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ABSTRACT1 

 The electro-mechanical (E/M) impedance method has gained 
acceptance as an effective technique for structural health 
monitoring, damage detection, and failure prevention. In spite of 
extensive experimental validation of this novel method, very little 
work has been dedicated to its modeling. This paper develops a 
model of the E/M impedance response of a damaged composite 
beam interrogated by a PZT wafer active sensor. The electro-
mechanical model for the interaction between the beam and the 
active sensor is developed from first principles. The effective axial 
force and bending moments induced by the PZT wafer into the 
beam are considered. Equations of motion for the flexural 
vibrations of a composite beam under moment excitation are 
developed. Solution in terms of normal modes with internal 
damping is obtained. The resulting response and the applied force 
are utilized to deduce general expressions for pointwise dynamic 
stiffness and pointwise dynamic compliance. Effective stiffness 
of the PZT wafer is also calculated, and the complex stiffness 
ratio for the PZT-structure interaction is determined. Hence, the 
complex electro-mechanical impedance and admittance are 
deduced.  
 A numerical example is given to illustrate the method and 
test its effectiveness. It is found that the real part of the effective 
pointwise dynamic stiffness interacts at par with the PZT 
stiffness at structural resonance frequencies. The imaginary part 
of the complex stiffness ratio directly reflects the pointwise 
structural resonances. Consequently, the real part of the electro-
mechanical impedance directly reflects the pointwise structural 
resonances too. The same behavior is also found in the electro-
mechanical admittance. Thus, the real part of the E/M impedance 
and the real part of the E/M admittance are found to be direct 
measures of the structural response, reflective of damage 
presence. 

                                                                 
*Member, ASME 
‡Fellow, ASME 

INTRODUCTION 

 Health monitoring of structures and machinery is a major 
concern of the engineering community. Flaws identification, early 
damage detection, and failure prevention are desiderates with far 
reaching implications in the management and preservation of 
nations aging infrastructure. Among structural health monitoring 
techniques, the electro-mechanical (E/M) impedance for structural 
health monitoring and non-destructive evaluation is an emerging 
method that offers distinct advantages. The electro-mechanical 
(E/M) impedance method has gained acceptance as an effective 
technique for structural health monitoring, damage detection, and 
failure prevention (Rogers and Giurgiutiu, 1999; Giurgiutiu and 
Rogers; 1999). The method uses small-size active sensors 
intimately bonded to an existing structure, or embedded into a 
new composite construction. Piezoelectric (PZT) wafer 
transducers have been widely used to this purpose. Experimental 
demonstrations have shown that the high-frequency impedance 
spectrum is directly affected by the presence of damage or defects 
in the monitored structure.  
 A precursor to the electromechanical impedance method is 
the mechanical impedance method. This method evolved in the 
late 1970’s and early 1980’s and was based on measuring the 
response to force excitation applied normal to structural surface 
using conventional shakers and velocity transducers. Cawley 
(1984) studied the mechanical impedance method for non-
destructive inspection (NDI). He excited the vibrations of bonded 
plates using a specialized transducer that simultaneously 
measures the applied normal force and the induced velocity. In his 
study, Cawley (1984) extended the work of Lange (1978), and 
studied the behavior of bonded thin plates, in order to identify 
local disbonds. Finite element analysis of the vibration of the 
bonded/disbonded plates was performed, and the impedance to 
excitation in the normal direction was predicted. The experimental 
work measured the normal-direction impedance at various 
locations. A small shaker was used to apply excitation through a 
force gauge and an accelerometer connected to the structure. The 

ASME Winter Annual Meeting, ASME Aerospace and Materials Divisions, Adaptive Structures And Material Systems Symposium, 
November 14-19, 1999, Nashville, TN, AD-Vol. 59, MD-Vol. 87, pp. 39-46. 



