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Appendix A: Prior Settings 

 
 We assume a priori that the densities of the starting values for iqD , iv , and the density 

of each row of the hidden chain transition matrix are Dirichlet densities. In addition, we assume 
a priori that the intensity parameters, isλ , for iqD follow a Gamma density. For notational 

simplicity we drop the dependence of state on the user, session, and viewing (<iqt>) and assume 

that this dependence is understood. That is, 
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Notice that in the paper we use scsh λλ  and  respectively to denote shapeprior and scaleprior. 

 To complete our model we specify the following priors: 
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Priors for the Full Models at Various Levels 

 We assume a priori that the densities of the starting values for iqD , iv , and the density 

of each row of the hidden chain transition matrix are Dirichlet densities. In addition, we assume 
a priori that the intensity parameters, isλ , for iqD follow a Gamma density. That is, 
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To complete our model we specify the following priors: 
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Priors for the Latent Class Models at Various Levels 

 The prior specifications for the latent class models are the same as those for the full 

models except for the priors for the latent mixture process.  Therefore, we only show the priors 

for the latent mixture process below. 
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Priors for the Latent Class Models with Tight Priors 

 In order to approximate the traditional latent class model, we estimate the user-level 

latent class models with tight priors on the mixture process, sΨ , and sΩ .  Therefore we have: 
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Other prior specifications remain the same as described above. 
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Sensitivity of the Model to Prior Specifications 

 To evaluate the sensitivity of our model to prior settings we consider a range of weak, 

moderate, and strong priors for the parameter of the hidden markov model as well as those for 

sΩ  and sΨ .  The settings of these priors are given below.  In our paper we report our model 

using a moderate prior for both sets of parameters. 
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Appendix B: Monte Carlo Markov Chain for Estimating the 
Model 

 

           We apply data augmentation and MCMC methods (Gibbs sampler see McCulloch and 

Rossi (1994) and reversible jump algorithm (Liechty and Roberts, 2001)) based on the following 

full conditional distributions. For notational simplicity we drop the dependence of state on the 

user, session, and viewing (<iqt>) and assume that this dependence is understood. 
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 The univariate draws of iqctU  can be generated from truncated normal distribution using 

a Slice Sampler.  The multivariate draws of isΓ , ilsΦ , and lsΠ  can be generated from conjugate 

multivariate normal distributions with the identification conditions satisfied.  The random draws 

of -1
sΣ  and 1−

sΨ  can be generated from conjugate Wishart distributions. The random draws of 

isλ  can be generated from conjugated Gamma distribution. We can generate the draw of iqD  

using a reversible jump algorithm (Liechty and Roberts 2001). The multivariate draws of iv  and 
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ijP  can be generated from conjugate Dirichlet distributions. priorscale can be generated from 

conjugate Gamma distribution. priorshape , sα , and sjτ can be generated using Metropolis-

Hasting algorithm.  We make a total of 10,000 draws with an additional 5,000 draws for burn-in. 

 

 The full conditional distributions are given as follows. 
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Where iqtDs = .  The eigenvalues of isΦ are restricted to be within unit circle. 
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where niqs is the number of times Diq was in state s  in session q and miqs is the amount of time 

that Diq was in state s in session q. 
(9).  ,,},{},{},{},{},{| ijisiqtisiqtiqtisiq PvΣXΓYUΦD ~ Reversible Jump Algorithm: 

independence sampler, refinement sampler, and birth-and-death sampler. 

 We use the reversible jump Hasting Metropolis (HM) algorithms proposed by Liechty 
and Roberts (2001) to generate samples of each hidden Markov chain iqD . The difference 

between their algorithm and ours is based on the distribution of U in this paper versus the 
likelihood functions in theirs.  We used three different algorithms for updating iqD . The first 

algorithm is an independence algorithm, which ignores the current realization of iqD and 

proposes realizations by drawing from the prior density of iqD .  This results in proposed 



- xi - 

 

 

realizations that are considerably different, in terms of the posterior density, and as a 

consequence this algorithm tends to result in large but infrequent moves. 
 The other two algorithms create proposed realizations of iqD  by making small 

modifications to the current realization of iqD . The second algorithm is a refinement algorithm 

where the proposed realization of iqD is created by modifying one of the jump times of the 

current realization of iqD .  The third algorithm is a birth-death algorithm where the proposed 

realization of iqD  is created by either inserting a new interval into the current realization of iqD  

– a birth – or removing an interval from the current realization of iqD – a death.  The 

independence algorithm has obvious advantages when the posterior distribution is multi-modal 
or when a poor initial value of iqD has been chosen, where as the refinement algorithm and the 

birth-death algorithm have the advantage of more efficiently exploring the modes of the 

posterior distribution. 

