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Modeling of the Glottal Flow Derivative Waveform
with Application to Speaker Identification
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Abstract—An automatic technique for estimating and modeling
the glottal flow derivative source waveform from speech, and
applying the model parameters to speaker identification, is pre-
sented. The estimate of the glottal flow derivative is decomposed
into coarse structure, representing the general flow shape, and
fine structure, comprising aspiration and other perturbations in
the flow, from which model parameters are obtained. The glottal
flow derivative is estimated using an inverse filter determined
within a time interval of vocal-fold closure that is identified
through differences in formant frequency modulation during the
open and closed phases of the glottal cycle. This formant motion
is predicted by Ananthapadmanabha and Fant to be a result of
time-varying and nonlinear source/vocal tract coupling within a
glottal cycle. The glottal flow derivative estimate is modeled using
the Liljencrants–Fant model to capture its coarse structure, while
the fine structure of the flow derivative is represented through
energy and perturbation measures. The model parameters are
used in a Gaussian mixture model speaker identification (SID)
system. Both coarse- and fine-structure glottal features are shown
to contain significant speaker-dependent information. For a large
TIMIT database subset, averaging over male and female SID
scores, the coarse-structure parameters achieve about 60% ac-
curacy, the fine-structure parameters give about 40% accuracy,
and their combination yields about 70% correct identification.
Finally, in preliminary experiments on the counterpart telephone-
degraded NTIMIT database, about a 5% error reduction in
SID scores is obtained when source features are combined with
traditional mel-cepstral measures.

Index Terms—Frequency modulation, Gaussian mixture model,
glottal flow derivative, inverse filtering, nonlinear glottal/vocal
tract interaction, speaker recognition.

I. INTRODUCTION

V IDEOS of vocal fold vibration [21] show large variations
in the movement of the vocal folds from one individual

to another. For certain speakers, the vocal folds may close
completely, while for others, the folds may never reach full
closure. The manner and speed in which the vocal folds close
also varies across speakers. For example, the cords may close
in a zipperlike fashion, or may close along the length of the
vocal folds at approximately the same time. Differences in fold
vibration correspond to differences in the time-varying area
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of the slitlike opening between the folds, referred to as the
glottis, and therefore in volume velocity air flow through the
glottis, i.e., theglottal flow.The flow may be smooth, as when
the folds never close completely, corresponding perhaps to a
“soft” voice, or discontinuous, as when they closed rapidly,
giving perhaps a “hard” voice. The flow at the glottis may
be turbulent, as when air passes near a small portion of the
folds that remains partly open. Turbulence at the glottis is
referred to asaspiration which, when occurring during vocal
cord vibration, can result in a “breathy” voice. In order to
determine quantitatively whether such glottal characteristics
contain speaker dependence, we must extract features such as
the timing of vocal fold opening and closing, the general shape
of the glottal flow, and the extent and timing of turbulence at
the vocal folds.

This paper describes a technique to automatically estimate
and temporally model the glottal flow derivative waveform
from voiced speech, and then uses the model parameters for
speaker identification. A block diagram of the approach is
given in Fig. 1. Our first goal of estimating the derivative
of the glottal flow, rather than the glottal flow itself, stems
from the availability of pressure measurements of the speech
waveform, pressure being the derivative of volume velocity
airflow. Estimation of the glottal flow derivative relies on
inverse filtering the speech waveform with an estimate of
the vocal tract transfer function. This estimation is typically
performed during the glottal closed phase within which the
vocal folds are in a closed position and there is no dynamic
source/vocal tract interaction. Wonget al. [34] and Cummings
and Clements [9] perform, for example, a sliding covariance
analysis with a one sample shift, using a function of the
linear prediction error to identify the glottal closed phase. This
method, relying on the prediction error, has been observed to
have difficulty when the vocal folds do not close completely
or when the folds open slowly. The approach of this paper
estimates the glottal closed phase, relying also on a sliding
covariance analysis, but, rather than using the prediction error
from this analysis, uses vocal tract formant modulation which
is predicted by Ananthapadmanabha and Fant [1] to vary
more slowly in the glottal closed phase than in its open
phase and to respond quickly to a change in glottal area.
A “stationary” region of formant modulation gives a closed-
phase time interval, over which we estimate the vocal tract
transfer function; a stationary region is present even when
the vocal folds remain partly open. For high-pitched speakers,
where the closed phase over a single pitch period is small, a
method is proposed which uses two consecutive pitch periods
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Fig. 1. Approach to glottal flow derivative estimation and modeling, and its use in speaker identification.

to improve estimation of the formant modulation and closed
phase, and thus of the glottal flow derivative. The glottal
flow derivative waveform that results from inverse filtering
is characterized by temporal structure that is consistent with
that predicted by Ananthapadmanabha and Fant [1].

With the objective of modeling the temporal structure of
the glottal flow, we then develop a time-domain feature rep-
resentation of the glottal flow derivative during voicing. The
coarse structureof the flow derivative is represented by the
piecewise-functional Liljencrants–Fant (LF) model [14] con-
sisting of seven parameters, obtained by a nonlinear estimation
method of the Newton–Gauss type which allows for invoking
physically-motivated solution bounds, as well as for possibly
large residual error. As illustrated in Fig. 1, the coarse structure
is then subtracted from the glottal flow derivative estimate
to give its fine-structurecomponent, reflecting characteristics
not captured by the general flow shape such as aspiration
and a perturbation in the flow referred to asripple. Ripple
is associated with first-formant modulation and is due to the
time-varying and nonlinear coupling of the source and vocal
tract cavity [1]. Five energy measures and a ripple measure
are obtained from the fine structure.

The coarse- and fine-structure features are then applied to
a speaker identification (ID) task using a Gaussian mixture
model speaker ID system [27]. The results represent the first
demonstration, using an automatic speaker ID system, of the
speaker dependence of glottal-flow derivative feature estimates
for voiced speech. Early use of source information in automatic
speaker ID systems was accomplished mainly through pitch
features [3]. More recently, source information was used in a
few speaker ID systems [16], [31]. These methods, however,
do not use an explicit temporal model of the glottal flow
derivative, but rather use cepstral representations of a linear
prediction residual, and, moreover, without the aid of glottal
open/close timing and voiced speech identification. As such,
the residual is a representation of the source, primarily in the
form of pitch and voicing information, and not of a glottal
flow derivative measure. In this paper, on the other hand, the
importance of the glottal flow derivative shape in voicing is
isolated by not using pitch in the speaker ID task and by
making glottal flow measurements only during voiced speech.

The paper is organized as follows. In Section II, properties
of the glottal flow, its derivative, and the Ananthapadmanabha
and Fant glottal flow physiological model are reviewed, and

then a functional model that captures the important features of
the glottal flow derivative is developed. Section III describes
the technique used to estimate the glottal flow derivative
waveform. Estimation of the features of the coarse structure
of the glottal flow derivative is given in Section IV, while
Section V develops estimation of its fine-structure parameters.
Section VI describes the use of the model parameters for
speaker identification. Finally, Section VII gives conclusions
and ideas for future directions.

II. GLOTTAL FLOW MODEL

This section first describes qualitatively the properties
of the components of glottal flow and its derivative, then
briefly reviews Ananthapadmanabha and Fant’s [1] theory of
formant frequency-modulation and associated ripple due to
source/vocal tract interaction, and ends with a glottal flow
derivative model for extracting features to be used in speaker
identification.

A. Properties of the Glottal Flow

Speech production is typically viewed as a linear filtering
process which can be considered time invariant over short
time intervals. The glottal flow volume velocity, denoted by

, acts as the source, sometimes also referred to as the
“excitation,” to the vocal tract with impulse response .
The volume velocity output of the vocal tract is then modified
by the lip impedance. Because the pressure/volume velocity
relation at the lips can be approximated by a differentiator
[26], the speech pressure waveform measured in front
of the lips can be expressed as

. The effect of radiation is typically included
in the source function [26]; the source to the vocal tract,
therefore, becomes the derivative of the glottal flow volume
velocity, which we henceforth denote by , i.e.,

. Following the approach of Ananthapadmanabha and
Fant [1], we assume that the glottal flow and its derivative
consists of coarse- and fine-structure components.