 
 

2

impedance magnitude spectrum below the anti-resonance 
frequency was compared with the finite element predictions, and 
some correlation with the presence of disbonds was attempted. 
Phase information was not used in the data analysis. Since these 
early studies, the mechanical impedance method has evolved and 
gained its own place among NDE techniques. Currently, 
ultrasonic equipment manufacturers offer mechanical impedance 
analysis (MIA) probes and equipment as standard options (e.g., 
Staveley NDT Technologies, 1998). The mechanical impedance 
method is used to detect disbonds in laminated structures, and 
delaminations inside composite materials up to depth of 1/4-in. 
 The electro-mechanical impedance method takes the 
mechanical impedance concepts to the new horizons offered by 
the use of small-wafer piezoelectric active sensors intimately 
affixed to the structure. Force excitation normal to the structural 
surface is replaced by strain excitation in the plane of the surface. 
High frequency excitation in the high kHz low MHz region can be 
achieved. The bulky ultrasonic transducer of the mechanical 
impedance method (typically, 1” x 3-4”) is replaced by a thin 
wafer active sensor. In addition, since the E/M impedance sensor 
is permanently attached to the surface (or embedded in composite 
structures), the force coupling issue associated with conventional 
ultrasonics is no longer a problem. The E/M impedance active 
sensors, hard wired into the structure, can be interconnected into 
sensor arrays. Through the intimate electro-mechanical coupling, 
the structural impedance is measured almost directly, whereas in 
the mechanical impedance method, post-processing of separately 
measured force and acceleration or velocity data was required.  
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Figure 1 PZT wafer transducer acting as active sensor to 
monitor structural damage: (a) mounting of the PZT 
wafer transducer on a damaged structure; (b) the 
change in E/M impedance due to the presence of a 
crack. 

 Until now, the electro-mechanical impedance technique has 
evolved mainly through experimental discovery and proof-of-
concept demonstrations. However, little theoretical work has been 
done so far to determine the analytical model that will permit to 
correctly predict the E/M impedance response for a given 
structure and its change with the progression of damage. Rossi et 
al. (1993) studied impedance modeling of piezoelectric actuator 
driven circular rings, but their analysis did not determine closed 
form solution. Their numerical examples were confined to 
relatively low frequencies (< 1.8 kHz). Liang et al. (1996) 
developed the impedance analysis of a PZT affixed to a structure, 
but did not detail a model for the structural response. Esteban 
(1996) attempted an analysis of beam vibrations with attached 
PZT wafers, but could not get fully conclusive results. The 
present paper will describe modeling efforts focused on 
determining the interaction between the PZT wafer transducer in 
terms of high-frequency vibration modes and point-wise 
structural impedance of pristine and damaged structure that 
directly affect the E/M impedance. The focus of this paper will be 
on the analysis of a damaged composite beam. Extension to plates 
and other composite structures is planned for future work. 

ELECTRO-MECHANICAL IMPEDANCE 
 The electro-mechanical impedance method for structural 
health monitoring, damage detection, and NDE was explained in 
detail by Rogers and Giurgiutiu (1997) and by Giurgiutiu and 
Rogers (1997). A overview of its principles is given next. 
Consider a piezo-electric transducer wafer intimately bonded to 
the surface of a structural member. When excited by an alternating 
electric voltage, the piezo-electric transducer applies a local strain 
parallel to the surface. Thus, elastic waves are transmitted into the 
structure. The structure responds by presenting to the transducer 
the drive-point mechanical impedance 

ωωωωωω /)()()()( eeestr ikcmiZ −+= . Through the 

mechanical coupling between the PZT transducer and the host 
structure, and through the electro-mechanical transduction inside 
the PZT transducer, the drive-point structural impedance directly 
reflects into the effective electrical impedance as seen at the 
transducer terminals (Figure 1).  
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Figure 2 Electro-mechanical coupling between the PZT 
transducer and the structure. 

