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Abstract—In this paper, a nonlinear discrete-time model that
simulates a vibrating string exhibiting tension modulation nonlin-
earity is developed. The tension modulation phenomenon is caused
by string elongation during transversal vibration. Fundamental
frequency variation and coupling of harmonic modes are among
the perceptually most important effects of this nonlinearity. The
proposed model extends the linear bidirectional digital waveguide
model of a string. It is also formulated as a computationally more
efficient single-delay-loop structure. A method of reducing the
computational load of the string elongation approximation is
described, and a technique of obtaining the tension modulation
parameter from recorded plucked string instrument tones is pre-
sented. The performance of the model is demonstrated with anal-
ysis/synthesis experiments and with examples of synthetic tones
available at http://www.acoustics.hut.fi/~ttolonen/tmstr_SAP/.

Index Terms—Acoustic signal processing, modeling, musical
acoustics, musical instruments, nonlinear systems, signal syn-
thesis.

I. INTRODUCTION

PHYSICAL modeling is one of the most rapidly advancing
areas in computer music and sound synthesis. With multi-

media applications emerging into desktop computers and other
interactive terminals, physics-based virtual instruments reach
a growing consumer group. Algorithms for sound effects and
sound synthesis are for the first time being standardized in the
proposed MPEG-4 multimedia standard [2]. No doubt, physical
modeling is going to play a key role within the area of digital
audio in the future.

Physical models are computational algorithms that simulate
sound generating mechanisms found, e.g., in musical instru-
ments and the human voice production. From a sound synthesis
point of view, the most popular physical modeling approach has
been based on the digital waveguide [3]–[5]. In its basic form it
is derived from the linear one-dimensional (1-D) wave equation
and it is an efficient way to simulate wave propagation in res-
onators that produce harmonic or nearly harmonic signals, such
as a vibrating string or an air column in a wind instrument. Non-
linear extensions to the linear digital waveguide have been pre-
sented for the simulation of nonlinear propagation of waves in a
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trombone [6], [7] and for a string that is terminated with a non-
linear double-spring apparatus [8]. These two cases may be gen-
eralized to signal-dependent nonlinearities that can be imple-
mented using atime-varying fractional delay(TVFD) filter [9].
Other nonlinear string instrument models include the slap-bass
model of Rank and Kubin [10] and the nonlinear commuted syn-
thesis model for the violin by Smith [11]. A model with a memo-
ryless nonlinearity for the kantele, a traditional Finnish plucked
string instrument, is presented in [12].

The linear digital waveguide has been extensively used for
simulation of wave propagation in a string in synthesis of
plucked and struck string instrument sounds; see, e.g., [5] and
[13] for references. However, the vibrating string is linear only
to the first approximation and, consequently, nonlinear phe-
nomena exhibited by every real string are inherently omitted
in the simulation. Perceptually, among the most relevant
nonlinear phenomena of a vibrating string arepitch variation
and variation of timbre due tononlinear coupling of the
harmonic components. They are related to the modulation of
string tension that is caused by elongation of the string during
vibration. Other effects caused by tension modulation include
missing overtone generation and partial intermodulation.

Nonlinear vibration of an elastic string has been examined
both analytically and experimentally. In 1945, Carrier studied
the free undamped motion of a string [14]. His work considered
planar transversal wave motion and discarded longitudinal
vibrations. In 1967, Narasimha extended Carrier’s results and
took into account the longitudinal vibrations [15]. It was shown
that the two transversal and the longitudinal polarizations are
nonlinearly coupled (see also [16]). At the same time Anand
[17] showed that the equations of transversal and longitudinal
waves are separable if the order of modes of the transverse vi-
bration is small compared to , where is Young’s
modulus, is the cross-sectional area of the string, and
is the nominal string tension. He further showed that under
sinusoidal initial conditions the two transversal polarization
components possess an oscillatory character. The interaction
of transversal and longitudinal wave motion was also tackled
in [18]. More recently, experimental results of nonlinear string
vibration have been reported. Legge and Fletcher described
the coupling of vibrating modes in a one-polarization wave
motion and demonstrated the generation of missing harmonics
as a result of this coupling [19]. Hansenet al. experimented
with coupling of polarizations and reported measured results
of amplitudes and phase differences of transversal components
under forced motion [20]. More interestingly, they found
nonlinear coupling of the two transversal polarizations even at
vibration displacements of only a few microns.
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In this paper, we develop a nonlinear discrete-time model that
simulates the nonlinearity caused by tension modulation in a
string. Our model extends the bidirectional linear digital wave-
guide model of a string, and we also formulate the model as
a computationally efficientsingle-delay-loopstructure. The pa-
rameters of the model are estimated from recordings of string
instrument tones. Audio examples available via the WWW [21]
demonstrate that the synthesized tones are more realistic than
those produced with a linear model.

The main guideline applied in developing the nonlinear
model is perceptual relevance. Our model is not able to ac-
curately simulate all the nonlinear phenomena exhibited by
a vibrating string, but it essentially captures the effects that
tension modulation nonlinearity has on the tone character. In
particular, the proposed model allows parametric control of
pitch variation and coupling between the harmonics.

The paper is organized as follows. The vibration of an elastic
string exhibiting tension modulation is described in Section II.
In Section III, a digital waveguide is formulated for waves with
uniformly distributed time-varying propagation speed. Using
the results of Section III, the digital waveguide model of a string
with tension modulation is described in Section IV. A method
for model parameter estimation based on recordings of string
instrument tones is described in Section V, and results of syn-
thesis experiments are reported in Section VI. Conclusions are
drawn in Section VII.

II. NONLINEARLY VIBRATING STRING

In this study, we are interested in autonomous motion of a
simply terminated string that vibrates transversally in a plane.
We also assume that the propagation speed of the longitudinal
vibration is considerably higher than that of the transversal vi-
bration, as is typically the case with strings of musical instru-
ments, so that tension is approximately uniform along the string.
In steel strings, for instance, the speed of the longitudinal vibra-
tion is approximately 5100 m/s, whereas the speed of transversal
vibration in the high-E string (330 Hz, length 0.65 m) is 446 m/s.
The string is taken to be linearly elastic, and the inharmonicity
caused by string stiffness (dispersion) is assumed negligible. We
further assume that the cross-sectional area of the string, and
hence its density, is constant during the vibration.

