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Traditional one-mode projection models are less informative than their original bipartite networks. Hence, using such models cannot 

control the projection’s structure freely. We proposed a new method for modeling the one-mode projection of bipartite networks, which 

thoroughly breaks through the limitations of the available one-mode projecting methods by tagging the vertex information of bipartite 

networks in their one-mode projections. We designed a one-mode collaboration network model by using the method presented in this paper. 

The simulation results show that our model matches three real networks very well and outperforms the available collaboration network 

models significantly, which reflects the idea that our method is ideal for modeling one-mode projection models of bipartite graphs and that 

our one-mode collaboration network model captures the crucial mechanisms of the three real systems. Our study reveals that size growth, 

individual aging, random collaboration, preferential collaboration, transitivity collaboration and multi-round collaboration are the crucial 

mechanisms of collaboration networks, and the lack of some of the crucial mechanisms is the main reason that the other available models 

do not perform as well as ours. 

 
1. Introduction 

Bipartite networks are an important class of complex networks. A bipartite network is composed of two types of vertices 

and the edges running only between the vertices of unlike types. Many natural, social, and technical systems can be 

represented as bipartite networks, such as a coauthors network [1], movie actors network [2], directors network [3], 

recommendation system [4], and so on [5-8]. 

In the past several decades, the characteristics of extensive bipartite networks have been analyzed empirically. For 

example, Newman [1, 9-11] analyzed many statistical properties of scientific collaboration networks in the realms of physics, 

mathematics, biomedicine and computer science. Lambiotte and Ausloos [12] analyzed the properties of a bipartite network 

about people sharing their music library. Shang et al. [13] reported the empirical analysis of two large-scale web sites, in 

which users are connected by music groups and bookmarks, respectively. Zhang et al. [14] presented an empirical study on 

the Bus Route Networks of Beijing and Yangzhou, Travel Route Network of China, Huai-Yang recipes of Chinese cooked 

food, and collaboration network of Hollywood actors. 

In addition, many new statistical indices for bipartite networks have been proposed in recent years, such as a clustering 

coefficient based on the fraction of cycles with size four defined by Lind et al. [15], two edge clustering coefficients based on 

squares and triples, respectively, proposed by Zhang et al. [16], and an index called “collaborative similarity to quantify the 

diversity of tastes based on the collaborative selection” proposed by Shang et al. [13]. 

To gain insight into the evolution of bipartite systems, many two-mode network models, such as the sexual contact 

network model [17], collaboration network model [18], plant-animal mutualistic network model [19], ecological and 

organizational network model [7], general bipartite network model [20], online bipartite network model [21], and a model for 

the self-assembly of creative teams [22], have been developed. Two-mode network models are natural in form and can hold 

information about the complete structure. Another modeling tool, the hyper graph [23], can also hold the complete structure 

information of bipartite networks [24, 25] because each of its edges, also known as hyper edges, can relate groups of more 

than two vertices. 
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Yet, people perhaps are more interested in the one-mode projection of bipartite networks in many scenarios. For instance, 

for scientific collaboration networks, we usually are more interested in the relationships between scientists rather than the 

relationships between scientists and their publications. Because of this reason, many unweighted one-mode collaboration 

models have been proposed. Barabási et al. [26] proposed a model for capturing the temporal evolution of collaboration 

networks. A one-mode collaboration network model developed by Zhou et al. [27] interpolates between the networks that 

follow a power-law and an exponential degree distribution. Guimerà et al. [22] designed a model about the self-assembly of 

creative teams. Zhang et al. [14] suggested a model to understand the evolutionary mechanisms of four non-social systems 

and a social system. Because many of the informative structures have to be ignored, unweighted one-mode models could not 

hold the complete structure information of bipartite networks [28, 29]. For instance, from the unweighted projection of a 

scientist-paper network, we know who are the collaborators of each scientist, but we cannot accurately tell who are the 

authors of each paper. 

Recently, many weighted one-mode models were proposed to contain the structure information of bipartite networks 

more completely. In the scientist network model designed by Ramasco and Morris [30], the edges of the model are weighted 

by the times of collaboration. Ke and Ahn [31] proposed a weighted model for reproducing the observed pattern in scientist 

networks—local clusters consist of dense, weak ties and are interconnected by sparse, strong ties. Zhou et al. [32] proposed a 

weighting method using asymmetrical weights and self-connection to mimic the information that coauthors might assign a 

specific paper with different weights. Apparently, weighted one-mode models are more informative than unweighted ones, 

but such models still have some limitations. First, any weighting method could not exclude subjective factors completely. In 

some methods, the information of those vertices with one degree is even lost in the projection [32]. Second, the information 

contained in the models by the static weights of the links is unreliable because the link weight remains constant after being 

assigned to an edge [33]. Third, the evolving weighted models are time-consuming because a great number of link weights 

have to be updated instantly at each time step. 