1) Coarse Structure:The relation between the coarse struc-
ture of the glottal flow, denoted by , and its derivative,

, is shown in Fig. 2 for an idealized1 glottal flow
function. In obtaining the glottal flow derivative, applying the

1Typically, the vocal folds do not fully close and some air flow may always
be present.
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Fig. 2. Relation between glottal flow and its derivative: (a) glottal volume
velocity (flow); (b) glottal flow derivative.

lip radiation effect to the source flow, rapid closing of the
vocal folds results in a large negative impulse-like response at
glottal closure, called theglottal pulse,as shown in Fig. 2. The
coarse structure represents the general shape of the glottal flow.
The time interval during which the vocal folds are closed, and
during which no flow occurs, is referred to as the glottalclosed
phase.The time interval over which there is nonzero flow and
the vocal folds are fully or partially open is referred to as the
glottal open phase.The time interval from the most negative
value of the glottal flow derivative to the time of glottal closure
is referred to as thereturn phase.The asymmetry of the glottal
flow shape during the open phase, sometimes referred to as
skewnessin the glottal flow, is due approximately in part to
the manner in which the glottis changes in time, and in part to
the loading by the vocal tract during the glottal open phase2

[1]. In this glottal flow model, the return phase is particularly
important, as this determines the amount of high-frequency
energy present in both the source and the speech. The more
rapidly the vocal folds close, the shorter the return phase,
resulting in more high-frequency energy and less spectral tilt.

2) Fine Structure: Fine structure of the glottal flow deriva-
tive, denoted by , is the residual waveform obtained
by subtracting the coarse structure from the glottal flow
derivative, i.e., . Two contributions
of fine structure are considered in this paper, ripple and
aspiration. As illustrated in Fig. 3, ripple is a sinusoidal-like
perturbation that overlays the coarse glottal flow, and thus
the glottal flow derivative, and arises from the time-varying
and nonlinear coupling of the glottal flow with the vocal tract
cavity, due to primarily the vocal tract first formant3 [1]. Based
on a physical model, a more quantitative description of ripple
and its correspondence to first-formant modulation is given in
Section II-B. The timing and amount of ripple is dependent

2Without vocal tract loading, the glottal flow would be proportional to the
glottal area. While loading is somewhat influenced by the vocal tract, the
coarse structure is largely free of vocal tract shape influence [1].

3In a qualitative sense, the time-varying pressure in the vocal tract cavity
just above the glottis “backs up” against the glottal flow and interacts
nonlinearly with the flow to form the ripple. In certain wind instruments,
as in the trumpet, such a mechanism is even more pronounced, and indeed is
essential in determining the sound of the instrument, as the vibration of the
“lip reed” is strongly, and nonlinearly, coupled to the resonant frequencies of
the cavity [5].

Fig. 3. Glottal flow derivative waveform showing coarse and ripple compo-
nent of fine structure due to source/vocal tract interaction.

on the configuration of the glottis during both the open and
closed phases [1], [14], [24]. For example, with folds that open
in a zipperlike fashion, ripple may begin at a low level early
into the glottal cycle, and then grow as the vocal folds open
more completely.

Our second form of fine structure, aspiration at the glot-
tis, arises when turbulence is created as air flows through
constricted vocal folds, and is also dependent on the glottis
for its timing and magnitude. For example, a long, narrow
opening, which constricts the air flow along the entire glottal
length, tends to produce more aspiration than, for example,
a triangular-shaped opening with partial constriction. The
creation of turbulence at the glottis is highly nonlinear and a
satisfactory physical model has yet to be developed. A simplifi-
cation is to model aspiration as a random noise process, which
is the source to the (linear) vocal tract. The complete fine-
structure source is modeled as the addition of the aspiration
and ripple source components.

B. Physical Model of Source/Vocal Tract Interaction

Ananthapadmanabha and Fant [1] proposed an equivalent
circuit to approximately model the glottal flow, accounting
for the time-varying opening and closing approximately of
the vocal folds, and accounting for the nonlinear relation
between the pressure drop across the glottis and the glottal
flow as found empirically by van den Berg for a static
glottis [33]. Time variation in this equivalent circuit enters
through the time-varying area function of the glottis which is
assumed known. This model is described by a set of equations
which were simultaneously solved with a numerical iterative
algorithm, yielding the glottal flow, assuming a constant
vocal tract cavity. The resulting numerical solution gives an
asymmetric (skewed) glottal flow with an overriding ripple
component.

The numerical simulation of Ananthapadmanabha and Fant
also revealed that formants above the first vocal tract formant
do not significantly affect glottal flow. Ananthapadmanabha
and Fant, therefore, proposed an approximate equivalent cir-
cuit with a single resonance. This simplified nonlinear, time-
varying circuit was approximated by a Norton equivalent
circuit with an ideal source given by the coarse glottal flow,
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and an equivalent glottal impedance that is time-varying and
controlled by the changing glottal area function. This resulting
circuit was thus represented by a linear differential equation
with time-varying coefficients. To obtain a frequency-domain
representation of the source/vocal tract interaction, and thus
a different perspective on the ripple component, the glottal
impedance was assumed stationary at each time instant. A
“pseudo-Laplace transform,” representing the time-varying
transfer function from the volume-velocity source (coarse
glottal flow), with Laplace transform , to output speech
pressure, with Laplace transform , can then be written
as

(1)

where the time-varying formant frequency and bandwidth

(2)

are given in terms of the first formant frequency and
bandwidth , where the function is proportional to
the time-varying area function, and where the constants
and are a function of the amplitude and frequency of the
first formant. We see that over a glottal cycle, the bandwidth
change follows that of the area function, while the formant
frequency change, being proportional to the derivative of the
area function, rises at the onset of the glottal open phase and
falls near the termination of this phase [1], [17], [24], thus
showing that time-varying and nonlinear source/vocal tract
coupling corresponds to a modulation of the first formant.

Alternatively, to obtain an approximate time-domain rep-
resentation of the effect of the source/vocal tract interaction,
Ananthapadmanabha and Fant held the vocal tract filter fixed
and mapped all source/vocal tract interaction to the source.
Using (1), an approximate expression for the glottal flow
derivative can be derived as [1], [24]

(3)

where the second term contains the ripple component of the
fine structure. The ripple has a frequency close to the first
formant of the vocal tract, and the function represents an
amplitude modulation controlled by the glottal area function.
These relations reveal an approximate duality of ripple in the
time-domain and formant modulation in the frequency domain
[1], [8], [24].

C. Feature Model

We now propose feature models for the coarse and fine
structure of the glottal flow derivative.

1) Coarse Structure:The features we wish to capture
through the coarse structure include the glottal open, closed,
and return phases, the speeds of opening and closing, and
the relationship between the glottal pulse and the peak glottal
flow. To model the coarse component, , of the glottal
flow derivative, we use the LF model [14], expressed over a

Fig. 4. LF Model for the glottal flow derivative waveform.

TABLE I
DESCRIPTION OF THESEVEN PARAMETERS OF THE LF

MODEL FOR THE GLOTTAL FLOW DERIVATIVE WAVEFORM

single glottal cycle by (Fig. 4)

(4)

where , and where the time
origin, , is the start time of the closed phase (also the end
of the return phase of the previous glottal cycle which we later
also denote by ), is the start time of the open phase
(also the end of the closed phase), is the start time of the
return phase (also the end of the open phase and time of the
glottal pulse), and is the end time of the return phase (also
the beginning of the closed phase of the next glottal cycle).
Three of the parameters, , , and , describe the shape
of the glottal flow during the open phase. The two parameters

and describe the shape of the return phase. Because at
time , can be calculated from using the relation

, we reduce the number of
waveshape parameters to four, i.e.,, , , and . Observe
that we estimate , not or ; is the absolute value
of the negative peak for which an initial estimate is easily
obtained. The resulting four waveshape parameters do not
include the glottal timing parameters; therefore, the times,

, and must also be made variables. We thus have a seven-
parameter model to describe the glottal flow, with the four
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Fig. 5. Time intervals used for fine structure features: (a) glottal flow
derivative and (b) frequency modulation associated with glottal ripple.

standard LF model parameters, and three parameters indicating
the timing of the flow components. A descriptive summary of
the seven parameters of the LF model is given in Table I.

2) Fine Structure: In determining fine-structure features,
we define five time intervals within a glottal cycle, as illus-
trated in Fig. 5(a), over which we make energy measurements
on fine structure. The first three intervals correspond to timing
within the LF model of coarse structure, while the last two
intervals come from timing measurements made on formant
modulation to be described in Section III. The time intervals
are given as follows.

