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I. INTRODUCTION

NOWADAYS almost 90 pct of the world steel pro-
duction is being produced in continuous casting installa-
tions;[1] therefore, this is a technology with a very impor-
tant economical impact. The continuous casting technology,
which was originated almost 50 years ago and which in
1970 attained only 4 pct of the world steel production,[1]

is still undergoing important developments due to the fact
that the requirements on the product quality and on the
production efficiency are continuously being increased.
These developments incorporate not only equipment re-
vamps but also updates in the installation setups and in
their process controls.

The first requirement to develop a successful setup and
a tight control of any process is to have an in-depth knowl-
edge of the process technological windows, that is to say,
of the locus in the space of the process control variables,
where the products meet the required specifications.[2,3]

Computational models are nowadays a powerful and re-
liable tool to simulate different thermomechanical-metal-
lurgical processes; hence, they are increasingly being used
to investigate the technological windows of different
processes in the steel industry, such as continuous cast-
ing, hot rolling, cold rolling, heat treatments, etc.[4]

A schematic representation of a continuous casting in-
stallation for steel slabs in shown in Figure 1, where we
can identify the following process sequence:

(1) The liquid steel is poured into a copper mold, which
is refrigerated with an external water jacket. The cool-
ing of the steel and its solidification inside the mold

progress from the outside to the inside; therefore, the
external solidified steel shell increases its thickness
as the steel strand transits the mold.

The physical process inside the mold is quite com-
plex because the solidified steel shell and the mold
are strained due to thermal and mechanical loads (fer-
rostatic pressure). While at the meniscus the steel is
in contact with the mold intrados, downstream, a gap
is opened between the strand and the mold. However,
in some cases, the mold is shaped so as to regain its
contact with the strand at its lower sections.[5]

Usually, the slab molds are equipped with thermo-
couples located through the thickness of its copper pi-
ates; the indications of these thermocouples are the
input to a heuristic algorithm that provides break-out
alarms.

The mathematical description of the heat transfer
between the strand and the mold requires a model that
couples the heat-transfer equations with the descrip-
tion of the mold thermomechanical deformations.[6]

An alternative procedure is to use an empirical law
that describes the heat flow between the steel strand
and the mold, e.g., the Savage–Pritchard[7] equation
and its modifications proposed by Brimacombe and
Weinberg.[8] As it is well known, this approach may
introduce important deviations between the model
predictions and the actual temperature distribution.

Another alternative we develop in the present arti-
cle is to use the indications of the mold thermocou-
ples to evaluate, via an inverse analysis procedure,
the heat-transfer coefficients that govern the thermal
process in the mold; in this way, an uncoupled heat-
transfer analysis can be performed.

(2) The steel strand exits the mold and continues its so-
lidification. The distance, measured along the slab
centerline, between the meniscus and the section at
which the strand solidification is completed is called
the metallurgical length.

After existing the mold, the steel strand is cooled
with water jets and also by interchanging heat with
refrigerated guide rolls.



In a continuous casting installation, in order to gain pro-
ductivity, the strand extraction velocity has to be increased
as much as possible; however, this means that

(1) the metallurgical length increases,
(2) the stresses acting on the solidified shell become

larger, and
(3) bulging between cylinders becomes more critical due

to the smaller thickness of the solidified shell.

Of course, the aforementioned phenomena depend on the
chemical composition of the steel being casted. To be able
to quantify those phenomena, a thermomechanical-metal-
lurgical model of the continuous casting process is required.

The computational system that we developed, CCAST,
is composed of two coupled modules: CCAST-D and
CCAST-I.

In the second section of this article, we discuss the robust
numerical algorithm that we implemented in the finite ele-
ment code CCAST-D, to solve the direct problem for the cool-
ing of a steel strand; this model incorporates the description
of phase transformation phenomena: from the liquid phase
to the solid phase and also solid phase transformations.

In the third section of this article, we present the in-
verse analysis methodology developed to identify the heat-
transfer coefficients that we use to model the steel strand
solidification inside the mold. This inverse analysis was
implemented in the module CCAST-I.

In the fourth section of this article, we discuss a set of
numerical examples: the first one is a parametric analysis
of a slab’s continuous casting facility; in this example, we
investigate using CCAST-D the effect of the different op-
erational parameters on the casted slabs temperature map
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and on their metallurgical length. In the second example,
we investigate the stability of the CCAST predictions
when the input values are perturbed. In the third example,
we discuss the effect of the initial guess on the output of
the inverse analysis, and finally, in the fourth example,
we present an actual industrial application.

