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0  INTRODUCTION

Process control is the manipulation of process 
variables motivated by process regulation and 
process optimization. The adaptation of process 
variables, therefore has the purpose of reduction of 
production cost or cycle time. Usually, this is done 
through adjusting three impact factors: the cutting 
speed, the feed and the depth of cut and employing 
parameter estimation to adapt the model to changing 
process conditions. Within this category, Furness et al. 
regulated the torque in drilling [1].

Process control can be performed as an  
on-line or off-line process. Off-line process control 
refers to preliminary definition of process variables 
as part of a process planning stage. Selection of 
variables is usually based on a machine book or the 
operator’s experience, therefore, computer aided 
process planning is a step forward and provides better 
results in production. Work carried out by Landers, 
Ulsoy and Furness concentrates on this subject [2]. 
Off-line process planning utilizes process models to 
select process variables based on experimental results 
like the influence of cutting parameters on surface 
roughness, tool wear and cutting force. The measured 
values are then used to determine the expected values 
according to an analytical model. Therefore, off-
line process control depends on the accuracy of the 
analytical model used. This is one of the drawbacks 
of this technique and an inability for error correction 
during the process. In this sophisticated technique 
the selection of modeling methodologies with 
their prediction errors has a great influence on the 
whole production. Lu [3] gives a detailed review 

of methodologies and practice on the prediction of 
surface profile and roughness in machining processes. 
Different modeling methodologies have already been 
applied for solving the problems of prediction in 
face milling, like design of experiment (DOE) and 
regression analysis (RA) as well as neural networks. 
For example, Bajić and Belajić [4] and Oktem et 
al. [5] used response surface methodology, while 
Ezugwu, Arthur and Hines [6] as well as Benardos 
and Vosniakos [7] used back propagation neural 
network approach. Neural networks were also used 
for an intelligent prediction of milling strategies 
particularly in commercially available CAD/CAM 
systems [8]. Regarding tool wear estimation and tool 
breakage detection, Dong et al. [9] used the Bayesian 
multilayer perceptrons and Bayesian support vector 
machines for tool wear estimation, while Hsueh and 
Yang [10] used the support vector machines (SVM) 
methodology for tool breakage detection in modeling 
the face milling process precisely. Čuš and Župerl 
developed a system for monitoring tool condition 
in real time based on a neural decision system and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 
[11]. Parametric fuzzy membership functions based 
on neural network learning processes have been 
applied in the manufacturability assessment of free 
form machining [12].

Complex manufacturing and technological 
processes nowadays claim implementation of control 
systems using sophisticated mathematical and other 
methods for efficiency purposes. Thus, research 
is needed to get the mathematical approximations 
of machining processes and phenomena appearing 
as good as possible. In manufacturing engineers 
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face two main practical problems. The first is to 
determine the values of the process parameters that 
will allow achievement of expected product quality 
and the second is to optimize manufacturing system 
performance with available resources. The decisions 
made by manufacturing engineers are based not 
only on their experience and expertise but also on 
the understanding of the machining principles and 
mathematical relations among influential parameters. 
The machining process is determined by the mutual 
relationship of the input values and its efficiency 
can be measured through output values. The great 
number of input values, as well as the fact that they 
have quantitative and qualitative nature contributes 
to the large expanse of possible interactions and their 
complexity. This model of the machining process 
was used in the research for this paper taking the 
parameters in italics and underlined among the input 
values as controlled ones and the same among the 
output values as measured ones (Fig. 1).

The aim of this research is to find mathematical 
models that relate the surface roughness, tool wear 
and the cutting force components with three cutting 
parameters, the cutting speed (vc), the feed per tooth 
(f) and the depth of cut (ap), in face milling. In this 
research two different approaches have been used in 
order to get the mathematical models.

