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Abstract: Theoretical modeling of surface texturing in hydrodynamic lubrication is a necessary first step to 

obtain favorable effect of the texturing. This invited review presents a comprehensive summary of the modeling 

of several basic applications that was done mostly by the author’s group at Technion and published in the 

relevant literature. 
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1  Introduction 

Surface texturing as a means for enhancing tribo-

logical properties of mechanical components is well 

known for many years. Perhaps the most familiar and 

earliest commercial application of surface texturing is 

that of cylinder liner honing. Fundamental research 

work on various forms and shapes of surface texturing 

for tribological applications is carried out worldwide 

and various texturing techniques are employed in these 

studies. Of all the practical micro-surface patterning 

methods it seems that laser surface texturing (LST) 

offers the most promising concept. This is because 

the laser is extremely fast and allows short processing 

times; it is clean to the environment and provides 

excellent control of the shape and size of the texture, 

which allows realization of optimum designs. Indeed, 

LST is gaining more and more attention in the 

tribology community as is evident from the growing 

number of publications on this subject. LST produces 

a very large number of micro-dimples on the surface 

(see Fig. 1) and each of these micro-dimples can serve 

either as a micro-hydrodynamic bearing in cases   

of full or mixed lubrication, a micro-reservoir for 

lubricant in cases of starved lubrication conditions, or  

 

Fig. 1  LST regular micro-surface structure in the form of circular 

micro-dimples each is having a diameter of the order 100 m and 

a depth of the order of 1–10 m. 

a micro-trap for wear debris in either lubricated or 

dry sliding.  

The pioneering work on LST started at Technion in 

Israel as early as 1996 [1, 2]. At about the same time 

work on laser surface texturing was done in Germany 

but unfortunately, most of it is published in the 

German language and hence, is not even referenced in 

English archive journals. A few exceptions are papers 

from the group lead by Geiger at the University of 

Erlangen-Nuremberg [3, 4]. This group used an 

excimer laser with a mask projection technique. This 

method was applied to a punch, used in a backward 

cup extrusion process for the production of rivets,  
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and showed a substantial increase of up to 169% in 

cold forging tool life. These as well as many other 

papers on LST are described in a review of the state 

of the art of LST covering this subject until 2005 [5]. 

Two other reviews from 2010 focus on laser surface 

texturing and applications through 2007 [6] and on 

surface texturing for in-cylinder friction reduction [7]. 

The evolution of surface texturing, at least from the 

research aspect, shows a dramatic growth over the last 

years. Today, the benefits of surface texturing have been 

successfully demonstrated in numerous tribological 

applications including automotive, bearings and seals, 

elasto–hydrodynamic (EHD) lubrication, magnetic 

storage, etc. While the micro-hydrodynamic bearing 

function of textured features in cases of full lubrication 

has been studied extensively, both theoretically and 

experimentally, and is well understood, the other two 

functions namely micro-reservoirs for lubricant in cases 

of starved lubrication conditions, and micro-traps for 

wear debris are still far from completion, and much 

research work is still needed in these directions.  

In the following, the current state of the art in 

surface texturing will be described focusing mainly on 

modeling in hydrodynamic and hydrostatic lubrication 

applications.  

2  Background 

Surface texturing is a powerful means of enhancing 

hydrodynamic lubrication between parallel surfaces 

in relative sliding, which otherwise when un-textured 

cannot provide any significant hydrodynamic load 

carrying capacity. This is demonstrated in Fig. 2 

showing two parallel surfaces, the lower one moving 

at a relative sliding velocity U with respect to the 

upper surface. The surface texturing is represented in 

Fig. 2(a) by a single protruding asperity attached to 

the upper surface. The ambient pressure surrounding 

the two surfaces is Pa. In the absence of any texturing 

the relative sliding velocity results in viscous shear only  

without any effect on the pressure between the two 

flat surfaces and, hence, zero load carrying capacity, 

F = 0. The introduction of the protruding asperity 

changes the local film thickness into a converging 

diverging one, which generates a hydrodynamic  

 
Fig. 2  Schematic description of parallel sliding surfaces: A 

single protrusion (a), and the hydrodynamic pressure distribution 

over the single protrusion (b). 

pressure distribution as shown in Fig. 2(b). Due to 

the relative velocity U the pressure increases above Pa 

in the converging portion and decreases below Pa in 

the diverging portion of the clearance. At low velocities 

the maximum pressure is smaller than the absolute 

value of the cavitation pressure Pc and the pressure 

distributions is anti-symmetric about Pa. Integrating 

the pressure distribution along its axial span results 

in zero load capacity since the above and below 

ambient pressures cancel each other. As the velocity U 

increases the pressure distribution becomes asymmetric 

about Pa since the minimum pressure value is bounded 

from below by the cavitation pressure Pc while the 

maximum pressure is not limited. The integration of 

the pressure now results in a net positive value F > 0. 