The electro-mechanical (E/M) impedance technique for health 
monitoring, damage detection, and NDE (Rogers and Giurgiutiu, 
1997) utilizes the changes that take place in the drive-point 
structural impedance to identify incipient damage in the structure. 
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The apparent electro-mechanical impedance of the piezo-
transducer as coupled to the host structure is given by 
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Here, )(ωZ is the electro-mechanical impedance as seen at the 

PZT transducer terminals, C is the zero-load capacitance of the 
PZT transducer, κ31 is the electro-mechanical cross coupling 

coefficient of the PZT transducer ( 33111331 ε=κ s/d ), kstr(ω) is 

the dynamic stiffness of the structure, and kPZT is the stiffness of 
the PZT-wafer active sensor. The electro-mechanical impedance 
method is applied by scanning a predetermined frequency range in 
the hundreds of kHz band and recording the complex impedance 
spectrum. By comparing the impedance spectra taken at various 
times during the service life of a structure, meaningful information 
can be extracted pertinent to structural degradation and the 
appearance of incipient damage (Figure 2b). It must be noted that 
the frequency range must be high enough for the signal wavelength 
to be significantly smaller than the defect size (Figure 2a). 
 The purpose of the present investigation is to determine 
analytical models for predicting the structural and PZT 
contributions to Equation (1). Such model will permit prediction 
of the E/M impedance, Z(ω), for a given structure, will allow 
determination of the method sensitivity to detect a certain defect 
size, and will permit the matching of sensor size and excitation 
level with structural type and defect size. Details of these 
developments beyond the limited space of this paper can be 
found in the full-length report by Giurgiutiu and Rogers (1999). 
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Figure 3 Model of the interaction between a PZT active sensor 

and a substrate beam structure: (a) geometry; (b) 
forces and moments. 

MODEL DEFINITION 
 Consider a substrate beam with a PZT active sensor attached 
to it surface (Figure 3a). The active sensor has length la, and lies 
between xa and xa + la. Upon activation, the PZT active sensor 
expands by εPZT. This generates a reaction force FPZT from the 
beam structure. The reaction force is perceived by the beam 
structure as axial force, NPZT, and bending moment, MPZT at the 
neutral axis (Figure 3b). 
 As the active sensor is excited with a high-frequency 
harmonic signal, its expansion, εPZT, will follow a high-frequency 
sinusoidal oscillation. This oscillation induces elastic waves into 
the beam structure. The elastic waves travel sideways into the 
beam structure and set it up into oscillation. When the steady 
state regime is reached, the structure will exhibit sustained 
oscillations at the frequency of PZT excitation. The reaction force 
per unit displacement presented by the structure to the PZT will 
depend on the internal state of the structure, on the excitation 
frequency, and on the boundary conditions. For high frequency 
excitation, local modes of vibration are dominant, and the far-field 
boundary conditions become irrelevant. 
 The reaction force per unit displacement is expressed as: 
 ( ) ( ) ( )ωω=ω PZTPZTstr û/F̂k , (2) 

where ( )ωPZTû  is the displacement amplitude at frequency ω, 

( )ωPZTF̂  is the reaction force, and kstr(ω) is the dynamic stiffness. 

The symbol ^ signifies amplitude. Since the size of the PZT is 
very small with respect to the size of the structure, formula (2) 
represents a point-wise structural stiffness. Upon division by ω, 
one can also get the point-wise structural impedance: 
 ( ) ( ) ωω=ω /kZ strstr . (3) 

MODELING OF THE STRUCTURAL SUBSTRATE 
 The response of the structural substrate to the PZT 
excitation is deduced following the general theory of beam 
vibrations (Timoshenko, 1955; Inman, 1996.) However, 
Excitation is through a pair of axial forces and bending moments 
separated by a small but finite distance, lPZT. This feature departs 
the present analysis from a typical textbook formulation. 

Definition of the Excitation Forces and Moments 

 The excitation forces and moments acting upon the beam 
structure are derived from the PZT force using the beam cross-
section geometry (Figure 3): 
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The space-wise distribution of excitation bending moment and 
axial force are expressed using the Heaviside function,  
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Hence, the actuation force and moment are:  
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 ( ) ( )( , ) i t
e a a a aN x t N H x x H x x l e ω = − − − − ⋅   (6) 

 ( ) ( )( , ) i t
e a a a aN x t M H x x H x x l e ω = − − − − ⋅   (7) 

Equations (6) and (7) correspond to axial and flexural vibrations, 
respectively. 

