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Abstract. This paper presents a global model of the Jo-

vian magnetosphere which is valid not only in the equato-

rial plane and near the planet, as most of the existing mod-

els are, but also at high latitudes and in the outer regions of

the magnetosphere. The model includes the Jovian dipole,

magnetodisc, and tail current system. The tail currents are

combined with the magnetopause closure currents. All inner

magnetospheric magnetic field sources are screened by the

magnetopause currents. It guarantees a zero normal mag-

netic field component for the inner magnetospheric field at

the whole magnetopause surface. By changing magneto-

spheric scale (subsolar distance), the model gives a possibil-

ity to study the solar wind influence on the magnetospheric

structure and auroral activity. A dependence of the magneto-

spheric size on the solar wind dynamic pressure psw (propor-

tional to p−0.23
sw ) is obtained. It is a stronger dependence than

in the case of the Earth’s magnetosphere (p
−1/6
sw ). The model

of Jupiter’s magnetospheric which is presented is a unique

one, as it allows one to study the solar wind and interplane-

tary magnetic field (IMF) effects.

Keywords. Magnetospheric physics (Planetary magneto-

spheres; Plasma convection; Solar wind-magnetosphere in-

teractions)

1 Introduction

The presented Jovian magnetospheric model is constructed

on the basis of the Alexeev (1986) paraboloid model of the

terrestrial magnetospheric magnetic field. In this paper we

describe a dynamic Jovian magnetospheric model which is

not connected directly with specific spacecraft flyby. It al-

lows one to calculate the magnetospheric response to varia-

tions in the solar wind dynamic pressure and magnetic field.

For this reason the magnetospheric global current systems

are constructed depending on a small number of parameters,

each with a clear physical meaning.
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In the solar wind the sonic and Alfvén Mach numbers are

large and the pressure is dominated by the dynamic pres-

sure. Following Slavin et al. (1985), at the subsolar Jo-

vian magnetopause we can calculate the solar wind pressure

pswJ=0.58p0J , where p0J=2mpnswJV
2
sw is the dynamic

pressure for the perfectly elastic collisions of the solar wind

ions with the magnetopause. Here mp is the proton mass,

Vsw is the solar wind speed, and nswJ is the number of so-

lar wind ions per cm3 at Jupiter’s orbit. According to Spre-

iter et al. (1966) at the Earth’s magnetopause, the solar wind

pressure is pswE=0.88p0E , where p0E=2mpnswEV
2
sw with

nswE being the number of ions per cm3 at the Earth’s orbit.

The factors 0.58 and 0.88 are empirical values of the decrease

in pressure across the subsolar magnetosheath.

Thus, to calculate the solar wind pressure we must multi-

ply the pressure at the subsolar Jovian magnetopause at the

Earth’s magnetopause by two factors 0.037, and 0.66. The

first one is connected to the solar wind expansion with a

constant speed, Vsw, which leads to a dependence propor-

tional to r−2 (r being the heliocentric distance). The sec-

ond factor is 0.66=0.58/0.88; it takes into account the dif-

ference in specific features of the gasdynamic flowing past

Jupiter’s and the Earth’s magnetopause. If we assume at

1 AU the average value of nswE to be ∼4 cm−3, we ob-

tain nswJ∼0.14 cm−3, and for Vsw=400 km/s the value of

pswJ=0.66·0.037pswe=0.024pswe will be ∼46 pPa.

If we neglect the magnetospheric plasma contribution to

the pressure balance, this dynamic pressure corresponds to

the subsolar Jovian magnetopause magnetic field strength

BmJ∼9.1 nT. The Jovian dipole field alone could stop such

a solar wind flow at a distance of 45.7RJ (RJ=7.14·107 m is

the Jovian radius), which is half the average observed sub-

solar magnetopause distance (for example, Joy et al. (2002)

showed that for a pressure of 39 pPa, the magnetopause sub-

solar distance was 92RJ ). Thus, there is more to the story

at Jupiter than the simple picture of a dipole magnetic field

resisting the solar wind dynamic pressure.

Just after the Pioneer 11 and Voyager flights to Jupiter (see,

for example, Alexeev, 1976; Goertz, 1976a, 1979) it was

revealed that the magnetic field and plasma pressure of the

Jovian magnetodisc stops the solar wind flow much farther
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from the planet than Jupiter’s dipole alone. It is necessary to

take into account the Jovian magnetospheric plasma contri-

bution to the pressure balance at the magnetopause. Krim-

igis et al. (1979) demonstrated that at the Jovian magne-

topause the plasma and magnetic field contributions to the

total pressure are comparable.

Several refined models simulate the magnetospheric mag-

netic field of Jupiter (e.g. Hill et al., 1974; Barish and Smith,

1975; Smith et al., 1975; Beard and Jackson, 1976; Goertz,

1976a, 1976b, 1979; Engle and Beard, 1980; Acuña et al.,

1983; Connerney et al., 1981, 1998; Khurana, 1997). Most of

them describe the data observed by some spacecraft and are

applicable to limited regions of the Jovian magnetosphere.

The contribution of the IMF to the solar wind-magnetosphere

coupling is underestimated in these models.

In this work we will study dynamic phenomena of the

Jovian magnetosphere. In the paper by Belenkaya (2004)

(hereafter called Paper 1) a short review of the existing mod-

els of Jupiter’s magnetospheric magnetic field is given, and

a possibility of application of the constructed model to in-

terpretation of observations (taking into account the IMF ef-

fects) was demonstrated (see also Belenkaya, 2003). In Pa-

per 1 this model was used, but it was described only schemat-

ically. Here we give a detailed description of the model,

but before we mention several recent Jovian magnetospheric

models.

Khurana’s (1997) model couples the internal field spher-

ical harmonic coefficients from the Goddard Space Flight

Center O6 (Connerney, 1993) model with an Euler poten-

tial formulation of the external field. In particular, the mag-

netic field of the Jovian current sheet was modeled by using

the Euler potential approach following Goertz et al. (1976).

Khurana’s (1997) model incorporated the hinging and the de-

lay of the current sheet with radial distance, the sweep back

of the magnetic field lines, and has realistic azimuthal current

density profiles in the magnetosphere. Beyond a radial dis-

tance of ∼30RJ , the current sheet is aligned with the mag-

netic equator, but then departs from it toward the jovigraphic

equator due to hinging. The observed and modeled delay

arises due to plasma flows outward lagging behind corotation

to conserve angular momentum. The radial currents bend the

field lines out of meridian planes giving them a swept-back

appearance, which was calculated by Khurana (1997).

The Connerney et al. (1998) model assumes axial sym-

metry of the magnetospheric field, including magnetodisc.

Spherical harmonic models of the planetary magnetic field

were obtained from in-situ magnetic field measurements.

Dipole, quadrupole, octupole, and a subset of higher-degree

and higher-order spherical harmonic coefficients were deter-

mined. The field due to local magnetodisc currents was mod-

eled using an empirical model derived from Voyager obser-

vations.

Hill (2001) described a three-dimensional current sys-

tem model existing in the Jovian magnetosphere, which is

analogous to a Faraday disc dynamo. This current sys-

tem (connected to the auroral oval) transfers planetary an-

gular momentum to the outflowing magnetospheric plasma.

The position and the brightness of the auroral oval are de-

termined by the mass transport rate in the Jovian magne-

tosphere and by the ionospheric conductance. Hill (2001)

used a spin-aligned dipole magnetic field. He found the

rotation frequency of magnetospheric plasma, normalized

to Jupiter’s rotation frequency versus dimensionless radial

distance. Cowley et al. (2003a) significantly modified

Hill’s (2001) model using not only a dipole field, but also an

empirically based current sheet model (Cowley and Bunce,

2003), in which the angular velocity profile of the plasma

was calculated self-consistently from the Hill-Pontius theory

(Pontius, 1997; Hill, 2001).