Fig. 1.  Model of machining process

The first approach is a DOE together with an 
analysis of variance (ANOVA) and RA, and the 
second one is modeling by means of artificial neural 
networks (ANNs) [13] and [14]. In the past, the DOE 
approach was used to quantify the impact of various 
machining parameters on various output parameters, 
but nowadays ANNs has been proved as a method 
with great ability for mapping very complex and 
nonlinear systems. The milling process is an example 
of such a system and that justifies the usage of ANNs.

1 PROCESS PHENOMENA THAT EMBODY ANALYTICAL BASIS 
FOR MACHINING PROCESS PLANNING

The objective of machining operations is to produce 
parts with specified quality as productively as 
possible. Many phenomena that are important to this 
objective occur in machining operations, like surface 
roughness, tool wear and cutting force. Modeling of 
these three process phenomena by manipulation of 
cutting parameters provides important information 
for machining process planning as a part of the  
off-line process control. 

Machining accuracy and capability of attaining 
the required surface quality is determined by selecting 
certain cutting parameters. Surface quality is one of 
the most specified customer requirements where a 
major indication of surface quality on the machined 
parts is surface roughness, Bernardos and Vosniakos 
provide a detailed review [14]. It is a widely used 
index of product quality and in most cases a technical 
requirement for mechanical products. Achieving the 
desired surface quality is of great importance for the 
functional behavior of a part. On the other hand, the 
process dependent nature of the surface roughness 
formation mechanism along with the numerous 
uncontrollable factors that influence pertinent 
phenomena, make it almost impossible to find a 
straightforward solution. Surface roughness is mainly 
the result of process parameters such as tool geometry 
and cutting conditions (feed per tooth, cutting speed, 
depth of cut), but in addition  there is also a great 
number of factors influencing surface roughness (Fig. 
2).

Fig. 2.  Fishbone diagram with influential factors on machined 

surface roughness

Tool wear is a phenomenon that occurs on the 
contact area between the cutting tool, the workpiece 
and the chips [15].  Cutting tool wear is one of the 
key issues in all metal cutting processes, primarily 
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because of its detrimental effect on the surface 
integrity of the machined component, and also it has 
a major influence in machining economics causing 
possible anomalies in final workpiece dimensions or 
eventual tool failure. The monitoring of tool wear is 
an important requirement for realizing automated 
manufacturing. Therefore, information about the state 
of tool wear is important to plan tool changes in order 
to avoid economic loses. Tool wear is a very complex 
phenomenon (Fig. 3) presented by Yan et al. [16], 
which leads to machine down time, product rejects 
and can also cause problems to personnel although 
this has not yet been well clarified. In face milling, 
tool wear becomes an additional parameter affecting 
surface quality of finished parts. 

Fig. 3.  Fishbone diagram with the parameters that affect tool wear

Fig. 4.  Fishbone diagram with the parameters  

that affect cutting force

The surface formation mechanism during 
dynamic milling determines the cutting forces. The 
most regulated process variable in machining has been 
the cutting force, mainly for its reflection of process 
anomalies such as tool breakage and chatter [17]. 
In order to analyze the relation between the cutting 
forces and tool wear, cutting forces also need to be 
measured. The cutting forces developed during the 
milling operation are variable. Therefore, in practice 

the cutting forces are calculated according to the mean 
chip cross section in order to simplify the calculations. 
The researchers propose models that try to simulate 
the conditions during machining and establish cause 
and affect relationships between various factors that 
affect cutting force (Fig. 4) and the desired product 
characteristics.

Cutting force is one of the important physical 
variables that provides relevant process information 
in machining. Such information can be used to assist 
in understanding critical machining attributes such 
as machinability, tool wear fracture, machine tool 
chatter, machining accuracy and surface finish.