It is clear that these assumptions prohibit accurate simulation
of some of the nonlinear phenomena exhibited by a vibrating
string, including couplings between the longitudinal and the two
transversal polarizations. However, as demonstrated below, the
model derived using these assumptions is capable of qualita-
tively imitating the essential behavior of a string with tension
modulation in both functional and perceptual senses. Elabora-
tion of this model to include the three vibrational polarizations
remains an interesting future challenge.

The main cause of nonlinearity in a vibrating string is tension
modulation that is related to elongation of the string during vi-
bration. Elongation may be expressed as the deviation from the
nominal string length [19]

(1)

where is the displacement of the string andis the spatial co-
ordinate along the string. It is obvious from (1) that the elonga-
tion every time the string is in its equilibrium position,
and that it oscillates with a period equal to half the period of
string vibration.

Tension along the string is linearly related to the elonga-
tion and it can be expressed as [19]

(2)

where
nominal tension corresponding to the string at rest;
Young’s modulus;
cross sectional area of the string.

Equation (2) reveals that the tension also oscillates with half the
period of the string vibration, as illustrated in Fig. 1. The figure
depicts a simulation of tension in a string that is plucked at its
midpoint. In this simulation, we assume that the end supports
are rigid and that there is only frequency-independent damping
that results in the decay of the tone. The simulation is conducted
using a dual-delay-line digital waveguide model with distributed
losses. The oscillating curve shows the time-varying tension of
the string. The monotonically decaying curve illustrates the av-
eraged tension, and it is obtained with a running average com-
putation over segments with length of one tension oscillation
period. The dashed line shows the constant value of , i.e.,
the nominal tension corresponding to the string at rest. Note that
when the string is plucked at the midpoint, twice
during one period of string oscillation. This is intuitively clear
since the displacement for all twice in a period.
However, when a lossy string is plucked at any other point, the
tension only approaches the nominal tension with time.

In the linear case, the propagation speed of the transversal
wave is , where is the linear mass
density along the string at rest. When we assume that the longi-
tudinal wave propagation speed is considerably larger than the
transversal propagation speed, the linear mass density and the
tension are approximately spatially constant and we may write
the propagation speed of the transversal wave as

(3)

where is linear mass density of the vibrating string given by
.

The time-varying tension modifies the effective frequencies
of the harmonics. Note that since the propagation velocity of
the wave is time-varying, the spatially orthogonal eigenmodes
are not separable to sinusoids with constant frequencies in the
time variable. Since we are interested in the variation of the
fundamental frequency, it is more natural to think in terms of the
effective fundamental frequency of vibration, i.e., a fundamental
frequency obtained by analysis of the tone or corresponding to
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Fig. 1. Tension variation in a simulated vibration of a string is depicted with
the oscillating solid line for a string plucked at the midpoint. The average tension
is presented with the monotonic decay curve. The dashed line shows the nominal
tension that corresponds to the string at rest.

a perceived pitch. In the linear case, the fundamental period of
vibration is expressed as

(4)

where is twice the distance (in meters) between the string ter-
minations. In the nonlinear case, the wave propagation speed
is a function of time and thus using directly (4) we would ob-
tain a fundamental period that oscillates with approximately
double the period of the lowest spatial mode. Since this is am-
biguous, we use the term effective fundamental period to refer
to a short-time average value of . In that sense, we expect
the effective fundamental frequency and also the perceived pitch
to behave like the average tension curve of Fig. 1. As an ex-
ample, Fig. 2 illustrates two fundamental frequency trajecto-
ries detected from a recorded electric guitar tone (top) and a
steel-stringed acoustic guitar tone (bottom). The time constant
of the fundamental frequency drift is related to the time constant
of the attenuation of the tone [19].

While the average tension explains the time-varying funda-
mental frequency of the tone, it is not capable of accounting for
the coupling between the harmonic modes. Legge and Fletcher
showed that such a coupling may only occur when, in addition
to the tension modulation, at least one of the end supports is
not completely rigid [19]. In the case of rigid end supports, the
harmonic modes are always spatially orthogonal and thus they
may not interact with each other. In musical instruments the end
supports are never completely rigid and mode coupling always
takes place.

The assumption that the longitudinal wave propagation ve-
locity is considerably larger than that of the transversal waves
leads to a uniform spatial distribution of the transversal velocity.
This essentially means that the tension modulation is immedi-
ately spread across the string. From a discrete-time simulation
viewpoint, this is important since such a wave propagation can
be accurately simulated with a computationally efficient struc-
ture [9], as described in Section III.

III. D IGITAL WAVEGUIDE WITH UNIFORMLY TIME-VARYING

PROPAGATION SPEED

In a linear 1-D bidirectional digital waveguide, waves
and travel to the right and to the left, respectively [3],
[4]. The output of the waveguide at a discrete time instant
at position is obtained as

(5)

Fig. 2. Time-varying fundamental frequency as detected in (top) a recorded
electric guitar tone and (bottom) in a recorded tone of a steel-stringed acoustic
guitar.

Fig. 3. Wave propagation in a digital waveguide with time-varying velocity
for the two cases when the velocity is (left) smaller and (right) larger than the
nominal velocityc .

The wave propagation speed is related to the spatial and
temporal sampling intervals and as .

When the propagation speed is spatially uniformly distributed
and relatively slowly varying in time, the wave travels a dis-
tance between time instancesand . Note
that only when . The time-varying
wave propagation is illustrated in Fig. 3 for the two cases where

and . Fig. 3 implies that we have to re-
sample the content of the delay lines in each sampling period.
While this may be achieved using fractional delay filtering [22],
[23], a computationally efficient strategy is required in practice.
Furthermore, constant resampling of the traveling wave is bound
to degrade the signal since an error is associated with every in-
terpolation operation [23].