II. AN ALGORITHM FOR MODELING 

HEAT-TRANSFER PROBLEMS INCLUDING

PHASE TRANSFORMATIONS

The numerical modeling of heat-transfer problems in-
cluding phase transformation phenomena has been the sub-
ject of much research; among others, we refer to the works
of Morgan et al.,[9] Rolph and Bathe,[10] Tamma and
Namburu,[11] Song et al.,[12] Swaminathan and Voller,[13]

Crivelli and Idelsohn,[14] Storti et al.,[15] and Fachinotti
et al.[16]

Based on those previous research efforts, we imple-
mented a formulation for modeling the thermal process in
the continuous casting of steel; this formulation incorpo-
rates two phase changes: liquid to solid and a solid-state
phase transformation (phase d to g and g to a).

In the implemented formulation, we start from the heat
balance equation:

[1]

where

H � enthalpy per unit volume of the reference config-
uration,

k � coefficient of heat conduction,
T � temperature, and

qV � heat generated per unit volume of the reference
configuration.

For a phase change in steel, either from liquid to solid
or inside the solid phase, the temperature is not constant
as in pure substances such as water. In Figure 2,[10] we
represent a typical curve H � H(T ), where L is the latent
heat per unit mass and r is the density.

For low alloy steels of different chemical compositions,
we obtain the curves H � H(T ) from Reference 17. In
Figure 3, we show the corresponding curves of enthalpy,
per unit mass, for a typical low carbon steel and for a peri-
tectic steel.

Taking into account the dependence H�H(T ), we can
write Eq. [1] as

[2]

We can also calculate

[3a]

[3b]

[3c]
dH

dT
 � rl cl ( for T � Tl)

dH

dT
 � (Hl � Hs)/(Tl � Ts)  ( for Ts � T � Tl)

dH

dT
 � rs cs ( for T � Ts)

dH

dT
 
�T

�t
� § � (k §T ) � qV

�H

�t
� § � (k §T) � qV

Fig. 1—Scheme of a continuous casting installation for steel slabs.



Notice the following in the preceding equation:

(1) The vectors (unknown for the step) and (data
for the step) contain the nodal temperatures at times
t 	 �t and t, respectively.

(2) The matrix is the heat capacity matrix. Apply-
ing consistently the Galerkin weighted residual
method, and considering to be constant inside
each element, we obtain for an element e

[5]

In Eq. [5], the symbol [�]O indicates that the term
between brackets is calculated at the element center;
and H is the temperature interpolation matrix inside
the 2-D element.[18] Following what has been previ-
ously discussed in the literature, we use, instead of

t	�t
C

(e)
�

1

�t
 �

V
(e)

t	�t c dH
dT
d

O

H
T H dy

dH/dt

t	�t
C

t
T

t	�t
T
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Fig. 2—Enthalpy as a function of temperature for a typical steel.

Please notice the following:

(1) Equation [3a] is valid for T � Ts, where Ts is the
solidus temperature. In this equation, rs is the solid
density and is the solid specific heat per unit mass
(we assume it constant). Notice that the solid proper-
ties may correspond to the g or a phase or to a state
where we have a phase transformation; in this case, a
formula similar to Eq. [3b] is used.

(2) Equation [3b] is valid for Ts � T � Tl, where Tl is the
liquidus temperature. In this equation, Hl and Hs are
the enthalpies per unit volume at the liquidus and
solidus lines, respectively (we assume dH/dT to be
constant inside the mushy zone).

(3) Equation [3c] is valid for T � Tl. In this equation, rl

is the liquid density and is the liquid specific heat
per unit mass (we assume it to be constant).

In order to simulate the effect of the convective heat
transfer inside the liquid pool, we consider a majorated
coefficient of heat conduction inside it[8] (on the basis of
our numerical experimentation, we use k � 8 ksteel).

For solving Eq. [2] in the continuous casted strand, we
formulate a transient two-dimensional (2-D) finite-element
model in which a rectangular cross section moves through
the continuous caster exchanging heat first with the mold
walls and afterward with the secondary cooling system
(Figure 1). For developing this 2-D model as it is usually
done, the heat transfer in the longitudinal direction is ne-
glected. The cross section is discretized using four-node
temperature-interpolated elements.[18]

We use the implicit Euler-backward method[18] to inte-
grate the transient system of ordinary differential equa-
tions obtained via the Galerkin weighted residuals scheme.
For solving the step from time t to time t 	 �t, we get for
the case qV � 0

[4]

�
t	�t

Fc 	
t	�t

Fq 	
t	�tCtT

C t	�t
C 	 (t	�t

Kk 	
t	�t

Kc) D t	�t
T

cl

cs



the matrix in Eq. [5], the corresponding lumped ca-
pacity matrix, which for the four-node element of unit
thickness is

[6]

In Eq. [6], A(e) is the 2-D element area.

(3) The matrix is the conduction matrix. Applying
consistently the Galerkin weighted residual method,
we obtain for an element e

[7]

In Eq. [7]

[8]

(4) When on a surface SC with external normal we

prescribe boundary conditions of the form 

we have to calculate

the matrix

[9]

where is the interpolation matrix particularized for
the surface SC.