Gurnett et al. (2002) reported simultaneous observations

using the Cassini and Galileo spacecraft of hectometric ra-

dio emissions and extreme ultraviolet auroral emissions from

Jupiter. Their results showed that both of these emissions are

triggered by interplanetary shocks propagating outward from

the Sun. These shocks cause a major compression and re-

configuration of the Jovian magnetosphere, which produces

strong electric fields and electron acceleration along the au-

roral field lines. Gurnett et al. (2002) have considered this

as an incontrovertible evidence of the solar wind influence

on the Jovian polar ionosphere and outer magnetosphere. It

also should be noted that the influence on Jupiter’s H+
3 auro-

ras of the solar wind was studied by for example Baron and

Owen (1996) and Connerney et al. (1996).

Kivelson and Southwood (2003), using inter-spacecraft

timing based on the time delay established from the inter-

planetary shock arrival at each spacecraft, investigated the

correlation of Cassini and Galileo magnetometer measure-

ments, offering a unique opportunity for direct study of

the solar wind-Jovian interaction by using two spacecraft at

once. In this work the Jovian magnetopause and bow shock

positions’ response to changes in the north-south component

of the solar wind magnetic field was shown, a phenomenon

occurring in equivalent circumstances at Earth. As Jupiter’s

planetary dipole moment is roughly antiparallel to that of

the Earth, the effects of northward and southward interplan-

etary magnetic field (IMF) ought to be reversed. Thus, in the

presence of northward IMF, Jupiter’s dayside magnetopause

should move inward. Prange et al. (2001) noted that some

type of the brightest aurora onsets coincides with the ar-

rival at the Jovian magnetopause of a coronal mass ejection

(CME). Cowley et al. (2003b, using recent observations of

ion flows from Doppler measurements of infrared auroras,

studied plasma flows in Jupiter’s high-latitude ionosphere.

They found, in particular, an outermost boundary region lo-

cated principally in the dawnside magnetosphere which is as-

sociated with the solar wind interaction. In the ionosphere,

the region of open field lines should be a region of near-

stagnation in the rest frame of the dipole, compared with

surrounding regions of a few-km/s sub-corotational flow.

Walker et al. (2001) have used a three-dimensional magneto-

hydrodynamic simulation of the interaction between the solar

wind and the Jovian magnetosphere to study the effects of the

solar wind dynamic pressure and the IMF. When the pressure

increases (decreases) the bow shock and magnetopause move
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toward (away from) Jupiter and the equatorial magnetic field

in the middle magnetosphere becomes more dipole-like (tail-

like). When the IMF is southward the boundaries move away

and the field becomes more dipole.

The magnetospheric model described in the present paper

allows one to calculate the IMF effects (see Belenkaya, 2003

and Paper 1), and also it takes into account the magnetopause

and magnetotail current fields (contrast to most of the other

Jovian models). Results of the model plus Ulysses measure-

ments during the first inbound flyby are used for the revision

of the pressure balance equation at the subsolar point. Solu-

tion of this equation yields the dependence of the magneto-

spheric scale on the solar wind dynamic pressure.

2 Model of the Jovian magnetospheric magnetic field

We assume tyhat the envelope of the magnetospheric field

lines fits the configuration of the magnetopause for a closed

magnetosphere. The magnetopause is a current carrying

surface bounded by the magnetosphere. The model pre-

sented here includes the internal magnetospheric magnetic

field sources screened by the magnetopause currents, and the

solar wind magnetic field penetrated into the magnetosphere.

In Paper 1 it was demonstrated that comparison with ob-

servations (e.g. Huddleston et al., 1998 and Joy et al., 2002)

support our approach of approximation of the Jovian magne-

topause by a paraboloid of revolution, especially up to 200–

250RJ downtail from the Jupiter. Ness et al. (1979) men-

tioned that the magnetopause as observed by Voyager 1 was

successfully modeled by an X-axis symmetric parabola in

Jupiter’s orbital plane. From the Voyager 2 data Ness et

al. (1979) obtained an analytical expression for the Jovian

magnetospheric boundary: y=±10.1(68.2−x)1/2, where x

and y are in units of the Jovian radius. In the model presented

here (and used in Paper 1) the equation of paraboloid ap-

proximating the magnetopause is: x/Rss=1−(y2+z2)/2R2
ss.

Here we use the Jovian solar-magnetospheric coordinates

with the X-axis directed to the Sun, Jupiter’s magnetic mo-

ment MJ in the XZ plane, and Y points to dusk. Rss is a

parameter characterizing the magnetospheric scale – the jovi-

centric distance to the subsolar point.

Kurth et al. (2002) presented data of the radio and plasma

wave science instruments on Cassini and Galileo. They made

use of Cassini’s flyby of Jupiter centered on 30 December

2000, coupled with the extended Galileo orbital mission.

Figure 1 shows the trajectories of Cassini (dotted curve) and

Galileo (dashed and solid thick curves) near Jupiter in the

December 2000–January 2001 time frame. A small part

of the Cassini orbit marked by the thick solid line on the

dotted curve corresponds to the time period when Cassini

was inside the magnetosphere. The thick solid (dashed)

curve corresponds to the time interval when Galileo was in-

side (outside) the magnetosphere. On 10 January 2001 al-

most simultaneously Cassini and Galileo observed the Jo-

vian magnetopause. The magnetopause crossing time was

determined by the disappearance of continuum radiation on

Fig. 1. The trajectories of the Cassini and Galileo during the time

interval surrounding Cassini’s closest approach. The coordinate

system is centered on Jupiter with the positive X axis directed

from Jupiter to the Sun. The Z axis is normal to Jupiter’s or-

bital plane with positive north. The Y axis completes an orthog-

onal system. The portion of the 28th and 29th Galileo orbits is

shown. The portions of the orbits which correspond to the time in-

tervals when the spacecraft were in the magnetosphere are marked

by heavy curves. The magnetopause calculated in the paraboloid

model is also shown. On the evening at 10 January 2001 both

spacecraft crossed the magnetopause roughly simultaneously (with

about 20 min delay). At this time Galileo was placed at x=+50RJ
and Cassini was located at x=−50RJ . The magnetopause crossing

points were determinated by Kurth et al. (2002). Small, solid cir-

cles mark the beginning of the days: 25 December 2000, 10 January

2001, and 20 January 2001 on the Cassini trajectory, and 10 January

2001 (when both spacecraft crossed magnetopause), and 30 January

2001 on the Galileo orbit.

the spectrogram, changes in the magnetic field direction and

spectrum, and the low energy plasma and energetic parti-

cle distributions (Kurth et al., 2002). The magnetopause

crossing points shown in Fig. 1 were taken from the paper

of Kurth et al. (2002), who determined an electron density

of 0.05 cm−3. For the solar wind velocity of the order of

450 km/s the derived solar wind dynamic pressure is 18 pPa.

The model magnetopause (paraboloid of revolution) equa-

torial cross section is shown by a solid curve for the solar

wind dynamic pressure 18 pPa. As it is seen from Fig. 1, the

paraboloid describes rather well the shape of Jupiter’s mag-

netopause at the distances not far from the planet.

Numerical calculations made by Engle and Beard (1980)

and Engle (1991) showed the asymmetry between equato-

rial and noon-midnight cross sections of Jupiter’s magneto-

sphere. The “flattened” shape of the Jovian magnetopause

(compared to that of the Earth) is consistent with the disc-like

magnetosphere. The number of spacecraft magnetopause

crossings is too small (especially on the high-latitudes) for



812 I. I. Alexeev and E. S. Belenkaya: Modeling of the Jovian Magnetosphere

making a definite conclusion about the faithful character of

the Jovian magnetopause shape. For this reason the zeroth

approximation model used here does not include polar flat-

tening or dawn-dusk asymmetry.