In this paper, we propose a new method for modeling a one-mode projection of bipartite networks that overcomes the 

deficiency of traditional methods. Modeling a one-mode projection of bipartite networks with our method maintains the 

complete structure information of the original systems, and more importantly, the projection’s topological structure can be 
controlled very flexibly. As an application example, we design a one-mode collaboration network model with our modeling 

method to verify the method’s feasibility and explore the crucial evolving mechanisms of some real collaboration networks.  

The rest of this paper is arranged as follows. Section two is the introduction of our method for modeling the one-mode 

projection of bipartite networks. In section three, the statistical indicators used to measure the local and global properties of 

the one-mode projection of bipartite networks will be introduced. We will infer the possible evolutionary mechanisms of 

collaboration networks in section four by observing and analyzing the local and global statistical properties of some real data 

to provide the design of our collaboration network model a strong basis. In section five, we will describe and interpret our 

one-mode collaboration network model in detail. The feasibility of our modeling method and the performance of our 

collaboration network model will be examined and discussed through numerical experiments in section six. Finally, we will 

summarize our research results in the last section. 

2. Method for modeling a one-mode projection of bipartite networks 

Traditional unweighted and weighted projecting methods cannot completely contain the structure information of a 

bipartite network; therefore, if such methods are used to model a one-mode projection of the bipartite network, it is 

impossible to very flexibly control the projection’s topological structure because we cannot precisely choose existing vertices 
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or edges for operation. To solve this problem, we proposed a tag-based one-mode projection modeling method, in which each 

vertex of the projection has a so-called tag-set, and another type of the vertices in the bipartite network is expressed as tags in 

the form of incremental natural numbers and stored into the tag-sets of the projection’s vertices that there are edges between 

the two types of vertices in the original bipartite network. Fig. 1 demonstrates the process of producing a growing one-mode 

collaboration network with our method as well as a map relationship between the one-mode projection and corresponding 

bipartite network. 

 

Fig. 1. (Color online) The process of producing a growing one-mode collaboration network with our modeling method as well as a map 

relationship between the one-mode projection and corresponding bipartite network, where the small circles marked with P1, P2, …, or P5 

are participant vertices; the small squares marked with 1, 2, or 3 are the act vertices; the pairs of braces are the tag-sets of the participant 

vertices; the natural numbers 1, 2, and 3 in the tag-sets are tags, which denote acts; the red vertices, red edges and red tags denote the newly 

added ones for current step; and each color-shape encompasses the vertices with a same tag. The process starts with an empty network. 

Then, all of the vertices and tags are added uniformly step-by-step. In step 1, vertex P1 is added in the network and tag 1 is added in the 

tag-set of P1, which means that P1 is the first participant of act 1; in step 2, P2 is added and tag 1 is selected from the available tags and 

copied to the tag-set of P2, which means that P2 joins the group of act 1; in step 3, P3 is added and tag 1 is selected and copied to the 

tag-set of P3, which means that P3 joins the group of act 1; in step 4, P3 is selected from the available vertices and tag 2 is added in the 

tag-set of P3, which means that P3 is the first participant of act 2; in step 5, P4 is added and tag 2 is selected and copied to the tag-set of P4, 

which means that P4 also joins act 2; in step 6, P5 is added and tag 2 is selected and copied to the tag-set of P5, which means that P5 is the 

third participant of act 2; in step 7, P4 and P5 are selected from the group of act 2 and tag 3 is added to the tag-sets of them, which means 

that P4 and P5 join a new act 3; and in the last step, P1 and tag 3 are selected and the latter is copied to the tag-set of the former, which 

means that P1 also join act 3. 

Fig. 1 shows that our method can control the scope of operation precisely while constructing a one-mode projection of 

bipartite networks. For example, in step 6, we can make P5 link only with P3 and P4 by utilizing tag 2, and in step 7, we can 

limit tag 3 to be copied only to portion of those vertices with tag 2. In addition to this most important property, our method 
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also has the following by-product benefits: (i) the one-mode projection contains the complete information of the 

corresponding bipartite network, (ii) the one-mode projection and corresponding bipartite graph can be converted to each 

other freely, (iii) the one-mode projection can be simplified to an unweighted form by removing the tag-sets, or to a weighted 

form by employing a specific weighting method, and (iv) the tags are helpful to analyze the topological properties of the 

projection. Nevertheless, both unweighted and weighted projections do not have the above benefits because they are less 

informative compared to the original bipartite graph. 