A. Efficient Formulation of the Time-Varying Propagation
Speed

A more efficient and accurate implementation of the digital
waveguide with time-varying uniformly distributed propagation
speed can be developed if we only wish to observe the traveling
wave at one or a few spatial positions. For reasons of simplicity,
we only consider the right-going wave ,
in the following; it is straightforward to treat the left-going wave
similarly. For convenience in developing the formulation, we as-
sume that the waveguide is lossless. When using the formulation
in the actual synthesis model, we will assume that the losses of
the string are not significantly altered by the tension modulation
so that consolidating the losses into a single linear filter results
in a negligible approximation error. Given an initial distribution

, , the output at an observation point
at is given as , and at
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as , and so on. More gen-
erally

(6)

Note that, as before, we assume that the propagation speed
varies relatively slowly in time so that we allow only to
change at sample instants.

We express the time-varying velocity as
, where is the deviation from the nominal ve-

locity , and rewrite (6) as

(7)

In (7) the term equals a spatial distance , i.e., the
distance a wave travels with velocity in time . We can
thus compute
if the wave propagates with a constant velocity in
the digital waveguide. This means the digital waveguide is used
as in the linear case with constant velocity, and that the time-
varying velocity is taken into account by reading the output with
a fractional delay filter. This implies that it suffices to utilize a
single fractional delay filter operating in the vicinity of position

and approximating the real-valued delay

(8)

Notice that the delay is the time integral of the speed devi-
ations, and if the mean of is nonzero, the value of parameter

will diverge.
The delay term depends on the time history of the de-

viation term . This can be interpreted as comprising the
locality in time for the locality in position since now we have
to store the time history of the deviation term but we only
need to apply the fractional delay at a single position in the dig-
ital waveguide. When resampling is used, the distance
depends only on the current velocity value . Note that since
we have developed the single-fractional-delay formulation for
the waveguide of infinite length, the time history required is infi-
nite in general. However, in practical applications, only the time
history of speed deviation that corresponds to the traveling time
between two consecutive observation or modification positions
in the waveguide is required.

By applying the preceding treatment to the left-going trav-
eling wave, we can generalize the above result for the bidirec-
tional digital waveguide. After a straightforward computation
the waveguide output at positionis obtained as

(9)

i.e., as a sum of the two traveling waves at position.

B. Time-Varying Propagation in Digital Waveguide of Finite
Length

In practical applications, the waveguides are always of finite
length. Let us consider a unidirectional waveguide where two
observation points and are separated by a delay of
samples which is related to a physical distance on the string
as

(10)

where is the sampling rate. Note that the modulation of the
delay in the digital waveguide implementation corresponds to
modulation of the propagation speed in actual string vibration,
i.e., it corresponds to the time it takes the wave to travel the dis-
tance with varying propagation speed. The delay param-
eter is in this case obtained as

(11)

where is the nominal delay rounded to the nearest
integer. The summation is thus performed over the delay cor-
responding to the distance between the two observation points.
Note that, as in (8), the sum in (11) is over time, i.e., the delay
line corresponds to the delay it takes a wave to travel fromto

and that this delay is not constant. However, since the devia-
tion in delay is small, it is convenient to compute the sum over
a constant delay of integer-valued length. Note that we assume
that is defined on the range . It is
convenient to define .

The summation in (11) may be implemented computation-
ally efficiently with a delay line of unit delays and a state
variable that stores the current value . During each sam-
pling interval we only need to subtract the value exiting the
delay line from and add the value entering the delay line.
The transfer function for the boxcar summation is

.
We may also approximate the boxcar summation of (11) using

a leaky integrator with a transfer function

(12)

where and is a gain term. The parameters of
the leaky integrator of (12) may be matched to the boxcar inte-
gration, e.g., by requiring that the sums of the impulse responses
of the two integrators match, and that the time constant of the
leaky integrator equals the length of the boxcar summation. The
time constant is defined to be the time in which the impulse re-
sponse of the filter in (12) decays into of its maximum value
(first sample) and it is computed as [24]

(13)



304 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 3, MAY 2000

After the parameter is computed using (13), it is straight-
forward to show that the parameter if we require
that where and are
the impulse responses of the leaky integrator of (12) and of the
boxcar integrator, respectively. In sound synthesis applications,
the parameters of the leaky integrator may be used to control the
pitch variation and the coupling of the harmonics separately as
demonstrated in Section IV.

The finite-length digital waveguide with uniformly
time-varying propagation speed may be identified as a
special case of a general nonlinear delay line with a signal-de-
pendent time-varying fractional delay (TVFD) filter parameter
[9]. The TVFD structure is illustrated in Fig. 4. The function
maps the signal in the delay line into a delay parameter
that controls the fractional delay filter.

IV. DISCRETE-TIME SIMULATION OF VIBRATING STRING

TENSION MODULATION

With the developments of the previous section, we may now
proceed to a bidirectional digital waveguide model that simu-
lates a string with tension modulation. Such a model is depicted
in Fig. 5. The upper and lower delay lines together with the elon-
gation approximation and computation of the delay parameter

may be identified as two TVFD structures presented in
Fig. 4. The transfer functions and model the wave
reflections at the fret and at the bridge, respectively. The output
of the model is taken at the bridge, corresponding to the case of,
e.g., the acoustic guitar [13]. For the model to be complete we
need to define the two blocks of elongation approximation and
delay-parameter computation.

A. Elongation Approximation

The elongation of a string is given by (1) where it is ob-
served that it essentially depends on the first spatial derivative
of the displacement, i.e., the slope. It is thus natural to choose
slope as the wave variable for the digital waveguide. When slope
waves are used, the reflection filters and are in-
verting, as would be the case with, e.g., velocity waves. Note
that while in the linear case the conversion between wave vari-
ables is straightforward, in the nonlinear case it is not directly
possible in general. The elongation of the string may be approx-
imated by developing (1) for the digital waveguide as

(14)
where and are, respectively, the right and left
going slope waves at positionand time instant . The slope
waves thus correspond to the first spatial derivative of the dis-
placement in samples. The use of the rounded nominal string
length in (14) is typically sufficiently accurate since the
discrepancy is always limited to 1/2 samples which is small
compared to with practical sampling frequencies.1

1For instance, at a sampling frequency of 44 100 Hz, the Etone of 659 Hz
corresponds toL = 33:46 samples,̂L = 33 samples, and the discrep-
ancy is 0.46 samples, i.e., 1.4%.