2.1 Magnetospheric magnetic field sources

To better explain our approach, we provide below a short de-

scription of the paraboloid magnetospheric field model. Uti-

lizing the paraboloid approach introduced by Alexeev and

Shabansky (1972) and Alexeev (1986), we can construct

a time-dependent model of all known current systems in

the magnetosphere of Jupiter. The main contributors to the

model magnetospheric magnetic field are the following:

1. The intrinsic magnetic (dipole) field, as well as the

shielding magnetopause currents, which confine the

dipole field inside the magnetosphere of Jupiter.

2. The tail currents and their closure currents on the mag-

netopause.

3. The disc current and the corresponding shielding mag-

netopause current.

4. The IMF penetrated into the magnetosphere.

For completeness, we summarize Paper 1 in the description

of the model. The continuity equations for the magnetic field

and electric current density:

div B=0 div j=0

are true for all model calculations. Our approach is based

on the assumption that each magnetospheric current system

conserves the condition Bn=0 at the magnetopause. This ap-

proach allows each current system to be changed in time with

its own time scale. For a description of the dynamic phenom-

ena in the Jovian magnetosphere our approach is preferable,

as at each moment the total magnetic field component nor-

mal to the magnetopause equals zero. Inclusion of the mag-

netopause current shielding magnetodisc field, as well as the

IMF penetrating into the magnetosphere, are new elements

comparatively with the other Jovian models. Flowing pass

the obstacle (magnetosphere), the magnetic field of the so-

lar wind drapes around it and, consequently, increases in the

magnetopause vicinity. Diffusion increased due to the field

growth near the magnetospheric boundary leads to the pene-

tration of the IMF through the magnetopause inside the mag-

netosphere. As it was shown by Alexeev (1986), the pene-

trated magnetic field is less than the IMF by a factor of kE in

the case of the Earth.

We assume that currents of the magnetopause, magne-

todisc, and magnetotail are concentrated in thin layers, as

their thickness is much less than the characteristic scale of

the Jovian magnetosphere (the subsolar distance) ∼100RJ .

Outside these layers the magnetic field was described by cor-

responding scalar potentials. The magnetic field vector Bm
was calculated in the Jovian solar-magnetospheric coordinate

system by summing the fields of magnetospheric origin:

Bm(t) = Bd(ψ)+ BT S(ψ,Rss, R2, Bt)

+BMD(ψ,BDC, RD1, RD2)+ Bsd(ψ,Rss)

+BsMD(ψ,Rss, BDC, RD1, RD2)

+b(kJ,BIMF ) . (1)

Here Bd(ψ) is the dipole magnetic field; the field of the

magnetospheric tail current system (cross-tail currents and

their closure magnetopause currents) is BT S(ψ,Rss, R2, Bt);

a field of the thin current disc placed near the equato-

rial plane is BMD(ψ,BDC, RD1, RD2); the field of cur-

rents on the magnetopause shielding the dipole field is

Bsd(ψ,Rss); BsMD(ψ,Rss, BDC, RD1, RD2) is the field of

the currents on the magnetopause shielding the disc current

field; b(kJ,BIMF ) is a part of the interplanetary magnetic

field penetrating into the magnetosphere.

To calculate the Jovian magnetospheric magnetic field

(Eq. 1), we have to define the time-dependent input parame-

ters: the magnetic dipole tilt angle, ψ (the angle between the

Z axis and the dipole axis); the distance from Jupiter’s center

to the subsolar point on the magnetopause, Rss ; the distances

to the outer and inner edges of the magnetodisc, RD1 and

RD2, respectively; the distance from the planet’s center to

the inner edge of the magnetospheric tail current sheet, R2;

the magnitude of the field of the tail currents at the inner

edge of the tail current sheet, Bt/α0, α0=
√

1+2R2/Rss; the

current disc magnetic field strength in the outer edge of the

current disc, BDC; the interplanetary magnetic field vector,

BIMF , and the coefficient of its penetration into the magne-

tosphere, kJ. While kJ is a coefficient of IMF penetration,

1−kJ is a coefficient of a partial screening of the solar wind

magnetic field by the currents at the magnetopause. The co-

efficient of IMF penetration is often called the “efficiency of

reconnection” (Cowley, 1981). The efficiency of reconnec-

tion determines the ratio of the width of a thin slab of so-

lar wind plasma which reconnects with the magnetospheric

magnetic field to the width of the total flow interacting with

the magnetosphere during the passing by.

2.1.1 Approximation of the Jovian dipole field and the field

of its magnetopause shielding currents

The dipole field Bd=−∇ Ud, where the scalar potential Ud is

Ud=
(

RJ

r

)3

·BJ0·(z· cosψ − x· sinψ) ,

here BJ0=4.2·105 nT (Smith and Wenzel, 1993) is the field

at the Jovian equator, and r is the distance from the planet’s

center.

The magnetic field of the magnetopause shielding cur-

rents, Bsd , was calculated similarly to that done by

Alexeev and Shabansky (1972) for the terrestrial mag-

netosphere using the condition that the magnetic field

B=Bd+Bsd is tangential to the magnetopause. The potential

Usd (Bsd=−∇Usd ) of the magnetopause shielding currents

has been calculated as a solution of the Laplace equation with

the boundary condition:
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B·n=0 or Bsd ·n=−Bd ·n,
where n is a normal to the magnetopause.

Due to the paraboloid axial symmetry, the potential Usd
has a simple representation in the spherical jovicentric co-

ordinate system r , θ ′, ϕ′. The polar axis of this coordi-

nate system is the Jupiter–Sun line, θ ′ being the polar an-

gle (cos θ ′=x/r), and the azimuthal angle ϕ′ is counted from

the XZ plane of the Jovian solar-magnetospheric coordinate

system to the dusk part (y>0) of the magnetospheric equa-

torial plane. In these coordinates, the scalar potential Usd is

expanded in a series of spherical harmonics:

Usd = −BJ0

R3
J

R2
ss

∞
∑

n=1

[

d‖
n sinψPn

(

cos θ ′)

+d⊥
n cosψ cosϕ′P 1

n

(

cos θ ′)
]

(

r

Rss

)n

, (2)

where

Pn(x) =
1

2nn!
·
dn
(

x2 − 1
)n

dxn
, and

P 1
n (x) =

√

1 − x2 ·
dPn

dx
(3)

are the Legendre polynomials and the associated Legendre

functions, respectively; d
‖
n and d⊥

n are the dimensionless co-

efficients; these coefficients describe the magnetic field of

the currents induced on the magnetopause by the dipole per-

pendicular and parallel to the solar wind flow, respectively.

The first six dimensionless coefficients d
‖
n and d⊥

n are listed

in the second and third columns of Table 1; these coefficients

describe the magnetic field of the currents induced on the

magnetopause by the dipole perpendicular and parallel to the

solar wind flow, respectively.