 In order to take advantage of the properties of these three algorithms, one of these three 

algorithms is randomly chosen at each iteration of the MCMC algorithm to update each hidden 

Markov chain. Although our model itself is different from theirs, we apply the algorithms 

proposed by Liechty and Roberts (2001) and refer to their description of the algorithms and the 

formulas for calculating the acceptance probabilities. 
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Appendix C: Categorization of Web Pages 

 

 We assign pages to one of seven categories as summarized in Table A.  The assignment 

of URLs to a category was made by scanning for specific keywords that occur in the URL string.  

The keywords used to identify each category are given in Table B.  For example, the string 

“/index.asp” occurs in the URL http://www.bn.com/index.asp, hence this URL would be 

assigned to the home category.  The keywords and categories are given in the order of 

precedence.  These categories were motivated by the navigational structure of the B&N site and 

research in human computer interaction (Redish 2002).  To illustrate our data we report the data 

collected by CMM for a user session in Table C.   
 
Abbr. Category Description of Page Content 
H Home Home page, common starting page for B&N visitors 
A Account User sign in, address changes, and review order status  
C Category  List of items (category listings) or search results 
P Product  Detailed product information, item description, price information, 

availability, and reviews 
I Information Shipping, order status and popup advertisements 
S Shopping Cart Reviewing the cart, delete items, entering purchase information 
O Order Confirmation page that denotes order has taken place 
E Enter/Exit Non B&N pages used to denote the beginning or end of a session

Table A. Categorization scheme for B&N web pages for 9,180 unique pages requests. 
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Category 
Abbreviation Category Name Keywords 
A Account account/, youraccount.asp, signin.asp 
C Category  /subjects/, /bookstore.asp, /oopbooks/, /textbooks/, 

/bargain/, /ebooks/, music/, music/index.asp, video/, 
video/index.asp, posters/, posters/index.asp, enews/main/, 
/boutiques/, /holiday.asp, /genre.asp, /topshelf/, 
/bookshelf/, /style.asp, /newreleases/, /home.asp, 
/collection/, /bestsellers/, /comingsoon/, /recommended/, 
/firstchapters\, /booksearch/results.asp, /education/, 
/onthecharts/, /recommend/, /classical/, /budget/, 
/nr_home.asp, /topsell.asp, enews/category/, 
enews/browse/, enews/gifts/, enews/newspapers/ 

P Product  booksearch/isbninquiry.asp, enews/magazine/, 
/search/product.asp 

S Shopping Cart shop/cart.asp, shop/shipping.asp, shop/giftwrapping.asp, 
shop/payment.asp, shop/billing.asp 

O Order shop/confirm.asp 
H Home bn.com/index.asp, barnesandnoble.com/index.asp 
I Information All other URLs not classified in other categories 
E Enter/Exit URLs not containing “bn.com” or “barnesandnoble.com” 
Table B. Keywords used to assign URLs to appropriate category. 

 
 Time URL Category Abbr.
1 8:36:11pm /promo/coupon/popups/fs_usa_popup.asp?userid=xxx Information I 
2 8:36:29pm /booksearch/results.asp?wrd=70%2d215&userid=xxx Category C 
3 8:36:48pm /booksearch/results.asp?userid=xxx&mscssid=yyy&wrd=70%2d215&opr=a&sort=p Category C 
4 8:37:14pm /booksearch/isbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0072134445 Product P 
5 8:38:10pm /booksearch/results.asp?userid=xxx&mscssid=yyy&wrd=70%2d215&opr=a&sort=p Category C 
6 8:44:32pm /textbooks/booksearch/isbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0619034971 Product P 
7 8:55:12pm /promo/coupon/popups/fs_usa_popup.asp?userid=xxx Information I 
8 8:55:24pm /booksearch/results.asp?wrd=70%2d215&userid=xxx Category C 
9 8:55:36pm /booksearch/results.asp?userid=xxx&mscssid=yyy&wrd=70%2d215&opr=a&sort=p Category C 
10 8:56:37pm /shop/signin.asp?userid=xxx&mscssid=yyy Account A 
11 8:58:16pm /booksearch/results.asp?userid=xxx&mscssid=yyy&wrd=70%2d215&opr=a&sort=p Category C 
12 8:58:40pm /booksearch/isbninquiry.asp?userid=xxx&mscssid=yyy&isbn=0072224983 Product P 
13 8:59:21pm /shop/cart.asp?userid=xxx&mscssid=yyy Shop Cart S 
14 9:01:26pm Exit Exit E 
Table C. Listing of raw clickstream dataset associated with a selected session on April 28, 2002 
for one user.  (All URLs are prefixed by http://www.barnesandnoble.com, and the userid and 
mscssid is listed as xxx and yyy, respectively, to protect the privacy of this user.) 
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Appendix D: Parameter Estimates 

 

 

Impact of Marketing Mix, Hypertext Links, and Behavioral Variables 

 The posterior means and standard deviations of the hyper-distribution parameter 

estimates for the marketing mix and hypertext link covariates of our two-state dynamic 

multinomial probit model are given in Table 1 and 2, respectively (in our notation this is ]E[Γ  

in equation 5, where the demographics are set to the mean values).  