When the textured surface contains a large number 

of protruding asperities the total load carrying 

capacity is the sum of their individual contributions. 

Exactly the same effect with an asymmetric pressure 

distribution as shown in Fig. 2(b) can be obtained 

with indented dimples instead of protruding asperities, 

only in this case the diverging portion of the clearance 

precedes the converging one. It should be noted here 

that because of the micro-scale of the asperities or 

dimples (see Fig. 1) the total load capacity of textured 

parallel surfaces is relatively small compared to the 

load capacity that can be generated in conventional 

hydrodynamic slider bearings. Hence, surface texturing 

is mostly beneficial in cases where conformal mating 

surfaces at very small uniform clearances are required, 

for example, in various sealing applications. Also, as 

shown in Fig. 3 the dimples configuration is a better 
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choice for surface texturing compared to that of 

protrusions. This is mainly because when the surfaces 

are brought into contact the real contact area with 

dimples is much larger than that with protrusions. 

Hence, the average contact pressure in the dimples 

case is much smaller and the wear is much lower. 

Another advantage of the dimples configuration is 

the smaller separation that can be obtained between 

the mating surfaces, which allows better sealing and 

much smaller leakage. Indeed, laser surface texturing 

has been proven extremely beneficial in various sealing 

applications for liquids and gas (see Refs. [8−12]). In 

some of these applications where high pressure liquid 

has to be sealed, such high pressure may eliminate 

the cavitation in the individual dimples and thus 

hamper the generation of hydrodynamic load carrying 

capacity. The solution for this problem is a partial 

surface texturing adjacent to the high pressure side 

as shown in Fig. 4. When the clearance between two 

parallel surfaces has a step change (see Fig. 4(a)) and 

the larger clearance hmax is facing the higher pressure 

p0, a hydrostatic load carrying capacity can be generated 

due to the restriction in the Poiseuille flow caused by 

the smaller clearance c facing the lower pressure pa. A 

similar effect is obtained by “partial” surface texturing 

where high density dimples at the high pressure end 

form an equivalent “step” of height heq as shown in 

Fig. 4(b). This solution has been used successfully in 

high pressure seals as described in Ref. [13]. Both the 

original “full” texturing and its modification form of 

“partial” texturing, as well as textured micro-grooves, 

were successfully applied to piston rings and cylinder 

liners [14−17]. The partial texturing concept was also 

found very useful in generating substantial hydro-

dynamic load capacity in hydrodynamic slider bearings 

and thrust bearings of the simplest form of parallel 

sliding disks [18, 19]. Here the effect of the equivalent 

step is similar to the very efficient Raleigh step in a 

slider bearing. Through extensive theoretical modeling 

it was found that the most important parameter in 

surface texturing for full fluid film lubrication is the 

aspect ratio of the dimples (depth over diameter ratio). 

It is this parameter that can be optimized in order to 

provide maximum load carrying capacity, maximum 

film stiffness and minimum friction coefficient. The 

area density, Sp, of the texturing also affects the 

efficiency of surface texturing and this parameter also 

can be optimized. Yet another important parameter 

that can be optimized in cases of partial texturing is the 

textured portion ratio  = Bp/B (see Figs. 5(a) and 5(b)). 

 

Fig. 3 Advantages of a dimples configuration in surface texturing 

compared to that of protrusions. 

 

Fig. 4 A comparison of two equivalent sets of parallel surfaces: 

A step change in the clearance (a), and partial surface texturing (b). 

 

 

Fig. 5 (a) A cross section of a partially laser surface textured 

parallel slider bearing. (b) The effect of the textured portion, α = 

Bp/B, on the dimensionless load carrying capacity of an infinitely 

long parallel slider at various dimensionless dimple depths, Hp = 

hp/h0 (see (a)). 
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3  Basic modeling for different applications 

3.1   Mechanical seals 

We shall use a typical textured seal application [8] to 

demonstrate the basic modeling of surfaces texturing 

for mechanical seals. The geometrical model of the 

textured surface is displayed in Figs. 6 and 7. Each 

dimple is modeled by an axi-symmetric spherical 

segment with a base radius rp, and depth hp (see Fig. 7). 

The dimples are distributed uniformly over the 

annular surface with an area density Sp. Each dimple 

is located in the center of an imaginary square cell of 

sides 2r1  2r1 (see Fig. 6(c)) where 

p

p


1

2

r
r

S
                 (1) 

It is assumed that the clearance between the 

nominally parallel mating surfaces (see Fig. 7) is fully 

filled with an incompressible viscous (Newtonian) fluid 

having a constant viscosity μ. The ratio Ri between  

 

Fig. 6 Schematic description of a textured seal ring: (a) dimples 

distribution; (b) a single dimples column with its coordinate system 

and boundary conditions; (c) individual dimple cell. 