The expansion parameter of Eq. (2) is r/Rss , therefore,

this equation can be used only up to r≤Rss. Over the distant

nightside it is more convenient to present the sum of poten-

tials Ud+Usd in the parabolic coordinates as expansion by

the Bessel functions (or parabolic harmonics):

Ud + Usd = sinψ

∞
∑

n=1

DnJ◦(λ0nα)K◦(λ0nα)

+ cosψ cosφ

∞
∑

n=1

GnJ1(λ1nβ)K1(λ1nα) . (4)

In the parabolic coordinates, the Laplacian has the eigenfunc-

tions of the form:

Jm (λmnβ)Km (λmnα) cosmϕ′ ,

where Jm andKm are the Bessel functions of the first kind of

the real and imaginary arguments, respectively. The orthogo-

nal parabolic coordinates α, β, ϕ′ are defined in the (x, y, z)

solar-magnetospheric Cartesian coordinates as follows:

β2 − α2 + 1 = 2
x

Rss
,

αβ sinϕ′ =
y

Rss
,

αβ cosϕ′ =
z

Rss
. (5)

Table 1. The coefficients of expansion of the potentialUcf in spher-

ical harmonics (d⊥
n , d

‖
n) and in Bessel functions (Dn, Gn).

n d⊥
n d

‖
n Dn Gn

1 0.6497 0.9403 9.46305·103 −1.31869·103

2 0.2165 –0.4650 1.07980·107 −1.90098·105

3 0.0434 0.1293 6.52950·108 −9.60338·106

4 –0.0008 –0.0148 3.01584·1010 −3.69794·108

5 –0.0049 –0.0160 1.19816·1012 −1.25022·1010

6 –0.0022 –0.0225 – –

In Eq. (4) λ0n, λ1n are solutions of the equations

J ′
0(x)=0 and J ′

1(x)=0, respectively. We will use Eq. (2)

for the case α<α0, and Eq. (4) for the case α>α0. The value

of α0 is determined by the distance to the inner edge of the

jovimagnetic tail current sheet, R2 (see Sect. 2.1.2):

α0 =

√

1 +
2R2

Rss
. (6)

In the parabolic coordinates the magnetospheric boundary

is taken to be the surface β=1. The subsolar point at the

magnetopause is at (Rss, 0, 0) or at α=0, β=1. The surfaces

α=constant are the confocal paraboloids of revolution which

are open toward the dayside, and the constant β surfaces

are the paraboloids with the same focus but open toward the

nightside. Jupiter is at the origin of the (x, y, z) coordinate

system and at α=1, β=0. In numerical calculations, we used

the first six coefficients Dn and Gn (see Eq. 4), presented in

the fourth and fifth columns of Table 1.

Figure 2 shows the Jovian dipole magnetic field and the

field of the magnetopause currents screening it in the noon–

midnight cross section of the Jovian magnetosphere. The

dipole and its screening currents create in the subsolar point

a magnetic field equal to 1.31 nT, which is significantly less

than the total magnetospheric magnetic field measured at the

Jovian subsolar point (≥4 nT).

A solution of the problem of the dipole screening by the

paraboloid of revolution was obtained by Alexeev and Sha-

bansky (1972). Greene and Miller (1994) solved the same

problem for the arbitrary magnetopause tail flaring angle.

Both solutions have been presented by integral transforma-

tions. To shorten the magnetic field calculation time, the

scalar potential of the magnetic field was expanded into a

series of orthogonal functions (spherical functions inside the

sphere of radius Rss , and Bessel functions in the magneto-

spheric tail). The coefficients used in the calculations are

given in Table 1. An initial integral representation satisfies

the boundary condition Bn=0 at the magnetopause with ac-

curacy |Bn/B|≤10−4−10−6 determined by the numerical in-

tegration accuracy and the accuracy of the Bessel function

calculations. The chosen number of the series terms provides

the same accuracy. The maximum deviation 1B between

the result of integral representation and the series calculation
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Fig. 2. The Jovian dipole field and the field of the Chapman–Ferraro magnetopause current which shields the dipole field in the noon-midnight

section of Jupiter’s magnetosphere. The normal to the magnetopause component of the total field Bn=0. Outside the magnetopause, the

magnetic field equals zero. The magnetopause is marked by the dotted curve. Along X and Y axes there are distances in Jovian radii. Model

parameters are: 9=0; Rss=100RJ. At the distant low-latitude, the nightside magnetosphere magnetic field is southward.

Fig. 3. The tail current system is shown. In the equatorial tail, the current flows from dusk to dawn. This current is closed by the northern

and southern magnetopause currents. The current lines are shown by heavy curves. Thin curves mark the magnetic field lines lying on

the magnetopause. Parameters of the tail current system used in the calculations are Rss=100RJ and R2=65RJ . Under condition of the

absence of the component of the tail current system magnetic field normal to the magnetopause, the closure currents from the inner part of

the tail current should go to the dayside magnetopause. This is a consequence of very high conductivity of the solar wind plasma which

preserves penetration of the magnetic field outside the magnetosphere.

can be estimated as 1B/B≤10−4. As we use the orthog-

onal function series, it is possible to improve the accuracy

by adding additional highest terms of expansion. The coeffi-

cients shown in Table 1 are not changed by this procedure.

2.1.2 Magnetic field of the tail current system

We used a model of the tail current system magnetic field

which takes into account a finite thickness of the cur-

rent sheet, 2d . The current sheet is placed at α>α0 and

0<β<βc(ϕ
′), where the function βc(ϕ

′) is determined by

d0=
d

α0Rss
and ϕ′:

βc(ϕ
′) =







d0

|cosϕ′|
for

∣

∣cosϕ′∣
∣ ≥ d0 ,

1 for d0 ≥
∣

∣cosϕ′∣
∣ .

(7)

The shift, z0, of the current sheet with respect to the solar-

magnetospheric XY plane is (see also Alexeev and Shaban-

sky, 1972):

z0 = Rss sin 2ψ
(

3 + sin2 ψ
)−1

,
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z0=0 when ψ=0; this is a case which we will consider here-

after. For simplicity we will treat the case of a spin-aligned

dipole magnetic field (aligned with axis Z of the jovicentric

solar-magnetospheric coordinate system X, Y, Z).

The magnetotail current system includes the dawnward

currents in the neutral sheet, which are tangential to the

paraboloids α=const, and the closure currents on the mag-

netopause, which screen the outer space from the magnetic

field of the tail current system (see Fig. 3).

Inside the current sheet, the magnetic field of the tail cur-

rent system is a sum of two terms:

BTS = B1 + B2 , (8)

where B1=−BtRss∇Ut1, and 2Bt/α0 is the field drop across

the neutral sheet at its inner edge. The scalar potential Ut1

defines a component of the tail magnetic field perpendicular

to the equatorial plane

Ut1

(

α, β, ϕ′)=
∞
∑

k,n=1

cnk cos nϕ′Jn (λnkβ)Kn (λnkα) , (9)

where the k-th solution of the equation
dJn(x)

dx
=0 is λnk .

The current density vector is proportional to ∇×B2. It

is tangential to the paraboloid α=const and parallel to the

equatorial plane. Magnetic field B2 is a solution for equation:

∇ × B2 = µ0jt , (10)

where jt is the current density in the tail current sheet and B2

is a solenoidal part of the magnetic field. B2 is found as a

partial solution of the vector potential problem:

B2α = Bt
α0

α

β

βc(0)

cosϕ′
√

α2 + β2
; B2β = 0 ; B2ϕ′ = 0 .

Outside the current sheet, the dimensionless scalar poten-

tial ut=
Ut

BtRss
of the magnetic field of the tail current system

is:

ut =



































∞
∑

k,n=1

bnk cos nϕ′Jn (λnkβ) In (λnkα)

for α < α0, 1 ≥ β > 0 ,

α0lnα sign
(π

2
−
∣

∣ϕ′∣
∣

)

+Ut1

(

α, β, ϕ′)

for α ≥ α0, 1 ≥ β ≥ βc

(

ϕ′) .

(11)

Table 2. Numerical values of the coefficients fnk of scalar potential

Ut of the tail current system.

k\n 1 3 5 7

1 2.0635 –0.4437 0.2949 –0.280

2 0.108665 –0.053383 0.041799 –0.04171

3 0.029803 –0.017021 0.012939 –0.01203

4 0.012946 –0.008451 0.006415 –0.00537

5 0.006536 –0.004620 0.003708 –0.00309

In Equations (9) and (11) the coefficients bnk and cnk are

defined by fnk as:

bnk = 2λnkfnk
[

1 + λ2
nkIn(λnkα0)K

′
n(λnkα0)

]

,

cnk = 2fnkλ
3
nkIn(λnkα0)I

′
n(λnkα0) ,

and

fnk = 2











∫

π
2

− π
2

cos nφ
∫ 1
βc(ϕ)

Jn(λnkβ)βdβdϕ

π(λ2
nk − n2)J 2

n (λnk)I
′
n(λnkα0)

+

∫ π
2

− π
2

cos nφ cos φ

∫ βc(φ)

0

Jn(λnkβ)βdβdϕ

βc(0)π(λ
2
nk − n2)J 2

n (λnk)I
′
n(λnkα0)























.