3. Statistics of our one-mode projections 

We interpret the statistical indicators introduced in this section with the language of collaboration networks when 

necessary. We employ the following statistical indicators to measure the local properties of our one-mode projections.   
P(k)  

denotes the probability of the degree of any vertex being  k ;   
S(n) denotes the number of tags who are owned by  n  

vertices;   
Q(q)  denotes the number of vertices who own 

 
q  tags; and   

C(k)  denotes the average clustering coefficient of 

the vertices with degree  k . Mathematically, 

  (1) 

where the clustering coefficient 
 
Ci

 of vertex  i  is defined as the quotient of the actual number of edges 
 
ei

 and the 

possible number of edges  between the nearest neighbors of  i , i.e., 

 . (2) 

The 
 
Ci

 reflects the clustering level of the nearest neighbors of  i . The average degree 
  
knn(k)  of the nearest neighbors of 

the vertices with degree  k  reflects the average degree-degree correlation between  k -degree vertices and their nearest 

neighbors and is defined as 

  (3) 

where the average degree  of the nearest neighbors of  i  reflects the degree-degree correlation between  i  and its 

nearest neighbors and is defined as 

  (4) 

where 
  
Vnn,i  denotes the set of the nearest neighbors of  i . A network is referred to as assortative when 

  
knn(k)  is an 

increasing function of  k ; otherwise, the network is disassortative. The number of the maximal cliques with  K  vertices is 

denoted as 
  
Nclq(K ). Here a clique is a graph that any two of its vertices are adjacent, and a maximal clique refers to a graph 

that is not the subgraph of any other clique. 

We use the following statistical indicators to measure the global properties of the one-mode projections of bipartite 

networks. 
 
Nv

 denotes the number of vertices; 
 
Ne

 is the number of edges; 
 
N a

 is the number of existing non-copied tags; 

 is the average degree of vertices, i.e., the average number of collaborators per participant; 
  
kmax  is the degree of the 

vertex with the maximum degree;  is the average number of tags owned by a participant vertex, i.e., the average number 

of acts participated in by a participant;  is the average number of vertices who own the same tag, i.e., the average 

number of collaborators participating in an act;  D  is the network density, i.e., the ratio of the number of the actual edges 

versus the number of possible edges of a network; 
 
Nc

 is the number of connected subgraphs; 
 
Nm

 is the size of the 

maximum connected subgraph; and  C  is the global level of the clustering of a network and is defined as: 
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  (5) 

The symbol  L  denotes the average length of the shortest paths between all pairs of the vertices of the maximum connected 

subgraph of a network. Mathematically, 

  (6) 

where the shortest path length 
 
Lij  from vertex  i  to vertex 

 
j  refers to the number of edges on this path between the two 

vertices.  r  denotes the degree-degree correlation coefficient, i.e., the Pearson correlation coefficient, and is used to measure 

the extent of assortativity of a network, which lies in the interval [-1, 1] and is expressed as [34] 

  (7) 

where 
 
ui

 and 
 
vi

 denote the degree of two endpoints of the  i th edge, respectively, and  M  is the number of edges. A 

network is classified as assortative if ; otherwise, it is disassortative. 

4. Empirical analysis of real collaboration networks 

Before introducing a one-mode collaboration network model designed with our method in the next section, here we 

perform an in-depth analysis on the evolutionary mechanisms of three real collaboration networks, i.e., the networks 

composed of actors staring in movies, scientists publishing papers, and directors sitting on boards, to make our model more 

understandable. The actor network data includes 127,823 movies and was obtained from the Internet Movie Database by 

Barabási and Albert [35]. Because the number of the movies included in whole data is too large to calculate 
  
Nclq(K ) and 

 L , we only choose the data of the first 15,000 movies. The scientist network data were collected from the condensed matter 

preprint database at Los Alamos by Newman [1]. The director network data include the “Fortune 1000” US companies from 
1982 to 2001 and were collected by Davis et al. [3]. The global statistics of these networks are listed in the “Real data” 
columns of Table 2. 

Both the scientist network and the actor network are growing systems because they all are constructed with accumulated 

data day by day. The director network is a snapshot of the cross-section data at a specific time. Therefore, the network is an 

evolving system rather than a growing one, which means that the coming and leaving of participants in the network always 

coexist. An evolving network also could be regarded roughly as a growing system starting from an empty set and ending with 

a limited size. In collaboration networks, the participants of an act, such as the authors of a paper, the actors of a movie and 

the directors of a board, make up a complete subgraph in the one-mode projection. 

Statistical indicators of the three real networks shown in Table 2 and Fig. 2 reflect the differences among these networks. 

From Table 2, we find that 
 
Nv

, 
 
N a

 and  of the scientist network are significantly larger than those of the director 

network but 
 
Ne

 of the scientist network is definitely smaller than the director network. The cause of these results is: (i)  

of the scientist network is far smaller than the director network, which indicates that the number of authors of a paper is on 

average much less than number of directors of a board, and (ii) transitivity collaboration, i.e., the collaboration that occurs 

between the collaborators of a participant, and multi-round collaboration, i.e., a group of participants collaborating with each 

other repeatedly, are more popular in the scientist network than in the director network. A specific characteristic of 

multi-round collaboration is that it adds new acts (i.e., new tags) rather than new edges to a collaboration network. In the 

scientist network, there generally are numerous teams and each of them is composed of young teachers, and/or PhD and 
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master students who are led by a professor. However, common sense tells us there is no similar organization in the director or 

actor networks. The differences between these networks in ,  and   
Q(q)  indicate that the collaboration acts in the 

scientist network often occur locally within the teams with the smallest , smaller  and stronger preference, while in 

the director network the collaboration acts often occur globally with the largest , smallest  and weakest preference, 

and in the actor network, collaborations often occur globally with a very large , the largest  and strongest preference. 