2 DESIGN OF EXPERIMENT

The planning of experiments means prior prediction of 
all influential factors and actions that will result from 
new knowledge utilizing the rational research. The 
experiments have been carried out using the factorial 
design of experiments. Milling is characterized by 
many factors, which directly or interconnectedly act 
on the course and outcome of an experiment. It is 
necessary to manage experiments with the statistical 
multifactor method due to the statistical character 
of a machining process. In this work, the design of 
experiments was achieved by the rotatable central 
composite design (RCCD). In the experimental 
research, modeling and adaptive control of multifactor 
processes the RCCD of experiments is very often used 
because it offers the possibility of optimization [18]. 
The RCCD models the response using the empirical 
second-order polynomial:
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where b0, bi, bij, bii are regression coefficients, and Xi, 
Xj are the coded values of input parameters.

The required number of experimental points for 
RCCD is determined:

 N k n n n n
k

k
= + + = + +2 2

0 0α
,  (2)

where k  is the number of parameters, n0 is the 
repeated design number on the average level, and nα is 
the design number  on central axes.

RCCD of experiment demands a total of 20 
observed conditions (experiments), 8 experiments (3 
factors on two levels, 23), 6 experiments on the central 
axes and 6 experiments on the average level. The 
theory of the design of experiments and mathematical-
statistical analyses use coded values of input factors 



Strojniški vestnik - Journal of Mechanical Engineering 58(2012)11, 673-682

676 Bajić, D, – Celent, L. – Jozić, S.

of the milling process. The coded values of three 
independent input factors have values on five levels, 
Table 1. 

Table 1.  Physical and coded values of input factors

Coded 
values

Levels -1.682 -1 0 1 1.682

P
hy

si
ca

l v
al

ue
s X1 = vc  

[m/min]
113.18 120 130 140 146.82

X2 = ap

[mm]
0.83 1.00 1.25 1.50 1.67

X3 = f  
[mm/tooth]

0.07 0.10 0.15 0.20 0.23

3  NEURAL NETWORK MODELING

ANNs are non-linear mapping systems that consist 
of simple processors, called neurons, linked by 
weighted interconnections. Using a large amount of 
data out of which they build knowledge bases, ANNs 
establish the analytical model to solve the problems 
of prediction, decision-making and diagnosis. Fitting 
neural network parameters as a foreground learning 
task, allows the mapping of given input to known 
output values. The learning data set usually consists 
of input n-dimensional vectors x and corresponding 
output m-dimensional vectors y. Learning neural 
network parameters can be considered as a problem 
of approximation or interpolation of the hyper-plane 
through the given learning data. After the learning 
has finished, computation of responses of the neural 
network involves computation of values of the 
approximated hyper-plane for a given input vector. 
Approximation theory is employed with problem 
approximation or interpolation of the continuity of 
multi-variable function f(x) by means of approximate 
function F(w,x) with an exact determined number of 
parameters w, where w are real vectors:

 x x x x w w w w
n

T

n

T

= [ ] = [ ]1 2 1 2
, ,..., , , ,..., . 

To fulfill the approximation of the continual 
nonlinear multi-variable functions well enough, it is 
required to solve two key problems: 
1.  The proper selection of the approximate function 

F(w,x) that can efficiently approximate the given 
continuity of multivariable function f(x). This is 
known as the representation problem. 

2.  Defining an algorithm in order to compute 
optimal parameter w, according to optimal criteria 
given in advance. 

Interpolation with a radial basis function (RBF) 
is one of the most successful methods for solving the 
problem of continuity multi-variable functions. With 
an implementation of the radial based function, the 
solution of the interpolation problem is given in the 
following form:

 F x c h x x
i

i

N

i( ) = ⋅ −( )
=

∑
1

,  (3)

where x n-dimensional input vectors, are regression 
coefficients, xi  n-dimensional vectors of position of 
point of learning data set, ci  unknown interpolation 
coefficient, h(.) radial basis function,║.║ Euclidean 
distance in multi-dimensional real space Rn, and N is 
the number of interpolation points.

In the classical approach to RBF network 
implementation, the Gaussian function is preferred as 
a radial basis function. 