 

Fig. 7 Film thickness and geometry of dimples in a textured 

seal. 

the inner and outer radii, ri and ro, of the seal ring 

under consideration is larger than 0.7. This allows to 

neglect curvature effects and consequently, a circular 

sector containing one dimples column in the radial 

direction (see Figs. 6(a) and 6(b)) is assumed  to be 

rectangular, subjected in the lateral x direction to a 

relative sliding velocity U, corresponding to the 

tangential velocity at the mean radius of the seal ring. 

The two-dimensional, steady state form of the 

Reynolds equation for an incompressible Newtonian 

fluid in a laminar flow is given by 

U
                 

3 3 6
p p h

h h
x x z z x

        (2) 

where z and x are the radial and circumferential 

directions Cartesian coordinates, respectively, h and p 

are the local film thickness and pressure, respectively, 

at a specific point of the seal. In order to reduce Eq. (2) 

to a dimensionless form the dimensionless Cartesian 

coordinates X and Z, dimensionless local film thickness 

H and dimensionless pressure P are defined as: 

p p a

   ;     ;     ;     
px z h

X Z H P
r r C p

       (3) 

where pa is the ambient pressure and C is the seal 

clearance. After substitution of Eq. (3) into Eq. (2) the 

Reynolds equation in its dimensionless form becomes 

                  
3 3P P H

H H
X X Z Z X

        (4) 

where the dimensionless parameter  is given by 

p

a

U
 

2

6 r

p C
                   (5) 
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The dimensionless local film thickness H over one 

imaginary dimple cell as a function of the local dimen-

sionless Cartesian coordinates X  and Z , measured 

from the center of the imaginary dimple cell is given by 

 

 
  


 


 


        

 
       

 
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,

1                                                        for   1

1 1
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1
                                  for   1

8 2

H X Y

X Z

X Z

X Z

  (6) 

where  p p  2h r  is the dimple’s aspect ratio,   is 

the dimensionless seal clearance  p2C r  and the axes 

of X  and Z  (not shown in Fig. 6) are parallel to these 

of x and z, respectively. 

By specifying  and  and hence, the film thickness 

distribution H(x,z), the dimensionless parameter  , 

and the relevant boundary conditions, Eq. (4) can  

be solved for the pressure distribution in the seal 

clearance. Integrating the pressure over the seal area 

gives the opening force acting in the axial direction to 

prevent contact between the rings for reliable operation 

of the mechanical seal. 

Since the micro-dimples are evenly distributed it is 

assumed that the pressure distribution is periodic in 

the circumferential direction with a period equal to 

the imaginary square cell size 2r1. Because of this it is 

sufficient to consider only one radial dimples column 

as shown in Fig. 6(b), with the following boundary 

conditions:   

   i in o out   ,  ;     ,  p x z r p p x z r p        (7) 

Dimensionless values of the pressure at the two edges 

of one dimples column are obtained by normalization 

according to Eq. (3). Periodicity condition of the pres-

sure is applied in the circumferential direction so that 

      1 1,  ,  p x r z p x r z            (8) 

The boundary conditions in dimensionless form are 

given as follows: 

in outoi

p a p a

   
         

   
,  ;     ,  ;

p prr
P X Z P X Z

r p r p
 

p p

   
         

   

1 1,  ,  
r r

P X Z P X Z
r r

        (9) 

The boundary conditions at the inner and outer 

radii of the seal, Eq. (7), and the periodicity condition, 

Eq. (8), should be complemented by the conditions at 

the boundaries of possible cavitation regions associated 

with each individual dimple. As explained in Section 

2 above, these cavitation regions are responsible for 

the asymmetric hydrodynamic pressure distribution 

and, hence, are the only source for load carrying 

capacity in parallel surface sliding. The relatively 

simple Reynolds boundary condition, also known as 

the Swift Stieber condition (see Ref. [20]), or any other 

more advanced cavitation boundary conditions (e.g., 

Ref. [21]), can be assumed. The Reynolds condition 

implies that on the cavitation boundary the pressure 

gradient normal to the boundary is zero and the pres-

sure inside the cavitation region is retained constant 

close to zero. 

The Reynolds equation, Eq. (4), with its appropriate 

boundary conditions can be solved by a finite difference 

method using a non-uniform grid over the radial 

dimples column, shown in Fig. 6(b), where a denser 

grid is applied within the dimple areas. Numerical 

tests show that, for dimple density values Sp in the 

range between 10% to 50%, the best accuracy of 

pressure calculation is obtained when the grid applied 

in the area of the dimples is about five times denser 

than that outside of the dimples. 