Numerical values of fnk are presented in Table 2 for

α0=
√

2.4 (in this case R2=0.7Rss) and n=2m+1. For

n=2m the coefficients fnk are equal to zero.

A good approximation for the tail current system magnetic

field along the X axis is given by Alexeev et al. (2000):

BTS =
Bt

α0























exp

{

−
x + R2

Rss

}

for x > −R2 ,

exp

{

2
x + R2

Rss

}

for x < −R2 .

(12)

Figure 4 shows the magnetic field of the tail current system

in the noon-midnight meridional cross section of the Jovian

magnetosphere. The tail current system was calculated un-

der the condition that its magnetic field component normal

to the magnetopause equals zero. This condition determines

a unique solution, in which closure currents from the inner

part of the tail current sheet are closed at the subsolar mag-

netopause (see Fig. 3). The direction of these currents at the

noon magnetopause is opposite to the direction of the magne-

topause currents that shield the dipole field. The calculated

magnetic field strength at the subsolar point of the magne-

topause is Bss=0.05 nT (the contribution of the tail current

system to the magnetic field at the subsolar magnetopause is

very small).
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Fig. 4. Noon–midnight meridional cross section. The magnetic field lines of the Jovian tail current system are shown. The magnetic field

points north at the dayside equator. The chosen values of the model parameters Rss, R2, and Bt are 100RJ, 65RJ, and −0.5 nT, respectively.
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Fig. 5. Measured by Ulysses the Jovian magnetospheric magnetic

field dependent on the radial distance r (Cowley et al., 1996) is

marked by a solid curve. For comparison the magnetic field strength

calculated by the present model (heavy curve), the r−2 power-law

(dotted curve), the r−1 power-law (dotted-dashed curve), the r−3

Jovian dipole power-law (dotted curve marked by crosses) are also

shown. The power law curves were normalized on the measured

field strength at 20RJ :62.2 nT. Data (PI A. Balogh, Imperial Col-

lege, London, UK) have been received by using COHOWEB sys-

tem, NSSDC, NASA/GSFC, USA.

2.1.3 Magnetic field of the current disc

At the present time a lot of magnetodisc magnetic field mod-

els exist (Smith et al., 1974; Goertz et al., 1976; Goertz,

1979; Barbosa et al., 1979; Engle and Beard, 1980; Behan-

non et al., 1981; Connerney et al., 1981, 1998; Bespalov and

Davidenko, 1994; Khurana, 1997). However, we use a sim-

ple model which is easilyeasily included in the paraboloid

model of Jupiter’s magnetosphere and reflects the salient fea-

tures of the magnetodisc structure: the magnitude of the field

decreases with the distance from Jupiter more slowly than for

a dipole field and the direction of the field near the equatorial

plane in the middle magnetosphere is radial.

We use a spherical coordinate system with the axis Z par-

allel to the dipole axis, the polar angle, θ , and the azimuthal

angle, ϕ, counted in the planet rotation direction. The rigid

plasma disc is placed in the magnetic equatorial plane. The

distances to the inner and outer edges of the magnetodisc are

RD2 and RD1, respectively. The azimuthal symmetry is sug-

gested about the magnetic dipole axis. In our model an ef-

fective radial outflow of magnetospheric plasma is taken into

account by including the magnetodisc field.

The azimuthal magnetodisc current, jMD ϕ , exists only in-

side the disc and is directed to dusk in the dayside, and to

dawn in the nightside. Caudal (1986) showed that a self-

consistent model of Jupiter’s disc including the effects of

centrifugal force and pressure gives 1/r magnetodisc cur-

rent dependence. However, here following Barish and Smith

(1975) and Beard and Jackson (1976), we assume a 1/r2 cur-

rent disc dependence. In this case, the magnetic flux of the

disc field, F lMD=BMD r ·2πr2, across the Southern or North-

ern Hemisphere is constant. As it is seen from Fig. 5, this

dependence fits well to the Ulysses data.

For the Jovian magnetospheric magnetic field B Behan-

non et al. (1981) determined the simple power law param-

eterization B≈90 nT
(

20
r(RJ )

)1.7
for the outbound Pioneer 10

pass (it should be noted that this flight took place at different
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local times in comparison with the inbound flights). In

Fig. 5 we compare several power law parameterizations with

the Ulysses inbound pass data (Cowley et al., 1996). All

model curves are normalized to the Ulysses field strength

(∼62.2 nT) at r=20RJ . It is seen that our approach (cur-

rent disc dependence proportional to r−2) gives the model

magnetic field (heavy solid curve in Fig. 5), which coin-

cides very well with the Ulysses data at magnetodisc dis-

tances (∼20−90RJ ). The planetary dipole field (dotted with

crosses curve) gives only a small part of the total field in

the outer magnetosphere. Some underestimation near the

magnetopause of the total magnetospheric field by the r−2

law shows that in this region the magnetopause current field

(about 2.8 nT) is essential.

A vector potential AMD of the magnetodisc magnetic field

BMD is introduced:

BMD = ∇ × AMD . (13)

If we assume that in magnetodisc only the azimuthal cur-

rent, jMD ϕ , exists, the vector-potential has only one non-zero

component, AMD ϕ . In a current-free region, AMD ϕ is a so-

lution of equation: ∇ × ∇ × AMD ϕ=0, which in spherical

coordinates looks like:

r
∂2
(

rAMD ϕ

)

∂r2
+
∂

∂θ

(

1

sin θ

∂
(

AMD ϕ sin θ
)

∂θ

)

= 0 . (14)

Assuming a separation of variables, we can find solutions in

the form

rn · P 1
n (cos θ) and

P 1
n (cos θ)

rn+1
,

n = 1, 2, . . . ,∞ ,

(15)

where P 1
n (cos θ) are the associated Legendre polynomial

functions. These solutions provide a continuity of the mag-

netic field at the edges of the magnetodisc. Discontinuity of

the magnetic field caused by the disc current is described by

another solution of Eq. (14):

A
(1)
MD ϕ = BDC

R2
D1

r

{

tan θ
2

for 0 ≤ cos θ ,

cot θ
2

for cos θ ≤ 0 .
(16)

This solution yields a drop of BMD r at the equatorial plane

(θ=π/2): {BMD r}|θ/2. For jMD ϕ∼1/r2, inside the disc

AMD ϕ∼1/r , BMD θ=0, and BMD r∼r−2.

To construct a solution for the magnetic field of

the disc current we use a principle of superposition of

Fig. 6. Noon–midnight meridional cross section. The magnetic

fields are caused by the Jovian magnetodisc and its screening mag-

netopause current. The magnetic field points south at the equator.

The magnetopause is shown by the dashed line. The chosen param-

eters: Rss=100RJ; RD1=92.07RJ; RD2=18.4RJ; BDC=2.5 nT.

solutions Eqs. (15) and (16). The vector potential AMD ϕ can

be written as:

AMD ϕ=











































































∞
∑

k=0

F1k

(

RD1

r

)2k+2

P 1
2k+1 (cos θ)

for RD1 ≤ r ,

A
(1)
MD ϕ+

∞
∑

k=0

P 1
2k+1 (cos θ)

[

F2k

(

r

RD1

)2k+1

+G1k

(

RD2

r

)2k+2
]

for RD2 < r < RD1 ,

∞
∑

k=0

G2k

(

r

RD2

)2k+1

P 1
2k+1 (cos θ)

for r≤RD2 .

(17)

To calculate the coefficients F1k , F2k and G1k , G2k , we use

the continuity conditions for BMD θ and BMD r (BMD ϕ≡0 in

the considered model) at the edges of the disc (at r=RD1 and

r=RD2).