1) is the closed phase for the LF model;
2) is the open phase for the LF model;
3) is the return phase for the LF model;
4) is the closed phase for formant modulation;
5) is the open phase for formant modulation;

over which we make the energy measures
. We have given

two different pairs of open- and closed-phase estimates, one
according to the LF model, and a second according to formant
modulation. The latter is motivated by the observation that
when the vocal folds are not fully shut during the closed
phase, ripple can begin prior to the end of the closed phase
as determined by the LF model. Therefore, aspiration or
ripple may occur anywhere over the glottal cycle. The
open- and closed-phase estimates using formant frequency
modulation allow additional temporal resolution in the energy
characterization of fine structure.

In addition to the energy measures over the five time
intervals, a frequency-domain measure of ripple is used. Ob-
servation of calculated formant motion over the open phase

led us to model the modulation of the first
formant frequency through the use of a parabola of the form

over this interval [Fig. 5(b)].
The parameter consists of two terms, i.e., .
The term is the average formant value during the closed
phase and thus reflects primarily the vocal tract. is the

offset of the average formant value during the open phase
from the average formant value during the closed phase. The
change in the formant value over the open phaseis given
by the two remaining parametersand . The three parameters

, , and reflect primarily source-filter interaction.

III. ESTIMATION OF THE GLOTTAL

FLOW DERIVATIVE WAVEFORM

The glottal flow derivative estimate is obtained by inverse
filtering the speech waveform with a vocal tract filter de-
rived over a glottal closed-phase estimate, according to a
“stationary” region of formant modulation. We first find an
approximate location of the glottal pulse using an initial pass
at inverse-filtering the speech waveform. This pulse location
is then used to define a region over which formant modulation
is computed via the covariance method of linear prediction.
Finally, statistics are derived on the formant modulation func-
tion for determining a closed-phase estimate. We begin with a
review of the covariance method of linear prediction.

A. Covariance Method

According to the linear filtering view of speech production,
in discrete time, the speech waveform is the output of
the vocal tract filter with impulse response , excited by
the glottal flow derivative which includes lip
radiation.4 For an all-pole response with transfer function

, we have

(5)

To estimate the filter coefficients from the speech signal
, the covariance method of linear prediction is used.

Covariance-based linear prediction is preferred over the au-
tocorrelation method because, when the waveform follows
the assumed all-pole model, the analysis window over which
the prediction error is defined results in the correct solu-
tion for any window length greater than the prediction
order [26]. The covariance method solution is described by

, where the th term of matrix is given
by , the
vector , and the solution vector

. This matrix problem can be solved
efficiently by using Cholesky decomposition [26].

B. Determination of a Closed Phase Region
Through Formant Modulation

During the closed phase, the absence of source-filter inter-
action will result in no or little formant modulation, while
during the open phase the changing glottal area will result
in nonstationary formants. The glottal closed phase is identi-
fied as the time region during which formant modulation is
stationary. The first step in determining the closed phase is
to identify the approximate timing of glottal pulses through
peak picking of a whitened speech waveform. We whiten

4In discrete time, the derivative operation by the lip radiation can be
approximated by a first backward difference,�[n]� �[n� 1] [26].
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the speech waveform by inverse filtering with the covariance
method solution using a one pitch-period frame update and
a two pitch-period analysis window during voicing. An all-
pole model of order 14 was used in the covariance method,
and the glottal poles are not removed in this first pass. The
pitch and voicing estimates are generated with a sinusoidal-
based pitch estimator [22]. The goal of estimating glottal
pulses is to find a time that occurs during the open phase
of the glottis. This information provides a window in which
the glottal closure will occur shortly after the identified pulse,
and the glottal opening will occur somewhere during the
window, depending on the open quotient. As the majority of
the open phase occurs before the glottal pulse, and multiple
pulses sometime occur in the presence of zeros [2], [6], this
estimate of the timing of the glottal pulse is somewhat biased
to the left by selecting previous peaks of similar amplitude
as the initial output of the peak picker as the glottal pulse
estimate. This estimate of the glottal pulse will be refined
during estimation of the coarse structure in Section IV. A
glottal closed-phase estimate is then obtained using an estimate
of the formant modulation, calculated between successive
glottal pulses. Formant modulation can be exploited for this
purpose because a formant change occurs in going from the
glottal closed phase to open phase in which source/vocal tract
interaction occurs.5 Therefore, by tracking the first formant6

within a glottal cycle, an approximate onset time of formant
motion can be identified providing an estimate of the start
time of the glottal open phase.

To measure the formant frequencies within a glottal cycle,
a sliding covariance-based linear prediction analysis with a
one-sample shift is used. The size of the rectangular analysis
window is constrained to be slightly larger than the prediction
order, while still being several times smaller than the pitch
period. In particular, the length in discrete time of the sliding
covariance analysis window, denoted by , is chosen for
each frame to be , except constrained by upper
and lower bounds of , where is the
length of the pitch period as calculated by the time between
the glottal pulses identified above, andis the order of the
linear prediction analysis; as in the first pass, an all-pole model
of order is used. Observe that the pitch period
which is the sample-time counterpart to the continuous time
variable . Window lengths less than cause occasional
failure of the Cholesky decomposition, while using more than

samples will not make the estimate significantly more
accurate but will decrease the time resolution. The first analysis
window begins immediately after the glottal pulse of the
previous glottal cycle, while the last analysis window ends at
the sample before the glottal pulse of the current glottal cycle.

5The formant frequencies and bandwidths are expected to remain constant
during the closed phase but will shift during the open phase. For voices
in which the vocal folds never completely close, such as breathy voices, a
similar formant modulation will occur. For such voices, during the nominally
closed phase, the glottis should remain approximately constant, resulting in a
fixed change on formant frequencies. When the vocal folds begin to open, the
formants will move from their relatively stationary values during the closed
phase.

6The first formant was found to be more stationary than higher formants
during the closed phase and exhibits a more observable change at the start of
the open phase [24].

There are thus a total of windows over each glottal
cycle; a vocal tract estimate is found for each window by
the sliding covariance analysis. Formant tracking is performed
within glottal cycles using the formants calculated from the
vocal tract estimates, and provides formant trajectories through
glottal closed and open phases.7

While a mathematical framework for calculating the ex-
pected modulation of the formant frequencies was developed
in Section II-B, we have observed a variety of formant mo-
tions. Due to the possibility that the vocal folds may never
completely close, the degree of formant modulation during
the closed phase will vary from speaker to speaker. This
varying amount of formant modulation during the closed phase
makes it difficult to set a threshold on the degree of formant
modulation that indicates the onset of the glottal open phase.
We have therefore chosen to take a statistical approach to
identifying the glottal closed phase. The approach involves
first finding a small region of sequential formant samples
in which the formant modulation is minimal. To do so, we
define aformant changefunction as the sum of the absolute
difference between successive formant estimates over a five-
sample interval, i.e.,

(6)

The argument , the first sample of the five-sample region, is
varied to minimize ; represents the formant values
calculated for each sample in the glottal cycle, andis the
number of samples in the glottal cycle. The size of five samples
is selected to ensure meaningful statistics for determining the
initial “stationary” formant region [24].

Once an initial stationary region is identified, the mean and
standard deviation of the first formant within this small region
are calculated, and the region is grown based on the following
procedure. To extend the region to the right (Fig. 6), if the
next sample is less than two standard deviations from the
mean,8 it is included in the stationary region and the mean
and standard deviation are recalculated before continuing on
to test the next sample. Motivation for the use of the standard
deviation of formant motion in the closed phase is to obtain a
statistic that indicates the onset of glottal opening. A slightly
different algorithm is used to extend the region to the left. The
final mean and standard deviation from extending the stable
region to the right are kept constant, and the region is grown
to the left until a sample is more than two of these standard
deviations from this mean. The closed phase is considered to
include every speech sample which was used to calculate the
stable formant values.9

7The first four formants are tracked by their frequency using a Viterbi
search. The search space is the four lowest poles with bandwidth less than
500 Hz calculated by the sliding covariance analysis. The cost function is the
variance of the formant track including the proposed pole to be added to the
end of the track [24].

8Under a Gaussian assumption, a value of more than two standard devia-
tions from the mean will occur with a probability of less than 4%.

9There are two primary reasons for the different techniques used to identify
the glottal opening and closure. First, after the region has been extended to the
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Fig. 6. Glottal closed phase is estimated by growing a small initial region in
which the first formant frequency is stationary. The procedure for extending
the region to the right is illustrated in this flow chart. A new sample is included
if its value is greater than two standard deviations from the mean of the
formant in the region.

