Chicago from

2001, and is still being weekly updated by Chicago Police

Department. The dataset includes the location and time of the

incidents as well as their types such as theft, burglary, assault

etc. Before collecting results, we grouped event types into four

different classes considering their contextual meanings (1: As-

sault/Battery/Offense; 2: Burglary/Robbery/Theft; 3: Criminal

Damage/Violations; 4: Others). We particularly work in June

2019, and filter the locations spatially between the latitudes of

[41.85, 41.92] and longitudes of [−87.65, −87.62] to remove

outlier regions.

b) Earthquake dataset: The National Earthquake Infor-

mation Center provides this dataset that includes earthquakes

with a magnitude of 4.5 or higher since 1986. Every earthquake

entry includes a record of the date, time, location and mag-

nitude. We filter the dataset spatially and work on the events

occurred in Turkey, which is between the latitudes of [36, 42]

and longitudes of [26, 45]. In addition, we have defined the

event types according to the common categorization in the

seismology literature on the Richter scale [54] such that the

first event type represents the earthquakes with a magnitude less

than 5 (light), the second event type represents the earthquakes

with a magnitude between 5 and 6 (moderate), and the third

event type represents the earthquakes with a magnitude greater
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Fig. 3. Training curves of the introduced method (RFF-GD), EM [11] and stochastic declustering (SD) [20] for the earthquake dataset (a) and the Chicago crime
dataset (b).

TABLE V
TRAINING PERFORMANCE OF OUR ALGORITHM, EM [11] AND STOCHASTIC

DECLUSTERING (SD) [20] ON REAL-LIFE DATASETS (p: NUMBER OF

PARAMETERS, L: NEGATIVE LOG-LIKELIHOOD PER EVENT)

TABLE VI
TEST PERFORMANCE OF OUR ALGORITHM, EM [11] AND STOCHASTIC

DECLUSTERING (SD) [20] ON REAL-LIFE DATASETS IN TERMS OF

NEGATIVE LOG-LIKELIHOOD PER EVENT

than 6 (strong). In the seismology literature, it has been shown

that strong earthquakes cause aftershocks, i.e. earthquakes with

small magnitudes [13], [29], [54]. Therefore, our representation

enables us to infer the triggering relation between earthquakes

from different magnitude ranges.

2) Real-Life Dataset Performance: We investigate the fitting

performance of the proposed optimization algorithm, and com-

pare it with the EM algorithm proposed in a recent work [11]

and stochastic declustering [20]. As in the synthetic dataset ex-

periments, we scale the given event sequence spatio-temporally.

In addition, we repeat the experiments 10 times to reduce the

random effects on performance.

In the first set of experiments, we consider the earth-

quake dataset. We perform hyperparameter search over D ∈
[10, 1000], η ∈ [0.0001, 0.1], b ∈ [32, 512] and s ∈ [0.001, 0.1].
We stop the training if the performance does not improve for

k = 30 consecutive steps and save the best iteration as our

reference. For the proposed method, we obtain the best results

Fig. 4. D (number of randomized feature dimensions) vs. negative log-
likelihood per event for the training and test sets of the earthquake dataset (a)
and the Chicago crime dataset (b).

for D = 60, η = 0.002, b = 512 and s = 0.01. For the second

experiment set, we work on the Chicago crime dataset. We

perform hyperparameter search over the same parameter ranges.

In this experiment, we obtain the best performance withD = 40,

η = 0.01, b = 256 and s = 0.01.

In Table V, we provide the number of parameters, nega-

tive log-likelihood per event and AIC values of the EM al-

gorithm [11], stochastic declustering [20], and the introduced

method for training set. Our method have more parameters due

to the weight decay matrix and covariance matrices. We also

provide the negative log-likelihood per event values for the test

set in Table VI. On both datasets, our approach significantly

outperforms other methods in terms of negative log-likelihood

per event and AIC, which indicates that the inferred parameters

by our method represent the given event sequence more success-

fully. We also illustrate the training curves for these experiments

in Fig 3(a), 3(b) respectively.