Here, the preference refers to the preference to collaborate, i.e., a participant with more collaboration records has a higher 

probability of participating in new collaboration acts. Due to the aforementioned factors, the director network holds 

maximum  C ,  D , and  r , and minimum 
  
kmax ; the scientist network holds maximum  L , and 

 
Nc Nv

, and minimum , 

 D , and 
 
Nm Nv

; and the actor network holds maximum , 
  
kmax  and 

 
Nm Nv

, and minimum  C ,  r ,  L , and 
 
Nc Nv

. 

Specially, transitivity collaboration plays a very important role in strengthening  C  and  r  of all of the networks. 
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Fig. 2. (Color online) Local statistical properties of three real collaboration networks. The scatter plots with the green crosses represent the 

actor network, those with the blue circles represent the scientist network, and those with the red triangles represent the director network. 

Each solid line marked by a single  value is the fit of a power-law form , each solid line marked by single  value is the fit of an 

exponential form , and each solid line marked by both  and  values is the fit of a power-law form with an exponential cut-off 

. 

From Fig. 2, we find that the mainbody of the   
P(k)  distribution of the actor network follows a power-law, the scientist 

network is between the exponential and power-law forms, and the director network closely approaches an exponential form. 

These features indicate that the probability of a participant running into a new collaborator is positively correlated to the 

number of collaborators this participant has collaborated with, but the correlation level is different from each other. The 

  
Q(q)  distribution of both the actor network and scientist network follows a power-law with an exponential cut-off, while the 

director network follows an exponential form. These features reflect that the probability of a participant participating in a new 

act has a positive correlation with the number of acts this participant has participated in, but the correlation level is different 

from each other. Multi-round collaboration and the aging of participants have crucial impacts on the   
Q(q)  distribution. The 
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mainbody of the   
S(n) distribution of the actor network follows a power-law, the scientist network follows an exponential 

form, and the director network approximately follows a Gaussian distribution. Apparently, in the actor network and scientist 

network, the number of participants with very few acts is very large and the number participants with very many acts is very 

small, but the significance level of this feature in the two networks is different from each other. Both   
S(n) and 

  
Nclq(K ) 

describe the distribution of the complete subgraphs and their difference is that any complete subgraph described by the   
S(n) 

is composed of the participants of an act, while any complete subgraph described by the 
  
Nclq(K ) is composed of the 

members of a maximal clique, which is why the distributions of 
  
Nclq(K ) are very similar to those of   

S(n). In addition, as 

mentioned before, frequently occurred transitivity collaboration and a large  enhance the assortativity and clustering of 

the networks. The difference between the histograms of 
  
knn(k)  or   

C(k)  is caused by the different  and , as well 

as preferential collaboration. 

5. One-mode collaboration network model 

In light of the previous analysis of the three real collaboration networks, we designed a growing one-mode collaboration 

network model using our method. Here the vertices and tags denote participants and acts, respectively. Suppose that 
 
Nv

, 

 
N a

 and  D  of the target one-mode projection are known. Our model starts from an empty network. At each time step, the 

following four substeps will be performed in order, and the model will end after running 
 
Nv

 time steps: 

1) Add a new active vertex  i  into the network and let , where 
 
suma

 denotes the accumulated 

number of tags that should be but are not added into the network during the previous and current time steps, hence we 

set  for the initial time. For simplicity, we add new tags into the network at a constant speed. Thus, the 

average number of new tags added at each time step is 
 
Na Nv

. If  i  is the first added vertex, add the first new tag 

into its tag-set. Otherwise, add a new tag with probability  or a copy of a randomly chosen tag (random 

collaboration) with probability  into the tag-set of  i . If the added tag is new, subtract 
 
suma

 by 1. Here 

  
| A | denotes the number of existing non-copied tags, and  is a scaling factor that is in the interval [0,1]. 

Apparently, the probability of a newcomer (new added vertex) participating in a new act (new added tag) is inversely 

proportion to the number of existing acts, which follows common sense. Here,  is used to control the number of 

connected subgraphs. The process of adding vertices and tags can enhance the right skewness of the distribution of 

  
P(k) ,   

Q(q)  and   
S(n). 

2) If there are at least two active vertices in the network, with the probability of 
 
Pa

, one of the active vertices is 

preferentially chosen according to the number of tags every active vertex has. Then, the chosen active vertex 

inactivated. Obviously, the active vertices with more tags have a bigger probability of being transformed to the 

inactive (aging) state. New tags or the copies of existing tags cannot be added in the tag-sets of the inactive vertices 

anymore because of aging.  