 The intercepts provide the basic attractiveness of a category holding everything else 

constant.  Notice that users in a deliberation-oriented state tend to have more positive intercepts 

than those in the browsing-oriented state, which indicates the deliberation-oriented visitors will 

have longer sessions over browsing-oriented visitors.  The most likely category to be viewed by 

browsing-oriented users is the home page category, while visitors in a deliberation-oriented state 

are more likely to visit account pages.  Perhaps users in a browsing-oriented state are less likely 

to delve deeply into a web site compared to deliberation-oriented users. 
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  Inter-

cept 
Price 

Present
Promo-

tion Ads
Home 
Links

Acct 
Links 

Product 
Links

Home .29 
(.08) 

-.10 
(.03)

.05 
(.01)

-.15 
(.03)

-.10 
(.02)

-.06 
(.01) 

-.01 
(.01)

Account -.09 
(.02) 

-.17 
(.03)

-.04 
(.02)

.20 
(.03)

-.04 
(.01)

.10 
(.01) 

.01 
(.01)

Category -.01 
(.02) 

.10 
(.02)

.01 
(.01)

-.17 
(.03)

-.01 
(.01)

-.01 
(.01) 

.03 
(.01)

Product -.07 
(.02) 

.12 
(.03)

-.08 
(.01)

.08 
(.02)

.02 
(.01)

.03 
(.01) 

.01 
(.01)

Information -.06 
(.03) 

-.02 
(.02)

.04 
(.02)

.05 
(.03)

.03 
(.01)

.03 
(.01) 

.01 
(.01)

Shopping Cart -.11 
(.02) 

-.07 
(.02)

.05 
(.01)

-.04 
(.02)

-.04 
(.01)

.01 
(.01) 

.01 
(.01)

Br
ow

sin
g-

or
ien

te
d 

St
at

e 

Order -.54 
(.08) 

-.04 
(.01)

.05 
(.01)

-.06 
(.01)

-.02 
(.01)

.04 
(.01) 

.01 
(.01)

Home -.35 
(.14) 

-.02 
(.01)

.03 
(.01)

-.07 
(.03)

.03 
(.01)

-.01 
(.01) 

-.01 
(.01)

Account .61 
(.13) 

-.03 
(.01)

-.04 
(.01)

.01 
(.02)

-.01 
(.01)

.02 
(.01) 

-.02 
(.01)

Category .07 
(.08) 

.03 
(.01)

-.01 
(.01)

.05 
(.01)

.02 
(.01)

.01 
(.01) 

.06 
(.01)

Product -.15 
(.06) 

.26 
(.01)

.03 
(.01)

-.09 
(.01)

-.01 
(.01)

.03 
(.01) 

.07 
(.01)

Information .01 
(.01) 

-.01 
(.01)

.02 
(.01)

.13 
(.01)

.06 
(.01)

.03 
(.01) 

.02 
(.01)

Shopping Cart .27 
(.03) 

.04 
(.01)

-.14 
(.01)

-.03 
(.01)

.01 
(.01)

.06 
(.01) 

.04 
(.01)D

eli
be

ra
tio

n-
or

ien
te

d 
St

at
e 

Order .06 
(.02) 

.08 
(.02)

-.03 
(.01)

-.07 
(.01)

.01 
(.01)

-.03 
(.01) 

.02 
(.01)

Table 1. Posterior mean and standard deviation of parameter estimates for marketing mix and 
hypertext links. 
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State Category 

Purchase 
in Last 

Session 
Time 

Duration
Visit 

Depth Weekend
Other 

Site Visits 
Other 

Bookstores
Home .29 

(.05) 
.04 

(.02)
.09 

(.02)
.29 

(.05)
.19 

(.03) 
.04 

(.05)
Account -.19 

(.05) 
-.05 

(.02)
.04 

(.01)
.15 

(.04)
-.12 

(.03) 
.16 

(.07)
Category .33 

(.04) 
-.08 

(.02)
-.07 

(.01)
.11 

(.03)
-.13 

(.03) 
-.14 

(.04)
Product .10 

(.05) 
.05 

(.02)
-.02 

(.01)
.01 

(.02)
.05 

(.03) 
.10 

(.04)
Information .21 

(.05) 
-.11 

(.01)
-.02 

(.02)
.26 

(.04)
.01 

(.02) 
-.37 

(.05)
Shopping 
Cart 

-.13 
(.06) 

-.09 
(.01)

.03 
(.01)

.15 
(.03)

-.11 
(.02) 

-.36 
(.06)

Br
ow

sin
g-

or
ien

te
d 

St
at

e 

Order .33 
(.05) 