The researchers have shown that, in reality, 
where the learning data set is ordinarily weighted 
with some noise, better results have been achieved 
by approximation rather than interpolation. Namely, 
it is expected to filter the noise by means of 
approximation, in contrast to interpolation where the 
hyper-plane passes exactly through all points of the 
learning data set. It is a logical question whether it 
is necessary to compute the distance of all N points 
of the learning data set. Broomhead and Lowe [19] 
suggested selecting K points (called the center), where 
K < N. Now Eq. (3) has the form:

 F x c h x tj

j

K

j( ) = ⋅ −( )
=

∑
1

,  (4)

where  ti n-dimensional vectors of the center of the 
radial basis function.

With approximation, the number of center K is 
less than the number of points N. The number and the 
position of the centers of the neurons of the hidden 
layers has been determined in the learning procedure. 
Then, Euclidean distances of the input vector have 
been computed for the neurons of the hidden layer h 

(║xi-tj║), where is i = 1, ..., N (N is the index of the 
input vector), j = 1, …, K (K is the index of the neuron 
of the hidden layer). In this way, rectangular matrix 
(N×X) of the values of the hidden layer has been 
computed (H)ij=h(║xi-tj║).

The implementation of N interpolation conditions 
leads to a predeterminated system of N linear 
equations with K unknown terms (weighted vector is 
c = [c1 c2 … cK]T). In this case, the optimal solution, 
according to the minimal square criterion, has been 
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achieved with a pseudo inversion of the matrix H. The 
solution represents the approximation of the multi-
variable function. 

The main advantages of the RBF model are 
its simplicity and the ease of implementation. The 
learning and generalization abilities of these networks 
are extremely good. The RBF model which is used 
in this study, for approximation of the two-variable 
function f(x), x = [x1 x2]T , is shown in Fig. 5. The 
construction of the radial basis function network 
involves three entirely different layers. The input 
layer is composed of three neurons. The output layer 
has one neuron. The number of neurons of the hidden 
layer is equal to the number of the K centers.

Fig. 5.  RBF neural network model

Fig. 6.  Results of testing for generalization ability of Setup 3

The same network architecture has been used for 
modeling each of five physical relations separately. 
The network setups are named as: 

• Setup 1 – relates cutting parameters and surface 
roughness,

• Setup 2 – relates cutting parameters and tool 
wear,

• Setup 3 – relates cutting parameters and Fx 
component of cutting force,

• Setup 4 – relates cutting parameters and Fy 
component of cutting force,

• Setup 5 – relates cutting parameters and Fz 
component of cutting force.
Results of testing, in the form of regression 

analysis, for Setup 1 is shown in Fig. 6. R is a measure 
of agreement between the outputs and targets, and 
the aim is to get an R-value close or equal to 1. In the 
example in Fig. 6, it is 0.9547 and that indicates that 
the model is representative and with the same, 95.47% 
of deviations were interpreted.

4  EXPERIMENTAL SETTINGS

The type of machine tool used for the milling 
test was machining center VC 560 manufactured 
by Spinner. The test sample used in experiments 
was made of steel 42CrMo4 with dimensions  
110×220×100 mm. The face milling experiments 
were executed by a tool CoroMill 390 with three TiN 
coated inserts, produced by Sandvik.

Table 2.  Measured experimental data

Exp. 
Num.

Ra  
[μm]

VBmax 
[μm]

Fx 

[N]
Fy 
[N]

Fz  

[N]

