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Appendix A: Prior Settings

We assume « priori that the densities of the starting values for D, , v, , and the density

of each row of the hidden chain transition matrix are Dirichlet densities. In addition, we assume

a priori that the intensity parameters, 4,., for D, follow a Gamma density. For notational

simplicity we drop the dependence of state on the user, session, and viewing (</g7>) and assume

that this dependence is understood. That is,

v, ~ Dirichlet(a)

Ay ~ Gamma(shape . ,scale

prior prior )

P, ~ Dirichlef[z ], 7 ; isa1xS vector, P, is the j row of P,
a, ~ Gamma(shape,, ,scale,)
t,, ~ Gamma(shape,, scale,)

shape .~ Gamma(shape,,scale;)

prior

scale .~ Gamma(shape,,scale))

prior

Notice that in the paper we use A4, and A, respectively to denote shapeyis and scaleyrior.

To complete our model we specify the following priors:

I, ~MVN[I,V,], forlands.
I~ MVN[ILV..], fors.

V' ~Wishart[ p,,V) 1.

¥~ ~Wishart{ p_,V_],fors.
X' ~Wishart[ p ,V, ], for s.
vec(as) ~ MVN[ES V]

Q' ~Wishart[p,,V,], fors.

11 -



Priors for the Full Models at Various Levels

We assume a priori that the densities of the starting values for D, , v, , and the density

of each row of the hidden chain transition matrix are Dirichlet densities. In addition, we assume

a priori that the intensity parameters, 4, , for D,, follow a Gamma density. That is,

is >

v, ~ Dirichlet(a)

A ~ Gamma(shape .. ,scale ., )

P, ~ Dirichlet[t ;],7 ; isalx Svector, P; is the j" row of P,
a, ~ Gamma(shape, ,scale,), shape, =1/2,scale, =1/2
t,, ~ Gamma(shape,,scale, ), shape, =1/2,scale, =1/2

shape .~ Gamma(shape,,scale,),shape, =1/2,scale, =1/2

prior

scale .~ Gamma(shape,,scale,),shape, =1/2,scale, =1/2

prior

To complete our model we specify the following priors:

I, ~MVN[I_,V, ], forlands.

I~ MYN[ILYV, 1, fors, T =0,V = Clgoz N
1
V' ~Wishart[p,,V, ], py =C+2,V, = 000 1
C+2
Y '~ Wish fi _cioy =10
. ~Wis art[pg,Vg], ors, p, =C+ V. _C+2'I ,
X' ~Wishart[ p,,V,],fors, p, =C+2,V, = 1000
C+2
vec(®) ~ MVN[®, V- 1,®, =0,V =1000-1
Q' ~Wishart[p,,V, ), fors, p, =C+2,V, = 1004

C+2
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Priors for the Latent Class Models at Various Levels
The prior specifications for the latent class models are the same as those for the full

models except for the priors for the latent mixture process. Therefore, we only show the priors

for the latent mixture process below.
p, ~ Dirichlet(a)

a, ~ Gamma(shape,, scale,), shape, =1/2,scale, =1/2

Priors for the Latent Class Models with Tight Priors

In order to approximate the traditional latent class model, we estimate the user-level
latent class models with tight priors on the mixture process, ¥, and £ . Therefore we have:
p; ~ Dirichlet(a)

o, ~ Gamma(shape,,scale,), shape, =1-S,scale, =1-S

-1 .
v ~WlShart[pg,Vg],fors,pg:C+2,Vg:C+2.I
Q' ~Wishart| p,,V,],fors, p, =C+2,V, = 1 4
C+2

Other prior specifications remain the same as described above.
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Sensitivity of the Model to Prior Specifications

To evaluate the sensitivity of our model to prior settings we consider a range of weak,

moderate, and strong priors for the parameter of the hidden markov model as well as those for

Q and ¥ . The settings of these priors are given below. In our paper we report our model

using a moderate prior for both sets of parameters.

Priors for the Parameters of the Hidden Markov

Weak Moderate Strong
Priors for Weak p.=C+2 pe=C+2 p;=C+2
Q and ¥, v = 1000 T V. = 1000 I v, = 1000 I
C+2 C+2 C+2
Po=C+2 Po=C+2 Po=C+2
1000 1000 1000
« ! @« ! a2’
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape_=1/2 shape_ =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1




Moderate p.=C+2 p.=C+2 p.=C+2
100 100 100
T Ct2 T Ct2 T Cr2
Po=C+2 Po=C+2 Po=C+2
00 |00 100
C+2 C+2 C+2
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape; =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
Strong p.=C+2 p.=C+2 p.=C+2
1 1 1
T Ct2 Vemea ! Vemoia
Po=C+2 Po=C+2 Po=C+2
1 1 1
o=zt o=zt 7 Cv2
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape, =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape; =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
shape; =1 shape, =1/2 shape, =1
scale, =1 scale, =1/2 scale, =1
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Appendix B: Monte Carlo Markov Chain for Estimating the
Model

We apply data augmentation and MCMC methods (Gibbs sampler see McCulloch and
Rossi (1994) and reversible jump algorithm (Liechty and Roberts, 2001)) based on the following
full conditional distributions. For notational simplicity we drop the dependence of state on the

user, session, and viewing (</g7>) and assume that this dependence is understood.

lj;qct| {l]iqcf } ’{th} ’{I—:'s} ’{)(iqt} ’zjv’l)iqt
Ij's | {l]iqt} 7{th} ’{‘Xiqt} ;Y’R’IZ‘ 4 TS’Diqt
¢ils | {I]iqt} ’{th} ’{‘X;qz} B{I—;s} ’Ztv’@s’ ‘Q?’Diql

