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Modeling of Tension Modulation Nonlinearity in
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Abstract—in this paper, a nonlinear discrete-time model that trombone [6], [7] and for a string that is terminated with a non-
simulates a vibrating string exhibiting tension modulation nonlin-  |inear double-spring apparatus [8]. These two cases may be gen-
earity is developed. The tension modulation phenomenon is Causederalized to signal-dependent nonlinearities that can be imple-
by string elongation during transversal vibration. Fundamental . . . - )
frequency variation and coupling of harmonic modes are among mented us!ng amejvaf)“”g fractional dela{(TVFD) filter [9].
the perceptually most important effects of this nonlinearity. The Other nonlinear string instrument models include the slap-bass
proposed model extends the linear bidirectional digital waveguide model of Rank and Kubin [10] and the nonlinear commuted syn-
model of a string. It is also formulated as a computationally more  thesis model for the violin by Smith [11]. A model with a memo-

efficient single-delay-loop structure. A method of reducing the y|ass nonlinearity for the kantele, a traditional Finnish plucked
computational load of the string elongation approximation is tring inst ti ted in [12

described, and a technique of obtaining the tension modulation string |n_s rume.n_, IS presen _e in [12]. )

parameter from recorded plucked string instrument tones is pre- The linear digital waveguide has been extensively used for

sented. The performance of the model is demonstrated with anal- simulation of wave propagation in a string in synthesis of
ysis/synthesis experiments and with examples of synthetic tonesplucked and struck string instrument sounds; see, e.g., [5] and
available at http://www.acoustics.hut.fi/~ttolonen/tmstr_SAP/. [13] for references. However, the vibrating string is linear only
Index Terms—Acoustic signal processing, modeling, musical to the first approximation and, consequently, nonlinear phe-
acoustics, musical instruments, nonlinear systems, signal syn-nomena exhibited by every real string are inherently omitted
thesis. in the simulation. Perceptually, among the most relevant
nonlinear phenomena of a vibrating string @itch variation
|. INTRODUCTION and variation of timbre due tamonlinear coupling of the
L . . harmonic componentdhey are related to the modulation of
HYSIC.AL modeling is one of the most rapldly adv_ancm%_tring tension t?lat is caus)éd by elongation of the string during
areas In cqmputer mu_sm_and sound synthesis. With muktﬁbration. Other effects caused by tension modulation include
media applications emerging inio desktop computers and ot |'£~:sing overtone generation and partial intermodulation.

interactive terminals, physics-based virtual instruments rea’?ﬁ\\lonlinear vibration of an elastic string has been examined

a growing consumer group. Algqrithms .for sound ef.fects. alfbin analytically and experimentally. In 1945, Carrier studied
sound synthesis are for_ the f_lrst time being standardized in free undamped motion of a string [14]. His work considered
proposed MPEG-4 multimedia standard [2]. No doubt, physic anar transversal wave motion and discarded longitudinal

model!ng Is going to play a key role within the area of dlg"ta\/ibrations. In 1967, Narasimha extended Carrier’s results and
audio n the future. . . . took into account the longitudinal vibrations [15]. It was shown
Physical models are computatlonal algonthms th"%t S'muwﬁ?at the two transversal and the longitudinal polarizations are
sound generating mechgmsms fou_nd, €.g., in musical InStF1l{5nlinearly coupled (see also [16]). At the same time Anand
ments an_d the human voice product_lon. From_a sound synth i‘ﬁ showed that the equations of transversal and longitudinal
point of view, the most popular physical modeling approach h ves are separable if the order of modes of the transverse vi-
been based on the digital waveguide [3]-[5]. In its basic formtﬁtration is small compared t(?/m, whereF is Young's

is derived from the linear one-dimensional (1-D) wave equaticmOdulus S is the cross-sectional area of the string, @i

and it is an efficient way to simulate wave propagation in % the nominal string tension. He further showed that under

onators that produce harmonic or nearly harmonic signals, S%‘fﬂusoidal initial conditions the two transversal polarization

as avibrating siring or an air column in a wind instrument. N()r?:'omponents possess an oscillatory character. The interaction

ted for the simulati » i i ¢ P8 transversal and longitudinal wave motion was also tackled
sented forthe simufation of noniinear propagation ot waves 'r]l"fl[lS]. More recently, experimental results of nonlinear string

vibration have been reported. Legge and Fletcher described
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In this paper, we develop a nonlinear discrete-time model thaherey is the displacement of the string ands the spatial co-
simulates the nonlinearity caused by tension modulation inoadinate along the string. It is obvious from (1) that the elonga-
string. Our model extends the bidirectional linear digital waveion ¢,.,, = 0 every time the string is in its equilibrium position,
guide model of a string, and we also formulate the model asd that it oscillates with a period equal to half the period of
a computationally efficiengingle-delay-loogtructure. The pa- string vibration.
rameters of the model are estimated from recordings of stringTensionF; along the string is linearly related to the elonga-
instrument tones. Audio examples available via the WWW [21ipn /4., and it can be expressed as [19]
demonstrate that the synthesized tones are more realistic than
those produced with a linear model. ESY

. . . . . . . dev

The main guideline applied in developing the nonlinear Fy = Fhom +
model is perceptual relevance. Our model is not able to ac-
curately simulate all the nonlinear phenomena exhibited Ryhere
a vibrating string, but it essentially captures the effects thatfg, nominal tension corresponding to the string at rest;
tension modulation nonlinearity has on the tone character. Ing Young’s modulus;
pgrtlcular, .the proposed_ model allows paramet_nc control ofS cross sectional area of the string.
pitch variation and coupling between the harmonics. . . . .

: . oo Equation (2) reveals that the tension also oscillates with half the

The paper is organized as follows. The vibration of an elastic'’ . . . ) N .