The result of this algorithm is a region, denoted by ,
over which the formant modulation is considered stationary,
and with which a vocal tract estimate is obtained for inverse
filtering. Identifying a small initial stationary region, from
which a larger stationary region is grown, allows the algorithm
to adapt to the variability of the formant. For example, if some
ripple is present at the beginning of the glottal cycle due to
source/vocal tract interaction, the initial standard deviation will
reflect this variability. As the vocal folds open beyond their
position during the closed phase, source/vocal tract interaction
increases the degree of ripple, and the standard deviation limits
will be exceeded, indicating the onset of the open phase.

Recall that in Section II-C, we defined for formant mod-
ulation closed- and open-phase intervals and

, which allow, over a glottal cycle, additional
energy measures, beyond that of the LF model, for representing
fine structure. For the two intervals, the time equals the end
time of the stationary formant region , i.e., ,
where is assumed discretized in time. For the open-phase
interval , however, we set the starting time to zero (the
beginning of the glottal cycle) because the start time of
the stationary formant region falls within the previous glottal
cycle.10

right to identify the glottal opening, the statistics have been estimated from
sufficient data and extending the window to the left will not improve those
estimates. More importantly, we have found that the glottal opening tends
to result in sudden formant shifts, while gradual formant shifts are found
when extending the region to the left toward glottal closure. If we attempted
to update the statistics during a gradual change in the formant estimate, the
statistics would likely incorporate this change, and glottal closure would not
be identified.

10The stationary region includes every speech sample used in its calculation,
so that its starting timeN1 is given by the starting time of the window, of
lengthNw, required in computing the first formant in the stationary region.

TABLE II
AVERAGE SNR’S FORSEVERAL POTENTIAL MEASURES USED

IN IDENTIFYING THE GLOTTAL OPENING. THE CLOSED PHASE

WAS IDENTIFIED USING THE FIRST FORMANT FREQUENCY

TABLE III
AVERAGE SNR’S FOR SEVERAL POTENTIAL MEASURES USED

IN IDENTIFYING THE GLOTTAL OPENING. THE CLOSED PHASE

WAS IDENTIFIED USING THE SECOND FORMANT FREQUENCY

Observe that according to the theory presented in Section II,
frequencies and bandwidths of all formants will exhibit mod-
ulation across the glottal open and closed phases so that any
of these formant parameters may be used in determining the
closed-phase region. In general, both the formant frequencies
and bandwidths tend to increase at the onset of the open phase,
while they remain relatively constant during the closed phase.
Krishnamurthy [20], for example, has indicated thataverage
formant bandwidth may exhibit a greater difference in the
glottal open phase than average formant frequency. We have
found, however, that theinstantaneousfirst formant is most
stable during the closed phase and exhibits the most observable
change at the start of the open phase. This desirable property
of the first formant, in light of the other formant and bandwidth
features, is due perhaps to the relatively large energy of the
first formant and because linear predictive analysis has greater
difficulty in estimating formant bandwidths than formant fre-
quencies. In addition, because the formant frequencies vary as
the derivative of the glottal area, and bandwidths vary linearly
with glottal area, the motion of the formant frequency will
be quicker. A more quantitative justification for use of the
first formant is illustrated in Tables II and III that show a
measure of signal-to-noise ratio (SNR) for various statistics
which could be used to identify the closed phase. The SNR
is calculated as the ratio of the average variance at the start
of the open phase, over a window five samples in duration,
to the average variance over the closed phase for a large
subset of TIMIT. We can think of this ratio as an SNR in
the conventional sense because it compares the energy of
the aspiration noise and ripple during the closed phase with
the energy in the onset of the glottal flow derivative. The
closed phase was determined for Table II using the frequency
of the first formant as the measure of formant modulation,
while for Table III the frequency of the second formant was
used. The SNR for the F1 frequency in the first table is higher
than the SNR for the F2 frequency in the second table. This
indicates that the change in F1 frequency at the boundary of
the identified closed phase is more noticeable than the change
in F2 frequency at the boundary.
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C. High Pitch Speakers: Using Two Analysis Windows

For high pitch speakers, it is possible that the above tech-
nique will require too large a sliding analysis window in
attempting to determine a closed phase. In particular, the
minimum length of the sliding covariance window is 17
samples (the lower bound of from the previous
section), while the minimum size of the initial stationary
region is five sequential sliding covariance windows, which
will cover a total of 21 samples. At a 10 kHz sampling rate,
this corresponds to a minimum closed-phase duration of 2.1
ms. A speaker with a fundamental frequency of 200 Hz and
an open phase 70% of a pitch period will have a closed phase
of only 1.5 ms 0.30/200 Hz. Many female speakers will
accordingly have closed phases with duration less than 2.1 ms.
To address this problem, we use a covariance analysis that is
based on two windows across two successive pitch periods.11

Assuming that the rate of change of the vocal tract is
dependent on time and not on the number of pitch periods,
the vocal tract variation over two frames for a 200 Hz voice
is approximately the same as one frame of a 100 Hz voice,
since both last for 10 ms. By splitting the sliding covariance
analysis window into two parts, each one need be slightly
larger than half the desired linear prediction order, which
results in a minimum identifiable closed-phase duration of
1.3 ms, five sequential windows each half the size of the
standard minimum window length of 17 samples. Because this
technique is dependent on stationarity of both the vocal tract
and the source across multiple pitch periods, it is only used
when the pitch period is small (chosen empirically at 6.5 ms).

As an extension to the covariance method of linear predic-
tion of Section III-A, two windows of speech data can be used
to calculate the matrix and the vector ,

(7)

where

start of the first region
length of the first region
start of the second region

length of the second region.

The only change required to convert the standard covariance
linear prediction procedure into a two-window procedure is
this change in the calculation of the matrix. The prop-
erties of the matrix still hold as long as the windows
are nonoverlapping, allowing efficient solution by Cholesky
decomposition.

D. Examples

The example in Fig. 7 illustrates the waveforms obtained
in deriving a glottal flow derivative estimate. The whitened
speech waveform, obtained by the initial pass at inverse

11The use of multiple pitch periods in analysis was independently proposed
by Yegnanarayana and Veldhuis in a recent publication [35].

Fig. 7. Example of estimation of glottal flow derivative: (a) original speech;
(b) pitch synchronous whitened speech, used to identify the closing of the
glottis by searching for the largest pulse; (c) estimated glottal flow derivative
from the closed phase analysis.

Fig. 8. Several examples of estimated glottal flow derivatives. The speech
signals are above the corresponding glottal flow derivative waveforms. The
top panel represents Speaker A and the bottom panel represents Speaker B.
The two examples in the first column are from the vowel in the word “had,”
while the examples in the second column come from various vowels.

filtering with a vocal tract filter derived from an analysis
window over multiple pitch periods, consists of a series of
sharp negative-going peaks at roughly the location of glottal
pulses. The flow derivative estimate, on the other hand,
obtained from inverse filtering with a vocal tract estimate
derived from the covariance method over the stationary region
of formant modulation, shows a clear view of the closed,
open, and return phases as well as the glottal pulse and ripple
component overriding the coarse glottal flow derivative.

Fig. 8 shows several other examples of glottal flow deriva-
tive estimates that result from inverse filtering with a vocal
tract estimate derived from the covariance method over the
stationary region of formant modulation. Each panel shows
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two examples for a particular speaker. In each example, the
speech waveform appears above the glottal flow derivative
waveform. The examples in the first column come from the
vowel in the word “had” while those in the second column
come from two different vowels. Small pulses along the time
axis of the glottal flow derivative waveforms show boundaries
of the stationary formant modulation region , while
the large pulses represent the estimate of the time of the glottal
pulse derived from peak-picking the initial inverse-filtered
waveform. The examples demonstrate speaker dependence of
the flow, as well as variety in the flow for each speaker,
characteristics that will be further described in the following
two sections on coarse and fine structure estimation.

A consequence of our inverse filtering is an approximate
“separation” of the effect of the vocal tract filter out of the
speech waveform. Indeed, the inverse-filtered speech is essen-
tially unintelligible, perceived largely as a “buzz.” Although
we do not currently have a quantitative way of measuring this
separation, a frequency-domain view confirms that negligible
vocal tract formant energy is present; the inverse-filtered
spectrum typically consists of a smooth lowpass function with
an occasional weak peak in the vicinity of the first formant,
due to the presence of a ripple component, consistent with
the Ananthapadmanabha and Fant [1] theory of nonlinear
source/vocal tract interaction of Section II-B.

IV. ESTIMATING COARSE STRUCTURE

With the source waveform estimate, we now estimate pa-
rameters of the coarse model component of the glottal flow
derivative.