IG5 R I,V
¥ (L)L R} 0V,

ZNU A AX 8V

Ay}, shapg,,, scalg,,
D,|{U,}4X,} 2T} 0B,

v|1D,}.a

B D} .7,

shapg., | D, } A, , scalg,,,shapg scalg
scalg.. |{D, }, shapg, ,A.shapg scalg
o, {D,} v, shapg scalg

t;{D,}. B, shapg scalg

The univariate draws of U, , can be generated from truncated normal distribution using

igct

a Slice Sampler. The multivariate draws of I', , @, , and II,, can be generated from conjugate

is > ils >

multivariate normal distributions with the identification conditions satisfied. The random draws

of Es-l and ‘I’S_l can be generated from conjugate Wishart distributions. The random draws of

A, can be generated from conjugated Gamma distribution. We can generate the draw of D,

using a reversible jump algorithm (Liechty and Roberts 2001). The multivariate draws of v, and
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P, can be generated from conjugate Dirichlet distributions. scale,,,,, can be generated from

conjugate Gamma distribution. shape,,,,, , o, and 7 can be generated using Metropolis-

Hasting algorithm. We make a total of 10,000 draws with an additional 5,000 draws for burn-in.

The full conditional distributions are given as follows.

D Usgo U - 35 Wigo 3o APis 35 A3 154X 1> 2, Digy

Uiql = ¢is Uqu + F[s X[ql + 8iq1s
UiqZ = ¢[s Uiql + Fis XiqZ + 8iq2s
Uir, =P U,y T 1 Xigr, + iz,
Uiy T, X D, Eigts
— — 2
UiqZ ¢is Fis Xiql Fis XiqZ ¢is ¢is giqls + 8iq2s
= e = . Uqu
T. —1 T, =2 T T,-1

— q — 4 — e — i 4 e

Uiqﬂq ¢1’s Fiinql djis Fis Xiq2 Fis XiqT[q gbis ¢is 8iqls + + giqus

Note {Uipo.} denotes all values of {Uj,} other than Ujp.

Uiql _Fiinql D,
_ —_ 2
UiqZ ¢is Fis Xiql Fis XiqZ (I)[;
TLet A= , B= , and
T, -1 T, -2 T
UiqTM -D, Fiinql —P, FiinqZ _"'_FiinqT,.q D,
8iq1s
~ ¢is giqls + 81’:]25 - 1 ,
& = .Then € ~MVN(0, V,).Let V;" =ee'. We have:
T, -1
Qisq 8iqls +eeet 8iqTiqs
eA=e'BU, , +e'c

= Uqu | {Ul-qof }7 {Yiq0}7 {¢is}9 {Fis}7 {Xiq}’zs’Dqu
N rax0.0, ). +) (B'e€' B) " (B'ee' A), (B'ee'B)™) if ¥, , =1

N, max(0.U, o) (B'ee' B)™' (B'ee' A), (B'ee' B)™") otherwise

Where s =D, .
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@. Uy, | {U,, 3 (¥, (3,1} 41X, ). 5,.D,, fort # 0

qt iqt igt igt
{Uiqt = (bisUiq(z—l) + Fiinqt t+é
U = U, +I' X

- {_ U, I, X, =-U,+¢
Uiq(Hl) - (bisUiqz - FisX

- djz's Uiq(t—l) - Fis Xiqt -1 giqts
= = U, +
Uiq(t+1) - ¢1’3Uiqt - Fiinq(H—l) ¢is 8iq(t+1)s

_¢ivUi - _Fiin . | Eigis
Let A 2[ e o , B 2( j, and &, =| . Then
U - ¢is Uiqt - FisX‘q(H—l) (I) 8iq(t+1)s

iq(t+1) i is

iqts

iq(t+1) iq(t+1) + giq(Hl)s

iqts

iq(t+1) = D, Uiqt + & (1415

€, ~MVN(, V,).Let V,' =ee'. We have:
e'A=e'BU,

igcl

:>Uiqt |{Ul-qt*}’{Yviqt}’{¢is}’{ris}9{Xiqt}’Zs’Diqt fortio

)~
+e¢g,

N(max(O,Uq,-(,c)o), +00) ((B'ee'B)_l (B'ee' A)’ (B'ee'B) B ) lf Yiqcl = 1
N, max(0.Us o) ((B'ee'B)"'(B'ee' A), (B'ee' B)™") otherwise
Where s = Dl.qt .
(3).

djils ‘{Uiqt}’{Y'qt}’{Fis}’{Xiqt}’zs’le"le’Diqt NMVN(BA’B) I(

1
a a a b b b
VVith > Wv;qz(sq) Zee2 VViqzl and VViqtl 2 VVith 22 VV[th)

9 Ty
Where B = (Z z Uiql(t—l)E;IUiql(t—l) + Qlj )"

g=1 =1
9o Iy . 1
A = z Uiql(t—l)ES Uiqt + ‘le ¢ls
g=1 =1

Uiqt = Uiqt - ¢i(—l)sU - Fis Xiqt

iq(=D)(t=1)

Where s =D, . The eigenvalues of @, are restricted to be within unit circle.

