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This paper is aimed at modelling a two-wheeled self-balancing robot driven by the geared DC motors. A 
mathematical model consists of two main parts, the model of robot’s mechanical structure and the model of the 
actuator. Linearized equations of motion are derived and the overall model of the two-wheeled self-balancing 
robot is represented in state-space realization for the purpose of state feedback controller design. 
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1. Introduction 
 
 The two-wheeled self-balancing robot represents a robotic platform with two independently actuated 
wheels and center of gravity above the axis of the wheels rotation. The behavior of the robot is similar to the 
classical mechanical system of an inverted pendulum. It is an interesting system to control since it is 
inherently unstable and non-linear [1, 2, 3]. 
 Such robots have made a rapid advancement over the last decade and appeared in many areas of 
people’s daily life. The best known examples of this robotic platform are modern vehicles such as Segway or 
Hoverboard. Also, there are a lot of concepts based on the above mentioned robotic platform which can help 
people in their daily life, like for example assistant robots [1], baggage transportation robots [5] or wheelchairs 
for handicapped people [6]. A wide application range of these robots stems from their fundamental 
characteristics including compact structure and good maneuverability with zero turning radius [7, 8]. 
 

2. System modeling 
 

 In this section, the mathematical model of the robot is derived. 
 

2.1. Mechanical subsystem 
 

 A mechanical subsystem consists of robot’s body and two wheels. The body can be modelled as an 
inverted pendulum with the mass concentrated in the centre of gravity and the axis of rotation above the axis 
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of wheels. For derivation of motion equations a planar model is used where robot moves along a horizontal 
axis, as is shown in Fig.1. Suppose that there is no slip between the wheels and the ground. The Lagrange’s 
second order equations are used for modelling of a mechanical subsystem [4, 9]. 
 

 
 

Fig.1. Free body diagram of robot’s mechanical subsystem. 
 

 The no slip condition of movement is given by 
 
  .x r    (2.1) 
 
 The movement of robot’s body COG is given by 
 
  sin ,COGx x l     (2.2) 
 
  cos ,COGz l    (2.3) 
 

  .2 2
COG COG COGv x z     (2.4) 

 
 Kinetic energy of the body is given by 
 

   cos .2 2 2 2 2 2
kB b COG b b b

1 1 1 1
E m v I m x 2xl l I

2 2 2 2
              (2.5) 

 
 Kinetic energy of the wheel is given by 
 

  .2 2 2 2w
kW W w W 2

I1 1 1 1
E m x I m x x

2 2 2 2 r
        (2.6) 

 
 Potential energy of the body is given by 
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  cos .pB bE m gl    (2.7) 

 
 Potential energy of the wheel is given by 
 
  .pWE 0   (2.8) 

 
 We need to consider that there is also some dissipated energy as a consequence of rolling the wheels 
along the way. For this purpose let us write a Rayleigh dissipation function for both wheels as 
 

  .2 2W
W 2

b1
D 2 b x

2 r
      (2.9) 

 
 The Lagrangian of the system is defined as the difference between the above kinetic and potential 
energy 
 
  .k p kB kW pB pWL E E E 2E E 2E       (2.10) 

 
 The Lagrange second order equations with the dissipation function are defined as 
 

  ,
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D
Qi

qi

L

iq

L
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  (2.11) 

 
where qi represents generalized coordinates and Qi represents generalized forces. Generalized forces are 
torques from both wheels 
 
  .i R LQ       (2.12) 
 
 Position x and angular position θ were chosen as system coordinates Substituting system coordinates 
into generalized coordinates we can rewrite the Lagrange second order equations and get equations of 
motion. For the x coordinate we obtain 
 

  cos sin ,2W W R L
B W B B2 2

I b
m 2m 2 x 2 x m l m l

rr r

          
 

    (2.13) 

 
and for the θ coordinate the equation is 
 

     cos sin .2
B B B B R Lm l x m l I m gl          (2.14) 

 
 The derived dynamic equations of motion are nonlinear. Assume that while the robot moves along 
the x axis only small deviations in the angular position θ are obtained. This means that we can make a 
linearization around an unstable equilibrium point which makes the model more suitable for controller 
design. Using this fact the approximations are [10, 11, 3] 
 

  cos , sin , ,21 0        (2.15) 
 
and linearized equations of motion are 
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 (2.16) 

 
2.2. Actuator subsystem 

 
 The brushed DC gearmotors are used as the actuator subsystem of the robot [1]. The subsystem 

directly provides rotary motion and coupled with the wheels allows the robot to make movement. The input 
to this subsystem is voltage source vs applied to the motor’s armature, while the output is the rotational speed 

W  and torque W  of the gearbox shaft.  
 

 
 

Fig.2. Electric equivalent circuit of the armature and the free-body diagram of the rotor. 
 