(5) The load vector also comes from the boundary
conditions discussed in the previous item:

[10]

(6) The load vector incorporates the heat flow that
is prescribed on a surface SQ (e.g., the heat flow im-
posed on the strand inside the mold):

[11]

where is the imposed heat flux.
Equation [4] is nonlinear; therefore, it is necessary to

solve them using an iterative technique. For the ith itera-
tion, the equations are

[12a]

[12b]

The preceding iterative scheme is complemented using
a line search algorithm.[18,19]

The iterative procedure is continued until 
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¥
III. THE STEEL SLABS CONTINUOUS

CASTING THERMAL MODEL

The accurate description of the heat flow between the
solidifying steel strand and the mold plates is fundamen-
tal information for the development of the thermal model
of a continuous casting process, for the evaluation of dif-
ferent casting powders and, in general, for the evaluation
of the process performance under different operational
parameters and for different steel chemical compositions.

The law of Savage–Pritchard,[7] which is often used for
modeling the heat flow between the steel strand and the
mold in the continuous casting of slabs, can only be con-
sidered a qualitative approach and does not incorporate
enough information for analyzing the effect of different steel
chemical compositions or different casting powders, unless
an experimental parameters determination is performed.

The exact modeling of the heat flow between the steel
and the mold requires the prediction of the gap or contact
pressure between them; hence, it requires the solution of
a coupled thermomechanical problem.[6] This route is in-
tellectually very rewarding because it is self-contained and
it does not require the input of field data; however, it is
not a practical engineering approach because it is numeric-
ally quite involved and convergence may not be achieved.

In this section, we present an inverse analysis proce-
dure to evaluate the steel/mold heat flow using the output
of the thermocouples installed inside the mold copper
plates, as shown in Figure 4.

For the heat flow evaluation, we iteratively couple the
inverse analysis module CCAST-I with the direct analy-
sis module CCAST-D. The calculation in the CCAST sys-
tem proceeds as shown in Figure 5 (external loop).

A. The Copper Mold Temperature Model

In Figure 6, we show the finite-element meshes that we
used to analyze the four copper plates of the slab’s conti-
nuous casting mold. In this figure, we also indicate the
position of the available thermocouples.

For modeling the temperature distribution inside each
copper plate, we consider

(1) steady-state heat exchange regime,
(2) constant thermal conductivity coefficient (kmold �

350 ),
(3) no heat flux between copper plates, and
(4) convective heat exchange between the mold copper

plates and the water in the cooling channels,[20]

[13a]

[13b]

[13c]

[13d] cpwater � 4181 
J

kg K
 (water specific heat)

Dh �
4 Transverse area of water channels

Perimeter of water channels

acpwater mwater

kwater

b0.4

hwater Dh

kwater

� 0.023 arwater ywater Dh

mwater

b0.8

 

 qwater � hwater(Tmold � Twater)

W
m K
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Fig. 4—Thermocouples installed in the mold of a steel slab’s continuous casting installation.

[13e]

[13f]

[13g]

[13h]

[13i]

[13j]

(5) A heat flux between the steel shell and the mold,

[14]

in Eq. [14], hsteel /mold, is the heat-transfer coefficient
to be evaluated using the inverse analysis procedure;
this coefficient is a function of the position on the
mold plate surfaces. Tsteel: the temperature on the steel

qsteel/mold � hsteel/mold (Tmold � Tsteel)

ywater � 7 
m

s
 average water velocity

areas in contact with the cooling water
Tmold: temperature distribution in the mold

variation from the inlet to the outlet is assumed
Twater: cooling water temperature, a linear

 mwater � 0.000968 
kg

ms
 (water viscosity)

 rwater � 998 
kg

m3
 (water density)

 kwater � 0.602 
W

mK
 (water thermal conductivity)

shell surface, function of the position on that surface.
Tmold: the temperature on the considered mold plate
inner surface, function of the position on this surface.

(6) Radiative heat exchange between the mold walls
above the free casting powder surface, this surface,
and the atmosphere (we use a radiation shape factor
of 0.45 for these surfaces[20]).

(7) The remaining surfaces are assumed adiabatic.

B. Inverse Analysis

The field data for each copper plate are as follows.

(1) The thermocouple measurements in the mold plates,
T i

M, for i � 1 to Nth, where Nth is the number of
thermocouples installed in each plate under analysis.

(2) The energy extracted by the plate cooling water (QM
w )

is

[15]

where

� measured water flow rate, and

� measured water temperature increment.�T
M
water

G
M
water

Q
M
w � G

M
water rwater cpwater �T

M
water
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Fig. 5—Iterative loop between the inverse analysis module (CCAST-I) and the direct thermal solver (CCAST-D) (external loop).
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Fig. 6—Finite-element meshes used to analyze the copper mold plates.