The resulting expression for BMD r=
∂
(

AMD ϕ sin θ
)

r sin θ ∂θ
is

BMD r=

BDC























































































∞
∑

k=0

a2k

(

1−ρ2k+1
0

) P2k+1 (cos θ)

ρ2k+3

for RD1≤r ,
sign (cos θ)

ρ2
+

∞
∑

k=0

P2k+1 (cos θ)

(

a2k+2

−a2k

ρ2k+1
0

ρ4k+3

)

ρ2k for RD2≤r≤RD1 ,

∞
∑

k=0

a2k+2

(

1−
1

ρ2k+2
0

)

ρ2kP2k+1 (cos θ)

for r≤RD2 .

(18)
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Here we introduce coefficients a2k =P2k(cos θ)|θ=π/2 =
(−1)k

2k k! 1·3· · ·(2k−1) , a dimensionless distance ρ=
r

RD1
, and

ρ0=
RD2

RD1
. The function sign (cos θ) could be expanded in a

series of Legendre polynomials:

sign (cos θ) =
∞
∑

k=0

a2k

2k + 2
P2k+1 (cos θ) , (19)

and calculations were performed for k≤50.

The other component of the magnetodisc magnetic field

BMD θ=−
∂
(

rAMD ϕ

)

r ∂r
can be expressed as

BMD θ =

BDC











































































∞
∑

k=0

a2k

2k + 2

(

1−ρ2k+1
0

) P 1
2k+1 (cos θ)

ρ2k+3

for RD1≤r ,
∞
∑

k=0

a2k

2k + 2

(

ρ2k−
ρ2k+1

0

ρ2k+3

)

P 1
2k+1 (cos θ)

for RD2≤r≤RD1 ,
∞
∑

k=0

a2k

2k + 2

(

ρ2k
0 −

1

ρ2
0

)

ρ2k

ρ2k
0

P 1
2k+1 (cos θ)

for r≤RD2 .

(20)

For RD1<r the first term in the sum for BMD θ (Eq. 20)

corresponding to k=0 and θ=π/2 is equal to

BMD θ |k=0, θ=π/2 =
BDC

2ρ3
(1 − ρ0) =

MMD

r3
, (21)

where

MMD =
BDC

2
R3

D1 (1 − ρ0) (22)

is an effective magnetic moment of the magnetodisc field for

RD1<r .

The problem of determination of the magnetopause cur-

rent screening of the magnetodisc magnetic field is solved

similarly to the problem for Jupiter’s dipole field. Out-

side the outer edge of the magnetodisc its magnetic field is

similar to the dipole field with an effective magnetic mo-

ment MMD Eq. (22). So, in zeroth approximation, the

field of the magnetodisc screening current is equal to the

Jovian dipole screening current field multiplied by a fac-

tor MMD/MJ (MJ=4.2·105 nT·R3
J , e.g. Smith and Wenzel,

1993).

The model magnetic field of the magnetodisc and its

screening currents is demonstrated in Fig. 6 in the noon-

midnight cross section. From the model calculations it fol-

lows that for the chosen parameters of the model, at the sub-

solar point the ratio of the magnetic field strengths of the

magnetodisc and its screening current to Jupiter’s dipole is

2.62. It means that the effective magnetic moment of the

magnetodisc field exceeds Jupiter’s dipole moment by this

factor. The calculated magnetic field strength in the subsolar

magnetopause is Bss=3.43 nT.

3 Closed Jovian magnetosphere

Figure 7 presents the calculated net magnetic field in the

closed Jovian magnetosphere including all described cur-

rent systems. In this paper our primnary focus is on the

pressure balance at the subsolar point (see below Sect. 3.1).

That’s why we justify the model parameters Rss=100RJ ;

R2=65RJ ; Bt=−2.5 nT; RD1=92.07RJ ; RD2=18.4RJ ;

BDC=2.5 nT by comparison with the Ulysses inbound pass

data (see Fig. 5) in the middle and outer magnetosphere

(r>15RJ ). The calculated magnetic field strength in the

subsolar magnetopause is Bss∼4.69 nT. In the closed mag-

netospheric model the subsolar point has two polar cap pro-

jections in the noon meridian with the magnetic latitudes

±84.23◦ (for the Jovian dipole field plus the field of its

screening magnetopause currents, the corresponding cusp

latitudes are ±87.12◦). The coordinates of the magnetic field

neutral points (cusps) for the chosen model parameters are:

x=55.48RJ, y=0, z=±76.86RJ. For comparison, in the En-

gle and Beard (1980) model deduced from Pioneer 10 mag-

netic field observations and using an equatorial current sheet

from ∼17.9 to 100RJ, where the current decreases as 1/r1.7,

the subsolar point distance was equal to 100 planetary radii

and the net subsolar point field was 4.534 nT. In their model

the cusps could be found at: x=26RJ, y=0, z=±65RJ.

Here we neglect the twisting of magnetic field lines by

planetary rotation. An angle characterizing this twisting is

estimated as arctan(2πr/TJVA), where r is the radius of a

magnetotail lobe, TJ is the rotation period (9.925 h), and VA

is the local Alfvén speed in the Jovian tail lobes (Goldstein

et al., 1986 and references therein). According to the obser-

vations and estimations of Goldstein et al. (1985, 1986), the

amount of twist is only 2◦–3◦. So, the significant twisting of

the lobe field lines is not supported by the data.

Figure 8 presents projections along magnetic field lines of

the constant latitude with a 2◦-step (solid curves) and con-

stant longitude with a 2-h step (dashed curves). As it was

shown by Belenkaya (2003, 2004), the scalar potential of

the electric field caused by Jupiter’s rotation depends on the

ionospheric latitude, so the projections of the constant iono-

spheric latitude are the electric field equipotentials.

3.1 Dependence of the Jovian magnetosphere on the solar

wind pressure

The constructed magnetospheric model and the measure-

ments on board the Ulysses spacecraft during its first flyby

of the dayside equatorial Jovian magnetosphere are used be-

low to formulate the pressure balance equation at the subso-

lar point. This equation takes into account the magnetodisc

presence. The solution of this equation yields a dependence

of the magnetospheric scale on the solar wind dynamic pres-

sure. Our results are in good agreement with the magne-

topause crossing data analysis by Huddlestone et al. (1998).

Observations made during the first Ulysses pass by Jupiter

at the beginning of February 1992 have detected the magne-

topause at distances of 110−90RJ (Hawkins et al., 1998).
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Fig. 7. Noon–midnight meridional cross section. Total magnetic field from all magnetospheric sources screened by the magnetopause cur-

rents. Dashed line marks the magnetotail current sheet. The chosen parameters: Rss=100RJ; RD1=92.07RJ; RD2=18.4RJ; BDC=2.5 nT.

Northward (southward) from the equatorial plane, the magnetic field is directed from (to) Jupiter.

The Ulysses solar wind plasma data allow one to calcu-

late the dynamic pressure just outside the Jovian bow shock

pswJ=18 pPa from the solar wind density, nswJ=0.06 cm−3,

and velocity, Vsw=400 km/s (see Figs. 9 and 10). The

Ulysses spacecraft intersects the magnetopause at latitude 5◦

at 10:30 UT, measuring the magnetospheric magnetic field

BmJ=4.69 nT. This magnetic field gives one half of the pres-

sure (B2
mJ /2µ0=8.75 pPa) which is needed for the pressure

balance at the subsolar point. It is reasonable to propose that

the deficit of the magnetospheric pressure, ∼9·10−12 Pa, is

provided by the magnetospheric plasma. In this case, the

magnetospheric plasma pressure is about the same as the

magnetospheric magnetic field pressure (∼9·10−12 Pa).

We took into account three contributors to the magneto-

spheric pressure at the subsolar point:

1. the dipole field together with the dipole’s screening

magnetopause current field,

2. the magnetodisc and its screening current fields, and

3. magnetospheric plasma pressure.