(4) Viis |{Uiqt}’{Yviqt}’{X[qt}az"s,R[’Hls’q]ls NMVN(BA: B)
I(VVicjtS 2 VV;:[JI(S—I) 22 i:;tl andVVicl;tl 2 VVicl;z‘Z Z'”ZVVi(l;tS)
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Qi T"q
Where B=(). > X, Z.'X,

g=1 t=1

+ T[;l )—1

iqlt

Tiy

O;
A= Z Z Xith;lU;t +¥,'I R,
g=1

t=1

Uiqt = Uiqt _¢isUiq(t—l) _Fi(—l)sX

iq(—)t

5). My |70}, (R, ¥ TV, ~MVN(V -F, V)

I I S
Where V:(zRikY’l;IR;k +Vn71)_la F :zRikwlzl}.* +VH71HS’ and

ils
i=l1 i=1

%

Pas =Vas — I Ry,

©)
I

‘Pls_l | {yils}7 {Hls} ’{Ri}’pg’vg ~ Wishart(l +pg’ (Vg +Z(yils _HLsRi)(Yil.s _HISRI')')_I)
i=1

(-
Es_l | {Uiqt}a {qjis}’{ris}’{Xiqt}a pE7V£

Qi
~ Wishart(zl: Z T, +ps,

i=l g=1
10 Ty
-1
(VZ + z (Uiqt - ¢is Uiq(t—l) - Fis Xiqt )(Uiqt - ¢is Uiq(t—l) - Fis Xiqt )') )
i=l g=1 t=1
9O; 0;
(8) /lis | {Diq }3 Shapeprior 4 Scaleprior ~ Gamma(z niqs + Shapeprior 4 z miqs + Scaleprior )
g=1 q=1

where 7, 1s the number of times D;, was in state s in session ¢ and i, is the amount of time
that D, was in state s in session g.

9. D, 1@}, U, }, ¥ b AL 34X, 1 2, v, Py ~ Reversible Jump Algorithm:

independence sampler, refinement sampler, and birth-and-death sampler.

We use the reversible jump Hasting Metropolis (HM) algorithms proposed by Liechty
and Roberts (2001) to generate samples of each hidden Markov chain D, » The difference
between their algorithm and ours is based on the distribution of U in this paper versus the
likelihood functions in theirs. We used three different algorithms for updating Diq . The first
algorithm is an independence algorithm, which ignores the current realization of D, ,and

proposes realizations by drawing from the prior density of D, . This results in proposed



realizations that are considerably different, in terms of the posterior density, and as a

consequence this algorithm tends to result in large but infrequent moves.

The other two algorithms create proposed realizations of D, by making small
modifications to the current realization of D, . The second algorithm is a refinement algorithm
where the proposed realization of D, is created by modifying one of the jump times of the
current realization of D, . The third algorithm is a birth-death algorithm where the proposed
realization of D, is created by either inserting a new interval into the current realization of D,
— a birth — or removing an interval from the current realization of D, — a death. The
independence algorithm has obvious advantages when the posterior distribution is multi-modal
or when a poor initial value of Diq has been chosen, where as the refinement algorithm and the
birth-death algorithm have the advantage of more efficiently exploring the modes of the
posterior distribution.

In order to take advantage of the properties of these three algorithms, one of these three
algorithms is randomly chosen at each iteration of the MCMC algorithm to update each hidden
Markov chain. Although our model itself is different from theirs, we apply the algorithms
proposed by Liechty and Roberts (2001) and refer to their description of the algorithms and the

formulas for calculating the acceptance probabilities.
O 0 S

(10). v, |{D,,}, @ ~ Dirichlet(a, + Y d,y,...,a5 + ) d,s )With D v, =1
q=1 q=1 j=1

1 if starting state is s for user i in session ¢
whered,, = 0 otherwise

0 0 N

(11). P, |{D,,},v,, T ~ Dirichlet(t ;; + Y m,;, ... ,T;5+ > m ) with D P, =1
g=1 g=1 k=1

where m,; is the number of jumps from state j to state k for user i in session g.

0;
The draws of Pj can be sampled from Gamma distribution with shape =17, + Z m,,; and
g=1

scale = 1 for all £ Then normalize each draw using the sum of all of the draws.

(12). scale,,,, 1D, }, shape ... A,

is %

shape, , scale, ~

prior prior’?

I S
Gamma(S - I - shape ,,,,. + shape,, zz/lis +scale ;)

i=1 s=1

_Xi_



(13).shape .., |{D,,}, A , scale,,,, ,shape, , scale,
7 s shape o,
o H H Scaleprior . shape o, —1 . efscalepn-m. *Ais
is

i=l s=1 F(Shapeprior )

Z shape
sca eﬂ shape ; —1 —shape ... *scale,
—————shape,,, " e
['(shape ;)

shape ., can be generated using standard Metropolis-Hasting algorithm.

(14). a, |[{D,,},v,, shape,, scale,

, rQ a)
o H k=1

S
= l_‘(as) l_‘( ak _as)
k=1

S
-1 Z_]ak—as—l
'Visq '(l_vis)kiI

sh
scale, ™™

. shape, —1 . e—as *scale,
s
I"(shape,,)

a., can be generated using standard Metropolis-Hasting algorithm.

(15). =, [{D,,}, P;, shape_, scale,

S
r Z’[ A
! (k:I 1‘7) ZS:TIV_T&/_I
=11

| ! . pijs gl (1 _ pijs )k:l
=t F(TSI.)-F( Ty —TS/.)
k=1

h
scale ™™

shape, —1 -1 *scale,
. e

[(shape.) Y

7, can be generated using standard Metropolis-Hasting algorithm.
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Appendix C: Categorization of Web Pages

We assign pages to one of seven categories as summarized in Table A. The assignment

of URL:s to a category was made by scanning for specific keywords that occur in the URL string.