The finite difference method leads to a set of linear 

algebraic equations for the nodal values of the 

pressure which should be solved with the boundary 

conditions at the inner and outer radii of the seal, 

Eq. (7), and the periodicity condition, Eq. (8). This linear 

equations set may be solved by various standard 

methods. The successive over-relaxation Gauss–Seidel 

iterative method [22] is one possible method. It 

requires an initial approximation of the solution and, 

in the case of a mechanical seal, for example, a linear 

hydrostatic pressure distribution may be used for 

this purpose if a more precise solution is unknown. 

Although the iteration algorithm of Gauss–Seidel is 

not always the most effective one, this method is 

convenient for the determination of the previously 

unknown cavitation regions. 
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The basic modeling described above for mechanical 

seals can be easily modified to fit different applications. 

These modifications include, for example, solving a 

non-linear Reynolds equation for compressible fluids 

[11], solving the Reynolds equation simultaneously 

with a dynamic equation for piston rings [14] or with 

the equation of elasticity for elastomeric seals and 

bearings [23, 24]. In the following few of these 

modifications are presented in more details. 

3.2  Gas seals 

The non-linear Reynolds equation for compressible 

fluid applications such as gas seals [11] or gas bearings 

has the form: 

 U
      

    
       

3 3 6
p p

ph ph ph
x x z z x

    (10) 

After substitution of Eq. (2) into Eq. (10) the Reynolds 

equation in its dimensionless form becomes 

 


                  
3 3

2

P P
PH PH PH

X X Z Z X
   (11) 

where p aU  3 / 2r p  is the dimensionless seal para-

meter and p  / 2c r  is the dimensionless seal clearance. 

A finite element method using a non-uniform grid 

over the radial dimples’ column, shown in Fig. 6(b), 

can be used to solve the Reynolds equation, Eq. (11), 

with its appropriate boundary conditions, where a 

dense grid is applied within the dimple areas. Note 

that for the case of compressible fluids there is no 

cavitation to deal with, which somewhat simplifies 

the boundary conditions. A variational Galerkin 

formulation can be utilized in order to apply the 

finite element method to the Reynolds differential 

equation [25] 

    d d




                     
 

 3 3

2

   0

A

i j

P P
PH PH H

X X Z Z X

N X N Z X Z

  (12) 

where A is the area of one dimples’ column,  iN X  

and  jN Z  are Lagrange polynomials and all their 

possible products     i jN X N Z  are the weight func-

tions. The solution  ,P X Z  is approximated by the 

double series 

     
,

,  ij i j
i j

P X Z P N X N Z           (13) 

where ijP  are the approximate pressure values at the 

nodal points of the finite element grid. Note that the 

Lagrange polynomials used for the approximation of 

the pressure distribution in the seal are the same as 

these of the shape functions. The finite element method 

leads to a set of nonlinear algebraic equations for the 

nodal values of the pressure that should be solved 

with the boundary conditions. This set of equations 

can be solved by the Newton gradient method. It 

requires an initial approximation of the solution, 

which can be a linear hydrostatic pressure distribution 

if a more precise solution is unknown. Although the 

convergence of the Newton gradient method is sen-

sitive to the initial approximation, the convergence 

rate, in the case of successful initial approximation, is 

very high. 

3.3  Parallel thrust bearings 

A schematic representation of a parallel thrust bearing 

[18] is shown in Fig. 8. A plain disk (D) is rotating 

relative to a number of identical stationary pads (P). 

Each pad, when properly textured, develops the same 

hydrodynamic force. Hence, in order to evaluate the 

load carrying capacity of the complete parallel thrust 

 

Fig. 8 Schematic of a parallel thrust bearing. 
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bearing it is sufficient to determine the hydrodynamic 

pressure distribution over a single pad. A simplified 

geometrical model of a single pad in the form of a 

rectangular parallel slider is displayed in Fig. 5(a). 

The dimples are regularly distributed over a portion, 

0  1 (where  = Bp /B), of the slider width, B, in 

the sliding direction, x, and over the full slider length, 

L, along the direction z (not shown in Fig. 5(a)). 

In order to reduce Eq. (2) to a dimensionless form, 

the dimensionless coordinates X and Z, dimensionless 

local film thickness, H, and dimensionless local 

pressure, P, are defined as follows 

p p a
 

     
 0

1
; ; ; 1

px z h
X Z H P

r r h p
     (14) 

where pa is the ambient pressure, h0 is the bearing 

clearance (see Fig. 5(a)) and   is the dimensionless 

bearing number, given as 

p a

U 
3

2r p
                (15) 

Substituting Eqs. (14) and (15) into Eq. (2) yields the 

Reynolds equation in its dimensionless form: 


                  

3 3

2

1P P H
H H

X X Z Z X
      (16) 

where  is the dimensionless clearance, defined as 

p  0 / 2h r . The pressure along the slider boundaries is 

equal to the ambient pressure pa that, by the definitions 

in Eq. (14), corresponds to zero dimensionless pressure. 