(6) Replacing Eqs. [18a] and [18b] in Eqs. [17a] and
[17b], we get the following system of linear equations:

[19a]

[19b]

The preceding equation system can be written as

[20]A x � b

Q
M
w �

(k�1)
Q

FEM
w

ah(k)
steel / mold, j � h

(k�1)
steel / mold, jb �a

Ncoef

j�1

�Q
FEM
w

�h steel/mold, j

`
h

(k�1)
steel / mold

T
M
i �

(k�1)
T

FEM
i   i � 1 p   N th

ah(k)
steel / mold, j � h

(k�1)
steel / mold, jb �a

Ncoef

j�1

�T
FEM
i

�h steel / mold, j

`
h

(k�1)
steel / mold
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Fig. 7—Water cooling zones.

Fig. 8—Water jet arrangement in each cooling zone.

For each of the four plates, we assume a discretized
heat-transfer coefficient function:

[16]

where the functions Nk are piecewise constant interpola-
tion functions. We seek the set of values hsteel /mold,k (k �

1 to Ncoef) that satisfies the conditions

[17a]

[17b]

In the above equations, (�)FEM is the value of (�) deter-
mined using the finite-element model.

The evaluation of the heat-transfer coefficients proceeds
as follows:

(1) We start the inverse analysis assuming a set h(0)
steel/mold,k

(k � 1 to Ncoef) (initial guess), or in case the external
loop has already started, we use as initial set, the values
obtained from the previous external iteration (Figure 5).

(2) We use the preceding coefficients, together with the
corresponding slab surface temperature distribution
calculated using CCAST-D, to calculate the values of

and using the mold plate model; nor-
mally, these values will not satisfy the conditions in
Eqs. [17a] and [17b].

(3) k � 0 (start the iterative procedure)
(4) k � k 	 1
(5) We can write using the first term of a Taylor’s expansion,

[18a]

[18b]

ah(k)
steel / mold, j � h

(k�1)
steel /mold, jb

a
Ncoef

j�1

�Q
FEM
w

�h steel/mold, j

`
h

(k�1)
steel / mold

(k)
Q

FEM
w �

(k�1)
Q

FEM
w  	

ah(k)
steel/mold, j � h

(k�1)
steel/mold, jb   i � 1 p  N th

a
Ncoef

j�1

�T
FEM
i

�hsteel/mold, j

`
h

(k�1)
steel /mold

(k)
T

FEM
i �

(k�1)
T

FEM
i  	

(0)
Q

FEM
w

(0)
T

FEM
i

Q
M
w � Q

FEM
w � 0

T
M
i � T

FEM
i � 0  i � 1 to N th

hsteel/mold � a
Ncoef

k�1

Nkhsteel/mold,k



where

[21]

[23]

In Appendix A, we discuss the calculation of the deri-
vatives used in Eq. [22] (sensitivity coefficients).

(7) The linear system Eqn. [20] does not have a unique
solution because there are more unknowns than equa-
tions (in general, Ncoef 
 Nth	1). Our purpose is to
choose one of those infinite solutions, the one that
best fits the physics of the problem.
(a) The first condition that we impose is that from all

possible solutions, we choose the solution with
the minimum norm; hence, we impose

[24]

To improve the solution, we incorporate into the
functional to be minimized our physical knowl-
edge of the problem (a priori information).

(b) We know a priori that at the meniscus level,
the heat flow between the steel and the mold

� minimize 
1

2
 � x � 2 under the constraint in Eq. [20]

minimize 
1

2a
Ncoef

j�1

1h(k)
steel /mold,j � h

(k�1)
steel /mold,j 22

1QM
w �

(k�1)
Q

FEM
w 2 d

b
T

� c 1TM
1 �

(k�1)
T

FEM
1 2 p  1TM

N th �
(k�1)

T
FEM
N th 2

YA � I
x � h

(k)
steel/ mold � h

(k�1)
steel/mold
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has a local maximum; hence, the necessary
condition is

[25]

where n is the mold axial direction.
In order to solve the minimization problem in

Eq. [24] under the condition [25], we impose the
necessary condition for a maximum:

[26]

The interpolation functions adopted for the heat-
transfer coefficient are piecewise constant; there-
fore, to calculate the derivatives in the Eq. [26],
we use a finite difference operator: the matrix
LMAX. Hence, we rewrite Eq. [26] as

[27]

However, we also have to impose the sufficient
condition for a maximum. This condition can be