To illustrate the effect of the number of random Fourier

feature dimensions, we provide Fig. 4. In Fig. 4(a), for the

earthquake dataset, we observe that the optimum choice for

the randomized transformation dimensions is around 70. The

performance significantly drops when D becomes very small.

If D gets very high, we do not obtain a considerable amount of
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Fig. 5. For the Chicago crime dataset, (a) Excitation matrix of base intensity

(K(µ)), (b) Excitation matrix of triggering intensity (K(γ)).

performance gain, in fact, the performance drops slightly. For

the Chicago crime dataset, we observe a similar behavior as

can be seen in Fig. 4(b). In this case, the best performance is

achieved when D = 40. Increasing this value causes negative

log-likelihood per event to reach values between 2.5 and 2.6.

Therefore, it is clear that the introduced tunable randomization

while modeling the spatial excitation enhances the performance

in real-life scenarios, particularly when the spatial dynamics of

the underlying system deviates from pure Gaussian behavior.

After investigating the fitting performance, we focus on the

inferred parameters, which inherently reflect the dynamics of the

given event sequence. For this purpose, we provide the estimated

excitation matrices for the base and triggering intensities in

Fig. 5. This analysis directly reveals the triggering effect between

different crime types. In this scenario, we observe that the

base excitation values are more homogeneous compared to the

triggering excitation values. In particular, crime events from

class 2 (burglary/robbery/theft) have a strong self-excitation

with respect to other event types. We also realize that events from

class 2 are significantly triggered by other event types, whereas

their effect on others is limited. On the contrary, events from

class 3 (criminal damage/violations) exhibit strong excitation

over all event types however, they are not considerably excited

by other event types.

V. CONCLUSION

We studied spatio-temporal Hawkes processes to perform

spatio-temporal event analysis. We introduce a novel framework

for spatio-temporal Hawkes processes to extend the conven-

tional methods in the literature such as EM [11] and stochas-

tic declustering [20]. Our approach utilizes the randomization

introduced by random Fourier features based spatial kernel rep-

resentation, and increases the flexibility of the model in terms of

spatial modeling capability. Moreover, we express the problem

in a neat scalable matrix formulation. We analytically calculate

the intractable terms in the likelihood function, and derive the

gradient equations for maximum likelihood optimization. To

satisfy the structural constraints of the process parameters, we

use reparameterization techniques and projected gradient de-

scent. We also propose a thinning-based simulation algorithm for

spatio-temporal Hawkes processes with multiple event types. We

analyze the improvements achieved by the proposed method on

various simulations and two real-life datasets. The comparisons

show that the proposed method significantly performs better in

terms of negative log-likelihood and AIC compared to other

methods. In addition, we interpret the learned process param-

eters and perform event analysis over these real-life datasets

through analyzing the triggering relations between event types.

APPENDIX A

We can obtain the derivatives for the base and triggering

intensity excitation matrices introduced in (4) and (5) as

∂L
∂K(·) = −Q(·)T (Y ⊘A) +

∂R

∂K(·) , (34)

where ∂R
∂K(·) consists of the elements

[

∂R

∂K
(·)
mn

]

, which can be ex-

pressed as ∂R

∂K
(µ)
mn

=
∑N

j=1 δujm and ∂R

∂K
(γ)
mn

=
∑N

j=1 δujm(1−
e−wujn

(T−tj)). We, then, express the derivative of the decay rate

matrix as ∂L
∂W =

[

∂L
∂wmn

]

, where each element is derived as

∂L
∂wmn

= −sum

(

(

∂A

∂wmn

)T

(Y ⊘A)

)

+
∂R

∂wmn
. (35)

Here, ∂R
∂wmn

=
∑N

j=1 δujm(T − tj)e
−wujn

(T−tj),

and ∂A
∂wmn

consists of the rows

∂aT
i

∂wmn
=

1

2π
|Σ(γ)|−1/2zT

i Z
(γ)T

J(ti)
diag

(

∂dJ(ti)

∂wmn

)

YJ(ti)K
(γ),

(36)

where

∂dJ(ti)

∂wmn
=

⎡

⎢

⎢

⎢

⎣

...