Fig. 4. General nonlinear delay line that is implemented with the TVFD
structure [9]. The functionG maps the contents of the delay line onto the delay
variabled(n) that controls the fractional delay filter.

Fig. 5. Dual-delay line model implementing the tension modulation with
signal-dependent fractional delay elements.

While the elongation given by (14) is readily applicable for a
simulation, it may be advantageous in practical implementations
to approximate it with a computationally more efficient formula.
If we assume that , we may develop
a truncated Taylor series approximation of (14). Note that the
assumption made when developing the linear wave equation is

which corresponds to
in the discrete-time formulation. Now we only assume that

. With the truncated Taylor series approximation
we obtain

(15)

The use of the truncated Taylor series approximation reduces
the computational complexity of the elongation approximation
since the square-root operation is removed. In Section IV-B, we
describe how the approximated elongation is used to compute
the time-varying delay parameter of Fig. 5.

B. Computation of the Delay Parameter

The deviation of time-varying propagation speed of (3) from
the nominal speed may be written for the discrete-time
case as

(16)
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where . The time-varying delay parameter is
obtained using (11) and (16) as

(17)

where since is the sampling interval and
equals the sampling frequency, and is given by either
(14) or (15), depending on the desired accuracy and computa-
tional capacity.

In order to simplify (17) for a computationally more efficient
implementation, it is useful to examine the range of values the
parameter may have. For a typical high-E string
of an acoustic guitar with nylon strings N/m ,

m , and N [25], yielding .
For a steel string the nominal string tension may be 50% greater
than that of the nylon string, and Young’s modulus is approxi-
mately 40 times that of the nylon string [25]. However, the string
diameter may be ten times smaller than that of the nylon string,
and thus the value of is only several times larger than that
of the nylon string. The length of the string in a typical acoustic
guitar is approximately 0.65 m, and the maximum displacement
may be several millimeters. For a displacement of 2.0 mm at the
middle of the string, the relative elongation is

Thus the second-order term is typically
negligible. If computational efficiency is emphasized, the
square root in (17) may be approximated by the first terms of a
Taylor series, assuming , as

(18)

The output signal of the model may be a force signal at the
bridge of an acoustic guitar or a pickup voltage in an electric
guitar. In the first case the output signal is related to the differ-
ence of the velocity waves at the bridge [4], and in the latter case
to the velocity output signal, i.e., the sum of the two velocity
waves. Thus, a conversion from slope waves to velocity

Fig. 6. Initial slope wave variables for the dual-delay-line model
corresponding to an ideal pluck at a distance of1=3L from the
string termination.

waves is required. In the linear case the two waves
are related through the time-invariant propagation speed
as and
[4]. The velocity wave can thus be computed by subtracting the
left-going wave from the right-going wave and multiplying by
the propagation speed. In the nonlinear case the conversion is
not so straightforward. However, it still seems reasonable to ap-
proximate the output velocity signal at positionas

, since the
deviation term is small compared to the nominal prop-
agation speed .

In the linear case, the input signal can be fed at a single point
of the digital waveguide if acceleration waves are used [26],
[27]. With the nonlinear model using slope variables, the input
signal is a distribution that is inserted in the two delay lines.
Similarly, if the virtual string is plucked while it still vibrates,
the input signal has to be gradually added at all the positions of
the delay lines. Fig. 6 illustrates the initial slope variable distri-
bution along the two delay lines corresponding to an ideal pluck2

at a distance of from the termination. The slope vari-
ables are piecewise constant and identical in the two delay lines.
It is possible to feed the input signal only to a single position of
the delay line. However, this results in inaccuracy of the elon-
gation estimation at the beginning of the signal.

Methods to obtain the parameterfrom recorded plucked-
string tones are described in Section V. Synthesis examples of
the model of Fig. 5 are described in Section VI. In the fol-
lowing, we reduce the dual-delay-line model into a computa-
tionally more efficient single-delay-loop model.

C. Single-Delay-Loop Model with Tension Modulation

In the linear case it is straightforward to reduce the dual-
delay-line model of Fig. 5 into a single-delay-loop (SDL) model
that includes a loop with a delay line, fractional delay filter,
and a loop filter that consolidates the reflection filters
and , and a comb-filter for the pluck-position effect [13].
It is obvious that the SDL model is computationally more ef-
ficient than the dual-delay-line model. While commutation is
not allowed in general in nonlinear models, we present an SDL
model with tension modulation nonlinearity that approximates
the model of Fig. 5. Examples of synthetic tones obtained with
the dual-delay-line and the single-delay-loop models are avail-
able through the Internet [21].

2By ideal pluck we refer to initial conditions in which the string is released
with no initial velocity and a displacement distribution in the shape of a triangle.
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Combining the two delay lines requires the commuting of one
of the reflection filters and a delay line. Thereafter the filters
can be consolidated. In this case the commutation changes the
contents of the delay lines little since the magnitude of the re-
flection filters is very close to unity [13]. Fig. 7 shows this inter-
mediate stage in developing the single-delay-line model. Loop
filter now represents the composite lowpass filtering ef-
fect of and . Notice also how the output of the
model is simplified. The output transfer function in
Fig. 5 may be replaced with a constant multiplier with negligible
effect in the output signal since the frequency response
is very close to 1 at all frequencies, as explained in [13].

The two time-varying FD filters may also be combined into
a single TVFD unit. This FD element is placed at the end of the
delay lines which may then be combined into a single delay line
that is twice as long as each of the delay lines in Fig. 5. The
resulting single-delay-loop string model is presented in Fig. 8.
The elongation estimation in Fig. 8 is equivalent to that shown in
the dual-delay-line model (Fig. 5) and it consists of summing the
first sample of the delay line with the last one, the second sample
with the second last one, and so on, squaring all the sums, and
summing them up according to (15).

The delay line initialization should account for the fact that
the reflection filter and the delay line are commuted. Since slope
waves are used, the initial contents of the delay lines in Fig. 6
may be directly aggregated. An example of initial contents of
the single-delay-line model corresponding to an ideal pluck at a
distance of 1/3 is depicted in Fig. 9. Note that if, e.g., ve-
locity waves were used, the reflection filters would be inverting
and that would have to be taken into account by inverting the
left-going (or right-going) wave before aggregation.