3) If 
 
suma

 is greater than or equal to 1, repeat the following operations to add new tags into the network: first, choose a 

tag randomly from the existing tags owned by active vertices; second, choose a vertex randomly from the active 

vertices with the chosen tag; third, add a new tag into the tag-set of the chosen vertex; fourth, with probability 
 
Pm

, 

add a copy of the new added tag into the tag-set of each of the chosen vertex’s active neighbors with the chosen tag; 
finally, subtract 1 from 

 
suma

. The first three operations allow the active vertices with more tags have more 

opportunities of acquiring a new tag (preferential choice); the fourth operation allows some vertices with common 

tag(s) an opportunity to acquire a new common tag again (multi-round collaboration). The first four operations jointly 

determine the level of preferential and multi-round collaborations. 
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4) If  and , repeat the following operations to increase the density of the network: first, choose an 

active vertex randomly (random choice) with probability 
 
Pr

 or preferentially (preferential choice) with probability 

 according to the number of tags that every active vertex has; second, if the chosen vertex does not have some 

tags of some of its neighbors, with probability 
 
Pt

, choose such a neighbor randomly (transitivity choice), and then, 

choose such a tag of this neighbor randomly and add a copy of this tag into the tag-set of the chosen vertex; otherwise, 

choose a tag randomly (random choice) and add a copy of the chosen tag into the tag-set of the chosen vertex. Here 

  
|V | and d denote current size and density of the network. In real growing networks, the number of actual edges 

increases far slowly than the potential edges, which results in  d  decreasing nonlinearly as   
|V | increases, so we 

can suppose , where  is a constant and its value is . All of the operations in this 

substep jointly determine the probabilities of random, preferential and transitivity collaborations occurring among 

active vertices and control both the size of the maximal connected subgraphs and number of connected subgraphs. 

6. Experimental results and discussions 

We tested the performance of our model by simulating some real collaboration networks with it and comparing the results 

with other models. The simulated real networks are the scientist network, actor network and director network analyzed in 

section four. Five candidate collaboration network models for comparison are the RDP model proposed by Ramasco, 

Dorogovtsev and Pastor-Satorras [18], GUSA model proposed by Guimerà, Uzzi, Spiro and Amaral [22], Zhou model 

proposed by Zhou et al. [27], Tian model proposed by Tian et al. [20] and ZZL model proposed by Zhang, Zhang and Liu 

[21]. 

The RDP model starts from an empty bipartite network. At each time step, a new act with  n  participants is added to the 

network, where  n  is a random number following the   
S(n) distribution.  m of  n  participants are new without previous 

experience, where  m  is a random number following an exponential decay  m . The remaining  of the  n  

participants are chosen from existing individuals with a probability proportional to the number of acts attended previously by 

them. The existing individuals who have attended 
  
Q0  more acts become inactive with a probability given by the 

complementary of an exponential decay . Here, inactive individuals could not participate in new acts anymore. The total 

number of acts denotes the total number of time steps. 

The GUSA model also starts from an empty bipartite network. At each time step, a new act with  n  participants is added 

to the network, where  n  is a random number following the   
S(n) distribution. If there are some participants of the existing 

acts who are not the new participants of an act, each of the new participants has a probability, 
 
p , of being drawn from such 

individuals and a probability, , of being added as a newcomer. If the participant is drawn from participants of the 

existing acts and at least one of them has been the participant of the new act, then (i) with probability 
 
q , the new participant 

is randomly selected from among the set of collaborators of a randomly selected participant of the existing acts already 

participating in the new act; (ii) otherwise, he or she is selected at random from all of the participants of the existing acts. 

Lastly, participants of the existing acts who remain inactive (i.e., do not participate in new acts) for longer than  time steps 

are removed from the network. The total number of acts denotes the total number of time steps. 

The Zhou model starts from a one-mode network with 
  
m0  fully connected vertices. Then, at each time step, they add a 

new vertex into the network to collaborate with some existing vertices. An existing vertex with degree  k  will be chosen 

with the probability  to be an actor in the collaboration, where  is a constant and denotes the level of 

preferential attachment. Using  to represent the average value of the act-size, such as the mean number of authors per 

paper, they conclude that . Thus,  can be used to control the average act-size of the whole network and it is not 
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free when an idiographic network of known average act-size is simulated. All of the chosen existing vertices will link to the 

new vertex, and if two chosen vertices have never collaborated so far, there will be a new edge connecting them. The model 

will stop running when the expected network size is reached. 

The Tian model and ZZL model are two bipartite models. A common mechanism of them is that at each time step a new 

act and a new participant will be added synchronously into the network, which means that the speed of adding new acts is 

exactly the same as adding new participants. We believe that such a mechanism is far from that of the simulated real networks. 