� minimize 
1

2
 gLMAX(x 	 h

(k�1)
steel/mold) g

2

minimize 
1

2
 gLMAX

h
(k)
steel/mold g

2

minimize g �h steel /mold

�n
g2
meniscus

�h steel/mold

�n
`
meniscus

� 0

Table I. Data for the Analyzed Cases*

Th w v Tw Te

Case (mm) (mm) (m/min) (°C) (°C) � �

Base 200 1000 1.4 30 80 0.8 4.0
1 200 700 1.4 30 80 0.8 4.0
2 200 1300 1.4 30 80 0.8 4.0
3 200 1600 1.4 30 80 0.8 4.0
4 180 1000 1.4 30 80 0.8 4.0
5 200 1000 1.2 30 80 0.8 4.0
6 200 1000 1.6 30 80 0.8 4.0
7 200 1000 1.4 25 80 0.8 4.0
8 200 1000 1.4 30 60 0.8 4.0
9 200 1000 1.4 30 80 0.8 3.0

10 200 1000 1.4 30 80 0.8 5.0
11 200 1000 1.4 30 80 0.9 4.0

*Th: slab thickness; and w: slab width. The analyses pro-
vided the results listed in Table II.

Table II. Analysis Results*

Case Lmet (mm) Tsmax (°C) Dlm (mm)

0 17,352 950 �144
1 17,337 950 986
2 17,354 950 �625
3 17,354 950 �1189
4 14,584 941 �28
5 14,656 912 9
6 20,333 982 �232
7 17,058 942 �137
8 17,350 950 �143
9 15,823 908 �71

10 18,593 982 �145
11 17,148 944 �124

*Lmet: metallurgical length measured along the strand axis;
Tsmax: temperature peak, on the slab upper face central line,
after exiting the water cooling zone; and Dlm: a measure of the
nonflatness of the solidification front zone defined in Fig. 9.

Fig. 9—Characterization of the solidification front shape.
�Q

FEM
w

�h steel /mold, Ncoef

 2
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(k�1)
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 2
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 2
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p�T
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 2
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(k�1)
steel / mold

[22]
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Fig. 10—(a) and (b) Typical solidification fronts.

2
 a ƒ ƒ –x ƒ ƒ 2 	 g—LMAX(–x 	 –h

(k�1)
steel/mold) g

2

under the constraint in Eq. [20]

	 a
2

a
i

�gi� 	 g—LSMT(–x 	 –h
(k�1)
steel/mold) g

2b

minimize 
1

2
 a ƒ ƒ –x ƒ ƒ 2 	 g—LMAX(–x 	 –h

(k�1)
steel/mold) g

2

� minimize 
1

2
 gLSMT(x 	 h

(k�1)
steel /mold) g

2

minimize 
1

2
 gLSMT h(k)

steel /mold g
2

Fig. 11—Results for case 0: (a) temperature distribution in the central
section and (b) temperature distribution in a transverse section at the exit
of the water cooling zones.

written for every element containing the menis-
cus level as

[28]

In Eq. [28] the i level is on the meniscus and
the j level is immediately below. Hence, by ad-
ding the sufficient condition in Eq. [27], we
obtain

[29]

In the preceding equation, a2 is a penalty factor
to be determined by numerical experimentation
and ��� are the Macauley brackets.

(c) We are seeking the heat-transfer coefficient dis-
tribution that approximates the actual heat flux
distribution (unknown) and that matches the mea-
sured temperatures. We can assume it to be a
smooth function; hence, we impose

[30]minimize g§2
h steel /mold) g

2

minimize 
1

2
 gLMAX(x 	 h

(k�1)
steel/mold) g

2

	 a
2

a
i

8gi 9

gi � (h steel/mold, j � h steel/mold,i) � 0

(a)

(b)
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It is also convenient, according to our numerical ex-
perience, that when the external loop advances (it-
erations between CCAST-D and CCAST-1 in Figure
5), we decrease the relative magnitude of the a priori
conditions, using a regularization parameter �; hence,
instead of Eq. [33], we use

[34]

[35]

where ITER is the number of external iterations.

(8) [36]

(9) Using the preceding equation in the mold finite-
element model, we calculate (k)Ti

FEM and (k)Qw
FEM.

(10) If

[37]
7TM

i �
(k)

T
FEM
i 72

ƒ ƒ TM
i ƒ ƒ

2
	

7QM
w �

(k)
Q

FEM
w 72

7QM
w 7 2 � TOL

–

h
(k)
steel/mold �

–

h
(k�1)
steel/mold 	

–

x

� � 2�(ITER�1)

	a
2

a
i

�gi� 	 g
—

L
SMT(

–

x 	
–

h
(k�1)
steel/mold) g

2bd 	
–

l
T(

–

A
–

x �
–

b)

minimize 
1

2
 a ƒ ƒ

–

x ƒ ƒ 2 	 �a g
—

L
MAX(

–

x 	
–

h
(k�1)
steel/mold) g

2

[33]

The minimization of the preceding functional allows
us to define the optimum vector hsteel/mold corre-
sponding to the adopted hypotheses and the set of ini-
tial values. Since there is a reduced number of ther-
mocouples, the adopted set of initial values (initial
guess) could condition the solution, especially in regions
far from the thermocouples (Section IV–C).

	 a
2

a
i

�gi� 	 g
—

L
SMT(

–

x 	
–

h
(k�1)
steel/mold) g

2b	
–

l
T(

–

A
–

x �
–

b)

Fig. 12 — Surface temperature distribution on the centerline of the
upper face: (a) case 0, (b) case 10 (maximum surface temperature),
and (c) case 9 (minimum surface temperature).