1 0.59 30 196 135 36

2 0.53 70 157 132 40

3 1.45 35 290 150 48

4 1.18 80 235 145 51

5 0.61 45 192 135 36

6 0.70 70 198 131 38

7 1.55 50 316 192 56

8 1.19 72 261 168 46

9 0.73 35 205 165 45

10 0.50 90 185 142 39

11 0.48 43 160 103 33

12 1.82 55 308 175 54

13 0.85 45 166 134 40

14 0.92 60 250 180 45

15 0.84 50 190 140 41

16 0.79 50 188 142 42

17 0.85 55 190 141 42

18 0.81 52 192 139 43

19 0.86 50 189 141 42

20 0.87 50 187 140 40
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The cutting forces were measured by utilizing a 
Kistler dynamometer type 9271A. The dynamometer 
signals were then processed via charge amplifiers 
and an A/D converter to a computer. Tool wear and 
workpiece surface roughness were periodically 
measured, maximum flank wear land width VBmax  

of cutting tools by optical microscopy (10 times 
increase), and average surface roughness Ra of 
machined workpieces by a Surftest SJ-301, produced 
by Mitutoyo. The measurements of surface roughness 
were taken at five predetermined different places on 
the sample. During the process of measuring, the 
cut-off length was taken as 0.8 mm and the sampling 
length as 5.6 mm.

Before the measurements were carried out 
all the measuring instruments were calibrated. All 
experiments were carried out without cooling and 
lubrication agents. Altogether 33 experiments were 
conducted. Twenty experiments were conducted in 
order to allow performance of ANOVA and regression 
analysis (Table 2), and an additional 13 experiments to 
obtain additional data for performing RBF modeling 
and verification of both models (Table 3). For those 
experiments, the values of the cutting parameters were 
randomly chosen within the range. Altogether, 28 data 
pairs have been chosen for the procedure of training 
and testing the RBF model. Five experiments were 
discarded because RCCD demands six repetitions at 
the center point.  Before the training and testing, all 
input and output data have been scaled to be within 
the interval -0.9 and 0.9. After the training, models 
were tested for their generalization ability. Testing 
was performed with the data that had not been used in 
the training process. In order to conduct training and 
testing of the neural network models, a neural network 
toolbox embedded in MATLAB [20] was used. Eight 
data pairs, randomly selected and marked with an 
asterisk (*), were utilized for the validation of both 
RA and ANN modeling. 

5  ANALYSIS OF RESULTS  
OF BOTH RA AND NEURAL NETWORKS SIMULATION

The measured values of surface roughness, tool 
wear and cutting force components, obtained by 20 
experiments are presented in Table 2. The ANOVA 
and RA have been performed using program package 
“Design Expert 6”. 

By applying regression analysis the coefficients 
of regression, multi-regression factors, standard 
false evaluation and the value of the t-test have been 
assessed. After omitting insignificant factors the 
mathematical models for surface roughness Ra, tool 

wear VBmax and the components of cutting force Fx, 

Fy, Fz, were obtained as follows:

R v f v

f v
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. . . .
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F f v f v az c c p= − + ⋅ − ⋅ ⋅ − ⋅ ⋅63 81 379 5 3 25 0 75. . . . .  (9)

The squares of regression coefficient (r2) for Fx, 

Fy, Fz, Ra and VBmax are 0.9468, 0.9607, 0.9402, 
0.9829 and 0.9908 respectively.

Table 3.  Additional measured experimental data

Exp. 
Num.

Ra 
[μm]

VBmax 
[μm]

Fx 
[N]

Fy 
[N]

Fz 
[N]

21* 0.79 58 176 136 42

22 0.86 59 193 149 45

23* 0.82 52 200 148 45

24 1.71 54 250 170 51

25 0.60 53 165 142 40

26 1.34 64 270 185 58

27* 1.55 55 206 143 48

28* 0.64 41 182 135 41

29 1.61 55 221 146 56

30* 1.46 64 195 149 45

31* 0.71 61 191 134 41

32* 0.65 40 197 143 42

33* 1.60 57 251 171 52

Table 3 shows 13 additional measured 
experimental data. Data marked with an asterisk 
(*) were not used either in the network training or 
in the regression analysis. These data were utilized 
for the validation of both regression analysis and 
ANN modeling. Table 4 shows the values of surface 
roughness, tool wear and cutting force components 
obtained from both types of modeling, i.e. from the 
regression equations and from the simulation of neural 
network setups.