: L : S . : : Penod of the string vibration, as illustrated in Fig. 1. The figure
string exhibiting tension modulation is described in Section Id

In Section lll, a digital waveguide is formulated for waves witr}nﬁg'cct)isn? ?;ﬂﬁ:?t;?rzSlgttiegﬁl(\)/\r/]elg:siﬁggt;g?ttézp;ﬂgkgg ato':f‘s
uniformly distributed time-varying propagation speed. Usin point. ' PP

the results of Section Ill, the digital waveguide model of a stringre rigid and that there is only frequency-independent damping

with tension modulation is described in Section IV. A methoél"".lt results in the dgcay pf_the tone. The S|mulat|o_n IS _cor_lducted
S . .using a dual-delay-line digital waveguide model with distributed

for model parameter estimation based on recordings of Smpises The oscillating curve shows the time-varying tension of

instrument tones is described in Section V, and results of syn-" " 9 ying

thesis experiments are reported in Section VI. Conclusions é s string. The monot.o_nlcally Qecay|pg curve |.IIustrates the av-
drawn in Section VII. eraged tension, and it is obtained with a running average com-

putation over segments with length of one tension oscillation
period. The dashed line shows the constant valuggf,, i.e.,
the nominal tension corresponding to the string at rest. Note that
In this study, we are interested in autonomous motion ofvghen the string is plucked at the midpoi#t, = Fyom twice
simply terminated string that vibrates transversally in a plan@uring one period of string oscillation. This is intuitively clear
We also assume that the propagation speed of the longitudigigice the displacemeni(z) = 0 for all z twice in a period.
vibration is considerably higher than that of the transversal Jitowever, when a lossy string is plucked at any other point, the
bration, as is typically the case with strings of musical instrdension only approaches the nominal tension with time.
ments, so that tension is approximately uniform along the string.In the linear case, the propagation speed of the transversal
In steel strings, for instance, the speed of the longitudinal vibr&ave iScuom = v/ Fhom/Prom, WNErepqn, is the linear mass
tion is approximately 5100 m/s, whereas the speed of transve@@insity along the string at rest. When we assume that the longi-
vibration in the high-E string (330 Hz, length 0.65 m) is 446 m/gudinal wave propagation speed is considerably larger than the
The string is taken to be linearly elastic, and the inharmonicityansversal propagation speed, the linear mass density and the
caused by string stiffness (dispersion) is assumed negligible. Wasion are approximately spatially constant and we may write
further assume that the cross-sectional area of the string, &n@ propagation speed of the transversal wave as
hence its density, is constant during the vibration.

Itis clear that these assumptions prohibit accurate simulation I
t p——
Vi

)

gnOHl

II. NONLINEARLY VIBRATING STRING

of some of the nonlinear phenomena exhibited by a vibrating  —
string, including couplings between the longitudinal and the two
transversal polarizations. However, as demonstrated below, the \/

1+ <1 +

Enom + gdev) <F + ESEdeV)

p nom EHO 1948

ES\ lyew  ES [ Lo \?
FHOIH) EHOIH + FIIOIH <’€HOIH> (3)

gnoxn

model derived using these assumptions is capable of qualita- =co.,
tively imitating the essential behavior of a string with tension

modulation in both functional and perceptual senses. Elabo\cvaherep is linear mass density of the vibrating string given by
tion of this model to include the three vibrational polarizations

remains an interesting future challenge. p=r “".‘“En"m/ @“"m * K‘.lev)' - . .
: . . : . - . The time-varying tension modifies the effective frequencies
The main cause of nonlinearity in a vibrating string is tensio

modulation that is related to elongation of the string during vcrz]f the har.mo.nlcs. No.te that since the propagation .veI00|ty of
. : S e wave is time-varying, the spatially orthogonal eigenmodes
bration. Elongation may be expressed as the deviation from the . . . L
nominal siring lengtte [19] aré not separable to sinusoids with constant frequencies in the

nem time variable. Since we are interested in the variation of the

. 5 fundamental frequency, it is more natural to think in terms of the

dy effective fundamental frequency of vibration, i.e., afundamental

gdev = 14+ — dzx — gnmn (l) : . .

0 Jz frequency obtained by analysis of the tone or corresponding to
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Fig. 1. Tension variation in a simulated vibration of a string is depicted with &
the oscillating solid line for a string plucked at the midpoint. The average tension &
is presented with the monotonic decay curve. The dashed line shows the nominal 1501
tension that corresponds to the string at rest. §-
= 1495 : : .
0 0.5 1 1.5
a perceived pitch. In the linear case, the fundamental period of Time (s)

vibration is expressed as

Fig. 2. Time-varying fundamental frequency as detected in (top) a recorded
electric guitar tone and (bottom) in a recorded tone of a steel-stringed acoustic
1o = )\/cnom (4) guitar.