Fig. 13—Transversal surface temperature distributions at the exit of the
water cooling zones: (a) case 10 (maximum surface temperature) and
(b) case 9 (minimum surface temperature).

(a) (a)

(b)(b)

(c)
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Fig. 14—(a) through ( f ) Stability test.
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then the loop started at (1) has CONVERGED; if not
GO TO 4 (TOL is to be defined by the analyst).

IV. NUMERICAL EXPERIMENTATION

A. Parametric Analyses of a Steel Slab’s Continuous
Casting Facility

As a first example, we analyze, using only CCAST-D,
a slab’s continuous casting installation. In this first analy-
sis, we use for the steel/mold heat exchange, the Savage–

Pritchard empirical equation :

[38]

For the present analysis we use,

Also,

z: distance to the meniscus (m), and
y: casting speed (m/s).

In this first set of analyses, we use the heat flows given
by Eq. [38] in spite of our knowledge of the nonphysical
results that it produces at the mold exit: cancellation and
even inversion of the heat flow. We will improve the results,
in the following analyses, using our inverse analysis with
the information provided by the mold thermocouples.

A � 2680 W/m2 and B � 335 W/m2 s1/2

qsteel/mold � A � B B
z

y

In Figure 7, we show the different cooling zones down-
stream the mold exit, and in Figure 8, we indicate the
water cooling arrangement used in each zone. For each of
those zones, we use, for the heat exchange between the
cooling water and the solidifying steel shell, a convection
type heat-transfer model that takes into account the
radiative and convective phenomena. In this model, the
equivalent heat-transfer coefficient is

[39]

in Eq. [39], � is the slab’s emissivity coefficient (usually
between 0.8 and 0.9), k is the Boltzmann constant, Tslab

is the slab’s surface temperature, Te is the external radia-
tion temperature (between 60 °C and 80 °C), and Twater is
the temperature of the cooling water.

It is important to notice that the term hconv incorporates
into a simplified convection model a number of different
heat exchange phenomena:[22]

(1) heat exchange between the slabs and the guiding rolls,
(2) heat exchange between the slabs and the pool of water

on its upper surface,
(3) heat exchange between the slabs and the water that

flows under the rolls,
(4) heat exchange between the slabs and the cooling water

impinging its surfaces.

For some analyses (e.g., the fatigue of the solidified
shell), it is of interest to model in detail the above phe-

h steel/water � �k 
[(Tslab)

4
� (Te)

4]

(Tslab � Twater)
	 hconv

Table III. Average and Perturbed Set of Values Used in the Stability Test

Left Narrow Side x– s x–� Right Narrow Side x– s x–�

(L/min) 400.62 0.91 402.72 (L/min) 400.13 1.72 399.38

(°C) 9.65 0.17 9.70 (°C) 10.08 0.14 10.25
TC1_Up (°C) 142.53 2.64 149.40 TC12_Up (°C) 174.54 2.81 170.98
TC1_Lo (°C) 134.79 3.53 128.84 TC12_Lo (°C) 146.89 3.14 141.82
TC2_Up (°C) 158.15 2.39 162.42 TC13_Up (°C) 150.51 2.42 156.83
TC2_Lo (°C) 137.88 2.75 131.45 TC13_Lo (°C) 126.05 3.39 121.12