.03 
(.02)

.01 
(.01)

.02 
(.03)

.01 
(.01) 

-.02 
(.01)

Home .05 
(.01) 

-.04 
(.01)

.02 
(.01)

.02 
(.01)

.01 
(.01) 

.09 
(.01)

Account -.01 
(.01) 

-.01 
(.01)

.02 
(.01)

-.01 
(.01)

.04 
(.01) 

-.20 
(.04)

Category -.03 
(.01) 

.01 
(.01)

-.31 
(.03)

.01 
(.01)

-.01 
(.01) 

-.02 
(.01)

Product .06 
(.02) 

-.01 
(.01)

-.02 
(.01)

.01 
(.01)

-.05 
(.01) 

-.04 
(.01)

Information .02 
(.01) 

.02 
(.01)

-.04 
(.01)

.01 
(.01)

-.01 
(.02) 

.02 
(.01)

Shopping 
Cart 

.01 
(.01) 

.02 
(.01)

.04 
(.01)

.05 
(.01)

.02 
(.02) 

-.05 
(.01)D

eli
be

ra
tio

n-
or

ien
te

d 
St

at
e 

Order .03 
(.01) 

-.01 
(.01)

.05 
(.01)

-.05 
(.01)

-.01 
(.01) 

.04 
(.01)

Table 2. Posterior mean and standard deviation of parameter estimates for web browsing 
context variables. 
 

Estimates of the VAR and Markov Model of the Mixture Process 

 The estimates of the hyper-distribution for the VAR(1) process (denoted as sΦ in 

equation 7) are given in table 3.  We find that although these coefficients are relatively small, 

there are significant time trends in all categories.  Positive diagonal elements among account, 

category, and product pages indicate that previously viewing a page in this category increases the 

probability of viewing another page in this category.  While negative parameters indicate a higher 

chance of not viewing the category again, such as the home, shopping cart, and order pages.  

The diagonal elements in the deliberation-oriented state range from -.09 to .23, while in the 
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browsing-oriented state they range from -.08 to .08, indicating slightly more persistence in the 

deliberation-oriented-state. 

 Positive off-diagonal terms indicate switching behavior from one category to another, 

while negative off-diagonal terms indicate a decreased likelihood of switching from one category 

to the next.  For example, users who have previously viewed a product page become more likely 

to view a home or account page when the latent utility of these corresponding categories 

increase. 
 
State Categories Home Account Category Product Inform ShopCart Order

Home -.08 
(.020) 

.27
(.002)

-.03
(.003)

.18
(.003)

.04
(.014)

-.07 
(.012) 

-.79
(.016)

Account .02 
(.015) 

.05
(.002)

-.08
(.004)

.22
(.005)

-.12
(.014)

.39 
(.018) 

.35
(.010)

Category .01 
(.012) 

-.01
(.001)

.08
(.001)

.06
(.002)

.23
(.009)

-.06 
(.011) 

.47
(.007)

Product -.03 
(.008) 

-.03
(.001)

.03
(.001)

.06
(.003)

-.09
(.003)

.44 
(.032) 

.17
(.004)

Information .01 
(.014) 

-.13
(.001)

-.02
(.001)

-.03
(.001)

.03
(.001)

.11 
(.014) 

.34
(.003)

Shopping Cart .02 
(.012) 

.09
(.001)

-.01
(.001)

-.02
(.001)

-.02
(.002)

-.01 
(.013) 

.50
(.003)

Br
ow

sin
g-

or
ien

te
d 

St
at

e 

Order -.01 
(.008) 

.13
(.002)

-.05
(.001)

-.02
(.001)

-.01
(.001)

.03 
(.001) 

-.01
(.002)

Home -.09 
(.004) 

.05
(.004)

-.47
(.041)

.39
(.002)

.31
(.013)

-.68 
(.016) 

.08
(.007)

Account -.03 
(.008) 

.04
(.006)

-.06
(.004)

.43
(.004)

.24
(.017)

-.14 
(.019) 

.20
(.009)

Category -.03 
(.004) 

-.03
(.003)

.23
(.006)

-.06
(.002)

-.15
(.006)

.82 
(.008) 

-.07
(.032)

Product -.01 
(.003) 

-.01
(.005)

.04
(.005)

.08
(.007)

-.13
(.007)

.40 
(.027) 

.09
(.003)

Information -.01 
(.003) 

-.03
(.003)

-.01
(.005)

-.01
(.003)

-.02
(.001)

-.44 
(.011) 

-.49
(.006)

Shopping Cart .01 
(.002) 

.02
(.003)

-.06
(.004)

.01
(.001)

-.01
(.001)

-.01 
(.001) 

.16
(.006)D

eli
be

ra
tio

n-
or

ien
te

d 
St

at
e 

Order .02 
(.003) 

.02
(.002)

.01
(.004)

-.03
(.001)

-.01
(.001)

.03 
(.001) 

-.02
(.002)

Table 3. Posterior mean and standard deviation of the VAR parameter hyper-distribution. 