The keywords used to identify each category are given in Table B. For example, the string

“/index.asp” occurs in the URL http://www.bn.com/index.asp, hence this URL would be

assigned to the home category. The keywords and categories are given in the order of

precedence. These categories were motivated by the navigational structure of the B&N site and

research in human computer interaction (Redish 2002). To illustrate our data we report the data

collected by CMM for a user session in Table C.

Abbr.  Category Description of Page Content

H Home Home page, common starting page for B&N visitors

A Account User sign in, address changes, and review order status

C Category List of items (category listings) or search results

P Product Detailed product information, item description, price information,
availability, and reviews

I Information Shipping, order status and popup advertisements

S Shopping Cart  Reviewing the cart, delete items, entering purchase information

O Order Confirmation page that denotes order has taken place

E Enter/Exit Non B&N pages used to denote the beginning or end of a session

Table A. Categorization scheme for B&N web pages for 9,180 unique pages requests.
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Category

Abbreviation  Category Name Keywords

A Account account/, youraccount.asp, signin.asp

C Category /subjects/, /bookstote.asp, /oopbooks/, /textbooks/,
/batgain/, /ebooks/, music/, music/index.asp, video/,
video/index.asp, posters/, posters/index.asp, enews/main/,
/boutiques/, /holiday.asp, /genre.asp, /topshelf/,
/bookshelf/, /style.asp, /newreleases/, /home.asp,
/collection/, /bestsellers/, /comingsoon/, /recommended/,
/firstchapters\, /booksearch/results.asp, /education/,
/onthechatts/, /recommend/, /classical/, /budget/,
/nr_home.asp, /topsell.asp, enews/category/,
enews/browse/, enews/gifts/, enews/newspapers/

P Product booksearch/isbninquity.asp, enews/magazine/,
/search/product.asp

S Shopping Cart  shop/cart.asp, shop/shipping.asp, shop/giftwrapping.asp,
shop/payment.asp, shop/billing.asp

O Order shop/confirm.asp

H Home bn.com/index.asp, barnesandnoble.com/index.asp

I Information All other URLSs not classified in other categories

E Enter/Exit URLs not containing “bn.com” or “barnesandnoble.com”

Table B. Keywords used to assign URLSs to appropriate category.

Time URL Category Abbr.

1 8:36:11pm  /promol/coupon/popups/fs_usa_popup.asp?userid=xxx Information 1

2 8:36:29pm Ibooksearch/results.asp?wrd=70%2d215&userid=xxx Category C
3 8:36:48pm  /booksearchiresults.asp?userid=xxx&mscssid=yyy8wrd=70%2d21580pr=adsort=p Category C
4 8:37:14pm  /booksearchiisbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0072134445 Product P
5 8:38:10pm  /booksearchiresults.asp?userid=xxx&mscssid=yyy8wrd=70%2d215&opr=a&sort=p Category C
6 8:44:32pm Itextbooks/booksearch/isbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0619034971 Product P
7 8:55:12pm  /promolcoupon/popupsifs_usa_popup.asp?userid=xxx Information 1

8 8:55:24pm  /booksearchiresults.asp?wrd=70%2d2158userid=xxx Category C
9 8:55:36pm  /booksearch/results.asp?userid=xxx&mscssid=yyy8wrd=70%2d21580pr=adsort=p Category C
10 8:56:37pm  /shoplsignin.asp?userid=xxx8mscssid=yyy Account A
11 8:58:16pm  /booksearch/results.asp?userid=xxx&mscssid=yyy&wrd=70%2d2158opr=agsort=p Category C
12 8§: 58;40pm Ibooksearch/isbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0072224983 Product P
13 8:59:21pm  Ishop/cart.asp?userid=xxx&mscssid=yyy Shop Cart S

14 9:01:26pm  Exit Exit E

Table C. Listing of raw clickstream dataset associated with a selected session on April 28, 2002
for one user. (All URLs are prefixed by http://www.barnesandnoble.com, and the userid and
mscssid is listed as xxx and yyy, respectively, to protect the privacy of this user.)
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Appendix D: Parameter Estimates

Impact of Marketing Mix, Hypertext Links, and Behavioral Variables

The posterior means and standard deviations of the hyper-distribution parameter
estimates for the marketing mix and hypertext link covariates of our two-state dynamic
multinomial probit model are given in Table 1 and 2, respectively (in our notation this is E[T']
in equation 5, where the demographics are set to the mean values).

The intercepts provide the basic attractiveness of a category holding everything else
constant. Notice that users in a deliberation-oriented state tend to have more positive intercepts
than those in the browsing-oriented state, which indicates the deliberation-oriented visitors will
have longer sessions over browsing-oriented visitors. The most likely category to be viewed by
browsing-oriented users is the home page category, while visitors in a deliberation-oriented state
are more likely to visit account pages. Perhaps users in a browsing-oriented state are less likely

to delve deeply into a web site compared to deliberation-oriented users.
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Inter- Price Promo- Home Acct Product

cept  Present tion Ads Links Links Links

Home .29 -.10 .05 -.15 -.10 -.06 -.01

(.08) (.03) (.01) (.03) (.02) (.01) (.01)

o Account -.09 -17 -.04 .20 -.04 10 .01

s (.02) (.03) (.02) (.03) (.01) (.01) (.01)
—wo Category -.01 .10 .01 -17 -.01 -.01 .03
S‘é (.02) (.02) (.01) (.03) (.01) (.01) (.01)
2 Product -.07 12 -.08 .08 .02 .03 .01
c('jo (.02) (.03) (.01) (.02) (.01) (.01) (.01)