D. Reduced-Complexity Estimation of Elongation

The string-length estimation is the most time-consuming
operation in both the dual-delay-line model of Fig. 5 and the
single-delay-loop model of Fig. 8. The computational burden
of the string-length estimation depends on the nominal string
length as can be seen in (14) and (15), and with low tones
it requires hundreds of addition and multiplication operations
per sampling interval. The computational cost of the other
string model components is independent of and they
typically require only 10–20 operations.

A simple way to reduce the computational burden of the
squared sum is to approximate it with asparse squared sum,
where every th sample pair is included but the rest of the
pairs are excluded. The sparse squared sum must be scaled by

to compensate the total magnitude. For instance, for a 147
Hz tone at a sampling frequency of 22 050 Hz, the nominal
string length is 75 samples. Using (15) we have to complete
149 additions and 76 multiplications for approximation of the
elongation. Using the sparse-squared-sum approximation with

, we have 12 summing points yielding 23 additions
and 13 multiplications. The sparse-squared-sum approximation
may be considered a spatial downsampling and it is justified by
the fact that summing over the string produces a lowpass-fil-
tering effect on the tension modulation. Examples in Section VI
illustrate the results of this method.

Fig. 7. Dual-delay line model where the reflection filters have been commuted
and combined. The output of the model is also simplified.

Fig. 8. Single-delay-loop model for simulation of a vibrating string with
tension modulation.

Fig. 9. Initial slope wave variables for the single-delay-line model of Fig. 8
corresponding to an ideal pluck at a distance of1=3L from the string
termination.

V. PARAMETER ESTIMATION

If a linear model is used for synthesis, the model parameters
may be analyzed using a methodology described in [28]–[30].
The parameter estimation may be divided into three subprob-
lems, namely, estimation of the fundamental frequency, design
of a loop filter that optimally reproduces the frequency-depen-
dent decay of vibration of the autonomously vibrating string,
and computation of an excitation signal. When the tension mod-
ulation nonlinearity is added, an additional task is to estimate the
modulation depth in the original signal. In this study, we have
used isolated tones of acoustic and electric guitars recorded in
an anechoic chamber for parameter estimation. We apply the
previously reported methods that were developed to parameter
estimation in the linear case [28], [29] and develop a technique
for estimation of the tension modulation parameters.

A. Estimation of Parameters for the Linear String Model

The nominal fundamental frequency may be obtained
from the short-time autocorrelation function that is computed on
the tail of the tone where the tension modulation effect is small.
The estimated nominal string length is given by the nominal
fundamental frequency as where is the
sampling frequency.

The loop-filter parameters are obtained using techniques pre-
sented in [28]–[30] that apply sinusoidal modeling [31], [32].
The amplitude envelopes of the decaying partials are detected
in a short-time Fourier transform of the recorded signal and the
loop filter is optimized to yield similar decay-time-constants for
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the partials of the synthetic signal. A one-pole loop filter is used
in this study since it has been found a good compromise be-
tween computational efficiency and simulation accuracy [28],
[29]. Estimation of the loop-filter parameters is detailed in [28],
[29]; another approach using heterodyne filtering is described
in [30].

In the linear case, the excitation signal may be obtained by
canceling the decaying partials in the recorded tone by inverse
filtering [28] or by subtraction of the sinusoidal model and
equalizing the attack part of the residual signal [29], [30]. The
synthesis technique using this kind of excitation signal is called
commuted waveguide synthesis (CWS) [33], [34] referring to
the commuting of the body response with the string model.
In the nonlinear case the CWS technique is not applicable,
and we may not aggregate the pluck with the body response.
The body response may be simulated with a linear filter that
models the impulse response of the body driven at the bridge.
In this case it is advantageous to separate the most prominent
body responses and resynthesize them with, e.g., parametric
second-order resonators that are in cascade with the digital
filter modeling the rest of the body response [35], [29], [30].
Note that we are no longer able to obtain an exact replica of the
recorded tone since the inverse-filtering technique used in CWS
is not applicable. However, the proposed method together with
the parameter estimation methods allow for better control of
the instrument behavior, in particular, the tension modulation
nonlinearity.

Models have recently been presented for plucking a string
with finger [36]–[38]. In this study we assume an ideally
plucked string and discard the dynamics of the plucking event.
Thus, the initial slope distributions in the two waveguides
are defined by the maximum displacement and the plucking
position.

B. Estimation of Parameters for the Tension Modulation Model

Inspection of (17) reveals that the variation of the delay
parameter depends on the parameter and the string
length deviation . Since we are only able to observe the
nonlinearity from a recorded tone via the varying fundamental
frequency and generation of missing harmonics, estimation of
these parameters directly is difficult. Rather, we matchand

to produce the desired pitch variation. Parameter
can also be derived from the Young’s modulus, the cross sec-
tional area , and the nominal tension of the string if such
data are available. In some cases the maximum displacement
of the string is estimated during the recording, and estimation
of by analysis of the recorded tone is straightforward, as
described below.

If no information about the maximum displacement is avail-
able, a suitable value may be chosen according to the recorded
tone. We compute the average of the elongation over
the first period of string vibration using the nominal propaga-
tion speed . From the estimated time history of the funda-
mental frequency we obtain the maximum average delay param-
eter (corresponding to the maximum fundamental frequency) as

(19)

where is the maximum value of the detected funda-
mental frequency. In (19) the difference is divided by 2 since
the varying delay is implemented with two fractional delay
filters when the dual-delay-line model of Fig. 5 is used. For the
single-delay-loop model, the varying delay is .

By substituting for and for in
(17), we obtain

(20)

Parameter may be solved from (20) as

(21)

Similarly, we may estimate the maximum average elongation
using (21) if is known.

An example of the determination of the parameterfollows.
The maximum fundamental frequency of the acoustic guitar
tone in bottom of Fig. 2 is approximately Hz
and the nominal fundamental frequency is Hz;
thus, from (19) with a sampling frequency
of 22 050 Hz. The nominal string length corresponds approx-
imately to samples. If we assume that the max-
imum displacement of the string with a length of 0.65 m is 0.001
m, . If we assume that the displacement is 0.002 m,

. Note that our method of detecting parameteris not a
reliable method to derive information about the string properties
from the recorded tone. It is only used to derive the tension mod-
ulation depth for given displacement so that the original pitch
variation is reproduced in the synthetic tone.