The analytical model is valid for all values of slider 

length, L, and width, B. However, if the slider is long 

enough in the z direction (normal to the sliding 

velocity), with a ratio / 4L B , the end effects in this 

direction can be neglected. In this special case the 

pressure distribution is periodical in the z direction 

with a period equal to the imaginary cell size 12r . 

Hence, because of this periodicity, it is sufficient to 

consider a single column of dimples along the x 

direction. Due to symmetry of the dimples column 

about its x axis, the pressure distribution will be also 

symmetric about this axis. Therefore, for the complete 

pressure distribution it is sufficient to consider only 

one half of the dimples column with z varying from 0 

to r1. From the periodicity, symmetry and continuity 

of the pressure distribution, it follows that: 

 
 

  1( ,0) ( , ) 0
P P

X X r
Z Z

          (17) 

The dimensionless pressure obtained from a solution 

of the Reynolds equation Eq. (16) with its appropriate 

boundary conditions, for a finite or for an infinitely 

long slider is numerically integrated over the slider 

area yielding the dimensionless load carrying capacity 

W , which is related to the dimensional load carrying 

capacity W * in the form: 

*

U


p

2

3

W
W

r
                (18) 

3.4  Piston rings 

Figure 9 shows a piston ring segment [26] with 

partial LST applied at the middle portion of the  

ring width. However, the textured portion can be 

located elsewhere as shown schematically in Fig. 10. 

Here w* is the piston ring width, bp is the axial length 

of the textured zone, x is the axial direction of the 

cylinder liner, and z is the circumferential direction 

of the piston ring. In Fig. 10(a) the textured zone is 

symmetrically located at the center of the ring; in Fig. 

10(b) it is located symmetrically at both ends of the 

ring and in Fig. 10(c) at an arbitrary distance d from 

the ring center. 

A detailed description of a partial central sym-

metrical texturing is presented in Fig. 11. The dimples 

are uniformly distributed, with an area density Sp, 

within the strip pb  of the piston ring full width w*. 

The textured zone is bounded with two un-textured 

 

Fig. 9  A segment of partially textured piston ring. 
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Fig. 10 Different locations of the textured zone: (a) symmetrically 

in the center; (b) symmetrically at both ends; (c) arbitrarily at a 

distance d from the ring center [26]. 

 

Fig. 11 A geometrical model of central symmetrical textured 

surface of a piston ring [26]. 

strips of width *  p( ) / 2w b  on each of its side. Because 

of the periodicity of the surface texturing in the 

circumferential direction z, and the symmetry in each 

axial dimple column of width 12r  about its longi-

tudinal axis, it is sufficient to consider the pressure 

distribution within just one half of one dimple column. 

Assuming a slider-crank mechanism that drives the 

piston [14], the sliding velocity U is time dependent 

and the clearance between ring and cylinder liner varies 

with time during each cycle of the ring reciprocal 

motion. Hence, a simultaneous solution of the Reynolds 

equation with squeeze effect and the equation of 

piston ring radial motion is required. These equations 

are given in the form: 

μU μ
                    

3 3 6 12
p p h h

h h
x x z z x t

    (19) 

r h eρ 
 



2

2

c
h p p

t
               (20) 

where h is the instantaneous local film thickness at a 

specific point (x, z) (see Fig. 12), p is the instantaneous 

local hydrodynamic pressure,  is the dynamic 

viscosity of the fluid, c(t) is the instantaneous nominal 

clearance,  and hr are the piston ring density and 

height, respectively, pe is the total external pressure 

on the ring consisting of gas pressure and piston ring 

elasticity, and ph is the instantaneous average hydro-

dynamic pressure between the ring and liner. 

A simultaneous solution of Eqs. (19) and (20) 

provides the time behavior of both the clearance and 

pressure between the piston ring and cylinder liner 

surfaces. The dimensionless form of the differential 

Eqs. (19) and (20) is given by 

τ
τ

                     
3 3

12 ( ) 12
P P H H

H H
X X Z Z X

 (21) 

h eτ
 

 


2

2 2

C
P P                (22) 

where X and Z are the dimensionless Cartesian 

coordinates, H is the dimensionless instantaneous 

local film thickness,  () is a trigonometric function 

governing the kinematics of crank mechanism (see 

Ref. [14]), and P, Ph and Pe are the corresponding  

 

Fig. 12 Piston ring, cylinder liner and film thickness cross-section 

[26]. 
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dimensionless pressures. These various parameters 

are normalized in the form: 

c

 ;
x

X
r

   
c

 ;
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Z
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 ;
h
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   a
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

p p
P

p
    (23) 

Note that cr  the crank radius is half the piston stroke, 

and ap  is an ambient pressure. 

The other dimensionless parameters, , , c and 

2 are given by 

a
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3
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p

c
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c

ε  p
;

h

r
   r c aρ

μ
 2 2

h r p
  (24) 

More details as well as the formulation of the friction 

force between the piston ring and cylinder liner, due 

to viscous shear stresses can be found in Ref. [26]. 