For example, it is hard to imagine that new scientists and new papers are born synchronously at the same speed in 

scientist-paper networks, new actors and new movies are born synchronously at the same speed in actor-movie networks, or 

new directors and new boards are born synchronously at the same speed in director-board networks. The fact that 
 
Nv

 and 

 
N a

 of the three real networks listed in Table 2 are distinctly different from each other fully supports our hypothesis. Our 

experiments also show that the simulation results of the Tian model and ZZL model are far from the real data. To save space, 

we only show and discuss the simulation comparisons of the RDP, GUSA, Zhou and our models.  

Just as we have analyzed in section four, all three real networks that are simulated in this section using the four models 

can be classified as growing networks without leaving behavior. Therefore, we set  to disable the remove operation 

when simulating the three real networks with the GUSA model. Table 1 lists the parameter settings of these models.  

Table 1. Parameter settings of the four models 

Simulated Network 
Our model RDP model GUSA model Zhou model 

 
 Pa

 
 Pm

 
 Pr

 
 Pt

  m    Q0   
 p

 
 q

      m0  

Scientist network 0.25 0.25 0.2 0.8 0.8 0.76 15 7 0.75 0.8  0.6 1.66 3 

Actor network 0.08 0.2 0.7 0.2 0.65 1.68 50 25 0.8 0.6  1 7.01 8 

Director network 0.95 0.6 0.2 1 0.3 8.38 3 1.5 0.3 0.42  2 10.02 11 

The global statistics of the three real networks and twelve model networks are listed in Table 2, in which the results in 

blue color are the best ones. Because 
 
N a

 is used as the end or control condition of the RDP, GUSA and our models, this 

indicator of the networks produced by the three models is fully the same as the corresponding real networks. Meanwhile, 

because 
 
Nv

 and  D  are also used as the end and control conditions, respectively, of our model, so these indicators as well 

as 
 
Ne

 and  of the networks produced by our model are fully same or very close to those of the corresponding real data. 

Overall, most indicators of our model networks are significantly closer to the real data than the RDP, GUSA and Zhou 

models. 

Table 2. Global statistics of the three real collaboration networks and twelve corresponding model networks 

Index 
Scientist network & models Actor network & models Director network & models 

Real Ours RDP GUSA Zhou Real Ours RDP GUSA Zhou Real Ours RDP GUSA Zhou 

 Nv  16726 16726 16459 19038 16726 25231 25231 23527 23839 25231 7680 7680 5282 7151 7680 

 Na  22016 22016 22016 22016 16724 15000 15000 15000 15000 25224 916 916 916 916 7670 

 Ne  47594 47595 78107 34343 49391 620309 620314 577091 575383 647730 55437 56792 54223 47786 56187 

 5.6910 5.6911 9.4911 3.6078 5.9059 49.170 49.171 49.058 48.2724 51.3440 14.437 14.790 20.531 13.365 14.632 

  
kmax  107 130 127 82 147 1223 1349 2001 1353 2024 106 121 92 85 7605 

 3.5032 2.8639 3.6477 1.9123 2.6390 4.7637 4.6838 5.1057 4.4148 8.0281 1.3148 1.2983 1.8942 1.2960 7.8101 

 2.6615 2.1757 2.7270 1.6536 2.6393 8.0129 7.8781 8.0081 7.0164 8.0303 11.024 10.885 10.922 10.118 7.8203 

 C  0.3596 0.3688 0.1119 0.3988 0.0970 0.1758 0.1635 0.1498 0.1981 0.1616 0.5871 0.5629 0.3684 0.6647 0.0054 

 D  0.0003 0.0003 0.0005 0.0002 0.0004 0.0019 0.0019 0.0021 0.0020 0.0020 0.0019 0.0019 0.0039 0.0019 0.0019 

 r  0.1846 0.1682 0.3108 0.2067 0.1622 0.1510 0.0564 -0.1263 0.1469 -0.1408 0.2746 0.2407 0.3932 0.2616 -0.5256 

 L  6.6276 6.5069 4.1689 6.7358 4.3894 3.4879 3.1026 2.8807 3.0851 2.7769 4.6040 4.5630 3.5619 4.9911 1.9990 

 Nc  1188 1225 1543 5470 3212 138 129 553 1 30 97 104 36 7 1 

 Nm  13861 13856 13964 12288 13515 24842 25004 22448 23839 25202 6731 6977 4957 7129 7680 
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Fig. 3 shows the distributions of the local indicators of the three real networks and twelve model networks. Similar to the 

previous results, our model outperforms the other models in most of the local indicators. Comparatively, the performances of 

the RDP and GUSA models are generally close to each other, while the Zhou model sometimes performs significantly poorer 

than the other models, especially for simulating the director network, where we can find all of the indicators of the network 

produced by the Zhou model are significantly different than the real data. 
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Fig. 3. (Color online) Local statistical properties of the three real collaboration networks and twelve corresponding model networks. The 

scattered blue circles are the results of our model, the red triangles are the results of the RDP model, the pink squares are the results of the 
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GUSA model, the green diamonds are the results of the Zhou model, and the black, yellow and cyan solid lines are the results of the real 

networks. The main plots are the results for the scientist network, the insets with yellow solid lines show the results for the actor network, 

and the insets with cyan solid lines show the results for the director network. Note: In the inset of 
  
Nclq (K)  for the actor network, the 

results of the networks produced by the RDP and Zhou models cannot be calculated because the corresponding network structure is too 

complex. 