With the parameter estimation method described above we
are able to produce synthetic tones that have similar tension
modulation effects to the original tone. In Section VI we demon-
strate the performance of the model with analysis/synthesis ex-
amples.

VI. A NALYSIS/SYNTHESIS EXPERIMENTS

In this context, we discuss synthetic tones that were obtained
using

1) linear model;
2) nonlinear dual-delay line model of Fig. 5;
3) nonlinear SDL model of Fig. 8;
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4) nonlinear sparse-squared-sum SDL model.

These signals together with more audio examples are available
through the WWW [21].

The signals have a nominal fundamental frequency of 147 Hz,
the parameter is 766, and the initial displacement is assumed
2.0 or 4.0 mm on a string with length of 0.65 m. The displace-
ment of 2.0 mm corresponds to the initial displacement used to
estimate the parameter from the recorded tone in Section V.
The leaky integrator of (12) is used in the SDL models. We have
used a sampling frequency of 22 050 Hz in the simulations and
the nominal string length samples. The loop-filter
parameters were estimated using the method based on sinu-
soidal modeling, and they were and .
The plucking position was 1/3 of the string length from the
bridge. The sparse-squared-sum parameter is . In the
pitch variation examples of Section VI-A, the parameter of
the leaky integrator used in the SDL models is obtained using
(13) and it is . As described in Section III-B, the value
of parameter is 75.0. In the examples of Section VI-B, these
parameters are varied. Note that it is practical to combine the
term from (12) with the term from
(18) into a single multiplying coefficient when implementing
the SDL model with tension modulation nonlinearity.

A. Pitch Variation

Figs. 10 and 11 depict the estimated fundamental frequency
trajectories of the synthetic tones obtained using the non-
linear dual-delay-line model (solid line), the nonlinear SDL
model (dashed line), and the nonlinear sparse-squared-sum
SDL model (dash-dot line). In Fig. 10 the pitch variation has
been designed to match the 0.6 Hz deviation detected in the
steel-stringed acoustic guitar tone of Fig. 2. In Fig. 11 we
choose the initial displacement larger than when estimating the
value of the parameter. Thus, we expected the pitch variation
to be larger than in the original recorded guitar tone on the
bottom Fig. 2. This is indeed the case since all the synthetic
models exhibit a pitch variation of approximately 2.5 Hz. This
suggests that our model behaves physically correctly since the
pitch variation is increased by increasing the initial displace-
ment. Comparing the results of Fig. 10 to the pitch deviation in
the original tone shown in the bottom plot of Fig. 2, it is seen
that the amplitude and decay of deviation of the fundamental
frequency are relatively well matched to the original tone. The
nominal fundamental frequencies of the tones are not the same
since the fundamental frequency trajectory of the recorded tone
approaches 146 Hz while that of the synthetic tone approaches
147 Hz. This is easily corrected by adjusting the nominal string
length in the synthetic tone. In Figs. 10 and 11 the curves
obtained with different implementations of the model behave
similarly.

B. Coupling of Harmonics

As discussed by Legge and Fletcher, the tension modulation
nonlinearity together with nonrigid end support provides means
for coupling of the harmonic modes [19]. Since we have not
incorporated a detailed model of the bridge in this simulation
and we assume that there is only slight frequency-dependent

Fig. 10. Time-varying fundamental frequency as detected from synthesized
tones obtained using the nonlinear dual-delay-line model (solid line),
the nonlinear single-delay-loop model (dashed line), and the nonlinear
single-delay-loop model with the sparse-squared-sum (M = 6) computation
(dash-dot line). The fundamental frequency variation is designed to be 0.6 Hz.
The initial slope distributions correspond to an initial displacement of 2 mm on
a string with a length of 0.65 m. The plucking position is one third of a string
length from the termination.

Fig. 11. Time-varying fundamental frequency as detected from synthesized
tones obtained using the nonlinear dual-delay-line model (solid line),
the nonlinear single-delay-loop model (dashed line), and the nonlinear
single-delay-loop model with the sparse-squared-sum computation (dash-dot
line). The initial slope distributions correspond to an initial displacement of 4
mm on a string with a length of 0.65 m. The plucking position is one third of a
string length from the termination.

damping at the terminations, we expect the coupling between
the harmonic modes to be small. Note that in actual instruments
the terminations are nonrigid and the harmonic mode coupling
is more pronounced.

The coupling of harmonic modes is most clearly detectable
by the phenomenon of generation of missing harmonics. If a
linear string is plucked at a position that is exactly at a node of a
harmonic mode, that mode will not be excited. In the nonlinear
string where the harmonic modes are coupled, such a harmonic
will in general start to vibrate since it is effectively driven by
other harmonic modes. In the simulation, we plucked the virtual
string at a distance of one third string length from the bridge, and
thus in the linear case every third harmonic is missing. Fig. 12(a)
illustrates the magnitude spectrum of a tone obtained using the
linear dual-delay line model, and Fig. 12(b) the spectrum of a
tone obtained with the nonlinear dual-delay line model. As ex-
pected, in the linear case the harmonics are completely missing
and in the nonlinear case the spatially almost orthogonal har-
monic modes prohibit any significant coupling; the magnitudes
of every third harmonic are considerably smaller than those of
the other harmonic modes.
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Fig. 12. Generation of missing harmonics. Magnitude spectra of synthetic
tones obtained with (a) the linear dual-delay-line model, (b) the nonlinear
dual-delay-line model using boxcar integration, (c) the SDL model using the
leaky integrator witha = �0:97, (d) the SDL model witha = �0:995,
and (e) the SDL model witha = �0:999.