where) is twice the distance (in meters) between the string ter-
minations. In the nonlinear case, the wave propagation speed » 7
is a function of time and thus using directly (4) we would ob- e <c__ /)_(‘ C(n)>cn0m/-\\
tain a fundamental period that oscillates with approximately | o | I | = | | = | = | = |
double the period of the lowest spatial mode. Since this is am-
biguous, we use the term effective fundamental period to refFer 5w fon in & didital o with , ocit
t0 a short-tme average value 8fc. I that sense, we expect 9, Ve Brovegaton n & dlal eveaude vib tneanyng veocy,
the effective fundamental frequency and also the perceived pitminal velocityc,on.
to behave like the average tension curve of Fig. 1. As an ex-
ample, Fig. 2 illustrates two fundamental frequency trajectg- _ . :
ries detected from a recorded electric guitar tone (top) andTQe wave propqgat_mn speegl. IS related to the spatial and
steel-stringed acoustic guitar tone (bottom). The time const&ftiPoral sampling interval¥” and7’ ascpom = X/T.
of the fundamental frequency drift is related to the time constant /€N the propagation speed is spatially uniformly distributed
of the attenuation of the tone [19]. and relatlvely slowly varying in Flme, the wave travels a dis-
While the average tension explains the time-varying fund@ﬁi—gcef‘ = c(n)T between time instances a”d@ + 1L No_te
mental frequency of the tone, it is not capable of accounting f L = X on_ly V\_/h_enc ~ Cnom = X/T. The time-varying
the coupling between the harmonic modes. Legge and FIetc?’frve propagation is |IIustrat_ed in _F|g._3 for the two cases where
showed that such a coupling may only occur when, in additi 1) < co ande(n) > co. Fig. 3 implies that we have to re-
to the tension modulation, at least one of the end supportsSRTPIe the content of the delay lines in each sampling period.
not completely rigid [19]. In the case of rigid end supports, t \Q’ lle this may b_e ach|eve'd'usmg fracﬂopal delgy f||t.er|ng [2.2]’
harmonic modes are always spatially orthogonal and thus t ], a computationally efﬁment_strategy IS reql_Jlred In pfac“ce-
may not interact with each other. In musical instruments the eﬁHrthermore, cor_wstant r_esamplmg of_the travglmg Wwavels bour_1d
supports are never completely rigid and mode coupling alwa degre_lde the 5|g_nal since an error is associated with every in-
takes place. erpolation operation [23].
The assumption that the longitudinal wave propagation ve-
locity is considerably larger than that of the transversal wavas Efficient Formulation of the Time-Varying Propagation
leads to a uniform spatial distribution of the transversal velocitgyee
This essentially means that the tension modulation is immedi-
ately spread across the string. From a discrete-time simulatiorA more efficient and accurate implementation of the digital
viewpoint, this is important since such a wave propagation caraveguide with time-varying uniformly distributed propagation
be accurately simulated with a computationally efficient struspeed can be developed if we only wish to observe the traveling
ture [9], as described in Section IIl. wave at one or a few spatial positions. For reasons of simplicity,
we only consider the right-going wayén, m) = y,.(n — m),
. DIGITAL WAVEGUIDE WITH UNIFORMLY TIME-VARYING  Inthe following; itis straightforward to treat the left-going wave
PROPAGATION SPEED similarly. For convenience in developing the formulation, we as-
sume that the waveguide is lossless. When using the formulation
In a linear 1-D bidirectional digital waveguide, wavgsn) in the actual synthesis model, we will assume that the losses of
andy(n) travel to the right and to the left, respectively [3]the string are not significantly altered by the tension modulation
[4]. The output of the waveguide at a discrete time instant s that consolidating the losses into a single linear filter results
at positionk is obtained as in a negligible approximation error. Given an initial distribution
y(0, m), m = —oo, - -+, oo, the output at an observation point
y(n, k) = y.(n — k) + yi(n + k). (6) katn=1isgivenagy(l, k) = y(0, k —c(0)T), and ath, = 2
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asy(2, k) = y(0, k — ¢(0)T — ¢(1)T"), and so on. More gen- i.e., as a sum of the two traveling waves at position

erally

B. Time-Varying Propagation in Digital Waveguide of Finite
Length

In practical applications, the waveguides are always of finite
length. Let us consider a unidirectional waveguide where two

Note that, as before, we assume that the propagation sp@Bgervation points; andu, are separated by a delay bfow
varies relatively slowly in time so that we allown) only to samples which is related to a physical distafygg, on the string
change at sample instants. as

We express the time-varying velocity aé) = cuom + Loom s
Cdev(n), Wherecye,(n) is the deviation from the nominal ve- Lyom =
locity cyom, and rewrite (6) as

n—1

y(n, k) =y <0, E-T Z c(l)) , n>0. (6)

=0

(10)
cIlOHl
where f; is the sampling rate. Note that the modulation of the
n—l delay in the digital waveguide implementation corresponds to
y(n, k) =y <07 k-T Z[cmm + cdev(l)]> modulation of the propagation speed in actual string vibration,
=0 i.e., it corresponds to the time it takes the wave to travel the dis-
< nol ) @ tance/,.,, with varying propagation speed. The delay param-
=Y

0, k = neqomT =T Z Caev(l) eter is in this case obtained as
=0

n—1
In (7) the termnc,om I’ €quals a spatial distaneeX, i.e., the d(n) = —T Z cdev(]) (11)
distance a wave travels with velocity,,,,, in time n. We can i

thus computey(n, k) = y(n — 1,k — 1 — T 37 caen (D))
if the wave propagates with a constant veloeity,,, = 1/7" in R ) ]
the digital waveguide. This means the digital waveguide is us§f€reLnom is the nominal delay. .., rounded to the nearest
as in the linear case with constant velocity, and that the tim@{€ger. The summation is thus performed over the delay cor-
varying velocity is taken into account by reading the output witfgSPonding to the distance between the two observation points.
a fractional delay filter. This implies that it suffices to utilize 40t€ that, as in (8), the sum in (11) is over time, i.e., the delay
single fractional delay filter operating in the vicinity of positiorlN€ corresponds to the delay it takes a wave to travel froro

% and approximating the real-valued delay 2 a_nd that this delay ?s_not const_ant. However, since the devia-
tion in delay is small, it is convenient to compute the sum over
n—1 a constant delay of integer-valued length. Note that we assume
d(n) = -T Z Cdev(l). (8) thatcgey(n) is defined on the rangﬁ-}ﬁnom(n) —1, c0). Itis
= convenient to defineye, (n) = 0, n < 0.