 The estimates for the two-state hidden Markov chain are given in Table 4.  Notice that a 

user has a high probability of starting in a browsing-oriented state (64%).  On average a user will 

stay in this browsing-oriented state for about three viewings (i.e., the inverse of waiting time is 
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.32).  In contrast, a user in the deliberation-oriented state tends to persist in this state longer or 

about four viewings (i.e., the inverse of waiting time is .26).  The transition probability matrix is 

trivial for the two-state model, since there are only two states and the switching behavior is 

captured by the waiting time in each state. 
 

 Browsing 
oriented state

Deliberation 
oriented state 

λ (Inverse of Waiting Time) .32 
(.01)

.26 
(.01) 

ν (Starting Probabilities) .64 
(.01)

.36 
(.01) 

0 1 P (Transition Probabilities) 
1 0 

Table 4. Posterior mean and standard deviation of parameters associated with state transitions. 

 

Unexplained variance in Web Page Selection 

 The estimates of the error covariance matrix (Σs; upper triangular elements in the table) 

and correlations (lower triangular) are given in Table 5.  Notice that the variance for the home 

page category is set to 1 for identification purposes.  Consistent with our prior expectations most 

of the off-diagonal covariance estimates in both the browsing-oriented state and deliberation-

oriented state are significantly different than zero.  This indicates that the independence 

assumption of the independent probit model is incorrect.  Also we find that the variance 

estimates in the browsing-oriented state are slightly larger than those of the purchase-oriented 

state, which indicates that these users are less persistent in category choices. 

 Substantively, we find that users in browsing-oriented states who unexpectedly choose 

account pages are more likely to choose category pages after controlling for covariates and 

lagged effects.  In contrast, users in a deliberation-oriented state appear to be less likely to move 

from an account to a category page.  Notice that deliberation-oriented consumers are less likely 

to move from an information page to a home, account, category, or shopping cart page, while 

browsing-oriented consumers are somewhat more likely. 
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State Categories Home Account Category Product Inform ShopCart Order

Home 1 .074 .047 .073 .030 .017 .014
Account .140 

(.003) 
3.535
(.166) .229 .053 .082 .001 .007

Category .042 
(.002) 

.380
(.014)

0.776
(.038) .129 .028 .0480 -.011

Product .060 
(.002) 

.082
(.004)

.094
(.022)

0.685
(.034) .019 .054 .017

Information .023 
(.001) 

.119
(.004)

.019
(.006)

.012
(.010)

0.586 
(.020) .046 .001

Shopping Cart .012 
(.008) 

.002
(.005)

.290
(.008)

.030
(.006)

.024 
(.005) 

0.468 
(.016) .001Br

ow
sin

g-
or

ien
te

d 
St

at
e 

Order .090 
(.004) 

.180
(.008)

-.060
(.003)

.090
(.002)

.011 
(.003) 

.010 
(.002) 

0.414
(.013)

Home 1 -.213 .153 .028 -.186 .109 -.016
Account -.333 

(.005) 
2.440
(.322) -.109 .050 -.152 .161 .164

Category .127 
(.002) 

-.142
(.010)

0.688
(.089) -.109 -.288 .105 .054

Product .021 
(.002) 

.058
(.012)

-.068
(.006)

0.556
(.069) .239 .041 .009

Information -.155 
(.003) 

-.198
(.008)

-.199
(.008)

.149
(.068)

0.697 
(.094) -.200 .056

Shopping Cart .065 
(.002) 

.151
(.005)

.052
(.004)

.018
(.034)

-.100 
(.040) 

0.361 
(.031) -.040D
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te

d 
St

at
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Order -.008 
(.008) 

.121
(.002)

.021
(.008)

.003
(.009)

.022 
(.008) 

-.010 
(.006) 

0.223
(.021)

Table 5. Estimated error covariance matrices for the two-state model. 

 

Impact of Demographics on Web Browsing 

 The demographic variables are meant to help explain variation in browsing behavior 

across users.  The posterior mean and standard deviation for the hyper-parameters associated 

with the impact of the demographic variables on the web user’s response to price presence are 

given in Table 6 (we denote these parameters as lsΠ  in equation 6), and the associated 

covariance matrix ( sΨ ) is given in Table 7.  For brevity we report the demographic relationships 

for only whether price information is present on the page (price presence), but have estimated all 

demographic responses. 
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Categories 
Inter-

cept Age Age2 Male White Child Married College 
Med. 