Neglecting the tail current field is valid because the model

calculations show that it gives only 1% to the total field

strength at subsolar point. The dipole field strength is pro-

portional to r−3. So, for arbitrary pswJ the first term of the

contribution to subsolar magnetic field is 1.31 nT
(

100RJ
Rss

)3
.

Here 1.31 nT is a model calculated strength of the dipole and

the dipole’s screening current field for Rss=100RJ .

The magnetodisc field is proportional to r−2. In the inner

magnetosphere (at r∼20RJ ) the magnetodisc current field

is essential, but the other magnetospheric current fields give

negligible small contributions there. We propose that the

distance to the inner edge of the magnetodisc and the disc

current density are not changed by the solar wind pressure

forcing or weakening. According to our suggestion, the so-

lar wind pressure and consequently the magnetospheric scale

control only the outer boundary of the Jovian plasma disc. In

this case, for arbitrary pswJ , the second term in the subso-

lar magnetic field is 3.38 nT
(

100RJ
Rss

)2
. Here 3.38 nT is the

model calculated strength of the magnetodisc and its screen-

ing current field for Rss=100RJ . If magnetospheric scale

Rss is measured in RJ , then the total Jovian magnetospheric

field pressure at the subsolar point is

pB = B2
mJ /2µ0 = 4.55

108

R4
ss

(

1+
77

Rss
+

1494

R2
ss

)

pPa. (23)

It is more difficult to define the plasma pressure at the sub-

solar point, pms , because we do not know exactly the plasma

parameters inside the plasma disc. In the latitude direction
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Fig. 8. Projections of the constant Jovian latitude with step 2◦ (solid curves) and constant longitude with a 2-h step (dashed curves) along

magnetic field lines. Model parameters: 9=0; Rss=100RJ; R2=65RJ; Bt=−2.5 nT; RD1=92RJ; RD2=18.4RJ; BDC=2.5 nT. The

constant latitude curves in the equatorial plane are from 72◦ to 84◦, and in the tail cross section from 82◦ to 90◦.

the total pressure must be constant. We propose that the

plasma pressure pm inside the plasma disc is equal to the

magnetospheric field pressure B2
m/2µ0 outside the disc. This

relation is correct at the subsolar point, too (Caudal, 1986;

Caudal and Connerney, 1989). This conclusion is supported

by observations made during the first Ulysses pass by Jupiter

at the beginning of February 1992 (Hawkins et al., 1998).

For Rss=100RJ , the model calculations give

pms=pB≃8.75 pPa. For arbitrary pswJ a good ap-

proach for pms is

pms=8.75 108

R4
ss

pPa,

because BmJ∼r−2 is the main term of BmJ .

Finally, we write the pressure balance equation:

pswJ=0.58p0J=13.3
108

R4
ss

(

1 +
26.3

Rss
+

511

R2
ss

)

pPa. (24)

With good accuracy the solution of Eq. (24) can be pre-

sented as

Rss =

(

39.81

p0.23
swJ [nPa]

)

RJ . (25)

In Fig. 11 a comparison of our solution with the results

obtained by Huddlestone et al. (1998) is shown. For both

axes in Fig. 11 the logarithm scales are used. The results

from Huddlestone et al. (1998) give a line which is described

by equation:

Rss =
35.5RJ

p0.22
sw [nPa]

. (26)

The curve derived from the model calculations (Eq. 25)

is slightly above, but still within the error bars of the re-

sults from Huddlestone et al. (1998), based on Voyager 1

and 2 data (Eq. 26). Our result is in good agreement with

that of Slavin et al. (1985), who examined Pioneer and Voy-

ager dayside data. Slavin et al. (1985) found a pswJ depen-

dence to the power −0.23 for the magnetopause subsolar dis-

tance. It coincides with the slope of our Rss dependence on

pswJ . The average magnetospheric scale normalized to av-

erage solar wind dynamic pressure (pswJ≈0.1 nPa) for all

magnetopause crossing studied by Huddlestone et al. (1998)

is 69.1RJ . The solution of Eq. (24) gives 67.6RJ .
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Fig. 9. Measured by SWOOPS plasma density in the course

of the bow shock crossing by Ulysses during the first Jupiter

flyby, February 1992. The bow shock position is marked by a

dashed vertical line. Data (SWOOPS, PI J. L. Phillips LANL,

USA) are received by using the COHOWEB system, NSSDC,

NASA/GSFC, USA; ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/

ulysses/plasma/swoops/jupiter.

4 Open Jovian magnetosphere

Belenkaya (2003, 2004) showed that the model allows one

to not only calculate the magnetospheric magnetic field ev-

erywhere in the magnetosphere, but also to take into account

the interplanetary magnetic field (IMF). Including currents

on the magnetopause, which shield all magnetospheric mag-

netic field sources, we can calculate the effects caused by the

IMF penetration into the magnetosphere, in particular, the

electric field created by the MHD solar wind generator.

As it was shown by Alexeev (1986), in spite of the full

screening of the inner magnetospheric fields by the magne-

topause currents, during the flowing of the solar wind pass,

the paraboloid of revolution of the interplanetary magnetic

field partially penetrates the magnetosphere. For the case

of Jupiter, the ratio of the penetrated field value (b) to that

outside of the IMF (BIMF ) is named kJ . The existence of

the plasma flow out of the magnetosphere leads to differ-

ent mechanisms of the magnetic field penetration through the

boundary plasma-field (magnetopause) along two antiparal-

lel directions perpendicular to this boundary. The solar wind

Fig. 10. Measured by SWOOPS plasma velocity in the course

of the bow shock crossing by Ulysses during the first Jupiter

flyby, February 1992. The bow shock position is marked by a

dashed vertical line. Data (SWOOPS, PI J. L. Phillips LANL,

USA) are received by using the COHOWEB system, NSSDC,

NASA/GSFC, USA; ftp://nssdcftp.gsfc.nasa.gov/spacecraft data/

ulysses/plasma/swoops/jupiter.

magnetic field partially penetrates into the magnetosphere,

while the magnetospheric magnetic field drifts away by the

flow in the magnetosheath. In Paper 1 it was shown that for

the typical value of southward IMF (0.5 nT) and kJ of the or-

der of 0.8, the magnitudes of width of the anti-corotational

layer in the equatorial noon-dawn outer Jovian magneto-

sphere, calculated in the presented model and measured by

the Ulysses, are close to each other.

The Jovian atmosphere provides a viscous transfer of mo-

mentum from the rotating interior of the planet up into the

ionosphere, where the plasma is set into corotation by the

collisional friction between the ions and the neutral parti-

cles. The corotation electric field is transmitted outward into

the magnetosphere by highly conducting magnetic field lines

(Hill, 1979). In Jupiter’s magnetosphere, corotation is gen-

erally considered to break down beyond the “Alfvén point”,

LA, at which�JLA=VA, where VA is the local Alfvén speed

(Hill, 1979). On the other side, we assume that the inter-

planetary magnetic field normal component to the magne-

topause and interplanetary electric field component tangen-

tial to the magnetopause penetrate into the magnetosphere
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Fig. 11. Comparison of the solution of Eq. (24) (upper line) with the results by the analysis of Huddlestone et al. (1998) based on Voyager 1

and 2 data (bottom line).

with coefficient kJ≤1. The solar wind electric potential gen-

erated at the Jovian magnetopause can be mapped along

equipotential magnetic field lines into the magnetosphere up

to the ionosphere along the highly conducting magnetic field

lines. It was shown (see Paper 1) that the IMF redistributes

rotation momentum in the Jovian magnetosphere.

Figures 12 and 13 (see also Paper 1) show electric equipo-

tentials for the above model for the southward and north-

ward IMF, respectively. Solid curves mark equipotentials

caused by the planet’s rotation, and dash-dotted curves are

the equipotentials of the solar wind electric field penetrated

into magnetosphere. It was supposed that the IMF (with a

value of ∼0.5–1 nT) penetrates into magnetosphere with a

coefficient of kJ∼0.8.