& Information -.06 -.02 .04 .05 .03 .03 .01
%) (.03) (.02) (.02) (.03) (.01) (.01) (.01)

= Shopping Cart =11 -.07 .05 -.04 -.04 .01 .01
(.02) (.02) (.01) (.02) (.01) (.01) (.01)

Order -.54 -.04 .05 -.06 -.02 .04 .01

(.08) (.01) (.01) (.01) (.01) (.01) (.01)

Home -.35 -.02 .03 -.07 .03 -.01 -.01

(14 (.01) (.01) (.03) (.01) (.01) (.01)

8 Account .61 -.03 -.04 .01 -.01 .02 -.02

(,53) (.13) (.01) (.01) (.02) (.01) (.01) (.01)
¢ Category .07 .03 -.01 .05 .02 .01 .06
g (.08) (.01) (.01) (.01) (.01) (.01) (.01)

'Y Product -.15 .26 .03 -.09 -.01 .03 .07
g (:00) (.01) (.01) (.01) (.01) (.01) (.01)

‘B Information .01 -.01 .02 13 .06 .03 .02
_“E . (.01) (.01) (.01) (.01) (.01) (.01) (.01)
= Shopping Cart 27 .04 -14 -.03 .01 .06 .04
A (.03) (.01) (.01) (.01) (.01) (.01) (.01)
Otrder .06 .08 -.03 -.07 .01 -.03 .02

(.02) (.02) (.01) (.01) (.01) (.01) (.01)

Table 1. Posterior mean and standard deviation of parameter estimates for marketing mix and

hypertext links.
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Purchase

in Last Time Visit Other Other

State  Category Session  Duration Depth  Weekend  Site Visits Bookstores
Home .29 .04 .09 .29 19 .04

(.05) (.02) (.02) (.05) (.03) (.05)

, Account -.19 -.05 .04 15 -12 .16
s (.05) (.02) (.01) (.04) (.03) (.07)
£ Category 33 -.08 -.07 A1 -13 -.14
ig (.04) (.02) (.01) (.03) (.03) (.04)
.2 Product 10 .05 -.02 .01 .05 10
go (.05) (.02) (.01) (.02) (.03) (.04)
& Information 21 - 11 -.02 .26 .01 -37
% (.05) (.01) (.02) (.04) (.02) (.05)
&  Shopping -13 -.09 .03 15 -11 -.36
Cart (.06) (.01) (.01) (.03) (.02) (.06)
Order .33 .03 .01 .02 .01 -.02

(.05) (.02) (.01) (.03) (.01) (.01)

Home .05 -.04 .02 .02 .01 .09

(.01) (.01) (.01) (.01) (.01) (.01)

g Account -.01 -.01 .02 -.01 .04 -.20
= (.01) (.01) (.01) (.01) (.01) (.04)
B Category -.03 01 -.31 01 -.01 -.02
;_é; (.01) (.01) (.03) (.01) (.01) (.01)
'E  Product .06 -.01 -.02 01 -.05 -.04
g (.02) (.01) (.01) (.01) (.01) (.01)
'8 Information .02 .02 -.04 .01 -.01 .02
E (.01) (.01) (.01) (.01) (.02) (.01)
%  Shopping 01 .02 .04 .05 .02 -.05
R Cart (.01) (.01) (.01) (.01) (.02) (.01)
Order .03 -.01 .05 -.05 -.01 .04

(.01) (.01) (.01) (.01) (.01) (.01)

Table 2. Posterior mean and standard deviation of parameter estimates for web browsing
context variables.

Estimates of the VAR and Markov Model of the Mixture Process

The estimates of the hyper-distribution for the VAR(1) process (denoted as 65 in

equation 7) are given in table 3. We find that although these coefficients are relatively small,

there are significant time trends in all categories. Positive diagonal elements among account,

category, and product pages indicate that previously viewing a page in this category increases the

probability of viewing another page in this category. While negative parameters indicate a higher

chance of not viewing the category again, such as the home, shopping cart, and order pages.

The diagonal elements in the deliberation-oriented state range from -.09 to .23, while in the
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browsing-oriented state they range from -.08 to .08, indicating slightly more persistence in the
deliberation-oriented-state.

Positive off-diagonal terms indicate switching behavior from one category to another,
while negative off-diagonal terms indicate a decreased likelihood of switching from one category
to the next. For example, users who have previously viewed a product page become more likely

to view a home or account page when the latent utility of these corresponding categories