A. Formulation of the Estimation Problem

The seven parameters of the LF model of Section II-C to be
estimated for each glottal cycle were summarized in Table I. A
least-squared error minimization problem can be formulated to
fit the LF model of (4) to the glottal flow derivative waveform.
Denoting the glottal flow derivative estimate by , the error
criterion is given as

(8)

where , , and are sample-time12 counterparts to the
continuous-time variables , , and of (4), is a
discrete-time frequency, andis a vector of the seven model
parameters. The error is a nonlinear function of the
seven model parameters with no closed-form solution, and

12For notational convenience, the sampling time interval is normalized to
unity.

thus the problem is solved iteratively using a nonlinear least-
squares algorithm with calculation of first- and second-order
gradients.13

Standard methods for solving nonlinear least-squares prob-
lems, such as the Gauss–Newton method, are not adequate
when the minimum error is large [11]. This is often
the case in fitting the LF model to the glottal flow derivative
waveform because ripple and aspiration, not represented by
the LF model, manifest themselves in . An algorithm
more amenable to large optimization error is an adaptive
nonlinear least-squares regression technique, referred to as the
NL2SOL algorithm.14 This algorithm also has the advantage
of allowing bounds to enable parameters to be limited to
physically reasonable values.

B. NL2SOL Algorithm

In the NL2SOL algorithm, a residue is defined as
, where is a vector of the parameters to be solved,

is the data to be fitted, and is the value of a function
at point with parameters . The summed squared residue to
be minimized is expressed as

(9)

with . The specific value of
that minimizes (9) is written as which will be considered

a local minimum when a convergence criteria is reached.
To minimize , we iteratively change the parameter

vector , the result of which we denote by . The iteration
is based on the Taylor series expansion of around the
point given by

(10)

with the first-order gradient of given by
where the th element of the Jacobian matrix

of the vector is given by , i.e.,
the element of is the partial derivative of
at the point with respect to theth element of the parameter
vector . The second-order gradient of , referred to as the
Hessian, is .

With the Taylor series approximated by a finite number of
terms, the minimum of is determined iteratively through
the following procedure.

1) Start with an initial guess for , .
2) Calculate the Taylor series expansion of around the

point , where is the current iteration number.

13An iterative approach was previously applied to estimation of LF model
parameters [7]; the method does not compute LF parameter gradients, how-
ever, manually adjusting parameters on each iteration to minimize error.
The approach also requires that the closed-phase estimate be determined by
electroglottographic (ECG) analysis.

14The NL2SOL algorithm is the Association for Computing Machinery
(ACM) algorithm 573 [11], [12]. The acronym derives from its being a
NonLinear secant approximation To the Second-Order part of the Least
squares Hessian.
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3) Choose as the parameter vector which minimizes
the Taylor series. The Taylor series expansion, being a
linear function of the powers of , can be minimized
explicitly.

4) If the difference between and is small, or the
value of is small at , consider to equal

. If not, return to step 2 to refine the estimate of
.

Using the first-order term of the Taylor series makes the
assumption that can be adequately modeled by a linear
function, giving the Newton method. Including the second-
order term makes the assumption that can be modeled
by a quadratic; in this case, using only the first compo-
nent of the Hessian of , i.e., , gives the
Gauss–Newton method. The NL2SOL algorithm uses two
methods to minimize , the Gauss–Newton method and the
Gauss–Newton method with the complete Hessian of .
The algorithm begins with the Gauss–Newton method. On
succeeding iterations, one of the two methods is selected;
if the previous iteration fails to achieve a reduction in the
summed squared residual (9), then the algorithm switches to
the alternate method. This approach is more effective with
large optimization error than either method alone [11].

In applying the NL2SOL algorithm to the glottal flow
derivative waveform, the parameter vectorconsists of the
seven LF-model parameters, and the vectoris the difference
between the model and the waveform, with one element
of for each time sample. The implementation of the
algorithm takes as input the vector and requires the first-
and second-order gradients of and thus calculation of the
Jacobian and the Hessian. Calculation of the Jacobian
requires evaluation of the first-order partial derivatives of the
LF model equations, which can be found in closed form,15 and
also provides the first component of the Hessian, .
Although in theory the second component of the Hessian,

, can also be found in closed form, the
large number and complexity of the required second-order par-
tial derivatives make this solution impractical; consequently,
the second term of the Hessian was approximated using finite
differences [24].

In order to ensure physically reasonable parameter values,
we set bounds on the parameters. For example, if the value

is less than , the model will have no negative flow
derivative during the open phase which is inconsistent with a
negative going glottal pulse. Another example of an unrealistic
condition is the parameter taking on a positive value or a
value near zero. Therefore, and zero are the lower bounds
for estimates of the model parametersand , respectively.
Such constraints are allowed internally16 within the iterative

15Algorithm refinements were necessary in identifying the timesN0, Ne,
and Nc, due to discontinuities of the partial derivatives at these points
because of the piecewise nature of the LF model. If the partial derivatives
are discontinuous,f(~x) will not be adequately modeled by the first two terms
of the Taylor series expansion. The result of this inadequate modeling is that
the NL2SOL algorithm is slower to converge, and is more likely to find a
local minimum that is not the global minimum.

16By imposing bounds internally, the NL2SOL algorithm can avoid a
diverging solution, in contrast to simply applying bounds after a solution
is found.

Fig. 9. Example of a glottal flow derivative estimate and its coarse and fine
structure: (a) estimated glottal flow derivative (solid) and overlaid LF model,
i.e., the coarse structure (dashed); (b) fine structure obtained by subtracting
the coarse structure from the glottal flow derivative estimate. Aspiration and
ripple are seen in different intervals of the glottal cycle.

NL2SOL algorithm [11]. When a resulting model parameter
estimate is too close to its bound, in particular a constraint
of 1% of its bound obtained experimentally, we consider data
for that frame to be unreliable. In Section VI, we refer to
such parameters assingularities; frames with singularities are
discarded and the model parameter estimates are not used in
speaker identification.

C. Examples

Fig. 9(a) shows an example of the coarse-structure estimate
(dashed) superimposed on the glottal flow derivative estimate
(solid), along with the timing estimates , , and of the
LF model. The interval contains both aspiration
and ripple, while contains significant flow, after
which we see the occurrence of a sharp glottal pulse and a
gradual return phase . The residual [Fig. 9(b)],
formed by subtracting the coarse structure from the glottal
flow derivative estimate, forms the fine-structure estimate to
be used in the following section. The starting time of the open
phase, , according to formant modulation, is also shown.17

In this case, the interval consists of primarily
aspiration, while the interval appears to exhibit
ripple, but as yet no significant glottal flow.

Fig. 10 shows the LF model of the coarse structure ex-
tracted from the glottal flow derivative estimates in Fig. 8
of Section III-D. In each example, the estimated glottal flow
derivative appears above its modeled coarse structure. In
comparing the LF model timing characteristics of the flow
derivative estimates of the two speakers, the first speaker typi-
cally exhibits a longer closed phase and a shorter return phase,
relative to a glottal cycle. With respect to waveshape, the
second speaker shows a more gradual glottal flow derivative

17This example also illustrates the improved temporal resolution that can
be gained by the timing parameterTf in representing fine structure.
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Fig. 10. Several examples of the LF model for the coarse structure in the
estimated glottal flow derivative of Fig. 8. The glottal flow derivatives are
shown above the corresponding model waveforms. The top panel represents
Speaker A and the bottom panel represents Speaker B. The two examples in
the first column are from the vowel in the word “had,” while the examples
in the second column come from various vowels.

in entering the open phase, consistent with a shorter closed
phase, and more often has a glottal pulse of smaller amplitude,
relative to the peak flow derivative.

V. ESTIMATING FINE STRUCTURE

In the previous section, we estimated the coarse structure of
the glottal flow derivative waveform. Subtracting the estimated
coarse structure from the glottal flow derivative waveform
yields the fine structure with contributions of aspiration due
to turbulence at the glottis and ripple due to source/vocal tract
interaction. In Section II-C, we introduced a feature set for
representing the fine structure, consisting of its energy over
various time intervals, and a formant modulation function as a
frequency-domain representation of ripple. This section further
describes estimation of these features and illustrates them with
examples.

A. Time-Domain Fine Structure

Time-domain energy measures on the fine-structure
source waveform were defined in Section II-C. Estimates of
these energy measures are calculated over five time intervals
for each glottal cycle, determined by timing measures derived
from the coarse-structure model and a stationary region of
formant modulation, and normalized by the total energy in the
estimated glottal flow derivative waveform. The total energy
is given by where is the glottal
flow derivative estimate, and and are the termination
time of the return phases of the previous and current glottal

cycle, respectively. As an example of a normalized energy
measure, the energy of the fine structure during the open phase
interval , as determined by the LF model of the
coarse structure, is calculated as

(11)

where is the LF model estimate of the coarse structure.
The normalized energy of the fine structure during the other
four intervals is similarly calculated.