Axial Vibrations 

 Axial vibrations modes are usually of much larger frequency 
than flexural vibration modes. They will not be considered in the 
present analysis. 

Flexural Vibrations 

 Since the flexural excitation, Equation (7), is in the form of a 
moment, the equation of motions for flexural vibrations have to be 
described in terms of curvature waves . Consider an infinitesimal 
beam element of length dx, placed between x and x + dx, under the 
action of an external distributed bending moment m(x, t) as shown 
in Figure 4. The units of m(x, t) are [Nm/m] 

 

M(x,t)+dM(x,t) 

V(x,t)+dV(x,t) 

V(x,t) 

M(x,t) 
w(x,t)

dx 

x x+dx 

Me(x,t)+dMe(x,t) Me(x,t) 

 

Figure 4 Free-body diagram of a beam element subjected to 
distributed bending moment excitation. 

Consider an infinitesimal beam element of length dx, placed 
between x and x + dx, under the action of an external bending 
moment Me(x, t), as shown in Figure 4. Ignoring rotary inertia, 
write: 
 d dA w x Vρ ⋅ ⋅ =&&  (8) 

 d d d 0eM M V x+ + =  (9) 

Euler- Bernoulli’s theory of bending gives 
 wEIM ′′⋅= . (10) 

Substituting Equation (10) into Equation (9) yields 
 / 0eEI w M V′′′⋅ + + = . (11) 

Substitution of Equation (11) into Equation (8) gives, upon 
rearrangement, 
 //// //( , ) ( , ) ( , )eA w x t EI w x t M x tρ ⋅ + ⋅ = −&&  (12) 

Assume solution in the form: 

 ∑
=

=
2

1

N

Nn
nn )x(X)t(T)t,x(w  (13) 

where Tn(t) is the time-varying modal response, and N1 and N2 are 
the power and upper mode numbers bracketing the high-

frequency interval under investigation. Also, assume steady-state 
response at the excitation frequency, ω, i.e. 
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Substitution into the differential equation and cancellation of the 
time-varying harmonic function on both sides of the equation 
yields the space-wise differential equation: 

 2 //// //ˆ( ) ( ) ( )n n n n e
n n

A C X x EI C X x M xω ρ− ⋅ + ⋅ = −∑ ∑  (15) 

Invoke the differential equation defining the natural modes of 
flexural vibration: 
 //// 2

n n nEI X A Xω ρ⋅ = ⋅ ⋅  (16) 

Hence, Equation (15) becomes 

 ( )2 2 //ˆ( ) ( )n n n e
n

A C X x M xρ ω ω⋅ − = −∑  (17) 

Following the Galerkin approach, multiply by Xm(x) and integrate 
over the length of the beam: 

( )2 2 //
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l l
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n

A C X x X x x X x M x xρ ω ω− = −∑ ∫ ∫  (18) 

Invoke modeshapes ortho-normality: 
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define the modal excitation as: 

 / /
0 0

1 ˆ( ) ( )d
l

n n eX X x M x x
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= − ∫ , (20) 

and assume viscous damping, ζ.. Hence, the general solution: 
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Explicit calculation of X0n yields: 

 ( ) ( )/ /
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Upon integration by parts, 

 ( ) ( )/ /
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Aρ
 = − − − − −   (23) 

To obtain the structural dynamic stiffness seen by the PZT 
wafer, calculate the displacements at points A & B, 

 )t,x(w
h

u aA ′−=
2

,    )t,lx(w
h

u aaB +′−=
2

 (24) 

and find the elongation of the PZT wafer: 

 / /( ) ( ) ( ) ( ) ( )
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Substitution of Cn and X0n yields: 
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For pinned-pinned beams, the mode shapes are (Inman, 1996): 

 ( ) sin( )n n nX x A xβ= ,   2 /nA l= , ( )1 / 42 /A EIβ ω ρ=  (28) 