Income
High 

Income
Home -.17 

(.03) 
.04 

(.02) 
-.02

(.02)
.42

(.02)
-.15

(.02)
.25

(.03)
.01 

(.01) 
-.03 

(.01) 
.24

(.02)
.19

(.02)
Account -.58 

(.02) 
.21 

(.01) 
-.01

(.01)
-.02

(.02)
-.05

(.01)
.33

(.03)
-.20 

(.01) 
-.30 

(.03) 
-.44

(.03)
-.20

(.02)
Category 1.32 

(.03) 
.14 

(.01) 
.01

(.01)
.16

(.01)
.12

(.02)
-.10

(.01)
.10 

(.02) 
-.38 

(.03) 
.24

(.02)
.59

(.03)
Product .89 

(.03) 
-.30 

(.01) 
.05

(.01)
.09

(.02)
-.04

(.02)
-.26

(.01)
.18 

(.02) 
.23 

(.01) 
-.51

(.02)
.13

(.02)
Information -1.21 

(.02) 
.24 

(.01) 
-.04

(.01)
.37

(.02)
-.40

(.03)
.47

(.02)
.14 

(.03) 
.65 

(.02) 
-.18

(.02)
-.20

(.02)
Shopping 
Cart 

-.48 
(.02) 

.04 
(.01) 

.01
(.01)

.06
(.01)

-.17
(.02)

.26
(.01)

.24 
(.02) 

.22 
(.01) 

.21
(.02)

.03
(.02)

Br
ow

sin
g-

or
ie

nt
ed

 S
ta

te
 

Order -.32 
(.02) 

.16 
(.01) 

-.02
(.01)

.18
(.01)

-.32
(.02)

.07
(.01)

.06 
(.02) 

.05 
(.01) 

.02
(.02)

.07
(.02)

Home -.04 
(.02) 

-.01 
(.02) 

-.01
(.01)

-.01
(.02)

-.01
(.02)

.03
(.02)

-.16 
(.03) 

.06 
(.02) 

.03
(.03)

.14
(.03)

Account -.02 
(.02) 

-.01 
(.01) 

-.01
(.01)

.13
(.02)

.02
(.02)

-.01
(.01)

-.02 
(.02) 

.04 
(.03) 

-.01
(.02)

.03
(.03)

Category .02 
(.01) 

.01 
(.03) 

.01
(.01)

-.01
(.02)

-.09
(.02)

.02
(.01)

-.03 
(.02) 

.05 
(.03) 

.01
(.02)

-.09
(.03)

Product .02 
(.01) 

.01 
(.01) 

-.01
(.01)

-.08
(.02)

.01
(.02)

-.03
(.01)

-.12 
(.03) 

-.11 
(.03) 

-.15
(.02)

.12
(.02)

Information -.01 
(.01) 

-.01 
(.02) 

.02
(.01)

-.21
(.03)

-.15
(.02)

.04
(.01)

-.03 
(.02) 

.04 
(.03) 

.08
(.02)

-.23
(.03)

Shopping 
Cart 

.03 
(.01) 

.01 
(.02) 

.01
(.01)

.01
(.02)

-.07
(.02)

.05
(.02)

-.01 
(.02) 

-.12 
(.03) 

.10
(.02)

.13
(.03)

D
eli
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ra
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n-
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te
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St
at

e 

Order .03 
(.01) 

.01 
(.02) 

.01
(.01)

-.10
(.03)

.04
(.02)

.03
(.02)

-.19 
(.03) 

-.09 
(.03) 

.04
(.02)

-.01
(.02)

Table 6. Posterior mean and standard deviation of effects of demographics on browsing. 
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State Categories Home Account Category Product Inform
Shop 
Cart Order

Home .00019 
(.00003) .47 .55 .38 .55 .48 .89

Account .00008 
(.00001) 

.00015 
(.00004) .41 .57 .48 .16 .93

Category .00009 
(.00003) 

.00006 
(.00003)

.00014 
(.00001) .67 .14 .81 .71

Product .00006 
(.00003) 

.00008 
(.00003)

.00009 
(.00002)

.00013 
(.00003) .67 .59 .54

Information .00009 
(.00002) 

.00007 
(.00002)

.00002 
(.00002)

.00009 
(.00002)

.00014 
(.00001) .32 .78

Shopping Cart .00007 
(.00002) 

.00002 
(.00001)

.00010 
(.00001)

.00007 
(.00002)

.00004 
(.00002)

.00011 
(.00002) .44

Br
ow

sin
g-

or
ie

nt
ed

 S
ta

te
 

Order .00016 
(.00002) 

.00015 
(.00003)

.00011 
(.00003)

.00008 
(.00002)

.00012 
(.00002)

.00006 
(.00001) 

.00017 
(.00003)

Home .00015 
(.00004) .37 -.94 .74 .43 .50 .67

Account .00005 
(.00003) 

.00012 
(.00001) -.28 .50 .55 .42 -.41

Category -.00015 
(.00002) 

-.00004 
(.00001)