3.5  Soft elasto-hydrodynamic lubrication (SEHL) 

Theoretical modeling of surface texturing for app-

lications involving elastomeric components such as 

O-rings and various other geometries of reciprocating 

sealing rings, lip seals, elastomeric bearings etc. is 

relatively new [23, 24]. Hence, differently from the 

previous applications, no experimental evidence has 

yet been accumulated to validate these models. There 

are two options in SEHL applications regarding the 

surface to be textured. Texturing can be applied either 

on the rigid surface or on the soft elastomeric one. 

While texturing elastomeric surfaces may present a 

technological challenge it has one obvious advantage 

at least in reciprocating sealing where the area to be 

textured is much smaller if the short elastomeric seal 

rather than the long reciprocating shaft is textured. 

Another advantage of texturing the soft rather than 

the rigid surface may be the prevention of wear of 

the soft elastomer by the harder surface features 

(protrusions or indentations) during unfavorable 

lubrication conditions. In this section the modeling of 

a textured elastomeric sleeve in rotary sliding [24] is 

described as an example for SEHL application.  

A schematic illustration of the SEHL model is 

shown in Fig. 13(a). A stationary elastomer sleeve with 

rectangular cross-section is fitted on a rotating shaft. 

A regular surface texturing is applied to the inner 

surface of the sleeve as shown schematically in Fig. 13(b) 

and in more details in Fig. 13(c). The dimples are  

 

Fig. 13 (a) A schematic of the SEHL model; (b) an elastomer 

sleeve with regular surface texturing; (c) a geometrical model of 

a textured surface; (d) a single column of dimples [24]. 

uniformly distributed on the elastomer surface with 

an area density Sp. The dimples are arranged in a grid 

of longitudinal columns (see Fig. 13(d) for a single 

column) and circumferential rows. As in all previous 

applications here too all the dimples are identical 

spherical segments with a base radius, rp, and a maxi-

mum depth, hp. Each dimple is located in the center 

of an imaginary square cell of sides 2r1 × 2r1. 

The longitudinal cross-section of the elastomer sleeve 

before (dashed line) and after (solid line) deformation 

is shown in Fig. 14(a). The sleeve is fitted on the shaft 

with an interference fit, c, while its outer circumference 

is fixed to a rigid foundation. Due to the surface 

texturing a hydrodynamic pressure is generated 

between the rotating shaft and the elastomer sleeve, 

causing deformation of the latter. This pressure may be 

sufficient to separate the initially interfering mating  
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Fig. 14 (a) A schematic cross-section (not to scale) of the 

elastomer sleeve; (b) a cross-section through a single undeformed 

dimple [24]. 

surfaces by a thin fluid film with a thickness 

distribution h(x1, x3), which is given by 

δ   1 3 0 1 3 1 3( , ) ( , ) ( , )h x x c h x x x x        (25) 

In Eq. (25) h0(x1, x3) is the local depth of an un- 

deformed dimple (see Fig. 14(b)), and (x1, x3) is the 

variation of the local film thickness due to radial 

deformation of the elastomer inner surface. 

For analyzing the surface texturing effect a full 

hydrodynamic lubrication between the textured elasto-

mer and rigid shaft is assumed during operation, i.e., 

no contact between the mating surfaces is allowed. 

The fluid film thickness is assumed much smaller than 

the shaft radius, thus curvature in the circumferential 

direction x3 can be neglected. This allows using 

Cartesian instead of cylindrical coordinates and 

replacing rotational by translational velocity in the x3 

direction. Roughness of the shaft and the elastomer 

surfaces is neglected except for the regular surface 

texturing. The fluid is assumed Newtonian, incom-

pressible, and with a constant viscosity . Further 

assumptions related to relevant properties of the 

fluid and the elastomer can be found in Ref. [24].  

Based on these assumptions the Reynolds equation 

for the local pressure in the fluid film, and the set of 

elasticity equations for the elastomer deformation are 

given in the form (see Ref. [23]): 

U
     
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3 3

1 1 3 3 3
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p p h
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      (26) 
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where p is the local hydrodynamic pressure, U is the 

relative sliding velocity, u*
i represents the components 

of the elastomer displacement vector distribution, and 

 ij is the Kronecker delta. The index notation of the 

general form ui,j denotes partial derivative of ui with 

respect to xj, and a repeated index denotes summation 

(e.g., * * * *

k,k   1,1 2,2 3,3u u u u ). In order to evaluate the 

load carrying capacity and the viscous friction force, 

a simultaneous solution of Eqs. (26) and (27) is 

required [24].  

The dimensionless form of the problem parameters 

consists of normalizing all length dimensions by rp 

(see Ref. [23]) in addition to 

ε
U U 


  

*
p a p p

p

( )
; ;

2 6 6

h p p r E r
P E

r
        (28) 

where pa is the ambient pressure and E* is the Young’s 

modulus of the elastomer.  