For sound synthesis purposes, it may be attractive to use a
model that permits the harmonic mode coupling. It turns out
that if the boxcar integrator is replaced with the leaky integrator
of (12), the harmonic modes become coupled. Furthermore, the
extent of coupling may be controlled with the parameters of
the leaky integrator. Fig. 12(c)–(e) illustrate the harmonic mode
coupling when the nonlinear SDL model is used with the leaky
integrator. The leaky integrator parameteris , ,
and in the three plots, respectively, and the parameter

. It is seen that with , when the effec-
tive integration length is considerably shorter than in the boxcar
integration in this case, the magnitudes of the initially missing
harmonic modes are comparable to those of the neighboring
harmonics. Increasing the effective length of integration by in-
creasing the value of reduces the harmonic mode coupling
effect, as illustrated in Fig. 12(d) and (e).

Note that modification of the leaky integrator parameters re-
sults in synthetic tones that are not authentic in the sense that the
tension modulation simulation with altered integration parame-
ters does not correspond to the physical behavior of the string.
However, from a sound synthesis and perceptual viewpoint, the
pitch variation and coupling of harmonic modes may be para-
metrically and intuitively controlled to obtain synthetic tones
that retain the string character.

VII. CONCLUSIONS

In this paper, a nonlinear model was developed for the sim-
ulation of a string exhibiting tension modulation nonlinearity.
It was shown that the tension-modulated string may be simu-
lated with a digital waveguide model with uniformly distributed
time-varying propagation velocity that is controlled by the elon-
gation of the string. The structure was first formulated with two
time-varying fractional delay filters and it was then simplified
into a single-delay-loop model with only one TVFD filter. The
computational complexity was further reduced by simplifying
the elongation computation using a sparse-squared-sum struc-
ture. A technique was described for estimation of the modula-
tion depth parameter from recorded plucked-string instrument
tones. The validity and performance of the model was demon-
strated by analysis/synthesis examples and synthetic tones avail-
able via the WWW [21].

While the proposed model is not capable of exact resynthesis,
the synthesized tones demonstrate that it essentially captures
the two perceptually most important tension modulation effects,
namely, variation of the fundamental frequency and coupling of
the harmonic components. With the nonlinear effects, the syn-
thesized tones appear more lively mainly due to subtle variations
in the timbre of the tones similar to real plucked-string tones.

REFERENCES

[1] V. Välimäki, T. Tolonen, and M. Karjalainen, “Plucked-string synthesis
algorithms with tension modulation nonlinearity,” inProc. IEEE
ICASSP, vol. 2, Phoenix, AZ, Mar. 1999, pp. 977–980.

[2] Information technology—Coding of audiovisual objects—Part 3: Audio,
ISO/IEC FCD Std. 14 496-3, 1998.

[3] J. O. Smith, “Music applications of digital waveguides,” Dept. Music,
Stanford University, Stanford, CA, Tech. Rep. STAN-M-39, CCRMA,
May 1987.

[4] , “Physical modeling using digital waveguides,”Comput. Music J.,
vol. 16, no. 4, pp. 74–91, 1992.

[5] , “Physical modeling synthesis update,”Comput. Music J., vol. 20,
no. 2, pp. 44–56, 1996.

[6] R. Msallam, S. Dequidt, S. Tassart, and R. Caussè, “Physical model of
the trombone including nonlinear propagation effects,” inProc. Inst.
Acoustics, vol. 19, Edinburgh, U.K., Sept. 1997, pp. 245–250.

[7] S. Tassart, R. Msallam, P. Depalle, and S. Dequidt, “A fractional delay
application: Time-varying propagation speed in waveguides,” inProc.
Int. Computer Music Conf., Thessaloniki, Greece, Sept. 1997, pp.
256–259.

[8] J. R. Pierce and S. A. Van Duyne, “A passive nonlinear digital filter de-
sign which facilitates physics-based sound synthesis of highly nonlinear
musical instruments,”J. Acoust. Soc. Amer., vol. 101, pp. 1120–1126,
Feb. 1997.

[9] V. Välimäki, T. Tolonen, and M. Karjalainen, “Signal-dependent non-
linearities for physical models using time-varying fractional delay fil-
ters,” in Proc. Int. Computer Music Conf., Ann Arbor, MI, Oct. 1998,
pp. 264–267.

[10] E. Rank and G. Kubin, “A waveguide model for slapbass synthesis,” in
Proc. IEEE ICASSP, vol. 1, Munich, Germany, Apr. 1997, pp. 443–446.

[11] J. O. Smith, “Nonlinear commuted synthesis of bowed strings,” in
Proc. Int. Computer Music Conf., Thessaloniki, Greece, Sept. 1997, pp.
264–267.

[12] M. Karjalainen, J. Backman, and J. Pölkki, “Analysis, modeling and
real-time synthesis of the kantele, a traditional Finnish string instru-
ment,” inProc. IEEE ICASSP, vol. 1, Minneapolis, MN, Apr. 1993, pp.
229–232.

[13] M. Karjalainen, V. Välimäki, and T. Tolonen, “Plucked string models:
From Karplus–Strong algorithm to digital waveguides and beyond,”
Comput. Music J., vol. 22, no. 3, pp. 17–32, 1998.

[14] G. F. Carrier, “On the nonlinear vibration problem of the elastic string,”
Q. Appl. Math., vol. 3, pp. 157–165, 1945.

[15] R. Narasimha, “Non-linear vibration of an elastic string,”J. Sound Vib.,
vol. 8, no. 1, pp. 134–146, 1968.



310 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 3, MAY 2000

[16] W. C. Elmore and M. A. Heald,Physics of Waves, New York: Dover,
1969.

[17] G. V. Anand, “Large-amplitude damped free vibration of a stretched
string,” J. Acoust. Soc. Amer., vol. 45, no. 5, pp. 1089–1096, 1969.

[18] P. M. Morse and U. K. Ingard,Theoretical Acoustics. Princeton, NJ:
Princeton Univ. Press, 1968.

[19] K. A. Legge and N. H. Fletcher, “Nonlinear generation of missing modes
on a vibrating string,”J. Acoust. Soc. Amer., vol. 76, pp. 5–12, July 1984.

[20] R. J. Hanson, J. M. Anderson, and H. K. Macomber, “Measurements of
nonlinear effects in a driven vibrating wire,”J. Acoust. Soc. Amer., vol.
96, pp. 1549–1556, Sept. 1994.