.00017 
(.00001) -.56 -.37 -.65 -.69

Product .00015 
(.00004) 

.00009 
(.00003)

-.00012 
(.00002)

.00027 
(.00004) .71 .65 .54

Information .00013 
(.00001) 

.00015 
(.00002)

-.00012 
(.00001)

.00029 
(.00004)

.00062 
(.00004) .43 .06

Shopping Cart .00008 
(.00001) 

.00006 
(.00001)

-.00011 
(.00005)

.00014 
(.00011)

.00014 
(.00001)

.00017 
(.00001) .74D

eli
be

ra
tio

n-
or

ien
te

d 
St

at
e 

Order .00011 
(.00001) 

-.00006 
(.00001)

-.00012 
(.00001)

.00012 
(.00001)

.00002 
(.00001)

.00013 
(.00001) 

.00018 
(.00001)

Table 7. Estimated covariance matrix of the hyper-distribution for the two-state model. The 
lower triangular portion of the matrix contains the estimates of the covariance matrix, and the 
upper triangular portion has the correlation estimates. 
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Appendix E: Multi-Step Forecasting Performance 

 

 The fit and hit-rate provided in Tables 7 and 8 of the paper measure one-step ahead 

forecasting performance.  However, we are not simply interested in forecasting a single-step 

ahead, but we are potentially interested in predicting the entire path that a user may take.  In 

Table 8 we report the accuracy of various models in predicting the ten most frequent paths with 

a specific two-category sequence.  For example, in the estimation dataset, the two-category 

sequence “CC” occurs 2,066 times, which is more than any other two sequences.  Our best 

model correctly predicts this sequence 73.63% of the time when it actually occurs.  The task of 

predicting the sequence “CC” requires predicting the probability that both the one- and two-step 

ahead predictions are “C”.  This is a harder problem than a one-step ahead forecast, since the 

error in the first-step will be compounded in the forecast of the second step.  Notice that our 

best model, the dynamic two-state Probit model, performs significantly better than all other 

models.  
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  Paths With Two Following Two Category Sequence 
Sample Model CC II EI PP CP IC AA IE PC SS

Actual  2066 1352 776 663 547 490 460 455 414 361
Zero-Order Markov (1 State) 12.15 

(0.33)
4.81 

(0.22)
2.58 

(0.16)
3.17 

(0.18)
5.67 

(0.24)
8.16 

(0.28) 
0.87 

(0.09) 
3.30 

(0.18)
5.07 

(0.22)
0 

(0.02)
First-Order Markov  (1 State) 31.50 

(0.47)
15.63 
(0.37)

3.76 
(0.19)

10.76 
(0.32)

8.39 
(0.28)

6.08 
(0.24) 

43.04 
(0.51) 

5.93 
(0.24)

7.49 
(0.27)

11.91 
(0.33)

Multinomial Probit 15.61 
(0.37)

8.73 
(0.29)

2.66 
(0.16)

9.05 
(0.29)

6.19 
(0.25)

7.43 
(0.26) 

13.26 
(0.35) 

3.32 
(0.18)

5.42 
(0.23)

4.71 
(0.22)

Latent Class (2 States) 17.13 
(0.38)

11.17 
(0.32)

2.94 
(0.17)

11.28 
(0.32)

7.18 
(0.26)

7.41 
(0.27) 

16.45 
(0.38) 

3.87 
(0.20)

5.78 
(0.24)

5.44 
(0.23)

VAR with Intercept 53.92 
(0.51)

42.07 
(0.50)

30.03 
(0.47)

21.66 
(0.42)

32.38 
(0.48)

42.04 
(0.50) 

46.30 
(0.51) 

20.40 
(0.41)

33.14 
(0.48)

31.94 
(0.47)

Dynamic Probit (1 State) 63.73 
(0.49)

62.22 
(0.50)

40.98 
(0.50)

42.87 
(0.51)

54.57 
(0.51)

53.67 
(0.51) 

55.22 
(0.51) 

40.03 
(0.50)

43.14 
(0.50)

42.77 
(0.51)

E
st

im
at

io
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Dynamic Probit (2 States) 73.63 
(0.45)

72.22 
(0.46)

51.33 
(0.51)

53.77 
(0.51)

55.85 
(0.51)

61.63 
(0.49) 

63.91 
(0.49) 

50.77 
(0.51)

54.59 
(0.51)

53.05 
(0.51)

Actual  889 563 213 353 286 148 221 139 249 217
Zero-Order Markov (1 State) 9.24 

(0.41)
4.62 

(0.30)
2.82 

(0.24)
2.83 

(0.24)
5.59 

(0.33)
8.78 

(0.40) 
0 

(0.06) 
1.44 

(0.17)
5.22 

(0.32)
0.46 

(0.09)
First-Order Markov  (1 State) 29.38 

(0.65)
12.28 
(0.47)