Upon substitution,  
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MODELING OF THE PZT ACTIVE SENSOR 
 Consider a PZT wafer of length lPZT, thickness t, and width 
b (Figure 5). The 3-D constitutive equations of the PZT material 
are, in Physics notations, 
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where Sij is the mechanical strain, Tij is the mechanical stress, Ei is 
the electrical field, Di is the electrical displacement, E

ijkls  is the 

mechanical compliance at zero electric field (E = 0), T
jkε is the 

dielectric constant (impermittivity) at zero mechanical stress (T = 
0), and kijd  is the piezoelectric coupling between the electrical 

and mechanical variables. Attention is focused on the longitudinal 
expansion, u1, induced by the thickness polarization, E3. Thus, 
Equation (28) becomes: 
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PZT

length la; thickness ta; width, ba.  

Figure 5 Schematic representation of a PZT wafer active 
sensor. 

The mechanical stiffness of the PZT active sensor with respect to 
an axial force applied in the x1 direction is 

 
a

a
PZT ls

A
k

11

= , (32) 

where Aa = ta·ba is the PZT cross-sectional area. Because of the its 
small dimensions, longitudinal wave propagation effects in the 
PZT wafer are negligible, and Equation (30) can be used for both 
static and dynamic regime. In other words, the strain induced in 
the PZT wafer is unaffected by dynamic effects and hence 
uniform along the PZT length. 

NUMERICAL EXAMPLE 
 For exemplification, consider a uniform beam of  
l = 100 mm, h = 3 mm, and b = 19.6 mm, made of carbon fiber 
epoxy composite with E11 = 200 GPa and ρ = 1600 kg/m3. A 
PZT wafer active sensor is affixed to the top surface of the beam 
at xa = 40 mm. The PZT-wafer active-sensor dimensions are  
la = 4.5 mm, ba = 4.5 mm, ta = 0.200 mm. The properties of the 
PZT material are given in Table 1. 

Table 1 Properties of the active-sensor PZT material  

Name Symbol Value 

Compliance s11 15.2·10-12 Pa-1 

Dielectric constant ε33 7.427·109 F/m 

Induced strain coefficient d13 -125·10-12 m/V 

Natural Frequencies 

 The frequency range 100 kHz to 400 kHz was scanned for 
natural frequencies of the beam. this investigation revealed that 9 
modes bracket this interval, such that the lower mode corresponds 
to N1 = 8, and the upper mode to N2 = 17. Table 2 gives the 
values of the mode numbers and the corresponding frequencies. 
Notice that of the 9 modes, only 7 (modes 9 through 16, 
underlined) lie strictly between 100 kHz and 400 kHz. 

Table 2 Frequencies considered for analysis in the 100 kHz to 
400 kHz frequency range  

Mode # 8 9 10 11 12 13 14 15 16 17 

Frequency
, kHz 

97 123 152 184 219 257 298 342 389 440 

 

Vibration Response 

 Figure 6 shows the response of the beam (dynamic 
compliance) for high-frequency active-sensor excitation in the 
range 100÷400 kHz. The response is measured with respect to 
the PZT excitation force applied to the surface of the beam in a 
pinching action, and is drawn for an excitation force of unit value.  
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Figure 6 Response of a composite beam to unit force excitation 
(dynamic compliance) from a PZT wafer active sensor 
in the frequency range 100 to 400 kHz. 

The plot in Figure 6 reveals that not all of the 7 modes present in 
the frequency range of interest are equally excited. This aspect is 
consistent with the fact that various modes have different mode 
shapes that may or may not happen to have significant curvature 
at the point where the PZT wafer active sensor is affixed. In our 
case, modes 9 (123 kHz), 11 (183 kHz), 13 (257 kHz), and 15 
(342 kHz) are very active, mode 8 (97 kHz) is marginally active, 
while modes 10 (152 kHz), 12 (219 kHz) and 16 (389 kHz) are 
dormant and difficult to identify. 