The cause of differing performance among the four models lies in the different mechanisms embedded in the models. In 

other words, by providing more crucial mechanisms, our model outperforms the RDP, GUSA and Zhou models. In the RDP 

model, because it lacks multi-round collaboration, the increase of  and  of the model networks originates mainly 

from the creation of a large number of new links between randomly chosen vertices, which leads to the density of the 

networks increasing quickly and finally being clearly higher than the real data; due to lacking transitivity collaboration, the 

clustering of the model networks is obviously lower than the real data, even though their density is significantly higher than 

that the real data. The full preferential choice mechanism of the RDP model also is one of the reasons leading to these results. 

In the GUSA model, because it lacks preferential collaboration, the clustering coefficients of the model networks always are 

significantly larger than the real data and other models, and the right skewness of the distributions of   
Q(q)  is significantly 

weaker than the real data and other models. In the Zhou model, because it lacks more crucial mechanisms, such as random 

collaboration, transitivity collaboration, multi-round collaboration and individual aging, more statistical indicators of the 

model networks are significantly different from the real data. Actually, the mechanism “at each time step, add a new vertex to 

the network to collaborate with some existing vertices” also is an important contributor to the observed results because it is 

equivalent to adding new acts as fast as adding new vertices, which should be not true in the three real networks. 

Additionally, it is well known that any external statistical regularity of a network is essentially the result of its internal 

mechanisms. Therefore, the prerequisite that the distribution of   
S(n) must be known beforehand in the RDP and GUSA 

models makes it possible that some crucial mechanisms of the real systems are put into a black box. In our model, apart from 

a few probability parameters, any statistical distribution, including   
S(n), is an output result rather than a known condition, 

which means that our model favors getting insight into the mechanisms of the collaboration networks. 

7. Conclusions 

One-mode projection of bipartite networks has a wide range of applications. To overcome the limitation of traditional 

unweighted and weighted methods for projecting bipartite networks, we developed a tag-based method for modeling a 

one-mode projection of bipartite networks. The most important advantage of our method is that the existing vertices and 

edges can be chosen precisely during the producing a one-mode network, which means that the structure of the network is 

very flexible. Our method has additional merits. For example, the produced one-mode projection can be converted into its 

original bipartite graph very easily, and it also can be easily converted to an unweighted form by deleting the tag-sets of 

vertices or to a weighted form by employing a specific weighting method.  

Simulation comparisons show that the one-mode collaboration network model designed with our method outperforms the 

available one-mode and two-mode models significantly and matches three real networks very well. It implies that (i) our 

method is good at modeling the one-mode projection of bipartite networks in which tagging the vertex information of the 

original bipartite graphs is crucial to controlling the structure of produced networks freely, (ii) our one-mode collaboration 

network model matches the mechanisms of real networks more completely and accurately than other models, and (iii) size 

growth, individual aging, random collaboration, preferential collaboration, transitivity collaboration, and multi-round 

collaboration are crucial mechanisms of collaboration networks. Certainly, we also note that a few statistical indicators, such 
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as the Pearson correlation coefficient of our model network corresponding to the actor network, do not match those of the real 

data very well, which indicates that some crucial mechanisms of the collaboration networks might have been partially or 

completely missed, which we plan to explore in the future. 

Acknowledgments 

This research is supported by a project sponsored by the Natural Science Basic Research Plan of the Shaanxi Province of 

China (Program No. 2013JM9001), a project sponsored by the Social Science Foundation of the Shaanxi Province of China 

(Program No.13Q107), a project sponsored by the Outstanding Young Teacher Training and Funding of School of 

Management, Northwestern Polytechnical University, China (Program No.W016227), and a project sponsored by the Seed 

Foundation of Innovation and Creation for Graduate Students of Northwestern Polytechnical University, China. 

References 

[1] M.E.J. Newman, The structure of scientific collaboration networks, Proceedings of the National Academy of Sciences, 98 (2001) 
404-409. 