The summation in (11) may be implemented computation-
Notice that the delag(n) is the time integral of the speed devi-ally efficiently with a delay line ofl.om UNit delays and a state
ations, and if the mean @f..., is nonzero, the value of parametewariable that stores the current valdé:). During each sam-
d(n) will diverge. pling interval we only need to subtract the value exiting the

The delay termi(n) depends on the time history of the dedelay line fromd(n) and add the value entering the delay line.

viation termcgey (n). This can be interpreted as comprising th&@he transfer function for the boxcar summation/js,(z) =
locality in time for the locality in position since now we have(l — z_f‘"m“)/(l — 27 1.
to store the time history of the deviation term., but we only  We may also approximate the boxcar summation of (11) using
need to apply the fractional delay at a single position in the dig-leaky integrator with a transfer function
ital waveguide. When resampling is used, the distatieg”
depends only on the current velocity vak{e ). Note that since 1+a,
we have developed the single-fractional-delay formulation for 1(z) = gpm
the waveguide of infinite length, the time history required is infi- v

nite in general. However, in practical applications, only the timg e 1 < a, < 0andg, is a gain term. The parameters of
history of speed deviation that corresponds to the traveling timg, leaky integrator of (12) may be matched to the boxcar inte-

between two consecutive observation or modification positioa§aﬂon, e.g., by requiring that the sums of the impulse responses

in the waveguide is required. _ of the two integrators match, and that the time constant of the
By applying the preceding treatment to the left-going traya sy integrator equals the length of the boxcar summation. The

eling wave, we can generalize the above result for the bidirggse constant is defined to be the time in which the impulse re-

tional digital waveguide. After a straightforward computatlogponse of the filter in (12) decays inge of its maximum value

the waveguide output at positidnis obtained as (first sample) and it is computed as [24]

12)

i, ) =uo(n =1, k= 1+ d(n) o

+u(n—1, k+1—d(n)) 9) In(—a,)’

(13)
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After the parameteu,, is computed using (13), it is straight-

forward to show that the parametgy = L. if we require In —#{Delay line|-# FD |- Out
thatd 7 i(n) = > 7y thox(n), Wherei(n) andipe(n) are 40
the impulse responses of the leaky integrator of (12) and of the

boxcar integrator, respectively. In sound synthesis applications,
the parameters of the leaky integrator may be used to control Hig 4. General nonlinear delay line that is implemented with the TVFD
pitCh variation and the coupling of the harmonics separately ${acture [9]. The functiodr maps the contents (_)f the delay line onto the delay
demonstrated in Section V. variabled(n) that controls the fractional delay filter.

The finite-length digital waveguide with uniformly
time-varying propagation speed may be identified as a
special case of a general nonlinear delay line with a signal-c
pendent time-varying fractional delay (TVFD) filter paramete

Out
) ——
[9]. The TVFD structure is illustrated in Fig. 4. The functi6h . »61\)
maps the signal in th_e delay Iine_into a delay paramétern > ﬂ' Flongation Compatation ] |T‘£z)
that controls the fractional delay filter. f\ approximation of d(n) X
IV. DISCRETETIME SIMULATION OF VIBRATING STRING Delay line

TENSION MODULATION "
In
With the developments of the previous section, we may now

proceed to a bidirectional digital waveguide model that simgig. 5. pual-delay line model implementing the tension modulation with
lates a string with tension modulation. Such a model is depicteidnal-dependent fractional delay elements.

in Fig. 5. The upper and lower delay lines together with the elon-
gation approximation and computation of the delay parameter,,,

hile the el ti iven by (14) i dil licable f
d(n) may be identified as two TVFD structures presented | lle the elongation given by (14) is readily applicable for a

Ymulation, it may be advantageous in practical implementations

Fig. 4._The transfer functiong(z) ?‘”de<2> mo_del the wave to approximate it with a computationally more efficient formula.
reflections at the fret and at the bridge, respectively. The out| Hte assume thefl, (n, k) + s:(n, k)]2 < 1, we may develop

of the model is t‘?ke”."’“ the bridge, corresponding to the casePhyuncated Taylor series approximation of (14). Note that the
e.g.athedac;oustlr? gwta[)l[lSi. Fc;r tlhe quel to be qomplete E\ sumption made when developing the linear wave equation is
gele to de met;ietwo octst_o elongation approximation ar|1 /9| < 1 which corresponds ttis,(n, k) + si(n, k)]| <

elay-parameted(n) computation. 1 in the discrete-time formulation. Now we only assume that
(9y/0x)* < 1. With the truncated Taylor series approximation
we obtain

The elongation of a string is given by (1) where it is ob-

served that it essentially depends on the first spatial derivative i1
of the displacement, i.e., the slope. It is thus natural to choosg ~ N° [pal I 2 — I
slope as the wave variable for the digital waveguide. When slope dev(n) [ 5, ) s, K)F] = Lo

A. Elongation Approximation

. . . k=0
waves are used, the reflection filteRs(z) and R, (=) are in- P
verting, as would be the case with, e.g., velocity waves. Note LN 1 2
1- ’ ) ’ -1 - — r , , . 15
that while in the linear case the conversion between wave vari- 2 P [r (s )+ su(n, )] (15)

ables is straightforward, in the nonlinear case it is not directly
possible in general. The elongation of the string may be approx-

imated by developing (1) for the digital waveguide as The use of the truncated Taylor series approximation reduces
the computational complexity of the elongation approximation

since the square-root operation is removed. In Section IV-B, we

Lnom—1 . . S
- describe how the approximated elongation is used to compute
_ 2 _
Laev(n) = kz_:o VL [se(n. B) + si(n B)F = Lunom the time-varying delay parametéfn) of Fig. 5.

(14)
wheres,.(n, k) ands;(n, k) are, respectively, the right and left
going slope waves at positidnand time instant.. The slope
waves thus correspond to the first spatial derivative of the dis-The deviation of time-varying propagation speed of (3) from
placement in samples. The use of the rounded nominal strighg nominal speed,.,, may be written for the discrete-time
length L., in (14) is typically sufficiently accurate since thecase as
discrepancy is always limited to 1/2 samples which is small
compared td.,.,,, With practical sampling frequencies.