 

Figure 7 Dynamic stiffness and presented by the composite 
beam to the PZT wafer active sensor in the frequency 
range 100- 400 kHz. 

Pointwise Structural Stiffness 

 The pointwise dynamic structural stiffness, kstr(ω), with 
respect to surface excitation of the beam by PZT is given in 
Figure 7. Please note that, since the dynamic stiffness is the 
inverse of the response to unit excitation, the peaks and valleys 
from one diagram correspond to valleys and peaks in the other. 
Thus, at points where the dynamic response has a maximum, the 
dynamic stiffness has a minimum, and vice-versa.  
Also plotted in Figure 7 is the mechanical stiffness of the PZT, 
kPZT = 0.013 GN/m. The PZT stiffness, kPZT, is superposed on 
the plot of the real part of the structural impedance, Re(kstr). It 
should be appreciated that the real part of the structural 
impedance goes through zero at the structural resonance 
frequencies. Hence, near structural resonance frequencies, the 
PZT stiffness and the real part of the structural stiffness become 
comparable. This observation is crucial for understanding the 
mechanism of electro-mechanical coupling between the active 
sensor and the structural substrate. 

 

Figure 8 Dynamic stiffness ratio fora composite beam and a 
PZT wafer active sensor in the frequency range 100- 
400 kHz. 
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Dynamic Stiffness Ratio 

 Figure 8 presents the dynamic stiffness ratio between the 
structure and structure plus PZT, as used in Equation (1), i.e., 

 ( )
)(

)(
ω

ω
=ω

strPZT

str

k+k
k

r  (33) 

Note that the magnitude is almost constant around the 139·10-3 
value. However, the imaginary part of the dynamic stiffness ratio, 
though much smaller in value, displays a peaks and valleys 
pattern that follow closely the structural-response resonance 
pattern displayed in the dynamic compliance plot of Figure 6. 
This observation is essential to understanding how the electro-
mechanical (E/M) impedance method is able to detect the dynamic 
behavior of the structure. 
Further more, the spectrum presented by the imaginary part of 
the dynamic stiffness ratio (Figure 8) has a better frequency 
resolution that the mechanical response. Recall that inspection of 
the dynamic response (Figure 6) identified 4 active modes, i.e., 
modes 9 (123 kHz), 11 (183 kHz), 13 (257 kHz), and 15 (342 
kHz); one marginally active, mode 8 (97 kHz); and 3 dormant 
modes 10 (152 kHz), 12 (219 kHz) and 16 (389 kHz). Inspection 
of the dynamic stiffness ratio identifies the same 4 active modes 
(#9, 11, 13, and 15), but also clearly identifies the marginally 
active mode 8 (150 kHz) and 2 of the dormant modes (#8 @ 87 
kHz, and #16 @ 389 kHz). The only mode not identified is #12 
@ 219 kHz. 

 
Figure 9 High frequency E/M impedance and its real part for a 

small PZT-wafer active sensor affixed to the surface 
of a composite beam 

Electro-Mechanical (E/M) Impedance 

 Figure 9 shown the real and imaginary components of the 
electro-mechanical (E/M) impedance as would have been 
measured at the electrical terminals of the PZT-wafer active 
sensor. In these graphs, the E/M impedance magnitude is 
dominated by the 1/iωC component. Hence, it does not display 
any noticeable variations as resonance frequencies are passed 
through. Whereas the real part of the E/M impedance, though 
generally much smaller in value, follows closely the structural-
response resonance pattern displayed in the dynamic compliance 
plot of Figure 6. 
 

 

Figure 10 High frequency E/M admittance and its real part for a 
small PZT-wafer active sensor affixed to the surface 
of a composite beam  

Electro-Mechanical (E/M) Admittance 

 Figure 10 gives the real and imaginary components of the 
E/M admittance as would have been measured at the electrical 
terminals of the PZT-wafer active sensor. The E/M admittance is 
the inverse of the E/M impedance and is given by: 

 



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


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ω
κ−ωω

)()(
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strPZT

str
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In the graphs of Figure 10, the E/M admittance magnitude is 
dominated by the iωC component. Hence, it does not display any 
noticeable variations as resonance frequencies are passed through. 
Whereas the real part of the E/M admittance, though generally 
much smaller in value, follows closely the structural-response 
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resonance pattern displayed in the dynamic compliance plot of 
Figure 6. 