 The torque τ generated by a DC motor is in general proportional to the armature current i and 
strength of the magnetic field. Assume that the magnetic field is constant. In that case the motor torque is 
proportional to the armature current by constant factor kt 
 
  .tk i    (2.17) 

 
 While the shaft is rotating the back emf voltage vemf is generated and is proportional to the angular 

velocity of the shaft by constant factor ke 
 
  .emf e Mv k    (2.18) 

 
 The motor torque and back emf constant have the same numerical value , therefore we will use K to 

represent them both. 
 From the electrical equivalent circuit of the armature we can derive the equation 

 

  .s emf
di

v Ri L v 0
dt

      (2.19) 

 
 Given that the value of inductance L of a small DC motor is in general a very low number compared 

to its resistance R, we can neglect it.  
 From the free-body diagram of the rotor we can derive the equation 
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  .M M M M LI b          (2.20) 
 
 By putting the Eqs (2.17)-(2.20) together we obtain the equation describing the overall DC motor 

characteristics 
 

  .
2

M M M M L s
K K

I b v
R R

 
        

 
   (2.21) 

 
 The torque τW required by the robot’s wheel is much higher as compared to the nominal torque τ of 

the DC motor. In this case a gearbox needs to be applied between the motor and the wheel. 
 

 
 

Fig.3. Free-body diagram of the gearbox. 
 
 Power exerted by the DC motor is the same at the input and at the output of the gear. It can be 
written as 
 
  ,L M W W        (2.22) 
 
and then by using the gear aspect ratio n we obtain 
 

  

,

.

M W

W
L

n

n

  


 

 
  (2.23) 

 
 Substituting the above equations into Eq.(2.21) and denoting by IG the internal inertia of the gear and 
by bG the internal damping of the gear, we obtain the equation of the actuator subsystem 
 

    .
2

2 2
M G W M G W W s

K Kn
I n I b n b v

R R

  
              

   (2.24) 

 

2.3. The overall model of the robot 
 
 DC gearmotors are located between the wheels and the robot’s body. As shown in Fig.1, the relation 
between angular coordinates is 
 
  .W     (2.25) 
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 Consider that both gearmotors generate similar torque, then we can write 
 
  .R L W2       (2.26) 
 
 By substituting Eqs (2.1), (2.24), (2.25) and (2.26) into Eqs (2.16), we obtain 
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 (2.27) 

 
 The above equations can be rewritten into a matrix form 
 

  .sv
       

             
E F G H
 
    (2.28) 

  
 And finally, the state space model of self-balancing two-wheeled robot is given as [12, 13] 
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 (2.29) 

 
where , , ,     are state variables. The input of the system is voltage sv applied to the motor’s armature and 

the outputs of the system are the tilt angle   of the robot’s body and the distance x r   with which robot 
moves horizontally. 
 
2.4. Robot parameters 
 
 The following table contains parameters of the modelled self-balancing robot [14, 12]. 
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Table 1. Robot parameters. 
 

Bm  Body weight 1.2 kg 

Wm   Wheel weight 0.02 kg 

BI   Body inertia 0.015 kgm2 

WI   Wheel inertia 0.00002 kgm2 

MI   Rotor inertia 0.000001 kgm2 

GI   Gearbox inertia 0.0001 kgm2 

Mb   Motor damping 0.001Nms/rad 

Wb   Wheel damping 0.001Nms/rad 

Gb   Gearbox damping 0.001Nms/rad 
n   Gearbox ratio 30 
r   Wheel diameter 0.032 m 
l   COG distance 0.075 m 
R   Armature resistance 2.4 Ω 
K   Motor constant 0.01Nm/A 

 
3. State-space controller 
 
 The goal is to keep a pendulum vertically while controlling the robot’s movement. This problem can 
be solved using a state feedback controller. The schematic of this type of control is shown in Fig.4, where K 
is the matrix of control gains. 
 

 
 

Fig.4. State feedback controller. 
 

3.1. Controllability 
 
 Controllability can be checked by calculating the controllability matrix 
 

  .2 3   oC B AB A B A B    (3.1) 

 
 Considering the rank of the controllability matrix we found that the system is completely 
controllable from its input sv .  
 
3.2. Linear quadratic regulator 
 
 The linear quadratic regulator is based on minimization of a quadratic cost function  
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   T T

0

J u Ru dt


  x Qx ,  (3.2) 

 
with weighting factors Q  and R. 

 The feedback control law that minimizes the value of the cost function is given as 
 
  .u  Kx    (3.3) 
 

 The simplest case is to assume R 1  and .TQ C C  The controller can be tuned by changing the 

nonzero elements in the Q  matrix to achieve a desirable response. 
Using the state feedback controller K based on LQR design we achieve the desired behaviour of the 
modelled self-balancing robot. The resulting characteristic shown in Fig.5 represents the self-balancing robot 
exposed to the initial condition   . .0 0 17rad    

 

 
 

Fig.5. System response to initial condition. 
 

 The blue curve represents the robot’s tilt angle in radians and the red curve represents the robot’s 
position in meters. As you can see, the designed controller stabilizes the robot and provides the desired 
behaviour [3, 15]. 
 
4. Conclusions 
 
 The aim of this paper was to derive a mathematical model of a two-wheeled self-balancing robot 
driven by DC gearmotors. The mathematical model was successfully derived and represented in state space 
realization. This realization form is suitable for the purpose of the state feedback controller design to 
stabilize the robot about an unstable equilibrium point [10]. 
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