As is seen from Figs. 12 and 13, behind the region of

corotation in the equatorial plane, the antisunward flow takes

place independent of the sign of Bz IMF. Taking into account

the observed corotation braking near the equatorial plane, in

Paper 1 it was obtained that in the noon outer low-latitude

Jovian magnetosphere, the anti-corotational and antisunward

flows exist. Such flows were observed by Ulysses enter-

ing Jupiter’s magnetosphere when IMF Bz was southward

(e.g. Staines at al., 1993). Contrary to the case of southward

IMF, for northward solar wind magnetic field, corotation ex-

ists in the low-latitude Jovian magnetosphere out to the day-

side magnetopause, and beyond the neutral line a nightside

outflow takes place in accordance with the Pioneer 10 and

Voyagers measurements (Krimigis et al., 1979; Cheng and

Krimigis, 1989; Kane et al., 1992).

Meanwhile, in Figs. 14 at the scheme of the thermal

plasma flows in the Jovian and terrestrial magnetospheres

Brice and Ioannidis (1970) proposed that beyond corotation

in Jupiter’s tail the sunward motion exists. This scheme of

the convection in the Jovian magnetosphere was suggested to

be analogous with the case of the Earth in the time when in-

situ observations were absent. However, during the Ulysses,

Pioneer and Voyager measurements the antisunward motions

in the tail were measured.

Cheng and Krimigis (1989) proposed a global model of

plasma convection in Jupiter’s equatorial magnetosphere de-

scribed by an electric potential

U = k1(r sin θ)−1 + k2y (27)

(Brice and Ioannidis, 1970), where r sin θ is a radius in

the cylindrical coordinate system, and Y is directed to dusk

(r and y are measured in RJ). Here k1=�JB0JR
2
J , where

B0J=4.2·105 nT is the magnetic field at Jupiter’s equator;

�J≈1.76·10−4 s−1 is an angular velocity of Jupiter’s rota-

tion. The value of k1 is equal to k1=�JB0JR
2
J ≈377 MV.

Function k2 is determined as k2=kJVSWBIMFRJ, where kJ is

a coefficient of IMF penetration, VSW≈420 km/s is the solar

wind velocity, and BIMF≈1 nT is the IMF value. The magni-

tude of k2≈3 kV for kJ≈0.1 is given, as well as of k2≈30 kV

for kJ≈1. Equation U=k1ρ
−1+k2y=0 is fulfilled for south-

ward IMF at y=−354RJ for kJ≈0.1 and at y=−112RJ for

kJ≈1. Thus, according to Eq. (27) of Cheng and Krim-

igis (1989), using the presentation of the electric potential

by Brice and Ioannidis (1970), the corotation field is equal

and antiparallel to the field generated by the solar wind in

the dawn side far out of the magnetosphere for kJ≈0.1, and

probably inside the magnetosphere, near the magnetopause,

for kJ≈1.

So, the values of convection and corotation potentials with

different signs (for Bz<0) become comparable in the dawn

sector of the magnetosphere only for the relatively large

kJ≈1. From Fig. 14, however, it follows that the corota-

tion and convection plasma flows are parallel to each other

in the morning, which is not supported by observations and

our calculations (see Paper 1 and references therein). Thus,

the proposed model of the Jovian magnetospheric magnetic

field allows one to correct the ideas about the influence of the

solar wind electric field on Jupiter’s environment.
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Fig. 12. Equatorial projection (solid curves) of lines of constant ionospheric latitude (the corotation electric equipotentials). The dash-dotted

curves are the equatorial projections of the solar wind electric equipotentials y=const with steps δy=25RJ; δU=0.3 MV. The dotted curve

marks the magnetopause.

5 Conclusions

A model which allows us to investigate the IMF and solar

wind influence on Jupiter’s magnetosphere is constructed.

The main effort was directed at the construction of the dy-

namic model of the Jovian magnetosphere. The magne-

tospheric dimension scale (magnetopause subsolar distance

Rss) depends on the solar wind dynamic pressure pswJ to

the power –0.23. This law is derived by us as a solution of

the balance equation at the subsolar point. It coincides with

the previous findings by Slavin et al. (1985) and Huddleston

et al. (1998). A comparison of the presented magnetic field

model with the Ulysses magnetometer data during its first

Jupiter flyby shows a good agreement.

Solar wind dynamic pressure at the magnetopause cross-

ing time can be estimated by using plasma data upstream

of the bow shock. This estimation gives the pressure value

18 pPa. Substracting from it the measured magnetospheric

magnetic field pressure 8.75 pPa shows that the magneto-

spheric plasma pressure is equal to the magnetic pressure at

the subsolar point.

The magnetospheric dimension scale measured by Ulysses

is about twice comparing to dipole magnetosphere (Earth’s

type). Such increasing of the subsolar distance is caused by

the magnetodisc forming. The magnetodisc plasma pushes

out the magnetic field from the disc region and cancels nor-

mal to the disc surface magnetic field component. It trans-

ports magnetic flux from the inner magnetosphere to the

magnetopause and changes the dipole magnetic field depen-

dence r−3 to a slower function r−2. An effective dipole

magnetic moment is bigger than the Jovian dipole moment

by ∼2.6 times. The centrifugal force of the magnetodisc

plasma generated by Io results in the fact that just at the

magnetopause the plasma energy approximately equals the
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Fig. 13. Three-dimensional Jovian magnetosphere for northward IMF. Equipotentials of the corotation (solid curves) and of the solar wind

(dash-dotted curves) electric field on the magnetopause and on the equatorial plane. The IMF components are: B0x=−0.02 nT, B0y=0,

B0z=0.5 nT; the coefficient of IMF penetration is kJ=1. For the dash-dotted curves, δy=50RJ and δU=0.75 MV. For the solid curves on the

equatorial plane (from the outer to inner) the latitudes and electric corotation potentials are: 80◦, 0.4 MV; 78◦, 1.4 MV; 76◦, 4.3 MV; 74◦,

7.6 MV; 0◦, 356 MV, respectively. For the solid curves on the magnetopause (from the outer to inner) the corresponding values are: 81◦,

0 MV; 82◦, –1.9 MV; 84◦, –5.1 MV; 86◦, –7.4 MV; 88◦, –8.8 MV; 90◦, –9.2 MV, respectively.

Fig. 14. Equatorial sections of the terrestrial and Jovian magnetospheres. Thermal plasma flows are shown by arrows. (A) Earth’s mag-

netosphere; dashed curve marks the boundary between the corotation and sunward motion. (B) Jupiter’s magnetosphere; dashed circle is a

suggested boundary between the corotation and sunward motions (Brice and Ioannidis, 1970).
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magnetic field energy (in agreement with the results by Cau-

dal, 1986; Caudal and Connerney, 1989).

We demonstrate the model results for a dipole tilt angle

equal to zero, but the model expressions give us a possi-

bility to calculate the magnetospheric field for an arbitrary

tilt angle. We parameterized the model by the Ulysses flyby

data, but in the future plan to repeat the same procedure for

other available spacecraft magnetic data. For the planetary

inner magnetic field we used a dipole term. However, for

calculations near the planet, it is better to use the O6 (Con-

nerney, 1993) or any other more precise inner source model.

For simplicity we did not use the refined-shaped magnetodisc

model and FAC field. In the vicinity of the real magnetodisc,

it can give a non correct magnetic field strength, as one can

see in Fig. 5.

A knowledge of the magnetospheric dimension scale de-

pendence on the solar wind dynamic pressure allows us to

find the model parameters for arbitrary solar wind pressure.

It gives a possibility to study in the future the Jovian magne-

tospheric response to the solar wind shock or other type of

solar wind pressure jump.
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