Comparison of Mechanical Response, E/M Impedance 
Signature, and E/M Admittance Signature 

 The preceding graphs have indicated that the structural 
dynamic response pattern (prominent peaks at resonance 
frequencies) is recovered in the pointwise dynamic stiffness, in 
the real part of the E/M impedance, and in the real part of the 
E/M admittance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 Pointwise mechanical compliance, E/M impedance, and 

E/M admittance of a composite beam 

Figure 11 displays these three variables superposed on the same 
graph for easy comparison. It can be seen that all three concepts 
(mechanical compliance, E/M impedance, and E/M admittance) 
identify equally well the structural resonance frequencies. Their 
behavior around resonance frequencies is similar, but not identical. 
The E/M impedance has a stronger response towards lower 
frequencies, while the E/M admittance has a stronger response 
towards higher frequencies. 

Effect of Structural Damage 

 Figure 12 shows how the E/M impedance signature changes 
when damage takes place in the beam. In this example, damage 
was simulated by varying the thickness of the beam. This 
thickness change corresponds to a delamination, which virtually 
splits the beam into two regions, such that the PZT wafer active 
sensor remains attached to a locally thinner beam. In our 
simulation, a 55% effective post-lamination thickness was 
considered. The clear difference between the two signatures, 
pristine and damaged, is apparent. The plots in Figure 12 indicate 
that the effect of damage is to shift to the left the resonance 
frequency peaks, and to increase their value. These modifications 
in the E/M impedance signature are essential in identifying the 
presence of structural damage. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 12 Pointwise mechanical compliance, E/M impedance, and 
E/M admittance of a composite beam with simulated 
damage (45% effective thickness decrease due to 
delamination). 

CONCLUSIONS  
 The electro-mechanical (E/M) impedance method has gained 
acceptance as an effective technique for structural health 
monitoring, damage detection, and failure prevention. In spite of 
extensive experimental validation and proof-of-concept 
demonstrations, little work has been dedicated to its modeling. 
This paper presented a model for the E/M impedance response of 
a damaged composite beam interrogated by a PZT wafer active 
sensor developed from first principles. The effective axial force 
and bending moments induced by the PZT wafer into the beam 
were considered. Equations of motion for composite beam flexural 
vibrations under moment excitation were developed. Solution in 
terms of normal modes with internal damping was obtained. The 
resulting response and the applied force were utilized to deduce 
general expressions for pointwise dynamic stiffness and 
pointwise dynamic compliance to in-plane surface excitation. 
Effective stiffness of the PZT wafer was calculated, and the 
complex stiffness ratio for the PZT-structure interaction was 
determined. Hence, the complex electro-mechanical impedance and 
admittance were deduced.  
 A numerical example was given to illustrate the method and 
test its effectiveness. It was found that the real part of the 
effective pointwise dynamic stiffness interacts at par with the 
PZT stiffness at structural resonance frequencies. Pointwise 
structural resonances were found to be directly reflected in the 
imaginary part of the complex stiffness ratio, and in the real part 
of the electro-mechanical impedance. The same behavior was also 
found in the electro-mechanical admittance. Thus, the real part of 
the E/M impedance and the real part of the E/M admittance were 
identified as direct measures of the structural response. When 
simulated damage was introduced, shifts in the response peaks 
and modification of peak amplitudes, obtained in the mechanical 
response, were traced directly into the similar shifts in the E/M 
impedance and admittance real parts. 

Pointwise mechanical compliance, 101 nm/N 

Pointwise E/M impedance, kΩ 

Pointwise E/M admittance, µ S 

Pointwise E/M impedance of composite beam with 
simulated damage, kΩ 

Pointwise E/M impedance of composite beam in pristine 
condition, kΩ 
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