δuimδujn(1− wujui
(ti − tj))e

−wujui
(ti−tj)

...

⎤

⎥

⎥

⎥

⎦

.

(37)

For the spatial kernel parameters, we first derive the gradients

of V(µ) and V(γ) as ∂L
∂V(·) =

[

∂L
∂V

(·)
mn

,
]

where each element is

derived as

∂L
∂V

(·)
mn

= −sum

(

(

∂A

∂V
(·)
mn

)T

(Y ⊘A)

)

. (38)

Here, ∂A

∂V
(·)
mn

consists of the rows
∂aT

i

∂V
(·)
mn

such that

∂aT
i

∂V
(µ)
mn

=
1

2πT
|Σ(µ)|−1/2

(

∂zi
(µ)T

∂V
(µ)
mn

Z
(µ)T

J(ti)

+ zi
(µ)T

∂Z
(µ)T

J(ti)

∂V
(µ)
mn

⎞

⎠YJ(ti)
K(µ), (39)

∂aT
i

∂V
(γ)
mn

=
1

2π
|Σ(γ)|−1/2

(

∂zi
(γ)T

∂V
(γ)
mn

Z
(γ)T

J(ti)

+ zi
(γ)T

∂Z
(γ)T

J(ti)

∂V
(γ)
mn

⎞

⎠ diag(dJ(ti))YJ(ti)K
(γ), (40)
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where
∂Z

(·)T
J(ti)

∂V
(·)
mn

consists of the rows
∂zj

(·)T

∂V
(·)
mn

=

−
√

2
D simℓ

1/2
n un

T ⊙ sin (si
TV(·)Λ(·)−1/2

U+ bT ), and

un
T is the nth row of U. Finally, we obtain the derivatives

of ℓ(µ) and ℓ(γ) as ∂L
∂ℓ =

[

. . . ∂L
∂ℓn

. . .
]T

, where each

element is defined as ∂L
∂ℓn

= −sum(( ∂A
∂ℓn

)T (Y ⊘A)). Here,

∂A
∂ℓn

consists of the rows
∂aT

i

∂ℓn
such that

∂aT
i

∂ℓ
(µ)
n

=
1

2πT

(

∂|Σ(µ)|−1/2

∂ℓn
zi

(µ)TZ
(µ)T

J(ti)

+ |Σ(µ)|−1/2

(

∂zi
(µ)T

∂ℓn
Z

(µ)T

J(ti)

+ zi
(µ)T

∂Z
(µ)T

J(ti)

∂ℓn

⎞

⎠

⎞

⎠YJ(ti)K
(µ), (41)

∂aT
i

∂ℓ
(γ)
n

=
1

2π

(

∂|Σ(γ)|−1/2

∂ℓn
zi

(γ)TZ
(γ)T

J(ti)

+ |Σ(γ)|−1/2

(

∂zi
(γ)T

∂ℓn
Z

(γ)T

J(ti)

+ zi
(γ)T

∂Z
(γ)T

J(ti)

∂ℓn

⎞

⎠

⎞

⎠ diag(dJ(ti))YJ(ti)K
(γ), (42)

where
∂Z

(·)T
J(ti)

∂ℓ
(·)
n

consists of the rows
∂zj

(·)T

∂ℓ
(·)
n

=
√

1
2DsTi v

(·)
n ℓ

(·)−1/2

n un
T ⊙ sin (si

TV(·)Λ(·)−1/2

U+ bT ),

vn
(·) is the nth column of V(·) and un

T is the nth row of U.
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