2
Ldev (71) Ldev (71)
IFor instance, at a sampling frequency of 44 100 Hz, theoBe of 659 Hz Cdev(n) = Cnom\/l +(1+A4) I +A4 I
corresponds td.,,., = 33.46 samplesL ... = 33 samples, and the discrep- nom nom

ancy is 0.46 samples, i.e., 1.4%. — Cpom (16)

B. Computation of the Delay Parameter
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whereA = ES/F,.. The time-varying delay parameter is right-going slope wave
obtained using (11) and (16) as I
X
iy 0 Lnotn
d(”) =-T Z left-going slope wave
t=n—1—Lnom
[ L x
LdeV(l) Ldev(l) 2 Loan
1no1m 1 1 A A L

‘ \/ + ( + ) LIIOIH + LIIOIH 0 pom

Fig. 6. Initial slope wave variables for the dual-delay-line model
corresponding to an ideal pluck at a distance 10f3L,., from the

~ Cnom string termination.
" waveswv(n, k) is required. In the linear case the two waves
- Z are related through the time-invariant propagation spged
l=n—1—Lnom asv(n, k) = cpomsi(n, k) andwv.(n, k) = —cpomsr(n, k)

Laev (1) Laes (D) 2 [4]. The velocity wave can thus be computed by subtracting the
1+(1+A4) 7 A < 7 ) -1 left-going wave from the right-going wave and multiplying by
nom nom the propagation speed. In the nonlinear case the conversion is
(17) notso straightforward. However, it still seems reasonable to ap-
proximate the output velocity signal at positiGnasv(n) =
whereTcpon = 1 sinceT is the sampling interval andyoy, V(7 k) + vi(n, k) = crom(si(n, k) — si(n, k)), since the
equals the sampling frequency, abd..(l) is given by either deviation termeqey (n) is small compared to the nominal prop-
(14) or (15), depending on the desired accuracy and complAgation speedsor,.
tional capacity. In the linear case, the input signal can be fed at a single point
In order to simplify (17) for a computationally more efficientof the digital waveguide if acceleration waves are used [26],
implementation, it is useful to examine the range of values tf7]. With the nonlinear model using slope variables, the input
parameteri = ES/F,,, may have. For a typical high-E stringsignal is a distribution that is inserted in the two delay lines.
of an acoustic guitar with ny|0n Strin$ = 5% 108 N/mQ, Slmllarly, if the virtual String is plUCked while it still vibrates,
S =3.6x10""m?, andFom = 82 N [25], yielding A = 180. the input signal has to be gradually added at all the positions of
For a steel string the nominal string tension may be 50% greaﬂé? delay lines. Fig. 6 illustrates the initial slope variable distri-
than that of the nylon string, and Young’s modulus is approxution along the two delay lines corresponding to an ideal pluck
mately 40 times that of the nylon string [25]. However, the stringtt @ distance of/3 L., from the termination. The slope vari-
diameter may be ten times smaller than that of the nylon strir@Ples are piecewise constant and identical in the two delay lines.
and thus the value oft is only several times larger than thattis possible to feed the input signal only to a single position of
of the nylon string. The length of the string in a typical acousti®'e delay line. However, this results in inaccuracy of the elon-
guitar is approximately 0.65 m, and the maximum displaceme@ation estimation at the beginning of the signal.
may be several millimeters. For a displacement of 2.0 mm at theMethods to obtain the parametérfrom recorded plucked-

middle of the string, the relative elongation is string tones are described in Section V. Synthesis examples of
the model of Fig. 5 are described in Section VI. In the fol-
. V0.325% + 0.00202 — 0.325 B lowing, we reduce the dual-delay-line model into a computa-
- 2 0325 =3.8x107". tionally more efficient single-delay-loop model.

5 i C. Single-Delay-Loop Model with Tension Modulation
Thus the second-order tertd(Laev(n)/Lyom)” is typically

negligible. If computational efficiency is emphasized, the In the linear case it is straightforward to reduce the dual-

square root in (17) may be approximated by the first terms ofiglay-line model of Fig. S into a single-delay-loop (SDL) model
Taylor series, assuming + A)(Laev(n)/Luom) < 1, as that includes a loop with a delay line, fractional delay filter,
) and a loop filter that consolidates the reflection filtdts(z)

ne1 andR(z), and a comb-filter for the pluck-position effect [13].
d(n) = —= Z (1+ A)Lde_v(l)_ (18) IF i_s obvious that the SDL rr_lodel is compu_tationally more ef-
nom ficient than the dual-delay-line model. While commutation is

not allowed in general in nonlinear models, we present an SDL

The output signal of the model may be a force signal at tfaodel with tension modulation nonlinearity that approximates
bridge of an acoustic guitar or a pickup voltage in an electrig® model of Fig. 5. Examples of synthetic tones obtained with
guitar. In the first case the output signal is related to the diffefl® dual-delay-line and the single-delay-loop models are avail-
ence of the velocity waves at the bridge [4], and in the latter cad@le through the Internet [21].

to the velocity output S|_gnal, i.e., the sum of the two vglocny 2By ideal pluck we refer to initial conditions in which the string is released
waves. Thus, a conversion from slope waw@s, k) to velocity  with no initial velocity and a displacement distribution in the shape of a triangle.

I=n—1—Lnom
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Combining the two delay lines requires the commuting of one In
of the reflection filters and a delay line. Thereafter the filters
can be consolidated. In this case the commutation changes the
contents of the delay lines little since the magnitude of the re-
flection filters is very close to unity [13]. Fig. 7 shows this inter-
mediate stage in developing the single-delay-line model. Loop
filter H;(z) now represents the composite lowpass filtering ef-
fect of Ry(z) and R¢(z). Notice also how the output of the
model is simplified. The output transfer functiant+ R;(z) in
Fig. 5 may be replaced with a constant multiplier with negligible
effect in the output signal since the frequency respdiige’~’) Fig.7. Dual-delay line model where the reflection filters have been commuted
is very closeto 1 at all frequencies, as explained in [13]_ and combined. The output of the model is also simplified.