Observing the changes of Ra and VBmax with 
increase of cutting speed, the connection between 
the two phenomena is established (Figs. 7 and 
8). Therefore, cutting speed is closely related to 
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emergence of built-up edge (BUE) and that implies its 
effect on machined surface roughness. By increasing 
the cutting speed the influence of BUE is reduced, 
and it also increases surface quality, but exaggeration 

in the increase of cutting speed does not influence 
the further reduction of surface roughness because 
tool wear is simultaneously increased and it keeps 
roughness nearly constant. Feed per tooth is directly 

a)        b) 

Fig. 7.  Response surface for surface roughness as a function of cutting speed and feed per tooth  

obtained from RA (a) and RBF (b); for constant depth of cut of 1.25 mm

a)        b) 

Fig. 8.  Response surface for tool wear as a function of cutting speed and feed per tooth  

obtained from RA (a) and RBF (b); for constant depth of cut of 1.25 mm

a)        b) 

Fig. 9.  Response surface for Fx component of cutting force as a function of depth of cut and feed per tooth  

obtained from RA (a) and RBF (b); for constant cutting speed of 130 m/min

a)        b) 

Fig. 10.  Response surface for Fy component of cutting force as a function of depth of cut and feed per tooth  

obtained from RA (a) and RBF (b); for constant cutting speed of 130 m/min
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proportional to surface roughness with a power of 
two, as well as cutting speed to flank wear. From the 
geometrical point of view, depth of cut has no direct 
influence on surface roughness because the height and 
form of roughness profile are independent of depth 
of cut. Its indirect influence is through the forming 
of BUE, chip deformation, cutting temperature, 
vibration etc. Depth of cut has also a minor effect on 
the tool wear, but sometimes in practice it is inversely 
proportional to the tool wear, i.e. by decreasing the 
depth of cut the tool wear increases. This is explained 
using the theory of dislocations. Namely, in smaller 
volume of material, there are smaller numbers of 
errors in its crystal lattice, causing the material is 
homogeneous, and thus difficult to machine.

Table 4.  Values obtained by regression analysis and neural network 
models

Exp. 
Num.

Regression

Ra 

[μm]
VBmax 
[μm]

Fx 
[N]

Fy 

[N]
Fz 
[N]

21* 0.66 59.2 167.5 131.2 39.4

23* 0.79 54.6 193.5 143.5 40.8

27* 1.01 48.5 204.8 141.8 43.9

28* 0.62 37.0 178.3 135.1 37.9

30* 1.43 67.2 186.7 140.8 41.1

31* 0.65 61.1 191.3 127.8 36.4

32* 0.61 36.2 180.2 136.2 37.9

33* 1.17 51.1 242.1 165.1 47.5

Exp. 
Num.

Neural network

Ra 

[μm]
VBmax 
[μm]

Fx 
[N]

Fy 

[N]
Fz 
[N]

21* 0.82 57.9 187.4 137.9 42.1

23* 0.91 55.3 200.5 148.5 43.4

27* 1.03 54.2 200.5 142.9 45.5

28* 0.67 44.6 180.9 137.8 39.8

30* 1.03 63.0 204.4 147.4 44.4

31* 0.70 63.5 190.7 132.3 38.2

32* 0.66 43.5 183.2 138.3 39.9

33* 1.30 56.7 252.2 179.9 51.1

a)      b) 
Fig. 11.  Response surface for Fz component of cutting force as a function of depth of cut and feed per tooth  

obtained from RA (a) and RBF (b); for constant cutting speed of 130 m/min

Table 5. Testing the models capability for prediction of surface 

roughness, tool wear and cutting force

Exp. 
Numb.