increase.
State Categories Home Account Category Product Inform ShopCart Order
Home -.08 27 -.03 18 .04 -.07 =79
(.020) (.002) (.003) (.003) (.014) (.012) (.0106)
o Account .02 .05 -.08 22 =12 .39 .35
s (.015) (.002) (.004) (.005) (.014) (.018) (.010)
g Category .01 -.01 .08 .06 23 -.06 A7
S‘é (.012) (.001) (.001) (.002) (.009) (.011) (.007)
.2 Product -.03 -.03 .03 .06 -.09 44 17
c?o (.008) (.001) (.001) (.003) (.003) (.032) (.004)
& Information .01 -13 -.02 -.03 .03 1 34
% (.014) (.001) (.001) (.001) (.001) (.014) (.003)
&  Shopping Cart .02 .09 -.01 -.02 -.02 -.01 .50
(.012) (.001) (.001) (:001) (:002) (.013) (.003)
Order -.01 13 -.05 -.02 -.01 .03 -.01
(.008) (.002) (.001) (.:001) (.:001) (.001) (.002)
Home -.09 .05 -47 .39 31 -.68 .08
(.004) (.004) (.041) (.:002) (.013) (.016) (.007)
g Account -.03 .04 -.06 43 24 -14 .20
A (.008) (.0006) (.004) (.004) (.017) (.019) (.009)
T Category -.03 -.03 23 -.06 -15 .82 -.07
% (.004) (.003) (.0006) (.:002) (.:006) (.008) (.032)
'Y Product -.01 -.01 .04 .08 -13 40 .09
g (.003) (.005) (.005) (.007) (.007) (.027) (.003)
‘Z  Information -.01 -.03 -.01 -.01 -.02 -.44 -.49
E (.003) (.003) (.005) (.:003) (:001) (011) (.006)
5  Shopping Cart .01 .02 -.06 .01 -.01 -.01 16
a (.002) (.003) (.004) (.:001) (.:001) (.001) (.006)
Order .02 .02 .01 -.03 -.01 .03 -.02

(003)  (002)  (004)  (001)  (001)  (001)  (.002)

Table 3. Posterior mean and standard deviation of the VAR parameter hyper-distribution.
The estimates for the two-state hidden Markov chain are given in Table 4. Notice that a
user has a high probability of starting in a browsing-oriented state (64%). On average a user will

stay in this browsing-oriented state for about three viewings (i.e., the inverse of waiting time is
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.32). In contrast, a user in the deliberation-oriented state tends to persist in this state longer or
about four viewings (i.e., the inverse of waiting time is .26). The transition probability matrix is
trivial for the two-state model, since there are only two states and the switching behavior is

captured by the waiting time in each state.

Browsing  Deliberation
oriented state  oriented state

A (Inverse of Waiting Time) 32 .26
(01) (01)

Vv (Starting Probabilities) .04 .36
(01) (01)

P (Transition Probabilities) 0 1
1 0

Table 4. Posterior mean and standard deviation of parameters associated with state transitions.

Unexplained variance in Web Page Selection

The estimates of the error covariance matrix (X upper triangular elements in the table)
and correlations (lower triangular) are given in Table 5. Notice that the variance for the home
page category is set to 1 for identification purposes. Consistent with our prior expectations most
of the off-diagonal covariance estimates in both the browsing-oriented state and deliberation-
oriented state are significantly different than zero. This indicates that the independence
assumption of the independent probit model is incorrect. Also we find that the variance
estimates in the browsing-oriented state are slightly larger than those of the purchase-oriented
state, which indicates that these users are less persistent in category choices.

Substantively, we find that users in browsing-oriented states who unexpectedly choose
account pages are more likely to choose category pages after controlling for covariates and
lagged effects. In contrast, users in a deliberation-oriented state appear to be less likely to move
from an account to a category page. Notice that deliberation-oriented consumers are less likely
to move from an information page to a home, account, category, or shopping cart page, while

browsing-oriented consumers are somewhat more likely.
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State  Categories Home  Account Category  Product Inform  ShopCart Otder

Home 1 074 047 073 .030 017 014
Account 140 3.535
. (003) (166) 229 .053 .082 001 007
S Category .042 .380 0.776
w -
Z (002) (014) (039) 129 028 .0480 011
§  Product .060 082 094 0.685
o (002) (004  (022) (034 019 054 W7
.§ Information 023 119 019 012 0.586 046 001
z (.001) (.004) (.006) (.010) (.020) : :
& Shopping Cart 012 002 290 .030 024 0.468 001
(.008) (.005) (.008) (.006) (.005) (0106) :
Order .090 180 -.060 .090 011 010 0.414
(.004) (.008) (.003) (002) (.003) (002) (013)
Home 1 ~213 153 028 -.186 109 -016
Account -.333 2.440
v (005) (322) 109 .050 152 161 164
% Category 127 142 0.688
E (002) (010) (089) 109 288 105 054
== Product 021 .058 -.068 0.556
g (.002) (012) (.006) (.069) 239 041 009
= Information 155 -198 -199 149 0.697 500 056
g (.003) (.008) (.008) (.068) (.094) : :
3 Shopping Cart 065 151 052 018 -.100 0.361 040
(.002) (.005) (004) (034) (.040) (031)
Order -.008 121 021 003 022 010 0.223

(008)  (002)  (008)  (009)  (008)  (006)  (.021)

Table 5. Estimated error covariance matrices for the two-state model.

Impact of Demographics on Web Browsing
The demographic variables are meant to help explain variation in browsing behavior
across users. The posterior mean and standard deviation for the hyper-parameters associated

with the impact of the demographic variables on the web user’s response to price presence are

given in Table 6 (we denote these parameters as I, in equation 06), and the associated

covariance matrix (W ) is given in Table 7. For brevity we report the demographic relationships

for only whether price information is present on the page (price presence), but have estimated all

demographic responses.
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Inter- Med. High

Categories cept Age Age? Male  White Child Married College Income Income
Home -17 .04 -.02 42 -.15 25 .01 -.03 24 .19
(03)  (02) (02 (02) (02 (03) (01) (O (02 (02