The two time-varying FD filters may also be combined into
a single TVFD unit. This FD element is placed at the end of the
delay lines which may then be combined into a single delay line -
that is twice as long as each of the delay lines in Fig. 5. The H (3] Out
resulting single-delay-loop string model is presented in Fig. 8. Elonaﬁon Comoutation
The elongation estimation in Fig. 8 is equivalent to that shown in I_amoximaﬁon ofpd(n)
the dual-delay-line model (Fig. 5) and it consists of summing the
first sample of the delay line with the last one, the second sample
with the second last one, and so on, squaring all the sums, Jiieiﬂgigh r:gggllz%enlay-low model for simulation of a vibrating string with
summing them up according to (15). ‘

The delay line initialization should account for the fact thet I —
the reflection filter and the delay line are commuted. Since slo 1L
waves are used, the initial contents of the delay lines in Fig. © nom
may be directly aggregated. An example of initial contents of N _ _ _ _
the single-delay-line model corresponding o an deal pluck af, 3, 1% <0re veve ares o e Sngiseey 0o ol o oo
distance of 1/&.,.., is depicted in Fig. 9. Note that if, e.g., ve—termingtion_ 9 P 9
locity waves were used, the reflection filters would be inverting
and that would have to be taken into account by inverting the
left-going (or right-going) wave before aggregation.

Out

Elongation
approximation

Computation
of d(n)

Delay line

L]
In

In

|

V. PARAMETER ESTIMATION

If a linear model is used for synthesis, the model parameters
may be analyzed using a methodology described in [28]-[30].
The parameter estimation may be divided into three subprob-

The string-length estimation is the most time-consumiHSmSa namely, estimation of the fundamental frequency, design
operation in both the dual-delay-line model of Fig. 5 and tHef @ loop filter that optimally reproduces the frequency-depen-
single-delay-loop model of Fig. 8. The computational burdeient decay of vibration of the autonomously vibrating string,
of the string-length estimation depends on the nominal striﬁ‘d computation of an excitation signal. When the tension mod-
length Lo, as can be seen in (14) and (15), and with low ton ation nonlinearity is added, an additional task is to estimate the
it requires hundreds of addition and multiplication operatiorf§odulation depth in the original signal. In this study, we have
per sampling interval. The computational cost of the oth&sed isolated tones of acoustic and electric guitars recorded in
string model components is independentaf,,, and they an anechoic chamber for parameter estimation. We apply the
typically require only 10-20 operations. previously reported methods that were developed to parameter

A simple way to reduce the computational burden of tpestimation in the linear case [28], [29] and develop a technique
squared sum is to approximate it withsparse squared sum for estimation of the tension modulation parameters.
where everyMth sample pair is included but the rest of the
pairs are excluded. The sparse squared sum must be scalefb
M to compensate the total magnitude. For instance, for a 147The nominal fundamental frequengy .., may be obtained
Hz tone at a sampling frequency of 22050 Hz, the nominftbm the short-time autocorrelation function thatis computed on
string length is 75 samples. Using (15) we have to complettge tail of the tone where the tension modulation effect is small.
149 additions and 76 multiplications for approximation of th&he estimated nominal string length is given by the nominal
elongation. Using the sparse-squared-sum approximation witindamental frequency ds.om = fs/2fo, nom Wheref; is the
M = 6, we have 12 summing points yielding 23 additionsampling frequency.
and 13 multiplications. The sparse-squared-sum approximatiormThe loop-filter parameters are obtained using techniques pre-
may be considered a spatial downsampling and it is justified bgnted in [28]-[30] that apply sinusoidal modeling [31], [32].
the fact that summing over the string produces a lowpass-filhe amplitude envelopes of the decaying partials are detected
tering effect on the tension modulation. Examples in Section YA a short-time Fourier transform of the recorded signal and the
illustrate the results of this method. loop filter is optimized to yield similar decay-time-constants for

D. Reduced-Complexity Estimation of Elongation

gstimation of Parameters for the Linear String Model



TOLONEN et al: MODELING OF TENSION MODULATION NONLINEARITY IN PLUCKED STRINGS 307

the partials of the synthetic signal. A one-pole loop filter is usaedhere fy max is the maximum value of the detected funda-
in this study since it has been found a good compromise bmental frequency. In (19) the difference is divided by 2 since
tween computational efficiency and simulation accuracy [28he varying delay is implemented with two fractional delay
[29]. Estimation of the loop-filter parameters is detailed in [28Fjlters when the dual-delay-line model of Fig. 5 is used. For the
[29]; another approach using heterodyne filtering is describsthgle-delay-loop model, the varying delay2i&l,,,.) -
in [30]. By substituting{(d,,.x) for d(n) and (Lgey) for Lyey(n) in

In the linear case, the excitation signal may be obtained i/7), we obtain
canceling the decaying partials in the recorded tone by inverse
filtering [28] or by subtraction of the sinusoidal model and (Laev) (Laev) 2
equalizing the attack part of the residual signal [29], [30]. The {@max) = — Lnomy/ 1+ (1 + A) T L+ A < T = )
synthesis technique using this kind of excitation signal is called nom nom
commuted waveguide synthesis (CWS) [33], [34] referring to + Luom: (20)
the commuting of the body response with the string model.
In the nonlinear case the CWS technique is not applicabl?e&,1
and we may not aggregate the pluck with the body response.

rameterd may be solved from (20) as

The body response may be simulated with a linear filter that \/1 + 1+ A) (Ldev) LA <<Ldev>>2
models the impulse response of the body driven at the bridge. Loom Loom