Relative error using regression [%]

Ra 
[μm]

VBmax 
[μm]

Fx 
[N]

Fy 
[N]

Fz 
[N]

1* 16.46 2.07 4.80 3.52 6.25

3* 5.95 5.00 3.25 3.01 9.39

7* 8.18 11.82 0.56 0.81 8.40

8* 5.78 9.76 2.05 0.05 7.50

10* 10.68 5.00 4.26 5.53 7.71

11* 2.99 0.16 0.17 4.62 10.88

12* 6.15 9.50 8.55 4.76 9.67

13* 16.43 10.35 3.58 3.51 8.69

Average 9.08 6.71 3.40 3.23 8.56

Total average relative error: 6.19%

Exp. 
Numb.

Relative error using neural network (%)

Ra 
[μm]

VBmax 
[μm]

Fx 
[N]

Fy 
[N]

Fz 
[N]

1* 3.49 0.17 6.50 1,39 0.12

3* 8.61 6.35 0.26 0.36 3.65

7* 6.52 1.45 2.66 0.06 5.94

8* 1.16 8.78 0.57 2.05 2.81

10* 20.15 1.56 4.85 1.08 0.28

11* 3.79 4.10 0.16 1.29 6.37

12* 2.23 8.75 6.99 3.28 4.81

13* 7.19 0.53 0.47 5.25 1.71

Average 6.64 3.96 2.81 1.84 3.21

Total average relative error: 3.35%

Figs. 9 to 11 show the results obtained from both 
models in the form of graphical representation for the 
x, y, z components of cutting force and its dependence 
on depth of cut and feed per tooth. Cutting speed 
has been kept constant at 130 m/min. It can be seen 
that the RA method predicts that the cutting force 
components depend almost linearly on both, depth of 
cut and feed per tooth. In graphical representations 
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of the RBF method nonlinearity can be seen, which 
better describes the real state of the milling process. 
The minimum values of cutting force components are 
achieved when feed per tooth and depth of cut nearly 
reach their minimum values. 

Increasing the cutting speed increases the angle 
of inclination of the plane shear layer separated 
materials, and reduces the length of the shear plane 
at constant shear strength. The force required for 
deformation of the material is then reduced. At low 
cutting speeds, the coefficient of friction increases, 
which is another reason for increased force. On 
the size of the cutting force, at the beginning of the 
process only the processing parameters are affected. 
During machining, cutting tool changes its properties 
because of tool wear. The cutting force at any point 
is equal to the initial cutting force plus the increment 
of the cutting force. This increment is different for 
different machining parameters.

In order to test which modeling method gives a 
better prediction, a relative error of deviations from 
measured values has been calculated. Validation of 
both models was performed with the testing data set 
that had not been used in the training process. Relative 
errors obtained using RA and RBF methodologies 
have been compared, and the results of testing 
are presented in Table 5. The results from Table 5 
indicate that the RBF model offers the best prediction 
capability with total average relative error of 3.35%.

6  CONCLUSIONS

The purpose of this study is the research of possibility 
of surface roughness, tool wear and cutting force 
component modeling to collect the information 
needed for effective machining planning as part of 
off-line process control. The influences of the cutting 
speed, the feed per tooth and the depth of cut on 
surface roughness, tool wear and cutting forces in the 
face milling process have been examined in the study, 
and in order to model dependency between those 
parameters, regression analysis and neural network 
methodology were used. Regarding the results, both 
methodologies are found to be capable of accurate 
predictions of the surface roughness, tool wear and 
cutting force components, although neural network 
models give somewhat better predictions, with 
approximate relative error of 3.35%. The research 
has shown that when the training data set is relatively 
small (as in the study) neural network models are 
comparable with the RA methodology and can also  
offer even better results. More accurate predictions 

ultimately improve off-line process control resulting 
in significant reduction of machining cost. 

Nevertheless, despite years of research and 
a multitude of success stories in the laboratory, 
only a small amount of modern technology has 
been transferred to production. Therefore, off-line 
process control as an approach that demonstrates 
its capabilities to be applied in practice and easily 
integrated in existing conditions still represents the  
key for successful machining and also the bridge 
between machining research and the production.
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