[21] T. Tolonen, V. Välimäki, and M. Karjalainen. (1999) Sound examples
for modeling of tension modulation nonlinearity in plucked strings. [On-
line]http://www.acoustics.hut.fi/∼ttolonen/tmstr_SAP/.

[22] V. Välimäki, “Discrete-time modeling of acoustic tubes using fractional
delay filters,” Ph.D. dissertation, Helsinki Univ. Technol., Espoo, Fin-
land, 1995.

[23] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, “Splitting
the unit delay—Tools for fractional delay filter design,”IEEE Signal
Processing Mag., vol. 13, pp. 30–60, Jan. 1996.

[24] S. J. Orfanidis,Introduction to Signal Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

[25] N. H. Fletcher and T. D. Rossing,The Physics of Musical Instruments,
New York: Springer-Verlag, 1991.

[26] J. O. Smith, “Techniques for digital filter design and system identifica-
tion with application to the violin,” Ph.D. dissertation, Stanford Univ.,
Stanford, CA, June 1983.

[27] M. Karjalainen and U. K. Laine, “A model for real-time sound synthesis
of guitar on a floating-point signal processor,” inProc. IEEE ICASSP,
vol. 5, Toronto, Ont., Canada, 1991, pp. 3653–3656.

[28] V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, “Physical
modeling of plucked string instruments with application to real-time
sound synthesis,”J. Audio Eng. Soc., vol. 44, pp. 331–353, May 1996.

[29] T. Tolonen, “Model-based analysis and resynthesis of acoustic guitar
tones,” M.Sc. thesis, Helsinki Univ. Technol., Espoo, Finland, Jan. 1998.

[30] V. Välimäki and T. Tolonen, “Development and calibration of a guitar
synthesizer,”J. Audio Eng. Soc., vol. 46, pp. 766–778, Sept. 1998.

[31] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based
on a sinusoidal representation,”IEEE Trans. Acoust.. Speech, Signal
Process., vol. 34, pp. 744–754, Aug. 1986.

[32] X. Serra, “A system for sound analysis/transformation/synthesis based
on a deterministic plus stochastic decomposition,” Ph.D. dissertation,
Stanford Univ., Stanford, CA, 1989.

[33] J. O. Smith, “Efficient synthesis of stringed musical instruments,” in
Proc. Int. Computer Music Conf., Tokyo, Japan, Sept. 1993, pp. 64–71.

[34] M. Karjalainen, V. Välimäki, and Z. Jánosy, “Toward high-quality sound
synthesis of the guitar and string instruments,” inProc. Int. Computer
Music Conf., Tokyo, Japan, Sept. 1993, pp. 56–63.

[35] M. Karjalainen and J. O. Smith, “Body modeling techniques for string
instrument synthesis,” inProc. Int. Computer Music Conf., Hong Kong,
Aug. 1996, pp. 232–239.

[36] M. Pavlidou and B. E. Richardson, “The string–finger interaction in
the classical guitar,” inProc. Int. Symp. Musical Acoustics, Dourdan,
France, July 1995, pp. 559–564.

[37] , “The string–finger interaction in the classical guitar: Theoretical
model and experiments,” inProc. Inst. Acoustics, vol. 19, Edinburgh,
U.K., Sept. 1997, pp. 55–60.

[38] G. Cuzzucoli and V. Lombardo, “Physical model of the plucking process
in the classical guitar,” inProc. Int. Computer Music Conf., Thessa-
loniki, Greece, Sept. 1997, pp. 172–179.

Tero Tolonen (S’98) was born in Oulu, Finland,
in 1972. He majored in acoustics and audio signal
processing and received the M.Sc.(Tech.) and
Lic.Sc.(Tech.) degrees in electrical engineering
from the Helsinki University of Technology (HUT),
Espoo, Finland, in January 1998 and December
1999, respectively. He is currently pursuing a
postgraduate degree.

He has been with the HUT Laboratory of Acous-
tics and Audio Signal Processing since 1996. His re-
search interests include model-based audio represen-

tation and coding, physical modeling of musical instruments, and digital audio
signal processing.

Mr. Tolonen is a student member of the IEEE Signal Processing Society and
the Audio Engineering Society.

Vesa Välimäki (S’90–M’92–SM’99) was born
in Kuorevesi, Finland, in 1968. He received the
M.Sc.(Tech.), Lic.Sc.(Tech.), and Dr.Sc.(Tech.)
degrees in electrical engineering from the Helsinki
University of Technology (HUT), Espoo, Finland, in
1992, 1994, and 1995, respectively.

Since 1990, he has been with the Laboratory of
Acoustics and Audio Signal Processing, HUT. In
1996, he spent six months as a Postdoctoral Research
Fellow with the University of Westminster, London,
U.K. He then returned to HUT, where he holds

the position of Senior Assistant. Currently, he is on leave as a Postdoctoral
Researcher at the Academy of Finland. In April 1999, he was appointed Docent
in Audio Signal Processing at HUT. His research interests are in musical signal
processing, active noise control, and digital filter design. He has published
more than 70 journal articles and conference papers.

Dr. Välimäki is a senior member of the IEEE Signal Processing Society, the
Audio Engineering Society, the International Computer Music Association, and
the Acoustical Society of Finland. He is the Secretary of the IEEE Finland sec-
tion.

Matti Karjalainen (M’84) was born in Hankasalmi,
Finland, in 1946. He received the M.Sc. and the
Dr.Tech. degrees in electrical engineering from
the Tampere University of Technology, Tampere,
Finland, in 1970 and 1978, respectively. His doctoral
dissertation dealt with speech synthesis by rule in
Finnish.

From 1980 to 1986, he was Associate Professor
and since 1986, he has been a Full Professor of
acoustics with the Faculty of Electrical Engineering,
Helsinki University of Technology, Espoo, Finland.

His research activities cover speech synthesis, analysis, and recognition, audi-
tory modeling and spatial hearing, DSP hardware, software, and programming
environments, as well as various branches of acoustics, including musical
acoustics and modeling of musical instruments.

Dr. Karjalainen is a fellow of the AES and a member of ASA, EAA, ICMA,
ESCA, and several Finnish scientific and engineering societies. He was the Gen-
eral Chair of the 1999 IEEE Workshop on Applications of Audio and Acoustics,
New Paltz, NY.