Account -.58 21 -.01 -.02 -.05 .33 -.20 =30 -44 -.20

9 (.02) (.01) (.01) (.02) (.01) (.03) (.01) (.03) (.03) (.02)
(;;‘3 Category 1.32 14 .01 16 12 -.10 .10 -.38 24 .59
F§ (.03) (.01) (.01) (.01) (.02) (.01) (.02) (.03) (.02) (.03)
.é Product .89 -.30 .05 .09 -.04 -.26 18 23 -.51 13
oc')o (.03) (.01) (.01 (.02) (.02) (.01) (.02) (.01) (.02) (.02)
£ Information -1.21 24 -.04 37 -40 47 14 .65 -.18 -.20
5 (.02) (.01) quy (.02) (.03) (.02) (.03) (.02) (.02) (.02)
A Shopping -.48 .04 .01 .06 =17 26 .24 22 21 .03
Cart (.02) (.01) (.01) (.01) (.02) (.01) (.02) (.01) (.02) (.02)
Order =32 16 -.02 18 =32 .07 .06 .05 .02 .07
(.02) (.01) (.01) (.01) (.02) (.01) (.02) (.01) (.02) (.02)

Home -.04 -.01 -.01 -.01 -.01 .03 =16 .06 .03 14
(.02) (.02) (.01) (.02) (.02) (.02) (.03) (.02) (.03) (.03)

Account -.02 -.01 -.01 13 .02 -.01 -.02 .04 -.01 .03

g (.02) (.01) (.01) (.02) (.02) (.01) (.02) (.03) (.02) (.03)
@ Category .02 .01 .01 -.01 -.09 .02 -.03 .05 .01 -.09
% (.01 (.03) (.01 (.02) (.02) (.01) (.02) (.03) (.02) (.03)
'% Product .02 .01 -.01 -.08 .01 -.03 =12 -11 -.15 A2
< (O1)  (01) (0 (02 (02) (O) (03) (03) (02) (02
§ Information -.01 -.01 .02 =21 -.15 .04 -.03 .04 .08 -23
2 (O1)  (02) (01 (03) (02 (O1) (02) (03) (02) (03
g Shopping .03 .01 .01 .01 -.07 .05 -.01 -12 .10 13
Cart (.01) (.02) (.01) (.02) (.02) (.02) (.02) (.03) (.02) (.03)
Order .03 .01 .01 -.10 .04 .03 -.19 -.09 .04 -.01
(.01) (.02) (.01) (.03) (.02) (.02) (.03) (.03) (.02) (.02)

Table 6. Posterior mean and standard deviation of effects of demographics on browsing.
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Shop

State Categories Home  Account Category  Product Inform Cart Order
Home .00019
(00003) 47 .55 .38 .55 48 .89
Account .00008 .00015
¢ (00001)  (.00004) 41 .57 48 .16 93
7 Category .00009  .00006  .00014
T (.00003) (.00003) (.00001) 67 14 81 7
.§ Product .00006  .00008  .00009  .00013 67 59 54
c?m (.00003) (.00003) (.00002) (.00003) ' ' '
5 Information .00009  .00007  .00002  .00009  .00014 30 78
g (.00002) (.00002) (.00002) (.00002) (.00001) ' ’
M Shopping Cart .00007  .00002  .00010  .00007  .00004  .00011 44
(:00002) (.00001) (.00001) (.00002) (.00002) (.00002) ’
Order .00016  .00015 .00011 .00008  .00012  .00006  .00017
(.00002) (.00003) (.00003) (.00002) (.00002) (.00001) (.00003)
flome 00015 37 -94 74 43 50 67
(.00004) ' ' ' ' ' ’
Account .00005  .00012
% (00003) (.00001) -.28 .50 .55 42 -41
2 Category -.00015 -.00004  .00017
£ (.00002) (.00001) (.00001) -6 ~37 ~05 ~69
'% Product .00015  .00009 -.00012  .00027 7 65 54
g (.00004) (.00003) (.00002) (.00004) ’ ’ ’
'g Information .00013  .00015 -.00012  .00029  .00062 43 06
é (:00001) (.00002) (.00001) (.00004) (.00004) ' '
A Shopping Cart .00008  .00006 -.00011 .00014  .00014  .00017 74
(.00001) (.00001) (.00005) (.00011) (.00001) (.00001) '
Order .00011  -.00006 -.00012  .00012  .00002  .00013  .00018
(.00001) (.00001) (.00001) (.00001) (.00001) (.00001) (.00001)

Table 7. Estimated covariance matrix of the hyper-distribution for the two-state model. The
lower triangular portion of the matrix contains the estimates of the covariance matrix, and the
upper triangular portion has the correlation estimates.
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Appendix E: Multi-Step Forecasting Performance

The fit and hit-rate provided in Tables 7 and 8 of the paper measure one-step ahead
forecasting performance. However, we are not simply interested in forecasting a single-step
ahead, but we are potentially interested in predicting the entire path that a user may take. In
Table 8 we report the accuracy of various models in predicting the ten most frequent paths with
a specific two-category sequence. For example, in the estimation dataset, the two-category
sequence “CC” occurs 2,066 times, which is more than any other two sequences. Our best
model correctly predicts this sequence 73.63% of the time when it actually occurs. The task of
predicting the sequence “CC” requires predicting the probability that both the one- and two-step
ahead predictions are “C”. This is a harder problem than a one-step ahead forecast, since the
error in the first-step will be compounded in the forecast of the second step. Notice that our
best model, the dynamic two-state Probit model, performs significantly better than all other

models.
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Paths With Two Following Two Category Sequence