Fixed Side x– s x–� Movable Side x– s x–�

(L/min) 3204.66 14.06 3192.49 (L/min) 3199.98 16.87 3234.77

(°C) 9.03 0.14 9.41 (°C) 8.62 0.16 8.98
TC3_Up (°C) 32.39 0.24 32.90 TC14_Up (°C) 33.75 0.22 33.51
TC3_Lo (°C) 32.41 0.23 32.39 TC14_Lo (°C) 33.37 0.22 33.65
TC4_Up (°C) 117.55 3.62 115.56 TC15_Up (°C) 122.47 2.40 117.46
TC4_Lo (°C) 95.45 4.81 87.07 TC15_Lo (°C) 115.93 1.78 117.25
TC5_Up (°C) 124.62 2.33 125.70 TC16_Up (°C) 133.68 1.51 136.68
TC5_Lo (°C) 95.17 1.41 93.43 TC16_Lo (°C) 123.54 1.16 120.31
TC6_Up (°C) 124.22 2.36 118.98 TC17_Up (°C) 133.24 1.62 129.44
TC6_Lo (°C) 98.65 1.15 97.13 TC17_Lo (°C) 123.45 4.69 124.65
TC7_Up (°C) 125.59 2.59 126.59 TC18_Up (°C) 131.29 1.90 126.94
TC7_Lo (°C) 105.49 1.61 101.49 TC18_Lo (°C) 113.24 7.30 134.66
TC8_Up (°C) 121.11 2.80 121.00 TC19_Up (°C) 133.91 1.44 131.56
TC8_Lo (°C) 102.00 2.20 103.01 TC19_Lo (°C) 125.66 4.20 132.55
TC9_Up (°C) 124.44 2.48 125.37 TC20_Up (°C) 129.15 1.30 129.01
TC9_Lo (°C) 97.30 1.03 99.18 TC20_Lo (°C) 123.11 1.48 121.97
TC10_Up (°C) 129.05 3.05 131.12 TC21_Up (°C) 125.93 2.78 122.53
TC10_Lo (°C) 96.16 3.53 90.94 TC21_Lo (°C) 114.77 4.18 105.90
TC11_Up (°C) 34.58 0.31 34.92 TC22_Up (°C) 32.63 0.25 32.98
TC11_Lo (°C) 32.44 0.21 32.26 TC22_Lo (°C) 34.43 1.44 37.20

�T
M
water�T

M
water

G
M
waterG

M
water

�T
M
water�T

M
water
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M
waterG
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water
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Fig. 15—Thermocouple distribution on the narrow plate of the instru-
mented slabs mold.

Fig. 16—(a) and (b) Three sets of initial values for the narrow plate
analysis.

nomena.[23] However, for our purposes, the detailed analy-
sis is not required and therefore we will lump all those ef-
fects into the coefficient hconv that we calculate using[24]

[40]

The preceding equation is an empirical formula in which
we use the following units:

and the corresponding constants are[24]

In order to investigate the sensitivity of the model re-
sults to the different operational parameters and model
constants, we have analyzed the different combinations
shown in Table I.

In Figure 10, in order to illustrate the significance of
Dlm we present two results, one with Dlm 
 0 and the
other with Dlm � 0.

Some comments on the model results are provided as
follows.

1. In Figure 11, we present the results for case 0, which
are going to be used as a basis for the forthcoming
comparisons.

2. For slabs of constant thickness (200 mm), the maximum
metallurgical length corresponds to the maximum cast-
ing speed, while the minimum metallurgical length cor-
responds to the minimum casting speed. Hence, from

a � 4

c  � 0.0075

b  � 0.55

a  � 1570

[Tw] � °C

[qw]: water specific flow rate �
l

m2 s

[hconv] �
W

m2 
°C

hconv �
a (qw)b (1 � cTw)

a

all the parameters considered, the casting speed is the
one with the most important effect on the metallurgical
length. As we can also see (case 4), the slab thickness
has an important effect on the metallurgical length.

3. In Figure 12, we present the surface temperature dis-
tribution on the centerline of the upper face for cases
0 (base case), 10 (maximum Tsmax), and 9 (minimum
Tsmax). To illustrate the temperature distribution across
the slab’s width, in Figure 13, we graph the results for
the temperature distribution on the slab’s upper face,
at the exit of the water cooling zone, for cases 10 and
9. It is evident from the analyzed cases that Tsmax is
strongly influenced by the casting speed and by the
water distribution inside each cooling zone.

4. The factors that influence the nonflatness of the solid-
ification front, as measured by Dlm, are the slab’s
width (major influence), the slab’s thickness, and the
casting speed.



Also,

In Figure 14, we compare the results of both analyses
for two thermocouple lines, and in Table III, we present
the set of values used to run them. It can be observed that
the results corresponding to the average and perturbed set
of values are almost coincident; therefore, we can assess
that the developed algorithm (CCAST-D 	 CCAST-I)
provides very stable results.

�T
�
water � �T

average
water 	 3�sTW

G
�
water � G

average
water 	 3 �sGW
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B. Stability Test

In this subsection, we test the stability of the solutions
provided by the CCAST system; for this purpose, we con-
sider a set of thermocouple indications obtained during a
period of time in which the setup of the operational vari-
ables was stationary. For each thermocouple, we consider
its average indication and its standard deviation and then
we run two analyses.

1. Using the average indication for each thermocouple.
2. Using a modified set of values: each thermocouple indi-

cation was modified using a random error proportional
to its standard deviation:

si: standard deviation of the set of thermocuple indi-
cations for Ti

�1 � � � 1 random variable

T
�
i � T

average
i 	 3�si

Fig. 17—(a) and (b) Results for h steel / mold obtained using the three sets
of initial values.