3.09 
(0.25)

12.97 
(0.49)

8.23 
(0.39)

3.47 
(0.26) 

39.82 
(0.70) 

2.16 
(0.21)

7.23 
(0.37)

13.82 
(0.49)

Multinomial Probit 13.07 
(0.48)

5.20 
(0.32)

2.88 
(0.24)

6.23 
(0.34)

5.75 
(0.33)

5.35 
(0.32) 

11.81 
(0.46) 

1.46 
(0.17)

5.20 
(0.32)

3.82 
(0.27)

Latent Class (2 States) 15.43 
(0.51)

15.10 
(0.51)

2.90 
(0.24)

14.79 
(0.50)

7.05 
(0.36)

4.68 
(0.30) 

15.65 
(0.52) 

1.87 
(0.19)

6.09 
(0.34)

4.66 
(0.30)

VAR with Intercept 44.39 
(0.71)

32.84 
(0.67)

28.07 
(0.61)

24.25 
(0.61)

24.19 
(0.61)

32.03 
(0.67) 

36.79 
(0.69) 

18.34 
(0.55)

33.21 
(0.67)

25.88 
(0.62)

Dynamic Probit (1 State) 52.81 
(0.71)

53.91 
(0.71)

35.10 
(0.68)

33.40 
(0.67)

50.70 
(0.71)

43.38 
(0.70) 

44.52 
(0.71) 

36.93 
(0.69)

40.80 
(0.70)

40.15 
(0.70)

H
ol

do
ut

 

Dynamic Probit (2 States) 64.16 
(0.68)

63.55 
(0.69)

44.90 
(0.71)

51.70 
(0.71)

52.80 
(0.71)

52.70 
(0.71) 

54.52 
(0.71) 

45.50 
(0.71)

53.61 
(0.71)

46.23 
(0.71)

Table 8.  Hit rate (%) for 10 most frequent paths with a specific two-category sequence. The 
entries for the “Actual” row are frequencies while the other rows report the hit-rate of each 
model predicting this path. The standard errors of the hit rates are provided in parentheses 
below the estimate. 
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Appendix F: Predicting Purchase Conversion 

 

 For comparison we report the probabilities for various alternative model formulations in 

Table 9. 
 

Forecast Origin/Number of viewings during session 
Sample Model 1 2 3 4 5 6

First-Order Markov (1 State) 7.2% 
(0.26)

8.2% 
(0.28)

10.1% 
(0.31)

12.7% 
(0.34) 

15.3% 
(0.36) 

22.4% 
(0.43)

Latent Class (2 States) 7.4% 
(0.27)

7.8% 
(0.27)

9.5% 
(0.30)

11.3% 
(0.32) 

12.8% 
(0.34) 

14.5% 
(0.36)

Intercept + VAR 10.4% 
(0.31)

11.6% 
(0.33)

14.9% 
(0.36)

17.0% 
(0.38) 

21.4% 
(0.42) 

26.0% 
(0.45)

Dynamic Multinomial Probit (1 
State, Page-Level) 

12.4% 
(0.34)

14.0% 
(0.35)

18.7% 
(0.39)

25.1% 
(0.44) 

29.0% 
(0.46) 

35.8% 
(0.49)

E
st
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Dynamic Multinomial Probit (2 
States, Page-Level) 

13.3% 
(0.48)

16.3% 
(0.52)

23.4% 
(0.60)

30.9% 
(0.65) 

34.4% 
(0.67) 

41.5% 
(0.69)

First-Order Markov (1 State) 6.5% 
(0.35)

7.5% 
(0.37)

9.6% 
(0.42)

12.6% 
(0.47) 

13.7% 
(0.49) 

16.6% 
(0.53)

Latent Class (2 States) 7.2% 
(0.82)

7.3% 
(0.82)

8.6% 
(0.89)

9.5% 
(0.93) 

9.9% 
(0.94) 

11.2% 
(0.99)

Intercept + VAR 8.4% 
(0.88)

9.3% 
(0.92)

11.8% 
(1.02)

13.5% 
(1.08) 

15.3% 
(1.13) 

17.7% 
(1.21)

Dynamic Multinomial Probit (1 
State, Page-Level) 

9.3% 
(0.92)

11.4% 
(1.01)

15.2% 
(1.13)

16.4% 
(1.17) 

17.8% 
(1.21) 

19.0% 
(1.24)

H
ol

do
ut

 

Dynamic Multinomial Probit (2 
States, Page-Level) 

10.4% 
(0.97)

12.8% 
(1.06)

15.2% 
(1.14)

18.0% 
(1.21) 

19.1% 
(1.24) 

21.2% 
(1.29)

Table 9.  Predicted purchase conversion probabilities (and standard errors in parentheses) of 

users who purchase given initial paths for various models.  The estimation sample has 83 

sessions and the holdout has 31. 