The dimensionless forms of the local film thickness 

(Eq. (25)), the Reynolds equation (Eq. (26)), and the 

elasticity equations (Eq. (27)) are given as 

   1 3 0 1 3 1 3( , ) ( , ) ( , )H X X C H X X X X      (29) 

      
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3 3
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Because of periodicity of the surface texturing in the 

circumferential direction (see Fig. 13(c)), it is sufficient 

to consider the pressure distribution within just one 

single dimples column with its proper boundary 

conditions (see Fig. 13(d)).  

The deformations of the elastomer sleeve are also 

periodic in the circumferential direction x3 with the 

same period of 2r1 as the hydrodynamic pressure. 

Hence, it is sufficient to solve Eq. (31) for a single 

elastomer slice of width 2r1 (shown in Fig. 15(a)) that 

is associated with the single column of dimples shown 

in Fig. 13(d). The boundary conditions for Eq. (31) relate 

the dimensionless local shear and normal stresses, 

respectively, to the dimensionless elastic displacements  
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Fig. 15 Elastomer model: (a) A single elastomer slice (associated 

with a column of dimples) and its boundary conditions; (b) the 

finite element mesh of the elastomer slice [24]. 

(see Ref. [23]) at the inner surface of the elastomer 

sleeve. These shear and normal stresses are equal to 

the Couette viscous shear and the hydrodynamic 

pressures in the fluid, respectively.  

The numerical procedure for the simultaneous 

solution of the Reynolds equation and the elasticity 

equations consists of the following steps: An initial 

guess of the film thickness distribution is made   

and the Reynolds equation Eq. (30) with its proper 

boundary conditions is solved by a non-uniform grid 

finite difference method (sees Ref. [8] and Section 3.1 

above). This provides a first approximation of the 

pressure and shear stress distributions, which are 

used as boundary conditions at the inner surface of 

the elastomer sleeve. 

The elastomer deformations are calculated from 

Eq. (31) and its boundary conditions (see Ref. [24]) by 

finite element commercial software ANSYS with higher 

order 3-D 10-node tetrahedral solid element and 

non-uniform mesh as shown in Fig. 15(b). The finite 

element mesh is finest at the textured surface and 

becomes coarser towards the built-in plane. Local 

fluid pressure and shear stress are applied at element 

nodes by using surface elements. The finite element 

solution provides the deflections of the elastomer 

and the dimensionless variation in the local fluid film 

thickness, (X1, X3), which in turn are used to correct 

the fluid film thickness distribution by Eq. (29). The 

new film thickness distribution is returned to the 

Reynolds equation and this iterative process is repeated 

until a desired convergence is achieved.  

The dimensionless load carrying capacity, W, and 

friction force, Ff, are obtained by: 

d d
U

 
p

1 3 1 3

1
( , )

6A

r
W P X X X X w

A
 

d d

U
 

p1 3
f f

1

6 6
A
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F f

A H
 

where A = 2R1L1 is the dimensionless area of a single 

dimples column and w and ff are the dimensional 

average pressure and shear on the elastomer slice 

inner surface, respectively. It should be noted here that 

in textured conformal surfaces, the pressure gradient 

effect on the friction force is much smaller compared 

to that of the viscous shear. Hence, the former can be 

safely neglected. Finally, the coefficient of friction is 

defined as the ratio of the friction force over the load 

capacity: 

η  f ff F

w W
 

The model dimensionless parameters required   

to investigate the load capacity and friction are the 

following: The operating conditions are represented 

by the SEHL stiffness index, E = E*rp /(6U ), the inter-

ference fit, C = c/rp, and the pressure differential Ps. The 

elastomer geometry is given by the sleeve dimensions 

L1 = l1/rp and L2 = l2/rp. The texturing parameters 

include the dimple aspect ratio,  = hp/2rp and the 

area density, Sp. 

Differently from all the previous applications that 

are characterized by rigid mating surfaces, in SEHL 

there is only a weak optimum of the texturing parame-

ters regarding the load capacity. This can be explained 

by the opposite effects of hydrodynamic pressure and 

fluid film thickness on the load capacity. An effective 

texturing which would increase the hydrodynamic 

pressure also increases the elastomer radial defor-

mation, which increases the film thickness and hence, 

offsets the effect of the texturing on the load capacity. 

However, this increase of the film thickness has a 

beneficial effect on reducing the viscous shear and 

therefore, it reduces the friction force and the coefficient 

of friction. 
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4  The validity of the Reynolds equation 

for textured surfaces 

Although the theoretical models based on solving  

the Reynolds equation showed good agreement with 

experimental results (see Refs. [8, 13, 15, 19]), for 

example, in Fig. 16 taken from Ref. [15], it was argued 

on several occasions, e.g., Ref. [27] that the Reynolds 

equation may not be valid when applied to textured 

features that have large aspect ratio (the ratio of depth 

over diameter or width) and that the full Navier– 

Stokes (NS) equations should be employed. In order 

to clarify this issue, both the full NS equations and 

the Reynolds equation were solved for the case of a 

compressible fluid at no sliding but with a pressure 

differential to simulate a hydrostatic gas seal [28].   