B. Modeling Ripple Through Formant Modulation

As described at the end of Section II-C, the modulation of
the first formant frequency is modeled with a parabola. Param-
eters of the parabola,, , and , are obtained by minimization
of the summed squared error between the parabola and the
measurement given by

(12)

which is taken over the open-phase interval,18 ,
as determined by the formant modulation, is the mea-
sured frequency of the first formant, and is the sampled-
time version of . Recall in Section II-C that the parameter

is considered to contain the average of , , over
the closed-phase interval reflecting primarily
the vocal tract. The value is thus subtracted from the
estimate of to reduce vocal tract influence.

The formant estimates from the sliding covariance analysis
can yield occasional outliers during the open phase. In order
to increase the robustness of the least-squares regression, we
replace the summation in (12) by a median, giving aleast
median-of-squaresestimator [29]

med (13)

where med indicates the median value of the error
samples from to . Half of the samples of

give a squared error less than. This solution can
be shown to be more robust in the presence of outliers, but
requires a larger number of samples to accurately fit the model
to the data than traditional least-squares regression [29]. To
increase the accuracy of the fit with a limited amount of data,
the algorithm is further refined with a weighted least-median
squares version of (13) given by

med (14)

where are weights designed to lessen the influence of
outlier points. The weights are determined using an estimate
of the error of the least-median-of-squares fit

med (15)
18Occasionally, a single noisy estimate of the first formant causes an early

identification of the glottal open phase. To avoid modeling a region which
includes formant values that belong in the closed phase, the start of the open
phase is identified as the first of five sequential samples which are outside the
standard deviation bound set for identifying the open phase.
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derived from (13). In discarding outliers, the weights are
chosen as

if

if
(16)

where the threshold 2.5 is selected to avoid loss of samples
that are not outliers [29].

C. Examples

We earlier showed in Fig. 9(b) an example of fine structure
obtained by subtracting the coarse-structure estimate (dashed)
from the glottal flow derivative estimate (solid) of Fig. 9(a).
In this case, the closed phase , as determined
by formant modulation, consists of primarily aspiration, while
the corresponding open phase is dominated by
ripple. The closed phase , as determined by the LF
model, comprises an interval of aspiration followed by ripple,
the ripple continuing into the open phase .

In the example of Fig. 11, we use the glottal flow derivative
estimates of Fig. 10 of Section IV to further illustrate fine
structure. In each example, the glottal flow derivative estimate
is shown above the estimated fine structure, obtained by
subtracting the coarse structure of Fig. 10 from the glottal flow
derivative estimate. As before, each panel shows two examples
for a particular speaker. The fine structure is the basis for our
five energy measures, and more clearly shows the ripple and
aspiration components of the flow derivative than does the flow
derivative estimate. The fine-structure waveforms are scaled in
amplitude to make the features more visible. In addition, the
open- and closed-phase estimates, according to the stationary
region of frequency modulation, are illustrated for one glottal
cycle. In comparing the fine structure in the two speakers, we
look for ripple, aspiration, and energy fluctuation differences
within a glottal cycle.19 In this example, the first speaker
shows more prominent ripple within the open phase, while
the second speaker generally shows stronger aspiration over a
glottal cycle. In addition, the fine structure for the first speaker
tends to have less energy in the closed-phase than in the open-
phase regions, while the fine structure of the second speaker
contains more steady energy across the two phases.

VI. SPEAKER IDENTIFICATION EXPERIMENTS

Previous sections described estimation of the glottal flow
derivative from speech and modeling the coarse and fine struc-
ture of this source waveform. We now discuss the application
of the model parameters to speaker identification.

A. SID Using Gaussian Mixtures

For determining the speaker identifiability of our source
features, we use a Gaussian mixture model (GMM) speaker
identification (SID) system. Each Gaussian is assumed charac-
terized by a diagonal covariance matrix [27], [28]. This choice
is based on the empirical evidence that diagonal matrices
outperform full matrices and the fact that the probability

19Our energy measurements, however, do not distinguish between ripple
and aspiration within a time interval.

Fig. 11. Several examples of fine structure obtained from subtracting coarse
structure from the estimated glottal flow derivative of Fig. 10. The glottal
flow derivatives are shown above the fine structure waveforms. The top
panel represents Speaker A and the bottom panel represents Speaker B. The
open phase and closed phase, according to the stationary region of formant
modulation, are indicated.

density modeling of an th-order full covariance mixture can
equally well be achieved using a larger order, diagonal covari-
ance mixture. Maximum likelihood speaker model parameters
are estimated using the iterative expectation-maximization
(EM) algorithm20 [10]. Use of the GMM classifier is justified
by its being an established, general classifier which acts
as a hybird between standard parametric classifiers, which
assume predetermined distributions, and nonparametric clas-
sifiers which typically are computationally expensive, such as

-nearest neighbors [13], [15]. It is well known that if the
number of component densities in the mixture model is not
limited, we can approximate virtually any “smooth” density.
We have chosen 16 Gaussians in our mixture model based on
experiments showing that increasing the number of Gaussians
beyond 16 did not improve performance of the classifier with
LF/energy features. Moreover, use of the GMM classifier is
also motivated by observation of distributions of projections
of individual LF feature and fine-structure energy elements
(Section VI-B), indicating that a smooth distribution model
such as a GMM is appropriate. Certainly, there may exist a
more efficient density representation of our new features than
that of a Gaussian mixture model for approximating the feature
distribution. Our aim in this paper, however, is not to optimize
the classifier, but rather to use an established classifier which
is general enough for new features to show that the glottal
features convey speaker identity information.

20Ten iterations are sufficient for parameter convergence and a variance
floor of 0.0001 was imposed.
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In the use of the Gaussian mixture model, certain “unseen”
or abnormal observations, that occur infrequently, are dis-
carded in the estimation of the model mixtures. This discarding
of such outliers is typically invoked in GMM-based recog-
nition as, for example, with mel-cepstral representations of
the speech spectrum. Outliers can cause problems in Gaussian
mixture modeling because they will tend to “grab” Gaussians,
reducing the number of Gaussians available for modeling
meaningful feature values. The outlier detection in our GMM
system is accomplished by detecting those input observation
vectors which have an extremely low probability of being
generated from the GMM currently being used [27], [28].
These detected outliers are then discarded during training
and testing. While perhaps not mathematically optimal, it is
an engineering solution for outlier problems. For our source
feature vectors, outliers can occur with a poor estimation of
the glottal flow derivative observed to result from error in the
pitch or voicing estimates or in the initial glottal pulse time
from peak-picking the whitened speech waveform. Outliers
can also occur when the glottal flow derivative estimate is
accurate, but does not follow the LF model waveshape, an
example of which will be given in Fig. 14.

B. Using Source Features for SID

Certain parameters used for SID are made a function of
those used in the coarse model. For example, the parameter

, indicating the first sample of the open phase, as determined
by the LF model, will increase without bound as we move
further into an utterance. Therefore, rather than using the
absolute times , , and , we calculate the lengths of
the closed, open, and return phases normalized by the length
of the glottal cycle. The transformed parameters are given by

(17)

where is the time of the glottal pulse and is the
time of the end of the return phase, both for the previous glottal
cycle. This normalization also provides a means for removing
pitch as a feature in SID. The waveshape parameters, ,

, and are included as calculated during modeling, giving
a total of seven coarse-structure parameters. The complete
source feature vector is computed on voiced frames only for
each pitch period. In addition, we saw in Section IV-B that
the source features may reach their bounds set within the
NL2SOL algorithm. As do outliers, these “singularities” can
occur with a poor estimation of the glottal flow derivative or
with a deviation in the flow from the typical LF model. Frames
with singularities are discarded. While discarding data might
generally be undesirable, we have found that it increases the
accuracy of the speaker identification system by approximately
15%. Only about one third of the speech frames are used
for training and testing, some being discarded by virtue of

Fig. 12. Comparison of the histograms of three glottal flow features, shape
parameter�, open quotient OQ, and closed-phase energyE

1 determined from
the LF model, for two different male TIMIT speakers. The experiment used
about 20 s of data (all the TIMIT training data) for each speaker and feature
values were divided across 40 histogram bins.

their being unvoiced. A subset of the voiced frames are then
discarded due to containing singularities or outliers.21