[2] D.J. Watts, S.H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998) 440-442. 
[3] G.F. Davis, M. Yoo, W.E. Baker, The Small World of the American Corporate Elite, 1982-2001, Strategic Organization, 1 (2003) 

301-326. 
[4] L. Lü, M. Medo, C.H. Yeung, Y.-C. Zhang, Z.-K. Zhang, T. Zhou, Recommender systems, Physics Reports, 519 (2012) 1-49. 
[5] F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, The web of human sexual contacts, Nature, 411 (2001) 907-908. 
[6] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L. Barabasi, The large-scale organization of metabolic networks, Nature, 407 (2000) 

651-654. 
[7] S. Saavedra, F. Reed-Tsochas, B. Uzzi, A simple model of bipartite cooperation for ecological and organizational networks, Nature, 

457 (2009) 463-466. 
[8] C.A. Hidalgo, R. Hausmann, The building blocks of economic complexity, Proceedings of the National Academy of Sciences, 106 

(2009) 10570-10575. 
[9] M.E.J. Newman, Coauthorship networks and patterns of scientific collaboration, Proceedings of the National Academy of Sciences, 

101 (2004) 5200-5205. 
[10] M.E.J. Newman, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Physical Review E, 64 (2001) 

016132. 
[11] M.E.J. Newman, Scientific collaboration networks. I. Network construction and fundamental results, Physical Review E, 64 (2001) 

016131. 
[12] R. Lambiotte, M. Ausloos, Uncovering collective listening habits and music genres in bipartite networks, Physical Review E, 72 

(2005) 066107. 
[13] S. Ming-Sheng, L. Linyuan, Z. Yi-Cheng, Z. Tao, Empirical analysis of web-based user-object bipartite networks, EPL (Europhysics 

Letters), 90 (2010) 48006. 
[14] P.-P. Zhang, C. Kan, Y. He, T. Zhou, B.-B. Su, Y. Jin, H. Chang, Y.-P. Zhou, L.-C. Sun, B.-H. Wang, D.-R. He, Model and empirical 

study on some collaboration networks, Physica A: Statistical Mechanics and its Applications, 360 (2006) 599-616. 
[15] P.G. Lind, M.C. González, H.J. Herrmann, Cycles and clustering in bipartite networks, Physical review E, 72 (2005) 056127. 
[16] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, Y. Fan, Clustering coefficient and community structure of bipartite networks, Physica A: 

Statistical Mechanics and its Applications, 387 (2008) 6869-6875. 
[17] G. Ergün, Human sexual contact network as a bipartite graph, Physica A: Statistical Mechanics and its Applications, 308 (2002) 

483-488. 
[18] J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Self-organization of collaboration networks, Physical Review E, 70 (2004) 

036106. 
[19] K. Takemoto, M. Arita, Nested structure acquired through simple evolutionary process, Journal of Theoretical Biology, 264 (2010) 

782-786. 
[20] L. Tian, Y. He, H. Liu, R. Du, A general evolving model for growing bipartite networks, Physics Letters A, 376 (2012) 1827-1832. 
[21] C.-X. Zhang, Z.-K. Zhang, C. Liu, An evolving model of online bipartite networks, Physica A: Statistical Mechanics and its 

Applications, 392 (2013) 6100-6106. 
[22] R. Guimerà, B. Uzzi, J. Spiro, L.A.N. Amaral, Team Assembly Mechanisms Determine Collaboration Network Structure and Team 

Performance, Science, 308 (2005) 697-702. 
[23] C. Berge, Graphs and Hypergraphs, Elsevier, New York, 1973. 
[24] J.-W. Wang, L.-L. Rong, Q.-H. Deng, J.-Y. Zhang, Evolving hypernetwork model, The European Physical Journal B, 77 (2010) 

493-498. 
[25] G.-Y. Yang, J.-G. Liu, A local-world evolving hypernetwork model, Chinese Phys B, 23 (2014) 018901. 
[26] A.L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientific collaborations, 



 13 

Physica A: Statistical Mechanics and its Applications, 311 (2002) 590-614. 
[27] T. Zhou, B.-H. Wang, Y.-D. Jin, D.-R. He, P.-P. Zhang, Y. He, B.-B. Su, K. Chen, Z.-Z. Zhang, J.-G. Liu, Modelling collaboration 

networks based on nonlinear preferential attachment, International Journal of Modern Physics C, 18 (2007) 297-314. 
[28] M.E.J. Newman, D.J. Watts, S.H. Strogatz, Random graph models of social networks, Proceedings of the National Academy of 

Sciences of the United States of America, 99 (2002) 2566-2572. 
[29] R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Module identification in bipartite and directed networks, Physical Review E, 76 (2007) 

036102. 
[30] J.J. Ramasco, S.A. Morris, Social inertia in collaboration networks, Physical Review E, 73 (2006) 016122. 
[31] Q. Ke, Y.-Y. Ahn, Tie Strength Distribution in Scientific Collaboration Networks, arXiv preprint arXiv:1401.5027, (2014). 
[32] T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Bipartite network projection and personal recommendation, Physical Review E, 76 (2007) 

046115. 
[33] A. Barrat, M. Barthélemy, A. Vespignani, Weighted Evolving Networks: Coupling Topology and Weight Dynamics, Phys. Rev. Lett., 

92 (2004) 228701. 
[34] M.E.J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett., 89 (2002) 208701. 
[35] A.-L. Barabási, R. Albert, Emergence of Scaling in Random Networks, Science, 286 (1999) 509-512. 

 