A comparison between the two solution methods 

illustrated that in spite of potential large differences 

in local pressures the differences in load carrying 

capacity are small for realistic geometrical parameters 

of LST. Hence, the Reynolds equation can be safely 

used for most LST applications.  

It should be noted here that, as discussed in Ref. [6], 

surface texturing was also attempted in non-parallel 

sliding with full hydrodynamic lubrication applications 

such as thrust bearings and journal bearings. However, 

in these cases the texturing is beneficial only when the 

global film convergence is small enough as is shown, 

for example, in Ref. [29] for textured magnetic recor-

ding sliders (see Figs. 17 and 18).  

 

Fig. 16 Correlation between experimental and theoretical results 

of friction-time variation for simulated textured piston rings at 

1000 rpm under full lubrication condition [15]. 

 

Fig. 17 Schematic of (a) plane inclined slider bearing and (b) 

textured slider with pitch angle  

 

Fig. 18 Non-dimensional average pressure as a function of 

pitch angle  for the un-textured and textured sliders of Fig. 17, 

showing that surface texturing is beneficial only at small pitch 

angles [29]. 

In yet another non-conformal contact application 

such as ball bearings it was found that surface 

texturing can be beneficial only with very shallow 

dimples [30]. These limitations underline again the 

most beneficial use of surface texturing in parallel 

surfaces hydrodynamic and hydrostatic applications.  

5  Optimization 

In order to fully benefit from surface texturing a proper 

optimization of the geometrical parameters must be 

performed in accordance with the application in hand. 

This includes the aspect ratio of the dimples, their 
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area density and, in cases of partial surface texturing, 

the textured portion. The preferred and most efficient 

way to optimize surface texturing is by parametric 

analysis in a theoretical model. This was done in 

several models for bearings [18, 29], various seals [8, 

11, 13, 23, 24, 31], piston rings [14, 26] and magnetic 

recording tapes [32] to obtain maximum load capacity, 

minimum friction, maximum film stiffness and mini-

mum leakage. Many experimental studies attempting 

optimization by trial and error approach can also be 

found in the literature (see Ref. [6]). These include, 

for example, different texturing geometries and dimple 

shapes like squares, triangles, ellipses, grooves etc. 

Unfortunately, quite often wrong conclusions are 

arrived at in these studies due to insufficient 

experimental data. Another typical mistake, which 

should be avoided in optimizing surface texturing, 

concerns a comparison of different geometrical shapes 

based on a certain selected value for a common para-

meter such as dimple size or area density, for example. 

Here too, wrong conclusions are usually made 

regarding the optimum shape for best performance. 

This is because the certain selected value for the com-

mon parameter may be far from being the optimum 

one for some of the different shapes. The correct 

procedure for finding an optimum texturing among 

different shapes is first to optimize each shape 

individually in terms of its own parameters and only 

then compare the individual optimums of the different 

shapes to find the ultimate one. Such a procedure is 

described in Ref. [17] where an optimum conventional 

un-textured barrel-shaped piston ring was compared 

with an optimum surface textured cylindrical piston 

ring in a firing diesel engine resulting in about 4% 

improvement in fuel consumption with the optimum 

flat face textured ring. In previous studies, when the 

texturing was applied to the conventional barrel- 

shaped piston ring no difference was observed between 

the textured and un-textured cases, leading to the 

wrong conclusion that surface texturing has no benefit 

in piston rings. 

6  Summary 

Surface texturing, and more specifically LST tech-

nology, has great potential in improving tribological 

performance of various mechanical components over 

a wide range of different operating conditions. The 

micro-dimples produced on the surface can act as 

micro-hydrodynamic bearings in cases of full or mixed 

lubrication with either incompressible or compressible 

lubricants.  

Surface texturing is most beneficial in cases of 

parallel sliding with full fluid films. In these cases  

the effect of texturing geometry on the tribological 

performance can be easily modeled and optimized 

for best required performance. Such optimization can 

provide substantial reduction in friction losses and 

result in much desired energy savings. In non-parallel/ 

non-conformal lubricated contacts the benefit of surface 

texturing is rather limited and may even become 

detrimental [29, 33]. 

The present invited review naturally focuses mainly 

on the work done by the author’s group at the 

Technion. Work by others on theoretical, numerical 

and experimental aspects of textured surface lubrication 

can also be found in the relevant literature. Most of 

this work was cited and described in many of the 

References below and more specifically in Ref. [34]. 
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