(b)

C. Effect of the Initial Values

As we discussed in Section III of this article, the set of
initial values that we use to start the inverse analysis (ini-
tial guess) may have an important influence on the calcu-
lation results; if this is the case, the calculation procedure
looses reliability. In this numerical example, we analyze
the influence of this initial guess.

For this purpose, we analyze, using CCAST, the narrow
left plate of the instrumented slab’s mold. We perform
three analyses for the same set of thermocouple indications
(Figure 15), but using three different sets of initial values
for the steel /mold heat-transfer coefficients (Figure 16).

In Figure 17, we present the results of the three ana-
lyzed cases in terms of the predicted values of hsteel /mold.
We observe that the three cases provide very close results
in the thermocouples neighborhood and that the results
present an acceptable spread in locations far from the
thermocouples. However, as we show in Figure 18, the
results obtained with the three sets of initial values are
very similar when we represent them in terms of the mold

predicted temperatures, except for the value of the peak
temperature at the meniscus level.

D. Analysis of an Industrial Case

We use the CCAST system with the information provided
by the thermocouples installed in a mold of SIDERAR
continuous casting facility (San Nicolás, Argentina).

The thermocouple’s data correspond to the average of
the data acquired during a period of 28 minutes.

The casted steel chemical composition is indicated in
Table IV.

In Figure 19, we show the temperature map predicted
by the system for the hot faces of the mold plates. These
maps do not show uniform temperature distributions due
to the geometries of the water cooling channels and of the
mold structure. Notice that the temperatures increase near
the mold exit due to the lack of cooling water in this area
of the analyzed mold.[25] In Figure 20, we represent the
steel/mold heat fluxes predicted by our model.
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Fig. 19—Temperature maps predicted by CCAST for the mold plate hot faces: (a) movable side of the mold, (b) right narrow side of the mold, (c) fixed
side of the mold, and (d) left narrow side of the mold.

(a)

(c) (d)



In Figure 21, we compare the phase distribution results
that were obtained, in a section located 800 mm down-
stream the meniscus, using

1. The complete CCAST system including the inverse
analysis module.

2. CCAST-D with the steel/mold heat fluxes provided by
the Savage–Pritchard equation adjusted to match the
total heat extraction measured in the actual mold.

In Figure 22, to appreciate the difference between both
approaches, we present a detailed comparison of the cor-
ner areas. The difference in these areas, at the mold exit,
is as large as 300 °C; this result indicates that the Savage–
Pritchard equation does not provide a good approximation
in those areas where the gap is larger. Similar results have
been reported in Reference 26.

V. CONCLUSIONS

In the present article, we reported the development of
a computational simulation system for modeling the solid-
ification process in a continuous casting facility for steel
slabs. The system couples a module for solving the direct
problem: the calculation of temperatures in the steel
strand, with an inverse analysis module that we developed
for evaluating the steel/mold heat fluxes from the infor-
mation provided by thermocouples installed in the conti-
nuous casting mold copper plates.

In order to cope with the nonuniqueness of the inverse
analysis, we incorporated to it a priori information that
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Fig. 20—Steel/mold heat fluxes predicted by CCAST: (a) movable side of the mold, (b) right narrow side of the mold, (c) fixed side of the mold, and
(d) left narrow side of the mold.

(a)

(c)

(b)

(d)

Fig. 21—Comparison between the results obtained using the inverse
analysis procedure and the results obtained using the Savage–Pritchard
equation.



we have on the solution, based on the consideration of the
problem physics.

We analyzed the stability of the system predictions
and the influence of the first trial that we use to start the
evaluation procedure. Finally, an industrial case was
analyzed.

We can conclude, from the results of the analyzed cases,
that the developed modeling system provides reliable engi-
neering information for the analysis of actual industrial
facilities.

At the present moment, the CCAST system is being
used for analyzing the effect of different operational para-
meters and different casting powders on the thermal map
of the continuous casted slabs. These thermal maps con-
stitute a fundamental information to evaluate the slabs
quality.

We are coupling the CCAST system to a finite-element
program developed for calculating the thermal stresses
that are developed in the steel strand.
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APPENDIX

SENSITIVITY COEFFICIENTS

In this Appendix, we discuss the calculation of the sen-

sitivity coefficients used for the inverse analysis in

Eq. [22]: 

For the steady-state thermal problem in the mold, we
have

[41]

Hence, we can obtain from

[42]

� c a d
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k�1
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Fig. 22—Detail of the slab corner areas.



In Eq. [42],

[43a]

[43b]

[43c]

where Nk are the piecewise constant interpolation func-
tions used to discretize the heat-transfer coefficient
function.

Also, from Eq. [13a], we obtain

[44]
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