Before describing the speaker identification experiments, to
obtain further insight into the nature of the glottal parameters
and the importance of removing frames with singularities, we
give results of an initial statistical analysis. Fig. 12 shows a
comparison of the histograms of three glottal flow features,
the parameter , open quotient OQ, and closed-phase energy

determined from the LF model, for two different male
TIMIT speakers. These parameters represent our three classes
of features: glottal flow derivative shape (), timing (OQ),
and fine-structure energy ( ). The experiment used about 20
s of data (all of the TIMIT training data) for each speaker,
and feature values were divided across 40 histogram bins.
In this experiment, the above frame discard procedure was
invoked, thus including only those frames to be used in
our speaker identification experiments, i.e., unvoiced frames
and frames with singularities were discarded. We see in
Fig. 12 generally “smooth” distributions with specific energy
concentrations, indicating their amenity to a GMM model.22

We also see in Fig. 12 that there is a separation of distributions
of glottal features across speaker, particularly with the shape
parameter and the open quotient parameter OQ. In a
second experiment, we illustrate the importance of removing
frames with singularities. Fig. 13 shows a comparison of the
histograms of the two glottal flow features, shape parameter

21The distinction between a singularity, i.e., a model parameter estimate
reaching its bound, and an outlier, i.e., a model parameter estimate with
very low probability, were given in Sections IV-B and VI-A, respectively.
In addition, in Section V-B the term outlier is used in a different sense in
reference to formant estimation.

22Occasionally, we have seen a strong asymmetry in a distribution, partic-
ularly with the return phase RQ and the open quotient OQ as determined
by formant modulation. Both may be more efficiently modeled by sums
of Rayleigh or Maxwell distributions [23], being characterized by a sharp
“attack” and slow “decay.”
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Fig. 13. Comparison of the histograms of two glottal flow features, shape
parameter� and open quotient OQ determined from the LF model, with
and without deletion of frames that include source feature singularities.
Singularities occur when source features reach their bounds set within the
NL2SOL algorithm. The experiment used about 20 s of data (all the TIMIT
training data) from speaker A of Fig. 12 and feature values were divided
across 40 histogram bins.

and open quotient OQ determined from the LF model, with
and without deletion of frames that include source feature
singularities. The training data of Speaker A from Fig. 12 was
used. As we noted earlier, singularities occur when source
features reach their bounds set within the NL2SOL algorithm.
In Fig. 13, we observe for the parametera strong component
at about value 50 of the distribution when singularities are
not removed; this component corresponds to frames where a
NL2SOL bound is reached. Likewise, the parameter OQ has
a strong singularity component at the origin. In both cases,
the undesired component of the distribution is significantly
reduced by not including singular frames.

In speaker identification experiments, a subset of the TIMIT
database was used. This subset contains ten sentences of
read speech for each speaker, recorded in a quiet room
with a Sennheiser microphone. The male subset contains 112
speakers, while the female subset contains 56 speakers. For
each speaker, eight of the sentences are used for training and
two are used for two independent tests. As noted earlier, 16
Gaussians were used in the mixture model. Male and female
sets are handled separately, as the large differences in anatomy
result in cross-sex errors being very rare.

Six separate tests were conducted with the following feature
sets:

1) seven LF coarse-structure model parameters;
2) five energy measures of the fine structure;
3) seven LF and five energy parameters;
4) three formant modulation parameters;
5) fourteen linear-predictive derived cepstral coefficients;
6) twelve source parameters and fourteen cepstral param-

eters.

In each test, the features were concatenated into one vector
and passed to the SID system. The cepstral parameters consist
of the first 14 coefficients of the real cepstrum as calculated by
the recursion where
are the cepstral coefficients, andis not used [26]. The ’s
are the estimated vocal tract parameters from the covariance
method of linear prediction over a closed phase, according

TABLE IV
SPEAKER IDENTIFICATION PERFORMANCE (PERCENT CORRECT) FOR VARIOUS

COMBINATIONS OF THE SOURCE PARAMETERS FORLARGE TIMIT D ATABASE

to the stationary region of formant modulation of Section III-
B. The recursion assumes a minimum-phase filter given by
the ’s. Any maximum-phase poles, which are possible with
the covariance method of linear prediction, are flipped inside
the unit circle to their reciprocal location before the cepstral
coefficients are calculated.

The results in Table IV show that the three categories of
source parameters all contain significant speaker-dependent
information. The 14 cepstral parameters which model the vocal
tract, however, contain more speaker-dependent information
than the 12 source parameters. For the male data subset, the
combination of source and vocal tract features increased SID
identification to 93.7% accuracy.23 For the female speakers,
on the other hand, outliers caused the reduction in score when
source parameters are added to the vocal tract parameters.24

The three frequency-modulation (FM) parameters show some
speaker dependence as their scores of approximately 8% and
15% correct identification are well above chance (less than
1% for both cases). Including the three formant modulation
parameters with the other parameters, however, lowered the
scores significantly, due to a large number of outliers in the
formant modulation data.

As a secondary measure of information in the glottal flow
derivative waveform, we calculated the 23 mel-cepstra of these
waveforms and used these coefficients as the features for SID.
Both the glottal flow derivative waveform and its counterpart
modeled waveform, i.e., the waveform synthesized using the
LF-modeled glottal flow derivative, were processed in this
manner. The results are shown in Table V. We observe that
the seven LF parameters shown in the first row of Table IV
better represent the modeled glottal flow derivative than the
23 mel-cepstral parameters. Thus it appears that for this one
experiment, the seven LF parameters are more compatible with
GMM than their mel-cepstral counterpart; however, one must
consider that the mel-cepstra operation smears the spectrum

23In comparing accuracy rates near 100%, it is generally more instructive
to compare the relative reduction in error rate. For the male subset, the error
was reduced from 9% to 6.3%, a 30% reduction in error.

24Observe that the higher scores for females with individual feature vectors,
due likely to using a smaller number of females speakers, is not reflected in
the combined score. This apparent discrepancy is because, although the SID
system attempts to automatically remove outliers, a larger number of outliers
found for female than for male speakers resulted in more outliers being passed
to SID training and testing with female speakers in the combined vectors.
The relatively greater number of outliers for females, also seen to occur in a
variety of GMM-based systems that use mel-cepstra, may be due to the greater
difficulty in estimating the spectral envelope of females given the harmonic
undersampling of the spectrum and during mixed sound classes such as voiced
fricatives [4].
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TABLE V
SPEAKER IDENTIFICATION PERFORMANCE (PERCENT CORRECT) FOR

MEL-CEPSTRAL REPRESENTATIONS OF THEGLOTTAL FLOW DERIVATIVE (GFD)
WAVEFORM AND THE MODELED GFD WAVEFORM FOR LARGE TIMIT D ATABASE

of the flow derivative and discards its phase. Table V also
indicates that the mel-cepstra of the seven-parameter LF
modeled glottal flow derivative contains significantly less
information than that of the glottal flow derivative; this is
not surprising given that the synthesized modeled glottal flow
derivative is a much reduced version of the glottal flow
derivative. Comparing Tables IV and V, we further see that the
score of 95.1% (males) and 95.5% (females) SID for the mel-
cepstra for the glottal flow derivative is a marked increase over
the 69.1% and 73.6% of the 12 LF and energy measurements
themselves. We might conclude from this comparison that the
mel-cepstra of the glottal flow derivative estimate is more
compatible to GMM than its feature-vector representation;
however, the estimated glottal flow derivative contains pitch,
timing of aspiration, and ripple fine structure. In addition,
the ripple component of the glottal flow derivative is related
primarily to the vocal tract first formant, and, therefore, as
noted in Section III-D, a weak peak is occasionally seen in
the glottal flow derivative spectrum in the vicinity of the first
formant.

C. SID for Degraded Speech

Although the results of the previous section are funda-
mental for speech science, their practical importance lies in
part with speaker identification in degrading environments,
such as telephone speech. In preliminary experiments, to test
performance of the source features on degraded speech, we
first used a subset of 20 male speakers and a subset of 20
female speakers from the telephone-channel NTIMIT database
[18]. For these tests, we used a 23-mel-cepstra representation
of the speech signals. In one experiment, the 23-mel-cepstra
representation of the synthesized LF-modeled (coarse) source
waveform, rather than the LF-model parameters themselves,
was used in order to provide frame synchrony and similar
feature sets for speech and source. The selected 20 male and
20 female speakers are cases for which the baseline GMM
SID system performs particularly poorly, achieving scores
of 40.0% and 52.5% on males and females, respectively.
While the LF-modeled source performs poorly on its own,
i.e., 12.5% on males and 27.5% on females,25 when combined
with the mel-cepstra of the speech waveform, performance
improved to 60.0% on males and 55.0% on females. Tests were
performed with 32 Gaussians and by training on a 23-element
vector rather than the 46-element vector that would result by
combining the two vectors into one. Using this approach, each
feature vector contains either speech or source information;

25This is in contrast to the SID results in Table V for the mel-cepstra of
the LF-modeled source waveform, using the counterpart TIMIT database, of
41.1% on males and 51.8% on females.