In this case it is advantageous to separate the most prominent (drae)

body responses and resynthesize them with, e.g., parametric =1- T

second-order resonators that are in cascade with the digital (Laow) “°1<“L )2

filter modeling the rest of the body response [35], [29], [30]. A< dev/ 4 ‘;’V )

Note that we are no longer able to obtain an exact replica of the Lnom meQ

recorded tone since the inverse-filtering technique used in CWS _ <1 B <dma.x>> _ Laev)
is not applicable. However, the proposed method together with nom Loom

the parameter estimation methods allow for better control of (dinae) 2 (Laev)

the instrument behavior, in particular, the tension modulation <1 T Lo ) - Lnolxn -1
nonlinearity. A (L) (Lawr)? . (22)

Models have recently been presented for plucking a string + =
with finger [36]-[38]. In this study we assume an ideally Lnom Liom

plucked string and discard the dynamics of the plucking event. . . . .
Thus, the initial slope distributions in the two waveguide imilarly, we may estimate the maximum average elongation
X Laev) Using (21) ifA is known.

are.Qefmed by the maximum displacement and the plucki gAn example of the determination of the parametdllows.
position. . . .
The maximum fundamental frequency of the acoustic guitar

B. Estimation of Parameters for the Tension Modulation Modqn€ in bottom of Fig. 2 is approximatel max = 150.4 Hz
and the nominal fundamental frequencyfiSnom = 149.8 Hz;

Inspection of (17) reveals that the variation of the delgy, ;s from (19)(dinax) = —0.39 with a sampling frequency
parameterd(n) depends on the parameter and the string o 55 050 Hz. The nominal string length corresponds approx-
length deviatiorL .. (n). Since we are only able to observe th‘?mately t0 Lyom = 75 samples. If we assume that the max-
nonlinearity from a recorded tone via the varying fundamentgh,m gisplacement of the string with a length of 0.65 m is 0.001
frequency and generation of missing harmonics, estimation gf 1 _ 3-00 |f we assume that the displacement is 0.002 m
these parameters directly is difficult. Rather, we matchnd 4 _ 73 Note that our method of detecting parametds not a

Laey(n) to produce the desired pit,ch variation. Parameter rq|iaple method to derive information about the string properties
can also be derived from the Young's modultisthe Cross sec- ¢rom the recorded tone. Itis only used to derive the tension mod-

tional areas, and the nominal tensiafon, of the string if such a1ion depth for given displacement so that the original pitch
data are _ava_|lable_. In some cases the maximum d'Splfice”_\?amation is reproduced in the synthetic tone.

of the string is gstlmated during the recqrdmg,.and estimation\yjith the parameter estimation method described above we
of A by analysis of the recorded tone is straightforward, a3e aple to produce synthetic tones that have similar tension
described below. _modulation effects to the original tone. In Section VI we demon-

If no information about the maximum displacement is avaikyrate the performance of the model with analysis/synthesis ex-
able, a suitable value may be chosen according to the recordedh oo

tone. We compute the average of the elongatibg.,) over
the first period of string vibration using the nominal propaga-
tion speed:,.,,. From the estimated time history of the funda-
menta' frequency we Obtain the maximum average de'ay paramln this Context, we discuss SynthetiC tones that were obtained
eter (corresponding to the maximum fundamental frequency)lé%ing
1) linear model;
(o) = 1 < Is Is ) (19) 2) nonlinear dual-delay line model of Fig. 5;
max/ T g 3) nonlinear SDL model of Fig. 8;

VI. ANALYSIS/SYNTHESIS EXPERIMENTS

fO, max fO, nom
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4) nonlinear sparse-squared-sum SDL model. 148
These signals together with more audio examples are available . 147.8
through the WWW [21]. < 1476
The signals have a nominal fundamental frequency of 147 Hz, g
the A parameter is 766, and the initial displacement is assumed % 1474¢
2.0 or 4.0 mm on a string with length of 0.65 m. The displace- & ., |
ment of 2.0 mm corresponds to the initial displacement used to
estimate the parameter from the recorded tone in Section V. 1470 0' P 1 1‘ P 5
The leaky integrator of (12) is used in the SDL models. We have ' Time (s) ’

used a sampling frequency of 22 050 Hz in the simulations and
the nominal string lengtih,,,,, = 75 samples. The loop-filter Fig. 10. Time-varying fundamental frequency as detected from synthesized

parameters were estimated using the method based on Sfﬁrl‘ﬁs obtained using the nonlinear dual-delay-line model (solid line),
the nonlinear single-delay-loop model (dashed line), and the nonlinear

soidal modeling, and they wetg = —0.0014 andg = 0.9880.  gjingle-delay-loop model with the sparse-squared-sifn£ 6) computation

The plucking position was 1/3 of the string length from thélash-dot line). The fundamental frequency variation is designed to be 0.6 Hz.
; _ _ ; The initial slope distributions correspond to an initial displacement of 2 mm on

b!‘ldge. The sparse Squared Sum parametéris= 6. In the a string with a length of 0.65 m. The plucking position is one third of a string

pitch variation examples of Section VI-A, thg parameter of |ength from the termination.

the leaky integrator used in the SDL models is obtained using

(13) and it is—0.9868. As described in Section 11I-B, the value

of g, parameter is 75.0. In the examples of Section VI-B, these

. Lo . . 150
parameters are varied. Note that it is practical to combine the
termg,(1+ a,) from (12) with the term-(1+ A4) /2L 01, from =
(18) into a single multiplying coefficient when implementing \:;
the SDL model with tension modulation nonlinearity. g