Sample  Model cC 11 El PP CP IC AA IE PC SS
Actual 2066 1352 776 663 547 490 460 455 414 361
Zero-Order Markov (1 State) 1215 481 258 317 5.67 816 087  3.30 5.07 0

033) (022 (016) (0.18)  (024)  (0.28)  (0.09)  (0.18)  (0.22) (0.02)

First-Order Markov (1 State) 3150 1563 376 10.76 839 608 4304 593 749 1191

047) (037 (019 (032 (028  (0.24)  (051)  (024)  (0.27) (0.33)

g Multinomial Probit 15.61 873 266 905 619 743 1326 332 542 471
= 037) (029  (0.16)  (029) (025  (0.26)  (035)  (0.18)  (0.23) (0.22)
£ Latent Class (2 States) 1743 1117 294 1128 718 741 1645 387 578 5.44
2 038) (032 (017) (032  (026) (0.27) (038  (020)  (0.24) (0.23)
F VAR with Intercept 5392 4207 3003 2166 3238 4204 4630 2040 3314 3194
051) (0500 (047) (042  (048)  (0.50)  (0.51)  (041)  (0.48) (0.47)

Dynamic Probit (1 State) 6373 6222 4098 4287 5457  53.67 5522 4003  43.14 4277

049)  (050)  (0.50)  (051)  (051)  (0.51)  (051)  (0.50)  (0.50) (0.51)

Dynamic Probit (2 States) 73.63 7222 5133 5377 5585  61.63 6391 5077 5459 5305

(045  (046)  (0.51)  (051)  (0.51)  (0.49) (049  (051)  (0.51) (0.51)

Actual 889 563 213 353 286 148 221 139 249 217
Zero-Order Markov (1 State) 924 462 282 283 5.59 8.78 0 144 522 046

041)  (030)  (0.24)  (024)  (0.33)  (0.40)  (0.06)  (0.17)  (0.32) (0.09)

First-Order Markov (1 State) 2938 1228  3.09 1297 823 347 3982 216 723 1382

(0.65  (047)  (0.25)  (049)  (0.39)  (0.26)  (0.70)  (021)  (0.37) (0.49)

- Multinomial Probit 13.07 520 288 623 5.75 535 11.81 1.46 520 3.82
E 048 (032  (0.24)  (034)  (0.33)  (0.32) (046  (0.17)  (0.32) (0.27)

2 Latent Class (2 States) 1543 1510 290 1479 705 468 1565 187 609 466

s 051)  (051)  (0.24)  (050)  (0.36)  (0.30) (052  (0.19)  (0.34) (0.30)
VAR with Intercept 4439 3284 2807 2425 2419 3203 3679 1834 3321 2588

0.71) (067  (0.61)  (0.61) (061 (067 (069 (055  (0.67) (0.62)
Dynamic Probit (1 State) 5281 5391 3510 3340 5070 4338 4452 3693 4080 40.15
071) 071  (0.68) (067 (071  (0.70)  (0.71)  (0.69)  (0.70) (0.70)
Dynamic Probit (2 States) 6416 6355 4490 5170 5280 5270 5452 4550  53.61  46.23
0.68) (069  (0.71) (0.70) (071  (0.71) (071 (071  (0.71) (0.71)

Table 8. Hit rate (%) for 10 most frequent paths with a specific two-category sequence. The

entries for the “Actual” row are frequencies while the other rows report the hit-rate of each
model predicting this path. The standard errors of the hit rates are provided in parentheses

below the estimate.
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Appendix F: Predicting Purchase Conversion

For comparison we report the probabilities for various alternative model formulations in

Table 9.

Forecast Origin/Number of viewings during session

Sample  Model 1 2 3 4 5 6
. 72%  82%  101%  127%  153%  22.4%
First-Order Markov (1 Statc) 026) (028  (031)  (034)  (036)  (0.43)
L atent Class (2 States) 74%  78%  95%  113%  12.8%  14.5%
E 027)  (027) (0300 (032 (034  (0.36)
S lnercent + VAR 104%  11.6%  149%  17.0%  214%  26.0%
g ereep 031) (033  (036)  (0.38)  (0.42)  (0.45)
= Dynamic Multinomial Probit (1 124%  140%  187%  251%  29.0%  35.8%
State, Page-Level) 034 (035 (039  (044)  (046)  (0.49)
Dynamic Multinomial Probit (2 133%  163%  234%  309%  344%  41.5%
States, Page-Level) 048) (052  (0.60)  (0.65  (0.67)  (0.69)
. 65%  75%  9.6%  12.6%  137%  16.6%
First-Order Markov (1 Statc) 035  (037)  (042)  (047) (049  (0.53)
72%  73%  8.6%  9.5%  9.9%  11.2%
Latent Class (2 States) 082 (082  (0.89)  (0.93)  (0.94)  (0.99)

5
g 84%  93%  11.8%  135%  153%  17.7%
E Intercept + VAR 0.88)  (092)  (1.02  (1.08)  (1.13)  (1.21)
Dynamic Multinomial Probit (1 93%  114%  152%  164%  17.8%  19.0%
State, Page-Level) 092 (101 (113 (117 d21) (1.4
Dynamic Multinomial Probit (2 10.4% 12.8% 15.2% 18.0% 19.1% 21.2%
States, Page-Level) 0.97) (1.06) (1.14) (1.21) (1.24) (1.29)

Table 9. Predicted purchase conversion probabilities (and standard errors in parentheses) of

users who purchase given initial paths for various models. The estimation sample has 83

sessions and the holdout has 31.

- XXV -