TABLE VI
SPEAKER IDENTIFICATION RESULTS FORMEL-CEPSTRAL REPRESENTATIONS OF

THE SPEECH SIGNAL, THE GLOTTAL FLOW DERIVATIVE (GFD) WAVEFORM,
THE MODELED GFD WAVEFORM, AND COMBINATIONS OF THE SPEECH

AND SOURCE MEL-CEPSTRAL DATA FOR SMALL NTIMIT D ATABASE

TABLE VII
SPEAKER IDENTIFICATION RESULTS FORMEL-CEPSTRAL REPRESENTATIONS OF

THE SPEECH SIGNAL, THE GLOTTAL FLOW DERIVATIVE (GFD) WAVEFORM,
THE MODELED GFD WAVEFORM, AND COMBINATIONS OF THE SPEECH

AND SOURCE MEL-CEPSTRAL DATA FOR LARGE NTIMIT D ATABASE

we consider the mel-cepstra vector from the speech waveform
and the mel-cepstra vector from the glottal flow derivative
to be two independent streams of data, each vector with 23
elements. By treating them as separate vectors, we allow mel-
cepstra from the speech and source to be classified separately,
while also reducing the requirement of a larger training set
for a 46-element vector that would result by combining the
speech and source vectors. In this method, some of the 32
Gaussians are assigned to model the speech signal, while some
are used to model the source signal. This same experiment
was also performed on the larger NTIMIT subset used in
Section VI-B, giving an improvement of roughly 3.0% SID
for both males and females, representing a 5% error reduction
from using only the mel-cepstra of the speech waveform. A
more complete summary of the SID results for the small and
large NTIMIT databases, using mel-cepstral representations, is
shown in Tables VI and VII, respectively.

In closing this section, it is important to address the loss
in performance with LF parameters alone in experimenting
with the NTIMIT database relative to the TIMIT database.
The TIMIT database was recorded with a high-quality, essen-
tially distortionless Sennheiser microphone, while the NTIMIT
database was recorded with a carbon-button microphone [18].
Because we are estimating temporal features of the glottal flow
derivative, we speculate that one important source of degra-
dation is channel phase distortion. Observe that the cepstral
coefficients are nearly immune to phase change because these
parameters are derived from a Fourier transform magnitude
representation; phase distortion, therefore, manifests itself in
the excitation function. In fact, in comparison of estimated
glottal flow derivatives from the same utterance of TIMIT
and NTIMIT, we have observed a change in shape in the
glottal flow derivative, especially over its open phase. To
test the hypothesis that phase distortion contributes to this
shape change, we estimated a phase compensation by first
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averaging the Fourier transform phase (computed on suc-
cessive speech frames) over a paired TIMIT and NTIMIT
utterance and then formed a phase difference. Applying this
phase compensation to NTIMIT brings the NTIMIT glottal
flow derivative closer in shape to that derived from TIMIT.
Note that in spite of shape change due to phase distortion, the
modeled glottal flow derivative from the NTIMIT data gives
a 12.5% (males) and 27.5% (females) speaker identification
accuracy. Our preliminary observations indicate that this is
consistent with some preservation of LF features, particularly
an approximate preservation of open- and closed-phase timing.
A more comprehensive study is required of relative sensitiv-
ity of the different glottal features, as well as methods of
compensation.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we presented an automatic technique for
estimating and modeling the glottal flow derivative waveform
from speech, and applied the model parameters to speaker
identification. The glottal flow derivative was estimated using
an inverse filter estimated during a closed-phase estimate,
determined by formant frequency modulation calculated us-
ing a sliding covariance analysis with a one-sample shift.
A statistical technique, used to identify the glottal closed-
phase estimate, allows this algorithm to adapt to the amount
of formant modulation during the closed phase, which is
dependent on the degree of glottal closure. A two-window
covariance technique was developed to improve time reso-
lution for high pitch speakers. The Liljencrants–Fant model
for the glottal flow derivative was used to model the coarse
structure of the glottal flow. The parameters of this model were
determined for each pitch period using the NL2SOL algorithm
for nonlinear least-squares regression. The fine structure of
the glottal flow was represented through five energy mea-
sures and first-formant frequency modulation, modeled by a
parabola using robust least-squares regression tailored to the
presence of outliers. All aspects of the source model have
been shown to contain speaker-dependent information on a
TIMIT corpus. The coarse structure parameters contain the
most information, the time domain energy measures of fine
structure less information, and the frequency modulation of the
first formant contains the least speaker-dependent information,
though still resulting in speaker identification scores well
above chance. Finally, in preliminary experiments on the
NTIMIT database, the telephone-degraded counterpart to the
TIMIT subset, about a 5% error reduction in SID scores is
obtained when source features are added to traditional mel-
cepstral measures.

There are several improvements to be made in the algo-
rithms of this paper for estimating the glottal flow derivative
and its model parameters, and using these parameters for SID.
For example, a nonlinear least-squares algorithm that is better
designed to handle piecewise functions should enable more
accurate estimation of the LF model times, , and . Such
an algorithm, along with the reduction of singularities by more
accurate glottal flow derivative estimation, would reduce the
need to discard feature vectors. In terms of the fine structure,

the aspiration and ripple components could be separated,
perhaps using a noise/sine-wave model, and separate feature
representations used in SID. The methods of this paper might
also be extended in new directions. For example, the temporal
change of the glottal flow derivative waveform is not included
in our SID experiments. Changes in the glottal flow from
period-to-period will indicate when glottal stops are used, how
sudden is the onset of voicing, and the inter-period variability
of the vocal fold vibration. Asymmetries in the vocal folds and
jet flow through the glottis will result in a less stable pattern of
vibration and flow patterns [30], [32], which would be captured
through the temporal change of the glottal flow derivative.
Another important direction is comparing the importance
of our measured features for human and machine speaker
recognition. A perception of breathiness, for example, may
correspond to certain properties of coarse and fine structure
in the glottal flow derivative such as a large open quotient
and noisiness, respectively [19]. On the other hand, certain
features useful to machines may not be useful to humans,
such as the phase of the glottal ripple component. Yet, another
area of research, largely unexplored, is showing the degree
of correlation and separation between source and vocal tract
features, and obtaining a better understanding of their relative
importance. A related area is integration, with appropriate
weighting and synchronization,26 of source and vocal tract fea-
tures for improved SID in degrading environments. In addition,
one must overcome difficulty in estimating the glottal flow
derivative from telephone-degraded speech, and in particular,
as alluded to in Section VI-C, the problem posed by a time-
domain algorithm, which requires phase coherence. Over the
noisy, nonlinearly-degraded NTIMIT channel, it behooves us
to apply channel compensation prior to estimation. It is im-
portant also to better understand the within-speaker variability
of the proposed glottal features. The SID experiments thus far
have used TIMIT and NTIMIT in which training and test data
were collected in a single session per speaker. Robustness to
intersession variability of source vs vocal tract parameters will
exhibit the practicality of the approach. Toward this end, we
are currently investigating source features in other databases
such as switchboard.

Finally, the examples presented in this paper were chosen
to illustrate certain properties of the glottal source, but are
nevertheless typical examples. Fig. 14, on the other hand,
shows atypical cases. The two examples show multiple points
of excitation within a glottal cycle. We have found that
such multiple pulses occur primarily for speakers who appear
to have nearly complete glottal closure. As the vocal folds
open, the change in glottal flow is large, and a “secondary”
glottal pulse is generated; these secondary glottal pulses are
observed to occasionally excite formants different from those
corresponding to the primary excitation [24], indicating the
possibility of multiple sources distributed along the vocal
tract [30]. The presence of such secondary pulses may in
part explain the improved SID scores achieved by measuring
energy onset times in formant bands using the Teager operator

26The source features are calculated on a pitch period basis, while mel-
cepstra are calculated using a fixed window size and shift.
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Fig. 14. Two examples of multiple pulses in the glottal flow derivative
estimate. In each case, the speech waveform is shown above the glottal flow
derivative waveform.

[25]. These examples, as well as other atypical cases [24],
point the way to a more complete glottal flow model.
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