5
A. Pitch Variation =
Figs. 10 and 11 depict the estimated fundamental frequency

trajectories of the synthetic tones obtained using the non-
linear dual-delay-line model (solid line), the nonlinear SDL Time (s)

model (dashed line), gnd the ,nonlmear SParse'Squ?‘red'ﬁﬂénll. Time-varying fundamental frequency as detected from synthesized
SDL model (dash-dot line). In Fig. 10 the pitch variation hagnes obtained using the nonlinear dual-delay-line model (solid line),
been designed to match the 0.6 Hz deviation detected in the nonlinear single-delay-loop model (dashed line), and the nonlinear
steel-stringed acoustic guitar tone of Fig. 2. In Fig. 11 wif9E teleyions madelwih e sparee susredeun, compuatn (das o
choose the initial displacement larger than when estimating thg) on a string with a length of 0.65 m. The plucking position is one third of a
value of the parametet. Thus, we expected the pitch variatiorstring length from the termination.

to be larger than in the original recorded guitar tone on the

bottom Fig. 2. This is indeed the case since all the synthetic

models exhibit a pitch variation of approximately 2.5 Hz. Thi?q

suggests that our model behaves physically correctly since amping at the terminations, we expect the coupling between
99 phy y y € harmonic modes to be small. Note that in actual instruments

pitch variation is increased by increasing the initial displac?ﬁe terminations are nonriaid and the harmonic mode counlin
ment. Comparing the results of Fig. 10 to the pitch deviation In 9 ping

the original tone shown in the bottom plot of Fig. 2, it is seelt 'rllqr?(arecglzorriﬁungfegérmonic modes is most clearly detectable
that the amplitude and decay of deviation of the fundamental pling y

; - by the phenomenon of generation of missing harmonics. If a
frequency are relatively well matched to the original tone. Th - " .
. ) mear string is plucked at a position that is exactly at a node of a
nominal fundamental frequencies of the tones are not the same

: . armonic mode, that mode will not be excited. In the nonlinear
since the fundamental frequency trajectory of the recorded tone . .
. . string where the harmonic modes are coupled, such a harmonic

approaches 146 Hz while that of the synthetic tone approachies . . ; - . .
will in general start to vibrate since it is effectively driven by

147 Hz. This is easily corrected by adjusting the nominal strin . . : .
length in the synthetic tone. In Figs. 10 and 11 the CurVéﬂherharmomc modes. In the simulation, we plucked the virtual

obtained with different implementations of the model beha\fsﬁﬂg?natthae?ilsteir;izgfe%r\ﬁ:hItrr?if(;[rrlnr;?rlr?gr?i?ig(r)nr?sgr? brllzc_igel,gnd
similarly. . : y ng. F19. (@)
illustrates the magnitude spectrum of a tone obtained using the
linear dual-delay line model, and Fig. 12(b) the spectrum of a
tone obtained with the nonlinear dual-delay line model. As ex-
As discussed by Legge and Fletcher, the tension modulatipected, in the linear case the harmonics are completely missing
nonlinearity together with nonrigid end support provides meaasd in the nonlinear case the spatially almost orthogonal har-
for coupling of the harmonic modes [19]. Since we have natonic modes prohibit any significant coupling; the magnitudes
incorporated a detailed model of the bridge in this simulatiaof every third harmonic are considerably smaller than those of
and we assume that there is only slight frequency-dependée other harmonic modes.

5

B. Coupling of Harmonics
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Fig. 12. Generation of missing harmonics. Magnitude spectra of synthetic
tones obtained with (a) the linear dual-delay-line model, (b) the nonlinear (3]
dual-delay-line model using boxcar integration, (c) the SDL model using the
leaky integrator withz,, = —0.97, (d) the SDL model withz,, = —0.995,

and (e) the SDL model with,, = —0.999. [4]

[5]
For sound synthesis purposes, it may be attractive to use %]
model that permits the harmonic mode coupling. It turns out
that if the boxcar integrator is replaced with the leaky integrator
of (12), the harmonic modes become coupled. Furthermore, thé’]
extent of coupling may be controlled with the parameters of
the leaky integrator. Fig. 12(c)—(e) illustrate the harmonic mode
coupling when the nonlinear SDL model is used with the leaky [8]
integrator. The leaky integrator parametglis —0.97, —0.995,
and —0.999 in the three plots, respectively, and the parameter
gp = 75.0. It is seen that withu, = —0.97, when the effec-
tive integration length is considerably shorter than in the boxcar
integration in this case, the magnitudes of the initially missing
harmonic modes are comparable to those of the neighborirgC!
harmonics. Increasing the effective length of integration by in'[ll]
creasing the value af,, reduces the harmonic mode coupling
effect, as illustrated in Fig. 12(d) and (e). 2]

Note that modification of the leaky integrator parameters re-
sults in synthetic tones that are not authentic in the sense that the
tension modulation simulation with altered integration parame-
ters does not correspond to the physical behavior of the strinél.sl
However, from a sound synthesis and perceptual viewpoint, the
pitch variation and coupling of harmonic modes may be paralt4!
metrically and intuitively controlled to obtain synthetic tones [15]
that retain the string character.

(9]
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VII. CONCLUSIONS

In this paper, a nonlinear model was developed for the sim-
ulation of a string exhibiting tension modulation nonlinearity.

It was shown that the tension-modulated string may be simu-
lated with a digital waveguide model with uniformly distributed
time-varying propagation velocity that is controlled by the elon-
gation of the string. The structure was first formulated with two
time-varying fractional delay filters and it was then simplified
into a single-delay-loop model with only one TVFD filter. The
computational complexity was further reduced by simplifying
the elongation computation using a sparse-squared-sum struc-
ture. A technique was described for estimation of the modula-
tion depth parameter from recorded plucked-string instrument
tones. The validity and performance of the model was demon-
strated by analysis/synthesis examples and synthetic tones avail-
able via the WWW [21].

While the proposed model is not capable of exact resynthesis,
the synthesized tones demonstrate that it essentially captures
the two perceptually mostimportant tension modulation effects,
namely, variation of the fundamental frequency and coupling of
the harmonic components. With the nonlinear effects, the syn-
thesized tones appear more lively mainly due to subtle variations
in the timbre of the tones similar to real plucked-string tones.
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